
Goutam Chakraborty, Murali Pagolu, 
Satish Garla

Text Mining and Analysis 
Practical Methods, Examples, 
and Case Studies Using SAS®



Contents 

About This Book ..................................................................................................... xi 

About The Authors ................................................................................................ xv 

Acknowledgments ............................................................................................... xvii 

Chapter 1 Introduction to Text Analytics ................................................................ 1 
Overview of Text Analytics .............................................................................................................................. 1 

Text Mining Using SAS Text Miner ................................................................................................................. 5 

Information Retrieval ....................................................................................................................................... 7 

Document Classification ................................................................................................................................. 8 

Ontology Management .................................................................................................................................... 9 

Information Extraction ................................................................................................................................... 10 

Clustering ........................................................................................................................................................ 11 

Trend Analysis ................................................................................................................................................ 12 

Enhancing Predictive Models Using Exploratory Text Mining .................................................................. 13 

Sentiment Analysis ........................................................................................................................................ 14 

Emerging Directions ...................................................................................................................................... 15 

Handling Big (Text) Data ......................................................................................................................... 15 

Voice Mining ............................................................................................................................................. 16 

Real-Time Text Analytics ........................................................................................................................ 16 

Summary ......................................................................................................................................................... 16 

References ...................................................................................................................................................... 17 

Chapter 2   Information Extraction Using SAS Crawler .......................................... 19 
Introduction to Information Extraction and Organization ......................................................................... 19 

SAS Crawler ............................................................................................................................................. 20 

SAS Search and Indexing ....................................................................................................................... 20 

SAS Information Retrieval Studio Interface .......................................................................................... 20 

Web Crawler ................................................................................................................................................... 22 

Breadth First ............................................................................................................................................ 23 

Depth First ................................................................................................................................................ 24 

Web Crawling: Real-World Applications and Examples ...................................................................... 24 

Understanding Core Component Servers ................................................................................................... 26 

Proxy Server ............................................................................................................................................. 26 

Pipeline Server ......................................................................................................................................... 27 

Component Servers of SAS Search and Indexing ...................................................................................... 28 

Indexing Server ........................................................................................................................................ 28 

Query Server ............................................................................................................................................ 28 

From Text Mining and Analysis. Full book available for purchase here.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19538


vi 

Query Web Server .................................................................................................................................... 29 

Query Statistics Server ........................................................................................................................... 29 

SAS Markup Matcher Server .................................................................................................................. 29 

Summary ......................................................................................................................................................... 39 

References ...................................................................................................................................................... 39 

Chapter 3   Importing Textual Data into SAS Text Miner ....................................... 41 
An Introduction to SAS Enterprise Miner and SAS Text Miner ................................................................. 41 

Data Types, Roles, and Levels in SAS Text Miner ............................................................................... 42 

Creating a Data Source in SAS Enterprise Miner ................................................................................. 43 

Importing Textual Data into SAS .................................................................................................................. 48 

Importing Data into SAS Text Miner Using the Text Import Node ..................................................... 49 

%TMFILTER Macro ................................................................................................................................. 57 

Importing XLS and XML Files into SAS Text Miner .............................................................................. 58 

Managing Text Using SAS Character Functions .................................................................................. 62 

Summary ......................................................................................................................................................... 67 

References ...................................................................................................................................................... 68 

Chapter 4   Parsing and Extracting Features ........................................................ 69 
Introduction .................................................................................................................................................... 69 

Tokens and Words ......................................................................................................................................... 70 

Lemmatization ......................................................................................................................................... 70 

POS Tags .................................................................................................................................................. 71 

Parsing Tree ............................................................................................................................................. 71 

Text Parsing Node in SAS Text Miner .......................................................................................................... 73 

Stemming and Synonyms ....................................................................................................................... 73 

Identifying Parts of Speech .................................................................................................................... 78 

Using Start and Stop Lists ...................................................................................................................... 81 

Spell Checking ......................................................................................................................................... 84 

Entities ...................................................................................................................................................... 86 

Building Custom Entities Using SAS Contextual Extraction Studio ......................................................... 88 

Summary ......................................................................................................................................................... 90 

References ...................................................................................................................................................... 90 

Chapter 5 Data Transformation ............................................................................ 93 
Introduction .................................................................................................................................................... 93 

Zipf’s Law ................................................................................................................................................. 94 

Term-By-Document Matrix ..................................................................................................................... 96 

Text Filter Node ....................................................................................................................................... 97 

Frequency Weightings ............................................................................................................................ 98 

Term Weightings ...................................................................................................................................... 98 

Filtering Documents .............................................................................................................................. 102 

Concept Links ........................................................................................................................................ 106 

Summary ....................................................................................................................................................... 108 

References .................................................................................................................................................... 108 



vii 

Chapter 6 Clustering and Topic Extraction ......................................................... 111 
Introduction .................................................................................................................................................. 111 

What Is Clustering? ............................................................................................................................... 111 

Singular Value Decomposition and Latent Semantic Indexing ........................................................ 113 

Topic Extraction..................................................................................................................................... 122 

Scoring .................................................................................................................................................... 130 

Summary ....................................................................................................................................................... 130 

References .................................................................................................................................................... 131 

Chapter 7 Content Management ......................................................................... 133 
Introduction .................................................................................................................................................. 133 

Content Categorization ......................................................................................................................... 134 

Types of Taxonomy ............................................................................................................................... 136 

Statistical Categorizer .......................................................................................................................... 139 

Rule-Based Categorizer........................................................................................................................ 141 

Comparison of Statistical versus Rule-Based Categorizers ............................................................ 144 

Determining Category Membership .................................................................................................... 145 

Concept Extraction ............................................................................................................................... 146 

Contextual Extraction ........................................................................................................................... 150 

