Simulating Data
with SAS®

Rick Wicklin
Contents

Acknowledgments v

I Essentials of Simulating Data

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Simulation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Simulating Data from Common Univariate Distributions</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Preliminary and Background Information</td>
<td>29</td>
</tr>
</tbody>
</table>

II Basic Simulation Techniques

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Simulating Data to Estimate Sampling Distributions</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>Using Simulation to Evaluate Statistical Techniques</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>Strategies for Efficient and Effective Simulation</td>
<td>93</td>
</tr>
</tbody>
</table>

III Advanced Simulation Techniques

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Advanced Simulation of Univariate Data</td>
<td>109</td>
</tr>
<tr>
<td>8</td>
<td>Simulating Data from Basic Multivariate Distributions</td>
<td>129</td>
</tr>
<tr>
<td>9</td>
<td>Advanced Simulation of Multivariate Data</td>
<td>153</td>
</tr>
<tr>
<td>10</td>
<td>Building Correlation and Covariance Matrices</td>
<td>175</td>
</tr>
</tbody>
</table>

IV Applications of Simulation in Statistical Modeling

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Simulating Data for Basic Regression Models</td>
<td>197</td>
</tr>
<tr>
<td>12</td>
<td>Simulating Data for Advanced Regression Models</td>
<td>225</td>
</tr>
<tr>
<td>13</td>
<td>Simulating Data from Times Series Models</td>
<td>251</td>
</tr>
<tr>
<td>14</td>
<td>Simulating Data from Spatial Models</td>
<td>263</td>
</tr>
<tr>
<td>15</td>
<td>Resampling and Bootstrap Methods</td>
<td>281</td>
</tr>
<tr>
<td>16</td>
<td>Moment Matching and the Moment-Ratio Diagram</td>
<td>297</td>
</tr>
</tbody>
</table>

V Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A SAS/IML Primer</td>
<td>325</td>
</tr>
</tbody>
</table>

Index 339
Chapter 2

Simulating Data from Common Univariate Distributions

Contents

2.1 Introduction to Simulating Univariate Data 11
2.2 Getting Started: Simulate Data from the Standard Normal Distribution ... 12
2.3 Template for Simulating Univariate Data in the DATA Step 13
2.4 Simulating Data from Discrete Distributions 14
 2.4.1 The Bernoulli Distribution 14
 2.4.2 The Binomial Distribution 15
 2.4.3 The Geometric Distribution 16
 2.4.4 The Discrete Uniform Distribution 17
 2.4.5 Tabulated Distributions 18
 2.4.6 The Poisson Distribution 19
2.5 Simulating Data from Continuous Distributions 20
 2.5.1 The Normal Distribution 21
 2.5.2 The Uniform Distribution 22
 2.5.3 The Exponential Distribution 22
2.6 Simulating Univariate Data in SAS/IML Software 24
 2.6.1 Simulating Discrete Data 24
 2.6.2 Sampling from Finite Sets 25
 2.6.3 Simulating Continuous Data 26
2.7 Univariate Distributions Supported in SAS Software 27
2.8 References .. 28

2.1 Introduction to Simulating Univariate Data

There are three primary ways to simulate data in SAS software:

- Use the DATA step to simulate data from univariate and uncorrelated multivariate distributions. You can use the RAND function to generate random values from more than 20 standard univariate distributions. You can combine these elementary distributions to build more complicated distributions.
• Use the SAS/IML language to simulate data from many distributions, including correlated multivariate distributions. You can use the RANDGEN subroutine to generate random values from standard univariate distributions, or you can use several predefined modules to generate data from multivariate distributions. You can extend the SAS/IML language by defining new functions that sample from distributions that are not built into SAS.

• Use specialized procedures in SAS/STAT software and SAS/ETS software to simulate data with special properties. Procedures that generate random samples include the SIMNORMAL, SIM2D, and COPULA procedures.

This chapter describes the two most important techniques that are used to simulate data in SAS software: the DATA step and the SAS/IML language. Although the DATA step is a useful tool for simulating univariate data, SAS/IML software is more powerful for simulating multivariate data. To learn how to use the SAS/IML language effectively, see Wicklin (2010).

Most of the terminology in this book is standard. However, a term that you might not be familiar with is the term random variate. A random variate is a particular outcome of a random variable (Devroye 1986). For example, let \(X \) be a Bernoulli random variable that takes on the value 1 with probability \(p \) and the value 0 with probability \(1 - p \). If you draw five observations from the probability distribution, you might obtain the values 0, 1, 0, 1, 1. Those five numbers are random variates. This book also uses the terms “simulated values” and “simulated data.” Some authors refer to simulated data as “fake data.”

2.2 Getting Started: Simulate Data from the Standard Normal Distribution

To “simulate data” means to generate a random sample from a distribution with known properties. Because an example is often an effective way to convey main ideas, the following DATA step generates a random sample of 100 observations from the standard normal distribution. Figure 2.1 shows the first five observations.

```sas
data Normal(keep=x);
  call streaminit(4321); /* Step 1 */
  do i = 1 to 100; /* Step 2 */
    x = rand("Normal"); /* Step 3 */
    output;
  end;
run;

proc print data=Normal(obs=5);
run;
```
2.3 Template for Simulating Univariate Data in the DATA Step

The DATA step consists of three steps:

1. Set the seed value with the STREAMINIT function. Seeds for random number generation are discussed further in Section 3.3.

2. Use a DO loop to iterate 100 times.

3. For each iteration, call the RAND function to generate a random value from the standard normal distribution.

If you change the seed value, you will get a different random sample. If you change the number 100, you will get a sample with a different number of observations. To get a nonnormal distribution, change the name of the distribution from “Normal” to one of the families listed in Section 2.7. Some distributions, including the normal distribution, include parameters that you can specify after the name.

2.3 Template for Simulating Univariate Data in the DATA Step

It is easy to generalize the example in the previous section. The following SAS pseudocode shows a basic template that you can use to generate \(N \) observations with a specified distribution:

```sas
%let N = 100; /* size of sample */

data Sample(keep=x);
  call streaminit(4321); /* or use a different seed */
  do i = 1 to &N; /* &N is the value of the N macro var */
    /* specify distribution and parameters */
    x = rand("DistribName", param1, param2, ...);
    output;
  end;
run;
```

The simulated data are written to the Sample data set. The macro variable \(N \) is defined in order to emphasize the role of that parameter. The expression \&N is replaced by the value of the macro parameter (here, 100) before the DATA step is run.
The (pseudo) DATA step demonstrates the following steps for simulating data:

1. A call to the STREAMINIT subroutine, which specifies the seed that initializes the random number stream. When the argument is a positive integer, as in this example, the random sequence is reproducible. If you specify 0 as the argument, the random number sequence is initialized from your computer’s internal system clock. This implies that the random sequence will be different each time that you run the program. Seeds for random number generation are discussed in Section 3.3.

2. A DO loop that iterates \(N \) times.

3. A call to the RAND function, which generates one random value each time that the function is called. The first argument is the name of a distribution. The supported distributions are enumerated in Section 2.7. Subsequent arguments are parameter values for the distribution.

2.4 Simulating Data from Discrete Distributions

When the set of possible outcomes is finite or countably infinite (like the integers), assigning a probability to each outcome creates a discrete probability distribution. Of course, the sum of the probabilities over all outcomes is unity.

The following sections generate a sample of size \(N = 100 \) from some well-known discrete distributions. The code is followed by a frequency plot of the sample, which is overlaid with the exact probabilities of obtaining each value. You can use PROC FREQ to compute the empirical distribution of the data; the exact probabilities are obtained from the probability mass function (PMF) of the distribution. Section 3.4.2 describes how to overlay a bar chart with a scatter plot that shows the theoretical probabilities.

2.4.1 The Bernoulli Distribution

The Bernoulli distribution is a discrete probability distribution on the values 0 and 1. The probability that a Bernoulli random variable will be 1 is given by a parameter, \(p, 0 \leq p \leq 1 \). Often a 1 is labeled a “success,” whereas a 0, which occurs with probability \(1 - p \), is labeled a “failure.”

The following DATA step generates a random sample from the Bernoulli distribution with \(p = 1/2 \). If you identify \(x = 1 \) with “heads” and \(x = 0 \) with “tails,” then this DATA step simulates \(N = 100 \) tosses of a fair coin.

```sas
%let N = 100;
%let RAND = random;
%let PROB = prob
data Bernoulli(keep=x);
  call streaminit(4321);
  p = 1/2;
  do i = 1 to &N;
    x = rand("Bernoulli", p); /* coin toss */
    output;
  end;
run;
```
You can use the FREQ procedure to count the outcomes in this simulated data. For this sample, the value 0 appeared 52 times, and the value 1 appeared 48 times. These frequencies are shown by the bar chart in Figure 2.2. The expected percentages for each result are shown by the round markers.

Figure 2.2 Sample from Bernoulli Distribution ($p = 1/2$) Overlaid with PMF

![Sample from Bernoulli Distribution (N=100)](image)

If X is a random variable from the Bernoulli distribution, then the expected value of X is p and the variance is $p(1 - p)$. In practice, this means that if you generate a large random sample from the Bernoulli distribution, you can expect the sample to have a sample mean that is close to p and a sample variance that is close to $p(1 - p)$.

2.4.2 The Binomial Distribution

Imagine repeating a Bernoulli trial n times, where each trial has a probability of success equal to p. If p is large (near 1), you expect most of the Bernoulli trials to be successes and only a few of the trials to be failures. On the other hand, if p is near $1/2$, you expect to get about $n/2$ successes.

The binomial distribution models the number of successes in a sequence of n independent Bernoulli trials. The following DATA step generates a random sample from the binomial distribution with $p = 1/2$ and $n = 10$. This DATA step simulates a series of coin tosses. For each trial, the coin is tossed 10 times and the number of heads is recorded. This experiment is repeated $N = 100$ times. Figure 2.3 shows a frequency plot of the results.

```sas
data Binomial(keep=x);
call streaminit(4321);
p = 1/2;
do i = 1 to &N;
   x = rand("Binomial", p, 10); /* number of heads in 10 tosses */
   output;
end;
run;
```
For this series of experiments, you expect to get five heads most frequently, followed closely by four and six heads. The expected percentages are indicated by the round markers. For this particular simulation, Figure 2.3 shows that four heads and six heads appeared more often than five heads appeared. The sample values are shown by the bars; the expected percentages are shown by round markers.

If \(X \) is a random variable from the binomial(\(p, n \)) distribution, then the expected value of \(X \) is \(np \) and the variance is \(np(1 - p) \). In practice, this means that if you generate a large random sample from the binomial(\(p, n \)) distribution, then you can expect the sample to have a sample mean that is close to \(np \).

Some readers might be concerned that the distribution of the sample shown in Figure 2.3 differs so much from the theoretical distribution of the binomial distribution. This deviation is not an indication that something is wrong. Rather, it demonstrates sampling variation. When you simulate data from a population model, the data will almost always look slightly different from the distribution of the population. Some values will occur more often than expected; some will occur less often than expected. This is especially apparent in small samples and for distributions with large variance. It is this sampling variation that makes simulation so valuable.

2.4.3 The Geometric Distribution

How many times do you need to toss a fair coin before you see heads? Half the time you will see heads on the first toss, one quarter of the time it requires two tosses, and so on. This is an example of a geometric distribution.

In general, the geometric distribution models the number of Bernoulli trials (with success probability \(p \)) that are required to obtain one success. An alternative definition, which is used by the MCMC procedure in SAS, is to define the geometric distribution to be the number of failures before the first success.
You can simulate a series of coin tosses in which the coin is tossed until a heads appears and the number of tosses is recorded. If p is the probability of tossing heads, then the following statement generates an observation from the Geometric(p) distribution:

```plaintext
x = rand("Geometric", p);  /* number of trials until success */
```

Figure 3.6 shows a graph of simulated geometric data and an overlaid PMF.

If X is a random variable from the geometric(p) distribution, then the expected value of X is $1/p$ and the variance is $(1 - p)/p^2$.

Exercise 2.1: Write a DATA step that simulates observations from a Geometric(0.5) distribution.

2.4.4 The Discrete Uniform Distribution

A Bernoulli distribution models two outcomes. You can model situations in which there are multiple outcomes by using either the discrete uniform distribution or the “Table” distribution (see the next section).

When you toss a standard six-sided die, there is an equal probability of seeing any of the six faces. You can use the discrete uniform distribution to produce k integers in the range $[1, k]$. SAS does not have a built-in discrete uniform distribution. Instead, you can use the continuous uniform distribution to produce a random number u in the interval $(0, 1)$, and you can use the CEIL function to produce the smallest integer that is greater than or equal to ku.

The following DATA step generates a random sample from the discrete uniform distribution with $k = 6$. This DATA step simulates $N = 100$ rolls of a fair six-sided die.

```plaintext
data Uniform(keep=x);
call streaminit(4321);
k = 6;  /* a six-sided die */
do i = 1 to &N;
   x = ceil(k * rand("Uniform"));  /* roll 1 die with k sides */
   output;
end;
run;
```

You can also simulate data with uniform probability by using the “Table” distribution, which is described in the next section.

To check the empirical distribution of the simulated data, you can use PROC FREQ to show the distribution of the x variable. The results are shown in Figure 2.4. As expected, each number 1, 2, ..., 6 is generated about 16% of the time.

```plaintext
proc freq data=Uniform;
   tables x / nocum;
run;
```
2.4.5 Tabulated Distributions

In some situations there are multiple outcomes, but the probabilities of the outcomes are not equal. For example, suppose that there are 10 socks in a drawer: five are black, two are brown, and three are white. If you close your eyes and draw a sock at random, the probability of that sock being black is 0.5, the probability of that sock being brown is 0.2, and the probability of that sock being white is 0.3. After you record the color of the sock, you can replace the sock, mix up the drawer, close your eyes, and draw again.

The RAND function supports a “Table” distribution that enables you to specify a table of probabilities for each of \(k \) outcomes. You can use the “Table” distribution to sample with replacement from a finite set of outcomes where you specify the probability for each outcome. In SAS/IML software, you can use the RANDGEN or SAMPLE routines.

The following DATA step generates a random sample of size \(N = 100 \) from the “Table” distribution with probabilities \(p = \{0.5, 0.3, 0.2\} \). You can use PROC FREQ to display the observed frequencies, which are shown in Figure 2.5.

```sas
data Table(keep=x);
call streaminit(4321);
p1 = 0.5; p2 = 0.2; p3 = 0.3;
do i = 1 to &N;
x = rand("Table", p1, p2, p3); /* sample with replacement */
output;
end;
run;

proc freq data=Table;
tables x / nocum;
run;
```
For the simulated sock experiment with the given probabilities, a black sock (category 1) was drawn 48 times, a brown sock (category 2) was drawn 21 times, and a white sock was drawn 31 times.

If you have many potential outcomes, it would be tedious to specify the probabilities of each outcome by using a comma-separated list. Instead, it is more convenient to specify an array in the DATA step to hold the probabilities, and to use the OF operator to list the values of the array as shown in the following example:

```sas
data Table(keep=x);
  call streaminit(4321);
  array p[3] _temporary_ (0.5 0.2 0.3);
  do i = 1 to &N;
    x = rand("Table", of p[*]); /* sample with replacement */
    output;
  end;
run;
```

The _TEMPORARY_ keyword makes p a temporary array that holds the parameter values. The elements of a temporary array do not have names and are not written to the output data set, which means that you do not need to use a DROP or KEEP option to omit them from the data set.

The “Table” distribution is related to the multinomial distribution, which is discussed in Section 8.2. If you generate N observations from the “Table” distribution and tabulate the frequencies for each category, then the frequency vector is a single observation from the multinomial distribution. Consequently, the “Table” and multinomial distributions are related in the same way that the Bernoulli and binomial distributions are related.

Exercise 2.2: Use the “Table” distribution to simulate rolls from a six-sided die.

2.4.6 The Poisson Distribution

Suppose that during the work day a worker receives email at an average rate of four messages per hour. What is the probability that she might get seven messages in an hour? Or that she might get only one message? The Poisson distribution models the counts of an event during a given time period, assuming that the event happens at a constant average rate.

For an average rate of λ events per time period, the expected value of a random variable from the Poisson distribution is λ, and the variance is also λ.

The following DATA step generates a random sample from the Poisson distribution with λ = 4. This DATA step simulates the number of emails that a worker receives each hour, under the assumption...
that the number of emails arrive at a constant average rate of four emails per hour. This experiment
simulates $N = 100$ hours at work. The results are shown in Figure 2.6.

```plaintext
data Poisson(keep=x);
call streaminit(4321);
lambda = 4;
do i = 1 to &N;
   x = rand("Poisson", lambda); /* num events per unit time */
   output;
end;
run;
```

![Figure 2.6 Sample from Poisson Distribution ($\lambda = 4$) Overlaid with PMF](image)

For the Poisson model, the worker can expect to receive four emails during a one-hour period about
20% of the time. The same is true for receiving three emails in an hour. She can expect to receive six
emails during an hour slightly more than 10% of the time. These expected percentages are shown by
the round markers. The “actual” number of emails received during each hour is shown by the bar
chart for the 100 simulated hours. There were 18 one-hour periods during which the worker received
three emails. There were 11 one-hour periods during which the worker received six emails.

Exercise 2.3: A negative binomial variable is defined as the number of failures before k successes
in a series of independent Bernoulli trials with probability of success p. Define a trial as rolling
a six-sided die until a specified face appears $k = 3$ times. Simulate 1,000 trials and plot the
distribution of the number of failures.

2.5 Simulating Data from Continuous Distributions

When the set of possible outcomes is uncountably infinite (like an interval or the set of real numbers),
assigning a probability to each outcome creates a *continuous probability distribution*. Of course, the
integral of the probabilities over the set is unity.
The following sections generate a sample of size \(N = 100 \) from some well-known continuous distributions. Most sections also show a histogram of the sample that is overlaid with the probability density curve for the population. The probability density function (PDF) is described in Section 3.2. Section 3.4.3 describes how to create the graphs.

See Table 2.3 for a list of common distributions that SAS supports.

2.5.1 The Normal Distribution

The normal distribution with mean \(\mu \) and standard deviation \(\sigma \) is denoted by \(N(\mu, \sigma) \). Its density is given by the following:

\[
 f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-(x - \mu)^2}{2\sigma^2}\right)
\]

The standard normal distribution sets \(\mu = 0 \) and \(\sigma = 1 \).

Many physical quantities are modeled by the normal distribution. Perhaps more importantly, the sampling distribution of many statistics are approximately normally distributed.

Section 2.2 generated 100 observations from the standard normal distribution. Figure 2.7 shows a histogram of the simulated data along with the graph of the probability density function. For this sample, the histogram bars are below the PDF curve for some intervals and are greater than the curve for other intervals. A second sample of 100 observations is likely to produce a different histogram.

![Figure 2.7 Sample from a Normal Distribution (\(\mu = 0, \sigma = 1 \)) Overlaid with PDF](image)

To explicitly specify values of the location and scale parameters, define `mu` and `sigma` outside of the DO loop, and then use the following statement inside the DO loop:

```plaintext
x = rand("Normal", mu, sigma); /* X ~ N(mu, sigma) */
```

If \(X \) is a random variable from the \(N(\mu, \sigma) \) distribution, then the expected value of \(X \) is \(\mu \) and the variance is \(\sigma^2 \). Be aware that some authors denote the normal distribution by \(N(\mu, \sigma^2) \), where
the second parameter indicates the variance. This book uses \(N(\mu, \sigma) \) instead, which matches the meaning of the parameters in the RAND function.

2.5.2 The Uniform Distribution

The uniform distribution is one of the most useful distributions in statistical simulation. One reason is that you can use the uniform distribution to sample from a finite set. Another reason is that “random variates with various distributions can be obtained by cleverly manipulating” independent, identically distributed uniform variates (Devroye 1986, p. 206).

The uniform distribution on the interval \((a, b)\) is denoted by \(U(a, b) \). Its density is given by \(f(x) = (b - a)^{-1} \) for \(x \) in \((a, b)\). The standardized uniform distribution on \([0,1]\) (often called the uniform distribution) is denoted \(U(0, 1) \).

You can use the following statement in the DATA step to generate a random observation from the standard uniform distribution:

```plaintext
x = rand("Uniform"); /* X ~ U(0, 1) */
```

The uniform random number generator never generates the number 0 nor the number 1. Therefore, all values are in the open interval \((0, 1)\).

You can also use the uniform distribution to sample random values from \(U(a, b) \). To do this, define \(a \) and \(b \) outside of the DO loop, and then use the following statement inside the DO loop:

```plaintext
y = a + (b-a)*rand("Uniform");  /* Y ~ U(a, b) */
```

If \(X \) is a random variable from the standard uniform distribution, then the expected value of \(X \) is \(1/2 \) and the variance is \(1/12 \). In general, the uniform distribution on \((a, b)\) has a uniform density of \(1/(b - a) \). If \(Y \) is a random variable from the \(U(a, b) \), the expected value of \(Y \) is \((a + b)/2\) and the variance is \((b - a)^2/12\).

Exercise 2.4: Generate 100 observations from a uniform distribution on the interval \((-1, 1)\).