CLASSIFIER Definition .......................................................................................................................... 150 

SEQUENCE and PREDICATE_RULE Definitions ................................................................................ 155 

Automatic Generation of Categorization Rules Using SAS Text Miner ........................................... 157 

Differences between Text Clustering and Content Categorization ................................................. 159 

Summary ....................................................................................................................................................... 160 

Appendix ....................................................................................................................................................... 161 

References .................................................................................................................................................... 162 

Chapter 8 Sentiment Analysis ............................................................................ 163 
Introduction .................................................................................................................................................. 163 

Basics of Sentiment Analysis...................................................................................................................... 164 

Challenges in Conducting Sentiment Analysis ................................................................................... 165 

Unsupervised versus Supervised Sentiment Classification .............................................................. 165 

SAS Sentiment Analysis Studio Overview ........................................................................................... 166 

Statistical Models in SAS Sentiment Analysis Studio .............................................................................. 167 

Rule-Based Models in SAS Sentiment Analysis Studio ........................................................................... 172 

SAS Text Miner and SAS Sentiment Analysis Studio ......................................................................... 175 

Summary ....................................................................................................................................................... 176 

References .................................................................................................................................................... 177 

Case Studies ...................................................................................................... 179 

Case Study 1 Text Mining SUGI/SAS Global Forum Paper Abstracts to Reveal 
Trends ............................................................................................................... 181 
Introduction .................................................................................................................................................. 181 

Data ......................................................................................................................................................... 181 

Results .................................................................................................................................................... 189 

Trends ..................................................................................................................................................... 190 



viii 

Summary ....................................................................................................................................................... 194 

Instructions for Accessing the Case Study Project ................................................................................. 194 

Case Study 2 Automatic Detection of Section Membership for SAS Conference 
Paper Abstract Submissions ............................................................................... 197 
Introduction .................................................................................................................................................. 197 

Objective................................................................................................................................................. 198 

Step-by-Step Instructions .................................................................................................................... 198 

Summary ....................................................................................................................................................... 208 

Case Study 3 Features-based Sentiment Analysis of Customer Reviews ............. 209 
Introduction .................................................................................................................................................. 209 

Data ......................................................................................................................................................... 209 

Text Mining for Negative App Reviews ............................................................................................... 210 

Text Mining for Positive App Reviews ................................................................................................. 217 

NLP Based Sentiment Analysis ............................................................................................................ 219 

Summary ....................................................................................................................................................... 225 

Case Study 4 Exploring Injury Data for Root Causal and Association Analysis ..... 227 
Introduction .................................................................................................................................................. 227 

Objective................................................................................................................................................. 227 

Data Description .................................................................................................................................... 227 

Step-by-Step Instructions ........................................................................................................................... 228 

Part 1: SAS Text Miner .......................................................................................................................... 228 

Part 2: SAS Enterprise Content Categorization ................................................................................. 234 

Summary ....................................................................................................................................................... 238 

Case Study 5 Enhancing Predictive Models Using Textual Data .......................... 241 
Data Description .......................................................................................................................................... 241 

Step-by-Step Instructions ........................................................................................................................... 241 

Summary ....................................................................................................................................................... 249 

Case Study 6 Opinion Mining of Professional Drivers’ Feedback ......................... 251 
Introduction .................................................................................................................................................. 251 

Data ......................................................................................................................................................... 251 

Analysis Using SAS® Text Miner ......................................................................................................... 251 

Analysis Using the Text Rule-builder Node ........................................................................................ 258 

Summary ....................................................................................................................................................... 272 

Case Study 7 Information Organization and Access of Enron Emails to Help 
Investigation ...................................................................................................... 273 
Introduction .................................................................................................................................................. 273 

Objective................................................................................................................................................. 273 

Step-by-Step Software Instruction with Settings/Properties ........................................................... 274 

Summary ....................................................................................................................................................... 281 

Case Study 8 Unleashing the Power of Unified Text Analytics to Categorize Call 
Center Data ........................................................................................................ 283 
Introduction .................................................................................................................................................. 283 

Data Description .................................................................................................................................... 284 



ix 

Examining Topics .................................................................................................................................. 285 

Merging or Splitting Topics .................................................................................................................. 288 

Categorizing Content ............................................................................................................................ 288 

Concept Map Visualization ................................................................................................................... 289 

Using PROC DS2 for Deployment DEPLOYMENT ............................................................................. 292 

Integrating with SAS® Visual Analytics ..................................................................................................... 293 

Summary ....................................................................................................................................................... 294 

Case Study 9 Evaluating Health Provider Service Performance Using Textual 
Responses ......................................................................................................... 297 
Introduction .................................................................................................................................................. 297 

Summary ....................................................................................................................................................... 311 

Index .................................................................................................................. 313 

From Text Mining and Analysis: Practical Methods, Examples, and Case Studies Using SAS®  by Goutam Chakraborty, Murali Pagolu, 
and Satish Garla. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR19538


Chapter 1 Introduction to Text Analytics 

Overview of Text Analytics ........................................................................................... 1 

Text Mining Using SAS Text Miner .................................................................................. 5 

Information Retrieval ...................................................................................................... 7 

Document Classification ................................................................................................. 8 

Ontology Management .................................................................................................... 9 

Information Extraction ...............................................................................................10 

Clustering ..................................................................................................................11 

Trend Analysis ...........................................................................................................12 

Enhancing Predictive Models Using Exploratory Text Mining ....................................... 13 

Sentiment Analysis ....................................................................................................14 

Emerging Directions ..................................................................................................... 15 
Handling Big (Text) Data ................................................................................................................. 15 
Voice Mining ................................................................................................................................ 16 
Real-Time Text Analytics ................................................................................................................ 16 

Summary ...................................................................................................................16 

References .................................................................................................................... 17 