2.5.3 The Exponential Distribution

The exponential distribution models the time between events that occur at a constant average rate. The exponential distribution is a continuous analog of the geometric distribution. The classic usage of the exponential distribution is to model the time between detecting particles emitted during radioactive decay.

The exponential distribution with scale parameter \(\sigma \) is denoted \(\text{Exp}(\sigma) \). Its density is given by \(f(x) = (1/\sigma) \exp(-x/\sigma) \) for \(x > 0 \). Alternatively, you can use \(\lambda = 1/\sigma \), which is called the rate parameter. The rate parameter describes the rate at which an event occurs.

The following DATA step generates a random sample from the exponential distribution with scale parameter \(\sigma = 10 \). A histogram of the sample is shown in Figure 2.8.
data Exponential(keep=x);
call streaminit(4321);
sigma = 10;
do i = 1 to &N;
 x = sigma * rand("Exponential"); /* X ~ Exp(10) */
 output;
end;
run;

Figure 2.8 Sample from the Exponential Distribution ($\sigma = 10$) Overlaid with PDF

Notice that the scale parameter for the exponential distribution is not supported by the RAND function as of SAS 9.3. However, you can show that if X is distributed according to an exponential distribution with unit scale parameter, then $Y = \sigma X$ is distributed exponentially with scale parameter σ. The expected value of X is σ; the variance is σ^2. For example, the data shown in Figure 2.8 have a mean close to $\sigma = 10$.

If you use the exponential distribution with a scale parameter frequently, you might want to define and use the following SAS macro, which is used in Chapter 7 and in Chapter 12:

```sas
%macro RandExp(sigma);
  ((&sigma) * rand("Exponential"))
%mend;
```

The following statement shows how to call the macro from the DATA step:

```sas
x = %RandExp(sigma);
```

Exercise 2.5: Some distributions include the exponential distribution for particular values of the distribution parameters. For example, a Weibull(1, b) distribution is an exponential distribution with scale parameter b. Modify the program in this section to simulate data as follows:
\[x = \text{rand}("\text{Weibull}", 1, \text{sigma}); \]

Do you obtain a similar distribution of values? Use PROC UNIVARIATE to fit the exponential model to the simulated data.

2.6 Simulating Univariate Data in SAS/IML Software

You can also generate random samples by using the RANDGEN subroutine in SAS/IML software. The RANDGEN subroutine uses the same algorithms as the RAND function, but it fills an entire matrix at once, which means that you do not need a DO loop.

The following SAS/IML pseudocode simulates \(N \) observations from a named distribution:

\[
\%let N = 100;
\text{proc iml;}
\text{call randseed(4321); } /* or use a different seed */
\text{x = j(1, &N); } /* allocate vector or matrix */
\text{call randgen(x, } \text{"DistribName", param1, param2,...); } /* fill x */
\]

The PROC IML program contains the following function calls:

1. A call to the RANDSEED subroutine, which specifies the seed that initializes the random number stream. If the argument is a positive integer, then the sequence is reproducible. Otherwise, the system time is used to initialize the random number stream, and the sequence will be different each time that you run the program.

2. A call to the J function, which allocates a matrix of a certain size. The syntax \(J(r, c) \) creates an \(r \times c \) matrix. For this example, \(x \) is a vector that has one row and \(N \) columns.

3. A call to the RANDGEN subroutine, which fills the elements of \(x \) with random values from a named distribution. The supported distributions are listed in Section 2.7.

When you use the J function to allocate a SAS/IML matrix, the matrix is filled with 1s by default. However, you can use an optional third argument to fill the matrix with another value. For example \(y = j(1, 5, 0) \) allocates a \(1 \times 5 \) vector where each element has the value 0, and \(y = j(4, 3, .) \) allocates a \(4 \times 3 \) matrix where each element is a SAS missing value.

Notice that the SAS/IML implementation is more compact than the DATA step implementation. It does not create a SAS data set, but instead holds the simulated data in memory in the \(x \) vector. By not writing a data set, the SAS/IML program is more efficient. However, both programs are blazingly fast. On the author’s PC, generating a million observations with the DATA step takes about 0.2 seconds. Simulating the same data in PROC IML takes about 0.04 seconds.

2.6.1 Simulating Discrete Data

The RANDGEN subroutine in SAS/IML software supports the same distributions as the RAND function. Because the IML procedure does not need to create a data set that contains the simulated data, well-written simulations in the SAS/IML language have good performance characteristics.
The previous sections showed how to use the DATA step to generate random data from various distributions. The following SAS/IML program generates samples of size \(N = 100 \) from the same set of distributions:

```sas
proc iml;
/* define parameters */
p = 1/2; lambda = 4; k = 6; prob = {0.5 0.2 0.3};

/* allocate vectors */
N = 100;
Bern = j(1, N); Bino = j(1, N); Geom = j(1, N);
Pois = j(1, N); Unif = j(1, N); Tabl = j(1, N);

/* fill vectors with random values */
call randseed(4321);
call randgen(Bern, "Bernoulli", p); /* coin toss */
call randgen(Bino, "Binomial", p, 10); /* num heads in 10 tosses */
call randgen(Geom, "Geometric", p); /* num trials until success */
call randgen(Pois, "Poisson", lambda); /* num events per unit time */
call randgen(Unif, "Uniform"); /* uniform in (0,1) */
Unif = ceil(k * Unif); /* roll die with k sides */
call randgen(Tabl, "Table", prob); /* sample with replacement */
```

Notice that in the SAS/IML language, which supports vectors in a natural way, the syntax for the “Table” distribution is simpler than in the DATA step. You simply define a vector of parameters and pass the vector to the RANDGEN subroutine. For example, you can use the following SAS/IML program to simulate data from a discrete uniform distribution as described in Section 2.4.4. The program simulates the roll of a six-sided die by using the RANDGEN subroutine to sample from six outcomes with equal probability:

```sas
proc iml;
call randseed(4321);
prob = j(6, 1, 1)/6; /* equal prob. for six outcomes */
d = j(1, &N); /* allocate 1 x N vector */
call randgen(d, "Table", prob); /* fill with integers in 1-6 */
```

2.6.2 Sampling from Finite Sets

It can be useful to sample from a finite set of values. The SAS/IML language provides three functions that you can use to sample from finite sets:

- The RANPERM function generates random permutations of a set with \(n \) elements. Use this function to sample without replacement from a finite set with equal probability of selecting any item.

- The RANPERK function (introduced in SAS/IML 12.1) generates random permutations of \(k \) items that are chosen from a set with \(n \) elements. Use this function to sample \(k \) items without replacement from a finite set with equal probability of selecting any item.

- The SAMPLE function (introduced in SAS/IML 12.1) generates a random sample from a finite set. Use this function to sample with replacement or without replacement. This function can sample with equal probability or with unequal probability.
Each of these functions uses the same random number stream that is set by the RANDSEED routine. DATA step versions of the RANPERM and RANPERK functions are also supported.

These functions are similar to the “Table” distribution in that you can specify the probability of sampling each element in a finite set. However, the “Table” distribution only supports sampling with replacement, whereas these functions are suitable for sampling without replacement.

As an example, suppose that you have 10 socks in a drawer as in Section 2.4.5. Five socks are black, two socks are brown, and three socks are white. The following SAS/IML statements simulate three possible draws, without replacement, of five socks. The results are shown in Figure 2.9.

```sas
proc iml;
call randseed(4321);
socks = {"Black" "Black" "Black" "Black" "Black"
         "Brown" "Brown" "White" "White" "White"};
params = { 5, /* sample size */
           3 }; /* number of samples */
s = sample(socks, params, "WOR"); /* sample without replacement */
print s;
```

Figure 2.9 Random Sample without Replacement

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Black</th>
<th>White</th>
<th>Black</th>
<th>Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>Brown</td>
<td>Black</td>
<td>Black</td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>Black</td>
<td>Black</td>
<td>Black</td>
<td>Brown</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Black</td>
<td>White</td>
<td>Black</td>
<td>Brown</td>
<td></td>
</tr>
</tbody>
</table>

The SAMPLE function returns a 3×5 matrix, s. Each row of s is an independent draw of five socks (because `param[1] = 5`). After each draw, the socks are returned to the drawer and mixed well. The experiment is repeated three times (because `param[2] = 3`). Because each draw is without replacement, no row can have more than two brown socks or more than three white socks.

2.6.3 Simulating Continuous Data

Section 2.6.1 shows how to simulate data from discrete distributions in SAS/IML software. In the same way, you can simulate data from continuous distributions by calling the RANDGEN subroutine. As before, if you allocate a vector or matrix, then a single call of the RANDGEN subroutine fills the entire matrix with random values.

The following SAS/IML program generates samples of size $N = 100$ from the normal, uniform, and exponential distributions:

```sas
proc iml;
/* define parameters */
mu = 3; sigma = 2;

/* allocate vectors */
N = 100;
StdNor = j(1, N); Normal = j(1, N);
Unif = j(1, N); Expo = j(1, N);
```
2.7 Univariate Distributions Supported in SAS Software

In SAS software, the RAND function in Base SAS software and the RANDGEN subroutine in SAS/IML software are the main tools for simulating data from “named” distributions. These two functions call the same underlying numerical routines for computing random variates. However, there are some differences, as shown in Table 2.1:

Called from:	DATA step	PROC IML
Seed set by:	CALL STREAMINT	CALL RANDSEED
Returns:	Scalar value	Vector or matrix of values

Because SAS/IML software can call Base SAS functions, it is possible to call the RAND function from a SAS/IML program. However, this is rarely done because it is more efficient to use the RANDGEN subroutine to generate many random variates with a single call.

Table 2.2 and Table 2.3 list the discrete and continuous distributions that are built into SAS software. Except for the t, F, and “NormalMix” distributions, you can identify a distribution by its first four letters. Parameters for each distribution are listed after the distribution name. Parameters in angled brackets are optional. If an optional parameter is omitted, then the default value is used.

The functions marked with an asterisk are supported by the RANDGEN function in SAS/IML 12.1. In general, parameters named μ and θ are location parameters, whereas σ denotes a scale parameter.

Table 2.2 Parameters for Discrete Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>distname</th>
<th>parm1</th>
<th>parm2</th>
<th>parm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli</td>
<td>‘BERNOULLI’</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binomial</td>
<td>‘BINOMIAL’</td>
<td>p</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Geometric</td>
<td>‘GEOMETRIC’</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypergeometric</td>
<td>‘HYPERGEOMETRIC’</td>
<td>N</td>
<td>R</td>
<td>n</td>
</tr>
<tr>
<td>Negative Binomial</td>
<td>‘NEGBINOMIAL’</td>
<td>p</td>
<td></td>
<td>k</td>
</tr>
<tr>
<td>Poisson</td>
<td>‘POISSON’</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>‘TABLE’</td>
<td>p</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.3 Parameters for Continuous Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>distname</th>
<th>parm1</th>
<th>parm2</th>
<th>parm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>‘BETA’</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Cauchy</td>
<td>‘CAUCHY’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-Square</td>
<td>‘CHISQUARE’</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erlang</td>
<td>‘ERLANG’</td>
<td>a</td>
<td></td>
<td>$<\sigma=1>$</td>
</tr>
<tr>
<td>Exponential</td>
<td>‘EXPONENTIAL’</td>
<td>$<\sigma=1>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>‘F’</td>
<td>n</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>‘GAMMA’</td>
<td>a</td>
<td></td>
<td>$<\sigma=1>$</td>
</tr>
<tr>
<td>Laplace*</td>
<td>‘LAPLACE’</td>
<td>$<\theta=0>$</td>
<td>$<\sigma=1>$</td>
<td></td>
</tr>
<tr>
<td>Logistic*</td>
<td>‘LOGISTIC’</td>
<td>$<\theta=0>$</td>
<td>$<\sigma=1>$</td>
<td></td>
</tr>
<tr>
<td>Lognormal</td>
<td>‘LOGNORMAL’</td>
<td>$<\mu=0>$</td>
<td>$<\sigma=1>$</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>‘NORMAL’</td>
<td>$<\mu=0>$</td>
<td>$<\sigma=1>$</td>
<td></td>
</tr>
<tr>
<td>Normal Mixture*</td>
<td>‘NORMALMIX’</td>
<td>p</td>
<td>μ</td>
<td>σ</td>
</tr>
<tr>
<td>Pareto*</td>
<td>‘PARETO’</td>
<td>a</td>
<td></td>
<td>$<k=1>$</td>
</tr>
<tr>
<td>t</td>
<td>‘T’</td>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triangle</td>
<td>‘TRIANGLE’</td>
<td>h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td>‘UNIFORM’</td>
<td>$<a=0>$</td>
<td></td>
<td>$<b=1>$</td>
</tr>
<tr>
<td>Wald*</td>
<td>‘WALD’ or ‘IGAUSS’</td>
<td>λ</td>
<td>$<\mu=1>$</td>
<td></td>
</tr>
<tr>
<td>Weibull</td>
<td>‘WEIBULL’</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

Densities for all supported distributions are included in the documentation for the RAND function in SAS Functions and CALL Routines: Reference.

2.8 References

URL http://luc.devroye.org/rnbookindex.html

Index

A

acceptance-rejection technique 126–128
addition (+) operator 329
Akaike information criterion 249
ALL function 326
alternative parameterizations 216, 218
annotation facility, SGPLOT procedure 301
ANOVA procedure 199, 208–210
ANY function 326
APPEND statement 330–331
approximate sampling distribution
See ASD (approximate sampling distribution)
AR model 252, 256–258
AR(1) model
about 185–186, 252
approximating sampling distributions for parameters 254–256
generating covariance matrix with known structure 183
generating multivariate binary variates 155
simulating data in DATA step 252–254
simulating data in SAS/IML software 258–260
ARIMA procedure
about 252
BY statement 254
ESTIMATE statement 254
estimating AR and MA model parameters 258
IDENTIFY statement 253–254
simulating AR(1) data 252–253
ARMA models
about 252
approximating sampling distributions for AR(1) parameters 254–256
multivariate 260–261
simple AR model 252
simulating AR and MA data in DATA step 256–258
simulating AR(1) data in DATA step 252–254
simulating AR(1) data in SAS/IML software 258–260
ARMACOV function 258
ARMALIK function 258
ARMASIM function 251, 258–259
ARRAY statement 284
arrays, holding explanatory variables 201
ASD (approximate sampling distribution)
about 52–55
number of samples and 96
sampling distribution of Pearson correlations 70–71
sampling distribution of statistics for normal data 60–61
sampling distribution of the mean 57–59, 68
simple regression model example 202–203
at (@) symbol 233
autocorrelated data 251
autoregressive and moving average models
See ARMA models
autoregressive model 252, 256–258
BC (bias-corrected) confidence intervals 295
Bernouilli distribution
about 14–15
logistic regression and parameters for 27
simulating data from inhomogeneous Poisson process 275
beta distribution 28, 301
bias-corrected (BC) confidence intervals 295
binomial distribution
about 15–16
negative 27, 39
parameters for 27
BINOMIAL option, TABLES statement (FREQ) 81, 86
BISECTION module 118, 156, 334–335
block-diagonal matrices 232–233
BLOCK function 233, 326
%BOOT macro 295
%BOOTCI macro 295
bootstrap confidence intervals 283, 295
bootstrap distribution
about 283, 285
computing standard deviation of 294–295
for skewness and kurtosis 285–289
bootstrap methods
about 281
computing bootstrap confidence intervals 283, 295
computing bootstrap standard error 294–295
parametric 281, 291
plotting estimates of standard errors 305–306
resampling with DATA step 262–266
resampling with SAS/IML software 282, 288–291
resampling with SURVEYSELECT procedure 282, 286–288
smooth 281, 292–294
bootstrap standard error 283, 294–295, 305–306
BY-group technique
about 55
computing p-values 90
macro usage considerations 101
resampling example 285
suppressing output and graphics 97–100
writing efficient simulations 96–97, 99
BY statement
 ARIMA procedure 254
 BY-group technique and 55
 MEANS procedure 64
 simulating data with DATA step and procedures 56
 TTEST procedure 80, 85
 writing efficient simulations 97

C
CALIS procedure 180
case resampling 284
case sensitivity 6
Cauchy distribution 28
CDF function
 about 116–117, 326
 checking correctness of simulated data 35
 parameter considerations 110
 QUANTILE function and 30, 32
 working with statistical distributions 30–32
CEIL function 17, 326
censored observations 124–125, 244
central limit theorem (CLT) 57–58
chi-square distribution 28, 62–63
chi-square statistic 89
chi-square test 88–90
CHISQ option, TABLES statement (FREQ) 90
Cholesky transformation 146–150
CHOOSE function 326
CL option, MIXED procedure 235
CLASS statement
 LOGISTIC procedure 218
 MEANS procedure 64
classification variables
 explanatory variables and 199
 linear regression models with 208–211
CLB option, MODEL statement (REG) 221
CLOSE statement 331
CLT (central limit theorem) 57–58
coefficient of excess 299
COLNAME= option
 FROM clause, APPEND statement 331
 FROM clause, CREATE statement 331
 PRINT statement 328
colon (:) operator
 See mean (:) operator
COLVEC function 326, 331
comparison (<=) operator 6
complete spatial randomness 273
components (subpopulations) 119–121
compound symmetry model 184
conditional distribution technique 145
conditional distributions 142–144
conditional simulations
 about 264
 of one-dimensional data 270–271
 of two-dimensional data 272–273
CONDMV function 270
CONDMVN function 270
CONDMVNMEANCOV function 144–145
confidence intervals
 about 74
 bias-corrected 295
 bootstrap 283, 295
 computing coverage in SAS/IML language 77–78
 coverage for nonnormal data 76–77
 coverage for normal data 74–76
 MEANS procedure computing 315
CONSTANT function 178
contaminated normal distribution
 multivariate 138–140
 univariate 121–122
CONTENTS procedure 46
continuous distributions
 about 20–21
 CDF function and 31
 exponential distribution 22–24, 28
 moment-ratio diagram for 300–301
 normal distribution 21–22, 28
 parameters for 28
 PDF function and 30
 simulating in SAS/IML software 26–27
 skewness and kurtosis for 300–301
 uniform distribution 22, 28
continuous mixture distribution 122
continuous variables
 explanatory variables and 199
 linear regression models with 200–203, 210–211
contour plots 268–269
count control statements 6, 326
COORDINATES statement, SIM2D procedure 272
COPULA procedure
 about 12, 169–172
 SIMULATE statement 170
copula technique
 about 153, 164, 168–169
 fitting and simulating data 169–173
 usage example 164–168
CORR function 290, 326
CORR procedure
 computing sample moments 319
 COV option 180
 estimating covariance matrix from data 180
 FISHER option 168, 173
 fitting and simulating data from copula model 171, 173
 generating data from copulas 168
 NOMISS option 180, 190
 OUTP= option 97, 180
 POLYCHORIC option 190
 simple linear regression models 203
 simulating data from multinomial distributions 135–140
correlated random errors 232–236
correlation matrices
 about 175–176
 converting between covariance and 176–177
 finance example 189–190
 finding nearest 191–193
 generating random 187–189
 problems faced with 189–191
COUNTN function 326
COV function 180, 326
COV option, CORR procedure 180
covariance matrices
 about 175–176
 building 179–186
 converting between correlation and 176–177
 estimating from data 180–181
 generating diagonally dominant 181–182
 generating from Wishart distribution 186–187
 generating with known structure 183–186
 testing for 177–179
 with AR(1) structure 185–186
 with compound symmetry 184
 with diagonal structure 183–184
 with Toeplitz structure 185
Cox models 242–243
CREATE statement
 about 330–331
 FROM clause 331
 row-major order for matrices 260
 VAR clause 331
cumulative distributions
 See CDF function
CUPROD function 326
CUSUM function 326
CUTVAL. format 60

data sets
 creating from ODS tables 45–46, 57
 creating matrices from 330
 macro usage considerations 101
 reading data from 329–330
 writing data to 330–331
data simulation
 See simulating data
DATA step
 See also specific techniques
 observations and 6
 resampling with 282–286
 SAS/IML language comparison 6
 simulating AR data in 256–258
 simulating AR(1) data in 252–254
 simulating data using 55–67
 simulating MA data in 256–258
densities, computing
 See also PDF function
 finite mixture distribution and 120
 overlaying theoretical density on histograms 40–41
 overlaying theoretical PMF on frequency plots 38
design matrices
 about 215–216
 creating for fixed and random effects 238–239
 for alternative parameterizations 218
 reading 239–240
 with GLM parameterization 216–218
design of simulation studies
 about 93–95
 disadvantages of simulation 105
 effect of number of samples 95–96
 moment-ratio diagram as tool for 315–317
 writing efficient simulations 96–105
DIAG function 326
DIAGONAL= option, MATRIX statement
 (SGSCATTER) 291
diagonally dominant covariance matrices 181–184
discrete distributions
 about 14
 Bernouilli distribution 14–15, 27
 binomial distribution 15–16, 27
 CDF function and 31
 discrete uniform distribution 17–18
 geometric distribution 16–17, 27
 parameters for 27
 PDF function and 30
 Poisson distribution 19–20, 27
 simulating in SAS/IML software 24–25
 tabulated distributions 18–19
discrete uniform distribution 17–18
dispersion constant 226
DISTANCE function
 about 326, 333–334
 simulating data from Gaussian random field 265
 simulating data from regular process 277
DO function 326
The DO Loop blog 5, 325
DO loops
 as simulation loops 55
 effect of sample size on sampling distribution 64
 matrix arithmetic versus 155
 sampling distribution of Pearson correlations 70
 simulating fixed effect by reversing order of 202–203
tips for shortening simulation times 104
 using multivariate data 55, 97
 using univariate data 13–14, 21–22, 24
 writing efficient simulations 97
DYNAMIC statement, SGRENDER procedure 39, 41
E
ECDF (empirical CDF) 119, 281
effect parameterization 218
effect size 87–88
EIGEN routine 193, 326
Index