Overview of Text Analytics 
Text analytics helps analysts extract meanings, patterns, and structure hidden in unstructured textual data. The 
information age has led to the development of a wide variety of tools and infrastructure to capture and store 
massive amounts of textual data. In a 2009 report, the International Data Corporation (IDC) estimated that 
approximately 80% percent of the data in an organization is text based. It is not practical for any individual (or 
group of individuals) to process huge textual data and extract meanings, sentiments, or patterns out of the data. 
A paper written by Hans Peter Luhn, titled “The Automatic Creation of Literature Abstracts,” is perhaps one of 
the earliest research projects conducted on text analytics. Luhn writes about applying machine methods to 
automatically generate an abstract for a document. In a traditional sense, the term “text mining” is used for 
automated machine learning and statistical methods that encompass a bag-of-words approach. This approach is 
typically used to examine content collections versus assessing individual documents. Over time, the term “text 
analytics” has evolved to encompass a loosely integrated framework by borrowing techniques from data 
mining, machine learning, natural language processing (NLP), information retrieval (IR), and knowledge 
management. 

Text analytics applications are popular in the business environment. These applications produce some of the 
most innovative and deeply insightful results. Text analytics is being implemented in many industries. There are 
new types of applications every day. In recent years, text analytics has been heavily used for discovering trends  
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in textual data. Using social media data, text analytics has been used for crime prevention and fraud detection. 
Hospitals are using text analytics to improve patient outcomes and provide better care. Scientists in the 
pharmaceutical industry are using this technology to mine biomedical literature to discover new drugs. 

Text analytics incorporates tools and techniques that are used to derive insights from unstructured data. These 
techniques can be broadly classified as the following: 

● information retrieval
● exploratory analysis
● concept extraction
● summarization
● categorization
● sentiment analysis
● content management
● ontology management

In these techniques, exploratory analysis, summarization, and categorization are in the domain of text mining. 
Exploratory analysis includes techniques such as topic extraction, cluster analysis, etc. The term “text analytics” 
is somewhat synonymous with “text mining” (or “text data mining”). Text mining can be best conceptualized as 
a subset of text analytics that is focused on applying data mining techniques in the domain of textual 
information using NLP and machine learning. Text mining considers only syntax (the study of structural 
relationships between words). It does not deal with phonetics, pragmatics, and discourse. 

Sentiment analysis can be treated as classification analysis. Therefore, it is considered predictive text mining. At 
a high level, the application areas of these techniques divide the text analytics market into two areas: search and 
descriptive and predictive analytics. (See Display 1.1.) Search includes numerous information retrieval 
techniques, whereas descriptive and predictive analytics include text mining and sentiment analysis. 
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Display 1.1: High-Level Classification of Text Analytics Market and Corresponding SAS Tools 

Text Analytics 

Search 
(Information Organization and Access) 

Descriptive and Predictive Analysis 
(Discovering Trends, Patterns, and Modeling) 

Information Retrieval Content 
Categorization 

Ontology Management Text Mining Sentiment Analysis 

SAS Text Analytics Suite 

SAS Crawler, SAS 
Search and Indexing 

SAS Enterprise 
Content 

Categorization 

SAS Ontology 
Management 

SAS Text Miner SAS Sentiment 
Analysis Studio 

Chapter 2 Chapter 7 Not covered in this 
book 

Chapters 3, 4, 
5, and 6 

Chapter 8 

SAS has multiple tools to address a variety of text analytics techniques for a range of business applications. 
Display 1.1 shows the SAS tools that address different areas of text analytics. In a typical situation, you might 
need to use more than one tool for solving a text analytics problem. However, there is some overlap in the 
underlying features that some of these tools have to offer. Display 1.2 provides an integrated view of SAS Text 
Analytics tools. It shows, at a high level, how they are organized in terms of functionality and scope. SAS 
Crawler can extract content from the web, file systems, or feeds, and then send it as input to SAS Text Miner, 
SAS Sentiment Analysis Studio, or SAS Content Categorization. These tools are capable of sending content to 
the indexing server where information is indexed. The query server enables you to enter search queries and 
retrieve relevant information from the indexed content. 

SAS Text Miner, SAS Sentiment Analysis Studio, and SAS Content Categorization form the core of the SAS 
Text Analytics tools arsenal for analyzing text data. NLP features such as tokenization, parts-of-speech 
recognition, stemming, noun group detection, and entity extraction are common among these tools. However, 
each of these tools has unique capabilities that differentiate them individually from the others. In the following 
section, the functionality and usefulness of these tools are explained in detail. 
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Display 1.2: SAS Text Analytics Tools: An Integrated Overview 

The following paragraphs briefly describe each tool from the SAS Text Analytics suite as presented in Display 
1.2: 

● SAS Crawler, SAS Search and Indexing – Useful for extracting textual content from the web or
from documents stored locally in an organized way. For example, you can download news articles
from websites and use SAS Text Miner to conduct an exploratory analysis, such as extracting key
topics or themes from the news articles. You can build indexes and submit queries on indexed
documents through a dedicated query interface.

● SAS Ontology Management – Useful for integrating existing document repositories in enterprises and
identifying relationships between them. This tool can help subject matter experts in a knowledge
domain create ontologies and establish hierarchical relationships of semantic terms to enhance the
process of search and retrieval on the document repositories.
Note: SAS Ontology Management is not discussed in this book because we primarily focus on areas
where the majority of current business applications are relevant for textual data.

● SAS Content Categorization – Useful for classifying a document collection into a structured
hierarchy of categories and subcategories called taxonomy. In addition to categorizing documents, it
can be used to extract facts from them. For example, news articles can be classified into a predefined
set of categories such as politics, sports, business, financial, etc. Factual information such as events,
places, names of people, dates, monetary values, etc., can be easily retrieved using this tool.

● SAS Text Miner – Useful for extracting the underlying key topics or themes in textual documents.
This tool offers the capability to group similar documents—called clusters—based on terms and their
frequency of occurrence in the corpus of documents and within each document. It provides a feature
called “concept linking” to explore the relationships between terms and their strength of association.
For example, textual transcripts from a customer call center can be fed into this tool to automatically
cluster the transcripts. Each cluster has a higher likelihood of having similar problems reported by
customers. The specifics of the problems can be understood by reviewing the descriptive terms
explaining each of the clusters. A pictorial representation of these problems and the associated terms,
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events, or people can be viewed through concept linking, which shows how strongly an event can be 
related to a problem. 
SAS Text Miner enables the user to define custom topics or themes. Documents can be scored based 
on the presence of the custom topics. In the presence of a target variable, supervised classification or 
prediction models can be built using SAS Text Miner. The predictions of a prediction model with 
numerical inputs can be improved using topics, clusters, or rules that can be extracted from textual 
comments using SAS Text Miner. 

● SAS Sentiment Analysis – Useful for identifying the sentiment toward an entity in a document or the
overall sentiment toward the entire document. An entity can be anything, such as a product, an
attribute of a product, brand, person, group, or even an organization. The sentiment evaluated is
classified as positive or negative or neutral or unclassified. If there are no terms associated with an
entity or the entire document that reflect the sentiment, it is tagged “unclassified.”
Sentiment analysis is generally applied to a class of textual information such as customers’ reviews on
products, brands, organizations, etc., or to responses to public events such as presidential elections.
This type of information is largely available on social media sites such as Facebook, Twitter, YouTube,
etc.

Text Mining Using SAS Text Miner 
A typical predictive data mining problem deals with data in numerical form. However, textual data is typically 
available only in a readable document form. Forms could be e-mails, user comments, corporate reports, news 
articles, web pages, etc. Text mining attempts to first derive a quantitative representation of documents. Once 
the text is transformed into a set of numbers that adequately capture the patterns in the textual data, any 
traditional statistical or forecasting model or data mining algorithm can be used on the numbers for generating 
insights or for predictive modeling. 

A typical text mining project involves the following tasks: 

1. Data Collection: The first step in any text mining research project is to collect the textual data
required for analysis.

2. Text Parsing and Transformation: The next step is to extract, clean, and create a dictionary of words
from the documents using NLP. This includes identifying sentences, determining parts of speech, and
stemming words. This step involves parsing the extracted words to identify entities, removing stop
words, and spell-checking. In addition to extracting words from documents, variables associated with
the text such as date, author, gender, category, etc., are retrieved.

The most important task after parsing is text transformation. This step deals with the numerical 
representation of the text using linear algebra-based methods, such as latent semantic analysis (LSA), 
latent semantic indexing (LSI), and vector space model. This exercise results in the creation of a term- 
by-document matrix (a spreadsheet or flat-like numeric representation of textual data as shown in Table 
1.1). The dimensions of the matrix are determined by the number of documents and the number of terms 
in the collection. This step might involve dimension reduction of the term-by-document matrix using 
singular value decomposition (SVD). 

Consider a collection of three reviews (documents) of a book as provided below: Document 1: I am an 
avid fan of this sport book. I love this book. 

Document 2: This book is a must for athletes and sportsmen. Document 3: This book tells how to 
command the sport. 

Parsing this document collection generates the following term-by-document matrix in Table 1.1: 
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Table 1.1: Term-By-Document Matrix 

Term/Document Document 1 Document 2 Document 3 

the 0 0 1 
I 2 0 0 
am 1 0 0 
avid 1 0 0 
fan 1 0 0 
this 2 1 1 
book 2 1 1 
athletes 0 1 0 
sportsmen 0 1 0 
sport 1 0 1 
command 0 0 1 
tells 0 0 1 
for 0 1 0 
how 0 0 1 
love 1 0 0 
an 1 0 0 
of 1 0 0 
is 0 1 0 
a 0 1 0 
must 0 1 0 
and 0 1 0 
to 0 0 1 

3. Text Filtering: In a corpus of several thousands of documents, you will likely have many terms that are
irrelevant to either differentiating documents from each other or to summarizing the documents. You
will have to manually browse through the terms to eliminate irrelevant terms. This is often one of the
most time-consuming and subjective tasks in all of the text mining steps. It requires a fair amount of
subject matter knowledge (or domain expertise). In addition to term filtering, documents irrelevant to
the analysis are searched using keywords. Documents are filtered if they do not contain some of the
terms or filtered based on one of the other document variables such as date, category, etc. Term
filtering or document filtering alters the term-by-document matrix. As shown in Table 1.1, the term- 
by-document matrix contains the frequency of the occurrence of the term in the document as the value
of each cell. Instead, you could have a log of the frequency or just a 1 or 0 value indicating the presence
of the term in a document as the value for each cell. From this frequency matrix, a weighted term-by-
document matrix is generated using various term-weighting techniques.

4. Text Mining: This step involves applying traditional data mining algorithms such as clustering,
classification, association analysis, and link analysis. As shown in Display 1.3, text mining is an
iterative process, which involves repeating the analysis using different settings and including or
excluding terms for better results. The outcome of this step can be clusters of documents, lists of
single-term or multi-term topics, or rules that answer a classification problem. Each of these steps is
discussed in detail in Chapter 3 to Chapter 7.
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Display 1.3: Text Mining Process Flow 

Information Retrieval 
Information retrieval, commonly known as IR, is the study of searching and retrieving a subset of documents 
from a universe of document collections in response to a search query. The documents are often unstructured in 
nature and contain vast amounts of textual data. The documents retrieved should be relevant to the information 
needs of the user who performed the search query. Several applications of the IR process have evolved in the 
past decade. One of the most ubiquitously known is searching for information on the World Wide Web. There 
are many search engines such as Google, Bing, and Yahoo facilitating this process using a variety of advanced 
methods. 