eigenvalue decomposition 150–151

eigenvalues (spectrum) 187–189

EIGVAL function 179, 182, 326

elliptical distributions 169

empirical CDF (ECDF) 119, 281

Emrich-Piedmonte algorithm 154, 158

equality (=) operator 6

Erlang distribution 28

ESTIMATE statement, ARIMA procedure

NOPRINT option 254

OUTEST= option 254

WHERE clause 254

EUCLIDEANDISTANCE module 265, 277, 333–334

evaluating power of t test 84–86

evaluating statistical techniques about 73–74

assessing two-sample t test for equality of means 78–84

confidence interval for a mean 74–78

effect of sample size on power of t test 87–88

evaluating power of t test 84–86

using simulation to compute p-values 88–90

excess kurtosis about 299

computing 336–337

for continuous distributions 300–301

EXP function 326

EXPAND2GRID function 315

explanatory variables about 198–199

arrays holding 201

classification variables and 199

continuous variables and 199

exponential distribution about 22–24

confidence interval for a mean 76–77

goodness-of-fit tests 117

inverse transformation algorithm and 117–118

parameters for 28, 110

plotting PDF of 31

proportional hazards model and 242

shape parameters and 301

F
e
g a
t

F distribution 28, 117–119

F test 212, 215

factor pattern matrix 133, 150–151

FACTOR procedure 133, 150

feasible region 300

final weighted least squares (FWLS) estimate 220–221

FINISH statement 326

finite mixture distributions about 119–120

contaminated normal distribution 121–122

simulating from 120–121

FISHER option, CORR procedure 168, 173

Fisher’s z transformation 290

FITFLEISHMAN module 312

fixed effects

creating design matrices for 238–239

generating variables for 201

simulating by reversing order of DO loops 202–203

simulating random effects components 236–242

simulating with arrays 201

Fleishman’s method 115, 298, 311–314

FMM procedure 120, 297

FORM= option, SIMULATE statement (SIM2D) 267–268

FORMAT= option, PRINT statement 328

FORMAT procedure 60

FREE statement 327

FREQ procedure

BY-group processing 90

chi-square tests and 89

design of simulation studies and 315

OUTPUT statement 97, 190

simulating multivariate ordinal variates 161

simulating univariate data 15, 17–18

t tests and 80–81, 85–86

TABLES statement 56, 81, 86, 90

usage examples involving tables 44–45

frequency plots 37–39

frequency variables 287–288

FROM clause

APPEND statement 331

CREATE statement 331

FROOT function

about 118–119, 327, 334–335

finding intermediate correlations 156

functions

See also specific functions

parameters and 110

SAS/IML language supported 326–328

SAS/IML modules replicating 333–336

FWLS (final weighted least squares) estimate 220–221

FWLS option, ROBUSTREG procedure 220–221

G

GAM procedure 247

GAMINV function 32

gamma distribution

checking correctness of simulated data 35–37

chi-square distribution and 62–63

fitting to data 305–308

parameters for 28, 110

shape parameters and 301

GAUSS functions 188

Gaussian random field

about 263–264

conditional simulation of one-dimensional data 270–271
<table>
<thead>
<tr>
<th>Conditional simulation of two-dimensional data</th>
<th>272–273</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditional simulation of one-dimensional data</td>
<td>264–267</td>
</tr>
<tr>
<td>Unconditional simulation of two-dimensional data</td>
<td>267–269</td>
</tr>
<tr>
<td>Generalized Pareto distribution</td>
<td>113</td>
</tr>
<tr>
<td>GENMOD procedure</td>
<td>229</td>
</tr>
<tr>
<td>Geometric distribution</td>
<td>about 16–17</td>
</tr>
<tr>
<td>Drawing random sample from</td>
<td>37–39</td>
</tr>
<tr>
<td>Parameters for</td>
<td>27</td>
</tr>
<tr>
<td>Givens rotations</td>
<td>187</td>
</tr>
<tr>
<td>GLIMMIX procedure</td>
<td>estimating covariance matrix 181</td>
</tr>
<tr>
<td>OUTDESIGN= option</td>
<td>238–239</td>
</tr>
<tr>
<td>Reading design matrices</td>
<td>239</td>
</tr>
<tr>
<td>Simulating random effects components</td>
<td>238</td>
</tr>
<tr>
<td>GLM parameterization</td>
<td>216–218</td>
</tr>
<tr>
<td>GLM procedure</td>
<td>design matrices with GLM parameterization 217</td>
</tr>
<tr>
<td>OUTSTAT= option</td>
<td>97</td>
</tr>
<tr>
<td>Simple linear regression models and</td>
<td>199, 211</td>
</tr>
<tr>
<td>GLMMOD procedure</td>
<td>creating design matrices for fixed and random effects 238–239</td>
</tr>
<tr>
<td>GLM parameterization and</td>
<td>216–217</td>
</tr>
<tr>
<td>Simulating random effects components</td>
<td>238</td>
</tr>
<tr>
<td>Goodness-of-fit tests</td>
<td>35–37, 117</td>
</tr>
<tr>
<td>Graph Template Language (GTL)</td>
<td>defining contour plots 268</td>
</tr>
<tr>
<td>overlaying theoretical density on histograms</td>
<td>40–41</td>
</tr>
<tr>
<td>overlaying theoretical PMF on frequency plots</td>
<td>37–39</td>
</tr>
<tr>
<td>Grid Manager, SAS</td>
<td>102</td>
</tr>
<tr>
<td>Grid of values, creating</td>
<td>332–333</td>
</tr>
<tr>
<td>GRID statement, SIM2D procedure</td>
<td>267</td>
</tr>
<tr>
<td>GTL (Graph Template Language)</td>
<td>defining contour plots 268</td>
</tr>
<tr>
<td>overlaying theoretical density on histograms</td>
<td>40–41</td>
</tr>
<tr>
<td>overlaying theoretical PMF on frequency plots</td>
<td>37–39</td>
</tr>
<tr>
<td>Gumbel distribution</td>
<td>111–112, 301, 305</td>
</tr>
<tr>
<td>Hard-core processes</td>
<td>276–278</td>
</tr>
<tr>
<td>Hazard function</td>
<td>242</td>
</tr>
<tr>
<td>Hazard rate</td>
<td>123</td>
</tr>
<tr>
<td>High-leverage points</td>
<td>219, 221–224</td>
</tr>
<tr>
<td>Higham’s method</td>
<td>190–193</td>
</tr>
<tr>
<td>HISTOGRAM statement, UNIVARIATE procedure</td>
<td>overlaying theoretical density on histograms 40</td>
</tr>
<tr>
<td>Plotting bootstrap estimates of standard errors</td>
<td>306</td>
</tr>
<tr>
<td>Sampling distribution for AR(1) parameters</td>
<td>255</td>
</tr>
<tr>
<td>Sampling distribution of the variance</td>
<td>62</td>
</tr>
<tr>
<td>HistPDF template</td>
<td>41</td>
</tr>
<tr>
<td>Homogeneous Poisson process</td>
<td>about 273</td>
</tr>
<tr>
<td>Regular process and</td>
<td>276–278</td>
</tr>
<tr>
<td>Simulating data from</td>
<td>273–275</td>
</tr>
<tr>
<td>HOMOGPOISSONPROCESS function</td>
<td>277</td>
</tr>
<tr>
<td>Hypergeometric distribution</td>
<td>27</td>
</tr>
<tr>
<td>Hypothesis testing, computing p-values for</td>
<td>32, 88–90</td>
</tr>
<tr>
<td>I</td>
<td>327</td>
</tr>
<tr>
<td>ID vectors, creating</td>
<td>331–332</td>
</tr>
<tr>
<td>IDENTIFY statement, ARIMA procedure</td>
<td>NOPRINT option 254</td>
</tr>
<tr>
<td>VAR= option</td>
<td>253</td>
</tr>
<tr>
<td>IF-THEN/ELSE control statement</td>
<td>326</td>
</tr>
<tr>
<td>Instrumental distribution</td>
<td>126–128</td>
</tr>
<tr>
<td>Inhomogeneous Poisson process</td>
<td>273, 275–276</td>
</tr>
<tr>
<td>Inset statement</td>
<td>90</td>
</tr>
<tr>
<td>SGPLOT procedure</td>
<td>306</td>
</tr>
<tr>
<td>UNIVARIATE procedure</td>
<td>306</td>
</tr>
<tr>
<td>Instrumental distribution</td>
<td>126–128</td>
</tr>
<tr>
<td>Interactive matrix language (IML)</td>
<td>5</td>
</tr>
<tr>
<td>See also SAS/IML language</td>
<td></td>
</tr>
<tr>
<td>IML procedure</td>
<td>Cholesky transformation and</td>
</tr>
<tr>
<td>DATA step function support</td>
<td>227</td>
</tr>
<tr>
<td>Design matrices and</td>
<td>215–216</td>
</tr>
<tr>
<td>Estimating covariance matrix from data</td>
<td>180</td>
</tr>
<tr>
<td>License considerations</td>
<td>5–6</td>
</tr>
<tr>
<td>LOAD statement</td>
<td>159, 188, 327</td>
</tr>
<tr>
<td>Matrix multiplication and</td>
<td>217</td>
</tr>
<tr>
<td>Multivariate normal distributions and</td>
<td>133</td>
</tr>
<tr>
<td>Sampling distribution of Pearson correlations</td>
<td>70</td>
</tr>
<tr>
<td>Simulating ARMA samples</td>
<td>259</td>
</tr>
<tr>
<td>Simulating Gaussian random fields</td>
<td>267</td>
</tr>
<tr>
<td>Simulating univariate data</td>
<td>24</td>
</tr>
<tr>
<td>T tests and</td>
<td>84</td>
</tr>
<tr>
<td>In-memory technique</td>
<td>55, 97</td>
</tr>
<tr>
<td>Index of maximum (>:<) operator</td>
<td>329</td>
</tr>
<tr>
<td>Index of minimum (=<:) operator</td>
<td>329</td>
</tr>
<tr>
<td>Inequality (^=) operator</td>
<td>6</td>
</tr>
<tr>
<td>J</td>
<td>327</td>
</tr>
<tr>
<td>J function</td>
<td>about 327</td>
</tr>
<tr>
<td>Sampling distribution of the mean</td>
<td>68</td>
</tr>
</tbody>
</table>
J function (continued)
 simulating univariate data 24
 writing efficient simulations 97
jackknife methods 287
jitter technique 132
Johnson system of distributions 114–116, 302, 308–311