Most of the online digital libraries enable its users to search through their catalogs based on IR techniques.  
Many organizations enhance their websites with search capabilities to find documents, articles, and files of 
interest using keywords in the search queries. For example, the United States Patent and Trademark Office 
provides several ways of searching its database of patents and trademarks that it has made available to the 
public. In general, an IR system’s efficiency lies in its ability to match a user’s query with the most relevant 
documents in a corpus. To make the IR process more efficient, documents are required to be organized,   
indexed, and tagged with metadata based on the original content of the documents. SAS Crawler is capable of 
pulling information from a wide variety of data sources. Documents are then processed by parsers to create 
various fields such as title, ID, URL, etc., which form the metadata of the documents. (See Display 1.4.) SAS 
Search and Indexing enables you to build indexes from these documents. Users can submit search queries on the 
indexes to retrieve information most relevant to the query terms. The metadata fields generated by the parsers 
can be used in the indexes to enable various types of functionality for querying. 
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Display 1.4: Overview of the IR Process with SAS Search and Indexing 

Document Classification 
Document classification is the process of finding commonalities in the documents in a corpus and grouping them 
into predetermined labels (supervised learning) based on the topical themes exhibited by the documents. Similar 
to the IR process, document classification (or text categorization) is an important aspect of text analytics and 
has numerous applications. 

Some of the common applications of document classification are e-mail forwarding and spam detection, call 
center routing, and news articles categorization. It is not necessary that documents be assigned to mutually 
exclusive categories. Any restrictive approach to do so might prove to be an inefficient way of representing the 
information. In reality, a document can exhibit multiple themes, and it might not be possible to restrict them to 
only one category. SAS Text Miner contains the text topic feature, which is capable of handling these situations. 
It assigns a document to more than one category if needed. (See Display 1.5.) Restricting documents to only one 
category might be difficult for large documents, which have a greater chance of containing multiple topics or 
features. Topics or categories can be either automatically generated by SAS Text Miner or predefined manually 
based on the knowledge of the document content. 

In cases where a document should be restricted to only one category, text clustering is usually a better approach 
instead of extracting text topics. For example, an analyst could gain an understanding of a collection of 
classified ads when the clustering algorithm reveals the collection actually consists of categories such as Car 
Sales, Real Estate, and Employment Opportunities. 
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Display 1.5: Text Categorization Involving Multiple Categories per Document 

SAS Content Categorization helps automatically categorize multilingual content available in huge volumes that 
is acquired or generated or that exists in an information repository. It has the capability to parse, analyze, and 
extract content such as entities, facts, and events in a classification hierarchy. Document classification can be 
achieved using either SAS Content Categorization or SAS Text Miner. However, there are some fundamental 
differences between these two tools. The text topic extraction feature in SAS Text Miner completely relies on 
the quantification of terms (frequency of occurrences) and the derived weights of the terms for each document 
using advanced statistical methods such as SVD. 

On the other hand, SAS Content Categorization is broadly based on statistical and rule-based models. The 
statistical categorizer works similar to the text topic feature in SAS Text Miner. The statistical categorizer is 
used as a first step to automatically classify documents. Because you cannot really see the rules behind the 
classification methodology, it is called a black box model. In rule-based models, you can choose to use 
linguistic rules by listing the commonly occurring terms most relevant for a category. You can assign weights to 
these terms based on their importance. Boolean rule-based models use Boolean operators such as AND, OR, 
NOT, etc., to specify the conditions with which terms should occur within documents. This tool has additional 
custom-built operators to assess positional characteristics such as whether the distance between the two terms is 
within a distance of n terms, whether specific terms are found in a given sequence, etc. There is no limit on how 
complex these rules can be (for example, you can use nested Boolean rules). 

Ontology Management 
Ontology is a study about how entities can be grouped and related within a hierarchy. Entities can be subdivided 
based on distinctive and commonly occurring features. SAS Ontology Management enables you to create 
relationships between pre-existing taxonomies built for various silos or departments. The subject matter 
knowledge about the purpose and meaning can be used to create rules for building information search and 
retrieval systems. By identifying relationships in an evolutionary method and making the related content 
available, queries return relevant, comprehensive, and accurate answers. SAS Ontology Management offers the 
ability to build semantic repositories and manage company-wide thesauri and vocabularies and to build 
relationships between them. 

To explain its application, consider the simple use case of an online media house named ABC. (The name was 
changed to maintain anonymity.) ABC uses SAS Ontology Management. ABC collects a lot of topics over a 
period of time. It stores each of these topics, along with metadata (properties), including links to images and 
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textual descriptions. SAS Ontology Management helps ABC store relationships between the related topics. 
ABC regularly queries its ontology to generate a web page for each topic, showing the description, images, 
related topics, and other metadata that it might have selected to show. (See Display 1.6.) ABC uploads the 
information from SAS Ontology Management to SAS Content Categorization, and then tags news articles with 
topics that appear in the articles using rules that it’s created. All tagged articles are included in a list on the topic 
pages. 

Display 1.6: Example Application of SAS Ontology Management from an Online Media Website 

Information Extraction 
In a relational database, data is stored in tables within rows and columns. A structured query on the database can 
help you retrieve the information required if the names of tables and columns are known. However, in the case 
of unstructured data, it is not easy to extract specific portions of information from the text because there is no 
fixed reference to identify the location of the data. Unstructured data can contain small fragments of 
information that might be of specific interest, based on the context of information and the purpose of analysis. 
Information extraction can be considered the process of extracting those fragments of data such as the names of 
people, organizations, places, addresses, dates, times, etc., from documents. 