K
KDE (kernel density estimate) 120–121
KDE procedure 132, 293
KEEP statement 284
kernel density estimate (KDE) 120–121
Kronecker product matrix operator 233
kurtosis
 bootstrap resampling 285–289
 checking correctness of simulated data 36
 computing 336–337
 design of simulation studies and 315–316
 estimate bias in small samples 65–67
 Fleishman distribution and 115, 311
 for gamma distribution 306–308
 Johnson system of distributions 310–311
 moment matching and 303
 moments and 299–301
 plotting variations on moment-ratio diagram 303–306
KURTOSIS module 288
KURTOSIS= option, OUTPUT statement (MEANS) 66

L
LABEL= option, PRINT statement 328
Laplace distribution 28
LCLM= option, OUTPUT statement (MEANS) 74–75
least trimmed squares (LTS) estimate 220–223
LEVERAGE option, MODEL statement (ROBUSTREG) 222
LEVERAGE= option, OUTPUT statement (ROBUSTREG) 222
LIFETEST procedure 123–124, 245–246
linear mixed models
 about 230–231
 repeated measures model with random effect 231–232
 simulating correlated random errors 232–236
 with random effects 226, 230–232
linear predictor
 about 226
 in generalized linear models 226
 in proportional hazards model 243
linear regression models
 about 199
 based on real data 204–208
 generalized 226–230
 with classification and continuous variables 210–211
 with interaction and polynomial effects 215–218
 with single classification variable 208–210
 with single continuous variable 200–203
LINEPARM statement, SGPLOT procedure 219–220
link functions 226
listwise deletion 190
LOAD statement, IML procedure 159, 188, 327
LOC function 327, 329
location parameter 109–111
LOESS procedure
 about 247
 MODEL statement 249
logistic distribution 28
LOGISTIC procedure
 alternative parameterizations 216, 218
 CLASS statement 218
 logistic regression example 228
 OUTDESIGN= option 218
 OUTDESIGNONLY option 218
 logistic regression model 226–229
lognormal distribution
 parameters for 28, 111
 plotting bootstrap estimates of standard errors 305
 shape parameters and 301
LTS (least trimmed squares) estimate 220–223

M
MA model 256–258
machine epsilon 178
machine precision 178
macro-loop technique 100–101
macros
 macro-loop technique 100–101
 packaging commands into 98–99
 usage considerations 101–102
Matérn model II 277
MATLAB functions 188
matrices
 See also correlation matrices
 See also covariance matrices
 block-diagonal 232–233
 checking if PSD 178–179
 checking if symmetric 178
 constructing 240
 creating data sets from 331
 creating from data sets 330
 design 215–218
 efficiency of 6
 eigenvalues for 187–189
 Iman-Conover method 161–164
 reshaping 69
 row-major order for 260
 SAS/IML language and 6
 subscript reduction operators for 328–329
 tips for shortening simulation times 103
matrix arithmetic 155, 217
MATRIX statement, SGSCATTER procedure 291
INDEX

345

MAX function 327, 329
maximum likelihood estimate
 checking correctness of simulated data 36
 fitting gamma distribution to data 306
 suppressing notes to SAS log 99–100
maximum (<> operator 329
MCD subroutine 140
MCMC procedure
 about 9
 Gibbs sampling and 145
 parameter considerations 110
mean
 assessing two-sample t test 78–84
 computing variances of 61–62
 confidence interval for 74–78, 295
 sampling distribution of 57–59, 68–69
MEAN function
 about 68, 327
 computing confidence interval for a mean 77
 subscript reduction operator equivalent 329
 writing efficient simulations 97
mean mapping method 158–159
mean (: operator 68, 77, 329
mean square error 54
MEAN statement, SIM2D procedure 267–268
MEANS procedure
 approximating sampling distribution 55
 bootstrap resampling 287–288
 BY statement 64
 CLASS statement 64
 computing point estimates 282
 computing sample kurtosis 66
 computing sample moments 319
 computing variances 61
 design of simulation studies and 315
 displaying descriptive statistics 255
 OUTPUT statement 56, 66, 74–75
 P5 option 58, 285
 P95 option 58, 285
 sampling distribution of the mean 57–59
 unconditional simulation of one-dimensional data 266–267
 VARDEF= option 295
median, computing variances of 61–62
MEDIAN function 68, 327
Mersenne-Twister algorithm 32–33
METHOD= option
 ROBUSTREG procedure 220–221
 SURVEYSELECT procedure 287
MIN function 327, 329
minimum (<> operator 329
mixed models
 See linear mixed models
MIXED procedure
 CL option 235
 covariance structures supported 183
 estimating covariance matrices 181
 repeated measures model with random effect 231–232
 mixing probabilities 120
 mixture distributions
 about 119–120
 contaminated normal distribution 121–122
 simulating from 120–121
MODEL procedure
 about 9, 252
 parametric bootstrap method 291
 simulating data from copula model 169
MODEL statement
 LOESS procedure 249
 REG procedure 221
 ROBUSTREG procedure 222
moment matching
 about 298, 303
 as modeling tool 302–303
 as tool for designing simulation studies 315–317
moment-ratio diagram
 about 298–302
 as tool for designing simulation studies 315–317
 comparing simulations and choosing models 314
 extensions to multivariate data 318–331
 fitting gamma distribution to data 306–308
 Fleishman’s method 311–314
 for continuous distributions 300–301
 Johnson system of distributions 308–311
 plotting variation of skewness and kurtosis on 303–306
MOMENTS module 312
moments of a distribution 299–301
Monte Carlo estimates
 about 54
 bias of kurtosis estimates in small samples 67
 effect of sample size on sampling distribution 63–64
 MCMC procedure and 9
 number of samples and 96
 sampling distribution of the mean 58
 simple regression model example 202–203
Monte Carlo standard error 96
multinomial distribution
 about 130–132
 generating random samples from 89
 simulating data from 130–132
 tabulated distributions and 19, 130
 multiplication (#) operator 215, 329
 multivariate ARMA models 260–261
 multivariate contaminated normal distribution 138–140
 multivariate distributions
 See also multinomial distribution
 See also MVN (multivariate normal distributions)
 advanced techniques for simulating data 153–174
 basic technique for simulating data 129–152
 Cholesky transformation and 146–150
multivariate distributions (continued)
constructing with Fleishman distribution 115
extensions to 318–331
generating data from 137
generating data from copulas 164–173
generating multivariate binary variates 154–157
generating multivariate ordinal variates 158–161
methods for generating data from 144–146
mixtures of 138–141
reordering multivariate data 161–164
resampling with SAS/IML software 289–291
simulating data from 129, 153–154
simulating data in time series 251
simulating data with given moments 298
spectral decomposition and 150–151
using DO loop 55, 97

multivariate normal distributions (MVN)
about 133
conditional 142–144
estimating covariance matrix from data 180
mixtures of 140–141
simulating in SAS/IML software 133–136
simulating in SAS/STAT software 136
%MULTNORM macro 135–136, 140
MVN (multivariate normal distributions)
about 133
conditional 142–144
estimating covariance matrix from data 180
mixtures of 140–141
simulating in SAS/IML software 133–136
simulating in SAS/STAT software 136
MYSQRVECH function 335

naive bootstrap
See bootstrap methods
NARROW option, SIM2D procedure 267
NCOL function 327
nearest correlation matrix 191–193
negative binomial distribution 27, 39
NLIN procedure 291
NOMISS option, CORR procedure 180, 190
nonnormal distributions 81–82
NONOTES system option 101, 116
nonparametric models 247–249
nonsingular parameterizations 218

NORMAL option
ESTIMATE statement, ARIMA procedure 254
IDENTIFY statement, ARIMA procedure 254
procedures and 97, 254

normal distribution
computing p-values 32
computing quantiles for 156
confidence interval for a mean 74–77
contaminated 121–122, 138–140
parameters for 28
shape parameters and 301

simulating data from 12–13, 21–22
normal mixture distribution 28
NORTA method 168–169
notes, suppressing to SAS log 99–100
NOTES system option 101
NROW function 327
number of samples (repetitions) 95–96
NUMREAL= option, SIMULATE statement (SIM2D) 267

O

observations
correlating 181
DATA step and 6
high-leverage points 219
ODS EXCLUDE ALL statement 97
ODS EXCLUDE statement 45–46
ODS GRAPHICS statement 46
ODS OUTPUT statement
creating data sets from tables 45–46, 57
suppressing output 97–98
usage example 80
ODS SELECT statement 45–46
ODS statements, controlling output with 44–46, 97–99
ODS TRACE statement 44
%ODSOFF macro 80, 98, 228, 236
%ODSON macro 99
OF operator 19
OLS (ordinary least squares) 200
one-dimensional data
conditional simulation of 270–271
unconditional simulation of 264–267
ordinal variates 158–161
ORDMEAN function 159–160
ORDVAR function 159–160
OUT= option
OUTPUT statement, FREQ procedure 97
TABLES statement, FREQ procedure 56
OUTDESIGN= option
GLIMMIX procedure 238–239
LOGISTIC procedure 218
OUTDESIGNONLY option, LOGISTIC procedure 218
OUTTEST= option
ESTIMATE statement, ARIMA procedure 254
REG procedure 56, 97
OUTHITS option, SURVEYSELECT procedure 287–288
outliers 219–221
OUTP= option, CORR procedure 97, 180
output, controlling with ODS statements 44–46, 97–99
OUTPUT statement
FREQ procedure 97, 190
MEANS procedure 56, 66, 74–75
REG procedure 205
ROBUSTREG procedure 222
OUTSTAT= option, GLM procedure 97
P