Information extraction might yield different results depending on the purpose of the process and the elements of 
the textual data. Elements of the textual data within the documents play a key role in defining the scope of 
information extraction. These elements are tokens, terms, and separators. A document consists of a set of tokens. 
A token can be considered a series of characters without any separators. A separator can be a special character, 
such as a blank space or a punctuation mark. A term can be a defined as a token with specific semantic purpose 
in a given language. 

There are several types of information extraction that can be performed on textual data. 

● Token extraction
● Term extraction or term parsing
● Concept extraction
● Entity extraction
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● Atomic fact extraction
● Complex fact extraction

Concept extraction involves identifying nouns and noun phrases. Entity extraction can be defined as the process 
of associating nouns with entities. For example, although the word “white” is a noun in English and represents a 
color, the occurrence of “Mr. White” in a document can be identified as a person, not a color. Similarly, the 
phrase “White House” can be attributed to a specific location (the official residence and principal workplace of 
the president of the United States), rather than as a description of the color of paint used for the exterior of a 
house. Atomic fact extraction is the process of retrieving fact-based information based on the association of 
nouns with verbs in the content (i.e., subjects with actions). 

Clustering 
Cluster analysis is a popular technique used by data analysts in numerous business applications. Clustering 
partitions records in a data set into groups so that the subjects within a group are similar and the subjects 
between the groups are dissimilar. The goal of cluster analysis is to derive clusters that have value with respect 
to the problem being addressed, but this goal is not always achieved. As a result, there are many competing 
clustering algorithms. The analyst often compares the quality of derived clusters, and then selects the method 
that produces the most useful groups. The clustering process arranges documents into nonoverlapping groups. 
(See Display 1.7.) Each document can fall into more than one topic area after classification. This is the key 
difference between clustering and the general text classification processes, although clustering provides a 
solution to text classification when groups must be mutually exclusive, as in the classified ads example. 

In the context of text mining, clustering divides the document collection into mutually exclusive groups based 
on the presence of similar themes. In most business applications involving large amounts of textual data, it is 
often difficult to profile each cluster by manually reading and considering all of the text in a cluster. Instead, the 
theme of a cluster is identified using a set of descriptive terms that each cluster contains. This vector of terms 
represents the weights measuring how the document fits into each cluster. Themes help in better understanding 
the customer, concepts, or events. The number of clusters that are identified can be controlled by the analyst. 

The algorithm can generate clusters based on the relative positioning of documents in the vector space. The 
cluster configuration is altered by a start and stop list. 

Display 1.7: Text Clustering Process Assigning Each Document to Only One Cluster 
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For example, consider the comments made by different patients about the best thing that they liked about the 
hospital that they visited. 

1. Friendliness of the doctor and staff.
2. Service at the eye clinic was fast.
3. The doctor and other people were very, very friendly.
4. Waiting time has been excellent and staff has been very helpful.
5. The way the treatment was done.
6. No hassles in scheduling an appointment.
7. Speed of the service.
8. The way I was treated and my results.
9. No waiting time, results were returned fast, and great treatment.

The clustering results from text mining the comments come out similar to the ones shown in Table 1.2. Each 
cluster can be described by a set of terms, which reveal, to a certain extent, the theme of the cluster. This type of 
analysis helps businesses understand the collection as a whole, and it can assist in correctly classifying 
customers based on common topics in customer complaints or responses. 

Table 1.2: Clustering Results from Text Mining 

The derivation of key words is accomplished using a weighting strategy, where words are assigned a weight 
using features of LSI. Text mining software products can differ in how the keywords are identified, resulting 
from different choices for competing weighting schemes. 

SAS Text Miner uses two types of clustering algorithms: expectation maximization and hierarchical clustering. 
The result of cluster analysis is identifying cluster membership for each document in the collection. The exact 
nature of the two algorithms is discussed in detail in “Chapter 6 Clustering and Topic Extraction.” 

Trend Analysis 
In recent years, text mining has been used to discover trends in textual data. Given a set of documents with a 
time stamp, text mining can be used to identify trends of different topics that exist in the text. Trend analysis has 
been widely applied in tracking the trends in research from scientific literature. It has also been widely applied in 
summarizing events from news articles. In this type of analysis, a topic or theme is first defined using a set of 
words and phrases. Presence of the words across the documents over a period of time represents the trend for 
this topic. To effectively track the trends, it is very important to include all related terms to (or synonyms of) 
these words. 

For example, text mining is used to predict the movements of stock prices based on news articles and corporate 
reports. Evangelopoulos and Woodfield (2009) show how movie themes trend over time, with male movies 
dominating the World War II years and female movies dominating the Age of Aquarius. As another example, 
mining social networks to identify trends is currently a very hot application area. Google Trends, a publicly 
available website, provides a facility to identify the trends in your favorite topics over a period of time. Social 
networking sites such as Twitter and blogs are great sources to identify trends. Here is a screenshot of the trend 
for the topic “text mining” from Google Trends. It is clearly evident that the growth in search traffic and online 

Cluster 
No. 

Comment Key Words 

1 1, 3, 4 doctor, staff, friendly, helpful 
2 5, 6, 8 treatment, results, time, schedule 
3 2, 7 service, clinic, fast 
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posts for the term “text mining” peaked after 2007. This is when the popularity of text mining applications in the 
business world jump-started. 

Display 1.8: Trend for the Term "text mining" from Google Trends 

The concept linking functionality in SAS Text Miner helps in identifying co-occurring terms (themes), and it 
reveals the strength of association between terms. With temporal data, the occurrence of terms from concept 
links can be used to understand the trend (or pattern) of the theme across the time frame. Case Study 1 explains 
how this technique was applied to reveal the trend of different topics that have been presented at SAS Global 
Forum since 1976. 