P= option, OUTPUT statement, REG procedure 205
P5 option, MEANS procedure 58, 285
P95 option, MEANS procedure 58, 285
p-values, computing for hypothesis testing 32, 88–90
pairwise correlations 190
PAIRWISEDIST module 333–334
PARAM= option, CLASS statement (LOGISTIC) 218
parameter estimates
 reading 239–240
 using as parameters 207–208
parameters
 for Bernouilli distribution 27
 for binomial distribution 27
 for continuous distributions 28
 for discrete distributions 27
 for Emrich-Piedmonte algorithm 155
 for exponential distribution 28, 110
 for gamma distribution 28, 110
 for geometric distribution 27
 for logistic distribution 28
 for normal distribution 28
 for Poisson distribution 27
 for standard normal distribution 28
 for tabulated distributions 27
 for uniform distribution 28, 111
 for univariate distributions 109–111
 for Weibull distribution 28
 location 109–111
 rate 22
 scale 109–111
 shape 110, 299, 301
 using parameter estimates as 207–208
parametric bootstrap method 281, 291
Pareto distribution 28, 112–113
PD (positive definite)
 about 177
 generating covariance or correlation matrix 179–180
 generating diagonally dominant covariance matrix 181–182
 problems with covariance matrices 190
 testing covariance matrices 177
PDF function
 about 326
 checking correctness of simulated data 35
 finite mixture distribution and 120
 overlaying theoretical density on histograms 40–41
 overlaying theoretical PMF on frequency plots 38
 parameter considerations 110
 simulating data from continuous distributions 21, 23
 working with statistical distributions 30–31
Pearson correlations
 bootstrap resampling 290
copula technique and 169–170
 correlation matrices and 176
 sampling distribution of 69–71
 simple regression model example 202–203
Pearson system of distributions 302
PHREG procedure 244
PLCORR option, OUTPUT statement (FREQ) 190
PLOTS= option, SIM2D procedure 268
PMF function
 checking correctness of simulated data 35
 generating multivariate ordinal variates 158–161
 overlaying on frequency plot 37–39
 working with statistical distributions 30–31
POINT= option, SET statement 205, 282–284
Poisson distribution 19–20, 27, 229
Poisson process
 about 273
 homogeneous 273–275
 inhomogeneous 273, 275–276
Poisson regression model 226, 229–230
%POLYCHOR macro 190
POLYCHORIC option, CORR procedure 190
polynomial effects, linear models 215–218
POLYROOT function 327
pooled variance t test
 about 78
 assessing in SAS/IML software 83–84
 effect of sample size on power of 87–88
 evaluating power of 84–86
 robustness to nonnormal populations 81–82
 robustness to unequal variances 78–81
positive definite (PD)
 about 177
 generating diagonally dominant covariance matrix 181–182
 problems with covariance matrices 190
 testing covariance matrices 177
positive semidefinite (PSD) 177–179
power function distribution 113
power of regression tests 211–215
power of t test
 effect of sample size on 87–88
 evaluating 84–86
 exact power analysis 84–85
 simulated analysis 85–86
POWER procedure
 effect size and 87–88
 evaluating power of t test 84–86
PRINT statement
 about 328
 COLNAME= option 328
 FORMAT= option 328
 LABEL= option 328
 ROWNAME= option 328
 sampling distribution example 69
PRINTTO procedure 99–100
probability distributions
 See continuous distributions
 See discrete distributions
probability mass function
 See PMF function
PROBBNRM function 155
PROBGAM function 32
PROBIT function 32
PROBNORM function 32
procedures
 BY statement in 55
 data simulation using 55–67
 NOPRINT option in 97, 254
 suppressing notes to SAS log 99–100
PROD function 327, 329
profiling simulations 102–103
PROJS function 191
PROJU function 191
proportional hazards model 242–245
PSD (positive semidefinite) 177–179
pseudorandom numbers 33
%PUT statement 35

Q
Q-Q (quantile-quantile) plot 41–44
QNTL subroutine 68, 289, 327
QQPLOT statement, UNIVARIATE procedure 41–44
QUANTILE (inverse CDF) function
 about 326
 acceptance-rejection technique and 126–127
 computing confidence interval for a mean 77
 computing quantile of normal distribution 156
 creating Q-Q plots 42–43
 fitting and simulating data from copula model 170–171
 generating data from copulas 165
 parameter considerations 110
 sampling method 116–122
 univariate distribution support 112–113
 working with statistical distributions 30, 32
quantile-quantile (Q-Q) plot 41–44
quantiles
 See also QUANTILE function
 about 32
 checking correctness of simulated data 35
 computing for normal distributions 156

R
RAND function
 about 11, 33–34
 finite mixture distribution and 120
 linear regression model and 227
 logistic regression model and 227
 overlaying theoretical PMF on frequency plots 38
 parameter considerations 110–111
 Poisson regression model and 229
 simulating data from inhomogeneous Poisson process 275
 simulating univariate data 13–14, 18, 23–24, 27
 univariate distribution support 111–112, 114
 working with statistical distributions 30
RANDDIRICHLET function 137
%RandExp macro 23, 123
RANDFLEISHMAN module 312
RANDGEN subroutine
 about 33, 227, 327
 computing confidence interval for a mean 77
 distributions supported by 112
 J function and 97
 overlaying theoretical PMF on frequency plots 38
 sampling distribution of the mean 68
 simulating data from homogeneous Poisson process 274
 simulating univariate data 12, 18, 24–27
 two-sample pooled variance t test 83
 working with statistical distributions 30
RANDMULTINOMIAL function 89, 130, 327
RANDMV BINARY function 157
RANDMVORDINAL function 159–160
RANDMVVT function 137, 327
RANDNORMAL function
 about 133, 327
 Cholesky transformation 146
 conditional simulations 143
 simulating data from multinomial distributions 70, 133, 138, 145
 unconditional simulation of one-dimensional data 265
random correlation matrices 187–189
random effects
 about 226
 creating design matrices for 238–239
 generating variables for 201
 linear mixed models with 226, 230–232
 repeated measures model with 231–232
 simulating components 236–242
random error term 198–199
random number generation
 about 33–35
 ARMASIM function and 259
 Mersenne-Twister algorithm 32–33
 RANDSEED subroutine and 259
 setting seed value for 33–35
random values for distributions
 See RAND function
random variates 12
RANDSEED subroutine
 about 33, 327
 random number generation and 259
 sampling distribution of the mean 68
 simulating univariate data 24, 26
RANDVALEMAURELLI function 318–319
RANDWISHART function 137, 186, 327
RANGAM function 32
RANGE= option, SIMULATE statement (SIM2D) 267
rank (Spearman) correlations 169, 176
RANK function 327
RANNO R function 32
RANPERK function 25–26
RANPERM function 25–26
rate parameter 22
Rayleigh distribution 114
READ statement
about 329
INTO clause 330
WHERE clause 55
reading data from data sets 329–330
reference parameterization 218
REFLINE statement, SGPLOT procedure 90
REG procedure
MODEL statement 221
OUTEST= option 56, 97
OUTPUT statement 205
simple linear regression models and 199–200, 204–205
TEST statement 211–213
regression models
about 197
components of 198–199
linear mixed models 226, 230–242
logistic regression model 226–229
nonparametric models 247–249
outliers and 219–224
Poisson regression model 226, 229–230
power of regression tests 211–215
survival analysis models 123–125, 242–247
regular processes 276–278
rejection method 126–128
REPEAT function 69, 327, 331
repeated measures model with random effect 231–232
repetitions (number of samples) 95–96
REPS= option, SURVEYSELECT procedure 287
resampling
case 284
with DATA step 282–286
with SURVEYSELECT procedure 282, 286–288
reshaping matrices 69
response variables
about 197–198
in logistic regression 226
outliers for 219–221
simulating 240–242
RETURN statement 327
ridge factor 190–191
RMSE (root mean square error)
about 199
linear model based on real data 204
linear model with continuous variable 201
nonparametric models 248
RANDMVT function 327
ROBUSTREG procedure
FWLS option 220–221
METHOD= option 220–221
MODEL statement 222
OUTPUT statement 222
ROBUSTREG routine 140
ROOT function
about 327
checking if matrix is PD 182
checking if matrix is PSD 179
Cholesky transformation and 147
root mean square error (RMSE)
about 199
linear model based on real data 204
linear model with continuous variable 201
nonparametric models 248
row-major order for matrices 260
ROWNAME= option, PRINT statement 328
ROWVEC function 327
RSREG procedure 316
S
SAMPLE function
about 327, 336
simulating univariate data 18, 25–26
sample moments
checking correctness of simulated data 35–37
computing 336–337
sample size
bias of kurtosis estimates and 65–67
effect of on power of t test 87–88
effect of on sampling distribution 63–65
number of samples and 95–96
standard error and 96
SAMPLEREPLACE module 288, 336
sampling distribution
approximating 52–55
approximating for AR(1) parameters 254–256
bias of kurtosis estimates 65–67
effect of sample size on 63–65
estimating probability with 59–60
evaluating statistical techniques for 73–91
Monte Carlo estimates 54
of a statistic 51–53
of Pearson correlations 69–71
of statistics for normal data 60–63
of the mean 57–59, 68–69
simulating data using SAS/IML language 67–71
simulating data with DATA step and procedures 55–67
sampling variation 16
SAMPRATE= option, SURVEYSELECT procedure 287
SAS Grid Manager 102
SAS/IML language
 about 5–6, 12, 325–326
 additional resources 325–326
 assessing t test in 83–84
 computing confidence interval for a mean 77–78
 constructing block-diagonal matrix 232–233
 creating grid of values 332–333
 creating ID vectors 331–332
 DATA step comparison 6
 design of simulation studies and 315
 Fleishman's method and 312–313
 functions supported 326–328
 generating symmetric matrices 181
 Iman-Conover method 162
 license considerations 5–6
 matrices and 6
 modules for sample moments 336–337
 modules replicating functions 333–336
 obtaining programs used in book 8
 PRINT statement 328
 reading data from data sets 329–330
 reading design matrices into 239
 resampling support 282, 288–291
 simulating AR(1) data 258–260
 simulating data from regression models 206–207
 simulating data using 67–71
 simulating multivariate normal data 133–136, 140
 simulating responses 240–241
 subscript reduction operators 328–329
 writing data to data sets 330–331
SAS log, suppressing notes to 99–100
SAS Simulation Studio 9
SAS/STAT software 133, 136, 140
SASFILE statement 283
SCALE= option, SIMULATE statement (SIM2D) 267
scale parameter 109–111
scatter matrix 186
SCATTER statement, SG PLOT procedure
 YERRORLOWER= option 86
 YERRORUPPER= option 86
SDF (survival distribution function) 245
SEED= option, SURVEYSELECT procedure 287–288
seed value
 for random number generation 33–35
 for sampling distribution examples 55
semicolon (;) 6
SET statement 205, 282–284
SETDIF function 327
SG PLOT procedure
 annotation facility 301
 bias of kurtosis estimates in small samples 66
 conditional distributions 144
 conditional simulations 271
 creating Q-Q plots 42–43
 generating data from copulas 168
 INSET statement 90
jitter technique and 132
LINEPARM statement 219–220
nonparametric models example 248–249
plotting PDF 31
profiling simulations 102–103
REFLINE statement 90
SCATTER statement 86
visualizing stationary time series 257–258
SGRENDER procedure
 conditional simulations 272
 DYNAMIC statement 39, 41
 overlaying theoretical density on histograms 40–41
 overlaying theoretical PMF on frequency plots 38
SGSCATTER procedure 135, 141, 291
SHAPE function
 about 327
 generating ID variables 331
 generating matrices from Wishart distribution 187
 reshaping matrices 69
shape parameters 110, 299, 301
shrinkage methods 190–191
SIM2D procedure
 about 12
 COORDINATES statement 272
 GRID statement 267
 MEAN statement 267–268
 NARROW option 267
 PLOTS= option 268
 producing contour plots 269
 SIMULATE statement 267–268, 272
 simulating data from Gaussian field 263–264, 267, 272
SIMNORMAL procedure
 about 12, 133
 conditional simulations 142
 simulating MVN distributions 136
 simple bootstrap
 See bootstrap methods
 SIMULATE statement
 COPULA procedure 170
 SIM2D procedure 267–268, 272
 simulating data
 See also under specific techniques
 about 3–4
 advanced techniques for multivariate data 153–174
 advanced techniques for univariate data 109–128
 building correlation and covariance matrices 175–194
 checking correctness of 35–44
 disadvantages of 105
 for advanced regression models 225–249
 for basic regression models 197–224
 from basic multivariate distributions 129–152
 from common univariate distributions 11–28
Index

from spatial models 263–279
from time series models 251–261
moment matching and moment-ratio diagram 297–322
preliminary and background information 29–47
resampling and bootstrap methods 281–295
shortening simulation times 103–105
specialized tools for 8–9
strategies for 93–106
to estimate sampling distributions 51–71
to evaluate statistical techniques 73–91
using DATA step and procedures 55–67
using SAS/IML language 67–71
simulation loop 55
Simulation Studio 9
singular parameterization 216
skewness
bootstrap resampling 285–289
checking correctness of simulated data 36
computing 336–337
design of simulation studies and 315–316
Fleishman distribution and 115, 311
for gamma distribution 306–308
Johnson system of distributions 310–311
moment matching and 303
moments and 299–301
plotting variations on moment-ratio diagram 303–306
sampling distribution example 65–67
SKEWNESS module 288
Sklar’s theorem 169
smooth bootstrap method 281, 292–294
SMOOTH= option, MODEL statement (LOESS) 249
SMOOTHBOOTSTRAP module 294
SOLVE function 327
SORT call 327
SORT procedure 56
spatial functions 273–274
spatial models
about 263
simulating data from a regular process 276–278
simulating data from Gaussian random field 263–273
simulating data from homogeneous Poisson process 274–275
simulating data from inhomogeneous Poisson process 275–276
simulating data from spatial point process 273–274
simulating data using other techniques 278–279
spatial point processes 273–274
Spearman (rank) correlations 169, 176
spectral decomposition 150–151
spectrum (eigenvalues) 187–189
SQRT function 326
SQRVECH function about 327, 335
generating symmetric matrices 181
multivariate normal distributions and 140–141
SSQ function 327, 329
standard errors
about 53
bootstrap 283, 294–295, 305–306
Monte Carlo 96
plotting bootstrap estimates of 305–306
sample size and 96
standard normal distribution
computing p-values 32
computing quantiles for 156
contaminated 121–122, 138–140
parameters for 28
simulating data from 12–13, 21–22
standardized uniform distribution 22
START statement 327
STAT= option, BARCHART statement (TEMPLATE) 38–39
STATESPACE procedure 261
statistic
sampling distribution of 51–53
standard error of 53
statistical distributions
checking correctness of simulated data 35–44
essential functions for working with 30–33
random number streams 33–35
STD function 68, 77, 328
STOP statement 205, 328
STORE statement 328
STREAMINIT function about 33–34
linear regression example 227
macro-loop technique and 101
simulating univariate data 13–14
Student’s t distribution 137
subpopulations (components) 119–121
subscript reduction operators
about 328–329
assessing t test 84
sampling distribution of the mean 68
writing efficient simulations 97
SUM function 328–329
sum of squares (##) operator 329
SURVEYSELECT procedure about 282
METHOD= option 287
OUTHITS option 287–288
REPS= option 287
resampling with 282, 286–288
SAMPRATE= option 287
SEED= option 287–288
survival analysis models
about 125
proportional hazards model 242–245
simulating data from multiple survivor functions 245–247
survival analysis models (continued)
simulating data in 123–125
survivor function 245–247
SYMCHECK function 178
symmetric matrices 181
SYMPUTX subroutine 90
%SYSEVALF macro 172
SYSRANDOM macro variable 34–35
system time, setting seed value from 34–35

T
t distribution 28, 301
t function 328
t test
assessing for equality of means 78–84
effect of sample size on 87–88
evaluating power of 84–88
tables
creating data sets from 45–46, 57
excluding 45
finding names of 44–45
selecting 45

TABLES statement, FREQ procedure
BINOMIAL option 81, 86
CHISQ option 90
OUT= option 56

TABULATE call 328

tabulated distributions
about 18–19
finite mixture distribution and 120
multinomial distribution and 19, 130
parameters for 27
sampling from finite sets and 26

TEMPLATE procedure
BARCHART statement 38–39
overlaying theoretical density on histograms 40

templates for simulating data
defining contour plots 268
macro-loop technique and 100–101
overlaying theoretical densities on histograms 40–41
overlaying theoretical PMF on frequency plots 37–38

univariate distributions 13–14
with DATA step and procedures 55–57

TEST statement, REG procedure 211–213
testing for covariance matrices 177–179

thinning algorithms 275, 278–279

TIME function 102, 161
time series models
about 251
simulating data from ARMA models 252–261
using arrays to hold explanatory variables 201
visualizing stationary time series with SGPLOT 257–258
time-to-event data 123–127
TOEPLITZ function 185, 328
Toeplitz matrix 185

TPSPLINE procedure 247
transformation technique 146
TRANSPOSE procedure 66
triangle distribution 28

TRISOLV function 149–150, 328
truncked distribution 121, 126

TTEST procedure
BY statement 80, 85
simulated power analysis 85
two-sample pooled variance t test 80, 83, 85
two-dimensional data
conditional simulation of 272–273
unconditional simulation of 267–269
two-sample t test
about 78
assessing in SAS/IML software 83–84
effect of sample size on power of 87–88
evaluating power of 84–86
robustness to nonnormal populations 81–82
robustness to unequal variances 78–81

Type I extreme value distribution 111–112

U
UCLM= option, OUTPUT statement (MEANS) 74–75

unconditional simulations
about 264
of one-dimensional data 264–267
of two-dimensional data 267–269

UNCONDSIMGRF function 269
unequal variances, robustness of t test to 78–81
uniform correlation structure 184

uniform distribution
continuous 22
discrete 17–18
linear regression model example 210–211
parameters for 28, 111

UNION function 328

UNIQUE function 328

univariate distributions
acceptance-rejection technique 126–128
adding location and scale parameters 109–111
finite mixture distributions 119–122
inverse CDF sampling 116–119
resampling with SAS/IML software 288–289
SAS software support for 27–28
simulating data 11–12
simulating data from continuous distributions 20–24, 28
simulating data from discrete distributions 14–20, 27
simulating data from standard normal distribution 12–13
simulating data in DATA step 11–14
simulating data in SAS/IML software 24–27
simulating data in time series 251
simulating data with given moments 297
simulating from less common 111–116
simulating survival data 123–125
UNIVARIATE procedure
 approximating sampling distribution 55
 bootstrap resampling 285
 checking correctness of simulated data 35–37
 distributions supported by 111–112, 114–116
 fitting gamma distribution to data 306
 HISTOGRAM statement 40, 62, 255, 306
 INSET statement 306
 inverse transformation algorithm 117
 Johnson system of distributions and 309–310
 parametric bootstrap method 291
 QQPLOT statement 41–44
 sampling distribution of Pearson correlations 70
 sampling distribution of the mean 57–59
 sampling distribution of the variance 62
 VARDEF= option 295
USE statement 329

V
 Vale-Maurelli algorithm 318–321
 VAR clause, CREATE statement 331
 VAR function 68, 328
 VAR= option, IDENTIFY statement (ARIMA) 253
 VARDEF= option
 MEANS procedure 295
 UNIVARIATE procedure 295
 variance components model 183–184
 variance function 226
 variance reduction techniques 96
 variances
 computing for mean 61–62
 computing for median 61–62
 of random error term 198–199
 robustness of t test to unequal 78–81
 sampling distribution of 62–63
 VARIOGRAM procedure 264, 268, 272
 VARMA model 260–261
 VARMASIM subroutine 251
 VECDIAG function 328
 VECH function 181
 vectors
 creating data sets from 330–331
 creating grid of values 332–333
 creating ID vectors 331–332
 efficiency of 6
 reading data into 329
 tips for shortening simulation times 103
 VMTARGETCORR function 318–319

W
 Wald distribution 28, 112
 Weibull distribution
 about 23–24
 parameters for 28
 proportional hazards model and 242
 Rayleigh distribution and 114
WHERE clause
 ESTIMATE statement, ARIMA procedure 254
 READ statement 55
 Wishart distribution 176, 186–187
 writing data to data sets 330–331
 writing efficient simulations
 avoiding macro loops 100–101
 basic structure of efficient simulations 96–97
 disadvantages of simulations 105
 macro usage considerations 101–102
 profiling SAS/IML simulation 102–103
 shorting simulation times 103–105
 suppressing notes to SAS log 99–100
 suppressing ODS output and graphics 97–99

X
 XSECT function 328

Y
 YERRORLOWER= option, SCATTER statement
 (SGPLOT) 86
 YERRORUPPER= option, SCATTER statement
 (SGPLOT) 86

Symbols
 + (addition) operator 329
 @ (at) symbol 233
 <= (comparison) operator 6
 = (equality) operator 6
 => (index of maximum) operator 329
 >= (index of minimum) operator 329
 ^= (inequality) operator 6
 >: (maximum) operator 329
 : (mean) operator 68, 77, 329
 <= (minimum) operator 329
 # (multiplication) operator 215, 329
 ; (semicolon) 6
 ## (sum of squares) operator 329
About The Author

Rick Wicklin is a principal researcher in computational statistics at SAS, where he develops and supports the IML procedure and the SAS/IML Studio application. He received a PhD from Cornell University and has been a SAS user since 1997. Rick has presented numerous tutorials and papers at statistical and SAS users group conferences and is active in the American Statistical Association. Rick maintains a blog for statistical programmers at blogs.sas.com/content/iml/.

Learn more about this author by visiting his author page at http://support.sas.com/wicklin. There you can download free chapters, access example code and data, read the latest reviews, get updates, and more.
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.