Enhancing Predictive Models Using Exploratory Text Mining 
Although text mining customer responses can reveal valuable insights about a customer, plugging the results 
from text mining into a typical data mining model can often significantly improve the predictive power of the 
model. Organizations often want to use customer responses captured in the form of text via e-mails, customer 
survey questionnaires, and feedback on websites for building better predictive models. One way of doing this is 
to first apply text mining to reveal groups (or clusters) of customers with similar responses or feedback. This 
cluster membership information about each customer can then be used as an input variable to augment the data 
mining model. With this additional information, the accuracy of a predictive model can improve significantly. 

For example, a large hospital conducted a post-treatment survey to identify the factors that influence a patient’s 
likelihood to recommend the hospital. By using the text mining results from the survey, the hospital was able to 
identify factors that showed an impact on patient satisfaction, which was not measured directly through the 
survey questions. Researchers observed a strong correlation between the theme of the cluster and the ratings 
given by the patient for the likelihood for the patient to recommend the hospital. 

In a similar exercise, a large travel stop company observed significant improvement in predicting models by 
using customers’ textual responses and numerical responses from a survey. Display 1.9 shows an example 
receiver operating characteristic (ROC) curve of the models with and without textual comments. The ROC 
curve shows the performance of a binary classification model. The larger the area under the curve, the better the 
model performance. The square-dashed curve (green), which is an effect of including results from textual 
responses, has a larger area under the curve compared to the long-dashed-dotted curve (red), which represents 
the model with numerical inputs alone. 
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Display 1.9: ROC Chart of Models With and Without Textual Comments 

With the widespread adoption by consumers of social media, a lot of data about any prospect or customer is 
often available on the web. If businesses can cull and use this information, they can often generate better 
predictions of consumer behavior. For example, credit card companies can track customers’ posts on Twitter 
and other social media sites, and then use that information in credit scoring models. However, there are 
challenges to using text mining models and predictive models together because it can be difficult to get textual 
data for every member in the data mining model for the same time period. 

Sentiment Analysis 
The field of sentiment analysis deals with categorization (or classification) of opinions expressed in textual 
documents. Often these text units are classified into multiple categories such as positive, negative, or neutral, 
based on the valence of the opinion expressed in the units. Organizations frequently conduct surveys and focus 
group studies to track a customer’s perception of their products and services. However, these methods are time- 
consuming and expensive and cannot work in real time because the process of analyzing text is done manually 
by experts. Using sentiment analysis, an organization can identify and extract a customers’ attitude, sentiment, 
or emotions toward a product or service. This is a more advanced application of text analytics that uses NLP to 
capture the polarity of the text: positive, negative, neutral, or mixed. With the advent of social networking sites, 
organizations can capture enormous amounts of customers’ responses instantly. This gives real-time awareness 
to customer feedback and enables organizations to react fast. Sentiment analysis works on opinionated text 
while text mining is good for factual text. Sentiment analysis, in combination with other text analytics and data 
mining techniques, can reveal very valuable insights. 

Sentiment analysis tools available from SAS offer a very comprehensive solution to capture, analyze, and report 
customer sentiments. The polarity of the document is measured at the overall document level and at the specific 
feature level. 

Here is an example showing the results of a sentiment analysis on a customer’s review of a new TV brand: 
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In the previous text, green color represents positive tone, red color represents negative tone, and product features 
and model names are highlighted in blue and brown, respectively. In addition to extracting positive and 
negative sentiments, names of product models and their features are identified. This level of identification helps 
identify the sentiment of the overall document and tracks the sentiment at a product-feature level, including the 
characteristics and sub-attributes of features. 

“Chapter 8 Sentiment Analysis” discusses sentiment analysis using SAS Sentiment Analysis Studio through an 
example of tracking sentiment in feedback comments from customers of a leading travel stop company. 

Emerging Directions 
Although the number of applications in text analytics has grown in recent years, there continues to be a high 
level of excitement about text analytics applications and research. For example, many of the papers presented at 
the Analytics 2011 Conference and SAS Global Forum 2013 were based on different areas of text analytics. In a 
way, the excitement about text analytics reminds us of the time when data mining and predictive modeling was 
taking off at business and academic conferences in the late 90s and early 2000s. The text analytics domain is 
constantly evolving with new techniques and new applications. Text analytics solutions are being adopted at the 
enterprise level and are being used to operationalize and integrate the voice of the customer into business 
processes and strategies. Many enterprise solution vendors are integrating some form of text analytics 
technology into their product line. This is evident from the rate of acquisitions in this industry. One of the key 
reasons that is fueling the growth of the field of text analytics is the increasing amount of unstructured data that 
is being generated on the web. It is expected that 90% of the digital content in the next 10 years will be 
unstructured data. 

Companies across all industries are looking for solutions to handle the massive amounts of data, also popularly 
known as big data. Data is generated constantly from various sources such as transaction systems, social media 
interactions, clickstream data from the web, real-time data captured from sensors, geospatial information, and so 
on. As we have already pointed out, by some estimates, 80% of an organization’s current data is not numeric! 

This means that the variety of data that constitutes big data is unstructured. This unstructured data comes in 
various formats: text, audio, video, images, and more. The constant streaming of data on social media outlets 
and websites means the velocity at which data is being generated is very high. The variety and the velocity of 
the data, together with the volume (the massive amounts) of the data organizations need to collect, manage, and 
process in real time, creates a challenging task. As a result, the three emerging applications for text analytics 
will likely address the following: 

1. Handling big (text) data
2. Voice mining
3. Real-time text analytics

Handling Big (Text) Data 
Based on the industry’s current estimations, unstructured data will occupy 90% of the data by volume in the 
entire digital space over the next decade. This prediction certainly adds a lot of pressure to IT departments, 
which already face challenges in terms of handling text data for analytical processes. With innovative hardware 
architecture, analytics application architecture, and data processing methodologies, high-performance 
computing technology can handle the complexity of big data. SAS High-Performance Text Mining helps you 
decrease the computational time required for processing and analyzing bulk volumes of text data significantly.  
It uses the combined power of multithreading, a distributed grid of computing resources, and in-memory 
processing. Using sophisticated implementation methodologies such as symmetric multiprocessing (SMP) and 
massively parallel processing (MPP), data is distributed across computing nodes. Instructions are allowed to 
execute separately on each node. The results from each node are combined to produce meaningful results. This 
is a cost-effective and highly scalable technology that addresses the challenges posed by the three Vs. (variety, 
velocity, and volume) of big data. 
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SAS High-Performance Text Mining consists of three components for processing very large unstructured data. 
These components are document parsing, term handling, and text processing control. In the document parsing 
component, several NLP techniques (such as parts-of-speech tagging, stemming, etc.) are applied to the input 
text to derive meaningful information. The term handling component accumulates (corrects misspelled terms 
using a synonyms list), filters (removes terms based on a start or stop list and term frequency), and assigns 
weights to terms. The text processing control component manages the intermediate results and the inputs and 
outputs generated by the document parsing and term handling components. It helps generate the term-by- 
document matrix in a condensed form. The term-by-document matrix is then summarized using the SVD 
method, which produces statistical representations of text documents. These SVD scores can be later included 
as numeric inputs to different types of models such as cluster or predictive models. 

Voice Mining 
Customer feedback is collected in many forms—text, audio, and video—and through various sources—surveys, 
e-mail, call center, social media, etc. Although the technology for analyzing videos is still under research and 
development, analyzing audio (also called voice mining) is gaining momentum. Call centers (or contact centers) 
predominantly use speech analytics to analyze the audio signal for information that can help improve call center 
effectiveness and efficiency. Speech analytics software is used to review, monitor, and categorize audio content. 
Some tools use phonetic index search techniques that automatically transform the audio signal into a sequence  
of phonemes (or sounds) for interpreting the audio signal and segmenting the feedback using trigger terms such 
as “cancel,” “renew,” “open account,” etc. Each segment is then analyzed by listening to each audio file 
manually, which is daunting, time-intensive, and nonpredictive. As a result, analytical systems that combine data 
mining methods and linguistics techniques are being developed to quickly determine what is most likely to 
happen next (such as a customer’s likelihood to cancel or close the account). In this type of analysis, metadata 
from each voice call, such as call length, emotion, stress detection, number of transfers, etc., that is captured by 
these systems can reveal valuable insights. 

Real-Time Text Analytics 
Another key emerging focus area that is being observed in text analytics technology development is real-time 
text analytics. Most of the applications of real-time text analytics are addressing data that is streaming 
continuously on social media. Monitoring public activity on social media is now a business necessity. For 
example, companies want to track topics about their brands that are trending on Twitter for real-time ad 
placement. They want to be informed instantly when their customers post something negative about their brand 
on the Internet. Less companies want to track news feeds and blog posts for financial reasons. Government 
agencies are relying on real-time text analytics that collect data from innumerate sources on the web to learn 
about and predict medical epidemics, terrorist attacks, and other criminal actions. However, real time can mean 
different things in different contexts. For companies involved in financial trading by tracking current events and 
news feeds, real time could mean milliseconds. For companies tracking customer satisfaction or monitoring 
brand reputation by collecting customer feedback, real time could mean hourly. For every business, it is of the 
utmost importance to react instantly before something undesirable occurs. 

The future of text analytics will surely include the next generation of tools and techniques with increased 
usefulness for textual data collection, summarization, visualization, and modeling. Chances are these tools will 
become staples of the business intelligence (BI) suite of products in the future. Just as SAS Rapid Predictive 
Modeler today can be used by business analysts without any help from trained statisticians and modelers, so 
will be some of the future text analytics tools. Other futuristic trends and applications of text analytics are 
discussed by Berry and Kogan (2010). 

Summary 
Including textual data in data analysis has changed the analytics landscape over the last few decades. You have 
witnessed how traditional machine learning and statistical methods to learn unknown patterns in text data are 
now replaced with much more advanced methods combining NLP and linguistics. Text mining (based on a 
traditional bag-of-words approach) has evolved into a much broader area (called text analytics). Text analytics 
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is regarded as a loosely integrated set of tools and methods developed to retrieve, cleanse, extract, organize, 
analyze, and interpret information from a wide range of data sources. Several techniques have evolved, with 
each focused to answer a specific business problem based on textual data. Feature extraction, opinion mining, 
document classification, information extraction, indexing, searching, etc., are some of the techniques that we 
have dealt with in great detail in this chapter. Tools such as SAS Text Miner, SAS Sentiment Analysis Studio, 
SAS Content Categorization, SAS Crawler, and SAS Search and Indexing are mapped to various analysis 
methods. This information helps you distinguish and differentiate the specific functionalities and features that 
each of these tools has to offer while appreciating the fact that some of them share common features. 

In the following chapters, we use SAS Text Analytics tools (except SAS Ontology Management, which is not 
discussed in this book) to address each methodology discussed in this chapter. Chapters are organized in a 
logical sequence to help you understand the end-to-end processes involved in a typical text analysis exercise. In 
Chapter 2, we introduce methods to extract information from various document sources using SAS Crawler. We 
show you how to deal with the painstaking tasks of cleansing, collecting, transforming, and organizing the 
unstructured text into a semi-structured format to feed that information into other SAS Text Analytics tools. As 
you progress through the chapters, you will get acquainted with SAS Text Analytics tools and methodologies 
that will help you adapt them at your organization. 
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