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Logistic regression as shown in our multivariate analysis framework in Figure 5.1 is one 

of the dependence techniques in which the dependent variable is discrete and, more 

specifically, binary: taking on only two possible values. Some examples: Will a credit 

card applicant pay off his bill or not? Will a mortgage applicant default? Will someone 

who receives a direct mail solicitation respond to the solicitation? In each of these cases 

the answer is either “yes” or “no”. Such a categorical variable cannot directly be used as 

a dependent variable in a regression, but a simple transformation solves the problem: let 

the dependent variable Y take on the value 1 for “yes” and 0 for “no”.  

Since Y takes on only the values 0 and 1, we know E[Yi] = 1*P[Yi=1] + 0*P[Yi=0] = 

P[Yi=1] but from the theory of regression we also know that E[Yi] = a + b*Xi (here we 

use simple regression but the same holds true for multiple regression). Combining these 

two results we have P[Yi=1] = a + b*Xi and we can see that, in the case of a binary 

dependent variable, the regression may be interpreted as a probability. We then seek to 

use this regression to estimate the probability that Y takes on the value 1. If the estimated 

probability is high enough, say, above 0.5, then we predict 1; conversely, if the estimated 

probability of a 1 is low enough, say, below 0.5, then we predict 0. 

When linear regression is applied to a binary dependent variable, it is called commonly 

the Linear Probability Model (LPM). Traditional linear regression is designed for a 

continuous dependent variable, and is not well-suited to handling a binary dependent 

variable. Three primary difficulties arise in the LPM. First, the predictions from a linear 

regression do not necessarily fall between zero and one; what are we to make of a 
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predicted probability greater than one? How do we interpret a negative probability? A 

model that is capable of producing such nonsensical results does not inspire confidence.  

Second, for any given predicted value of y (denoted ŷ ), the residual ( resid= y - ŷ ) can 

take only two values. For example, if ŷ = 0.37, then the only possible values for the 

residual are resid= -0.37 or resid = 0.63 (= 1 – 0.37), since it has to be the case that ŷ  + 

resid equals zero or one. Clearly the residuals will not be normal, and plotting a graph of 

ŷ  vs. resid will produce not a nice scatter of points, but two parallel lines. The reader 

should verify this assertion by running such a regression and making the requisite 

scatterplot. A further implication of the fact that residual can take on only two values for 

any ŷ  is that the residuals are heteroscedastic; this violates the linear regression 

assumption of homoscedasticity (constant variance). The estimates of the standard errors 

of the regression coefficients will not be stable and inference will be unreliable.  

Third, the linearity assumption is likely to be invalid, especially at the extremes of the 

independent variable. Suppose we are modeling the probability that a consumer will pay 

back a $10,000 loan as a function of his income. The dependent variable is binary, 1 = he 

pays back the loan, 0 = he does not pay back the loan. The independent variable is 

income, measured in dollars. If the person’s income is $50,000, he might have a 

probability of 0.5 of paying back the loan. If his income is increased by $5,000 then his 

probability of paying back the loan might increase to 0.55, so that every $1000 increase 

in income increases the probability of paying back the loan by 1%. A person with an 

income of $150,000 (who can pay the loan back very easily) might have a probability of 

0.99 of paying back the loan. What happens to this probability when his income is 

increased by $5000? Probability cannot increase by 5%, because then it would exceed 

100%, yet according to the linearity assumption of linear regression, it must do so.  

A better way to model P[Yi=1] would be to use a function that is not linear, one that 

increases slowly when P[Yi=1] is close to zero or one, and that increases more rapidly in 

between; it would have an “S” shape. One such function is the logistic function 
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whose cumulative distribution function is shown in Figure 5.2. 
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Another useful representation of the logistic function is  

  1  
1  

z

z

e
G z

e




 


 

Recognize that the y-axis, G(z), is a probability and let G(z) = π , the probability of the 

event occurring. We can form the odds ratio (the probability of the event occurring 

divided by the probability of the event not occurring) and do some simplifying: 
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Consider taking the natural logarithm of both sides. The left side will become log[

/ (1 )]   and the log of the odds ratio is called the logit. The right hand side will 

become z (since log(
z

e ) = z) so that we have the relation 
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and this is called the logit transformation.  

If we model the logit as a linear function of X, i.e., let z = 
0 1

X  , then we have 
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We could estimate this model by linear regression and obtain estimates b0 of 
0

  and b1 of 

1
  if only we knew the log of the odds ratio for each observation. Since we do not know 

the log of the odds ratio for each observation we will use a form of nonlinear regression 

called logistic regression to estimate the below model: 
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and in so doing obtain the desired estimates b0 of 
0

  and b1 of 
1
 . The estimated 

probability for an observation Xi will be 
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and the corresponding estimated logit will be 
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which leads to a natural interpretation of the estimated coefficient in a logistic regression: 

1
b  is the estimated change in the logit (log odds) for a one unit change in X. 

To make these ideas concrete, suppose we open a small dataset toylogistic.jmp, containing 

students’ midterm exam scores (MidtermScore) and whether or not the student passed the 

class (PassClass=1 if pass, PassClass=0 if fail). A passing grade for the midterm is 70. 

The first thing to do is create a dummy variable to indicate whether or not the student 

passed the midterm: PassMidterm = 1 if MidtermScore ≥ 70 and PassMidterm = 0 

otherwise: 
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Click on Cols→New Column produces the New Column dialog box. In the Column 

Name text box, type in for our new dummy variable PassMidterm. Click on the drop box 

for modeling type and change it to Nominal. Click the drop box for Column Properties 

and select Formula. The Formula dialog box appears. Under Functions click Conditional 

→ If. Under Table Columns click on MidtermScore so that it appears in the top box to the 

right of the If. Under Functions click Comparison > “a>=b”. In the formula box to the 

right of >= enter 70. Click tab. In the box to the right of the  click it on and enter the 

number 1 and similarly enter 0 for the else clause. The Formula dialog box should look 

like Figure 5.3.  

 

Click OK→OK. 

First let us use a traditional contingency table analysis to determine the odds ratio. Make 

sure that both PassClass and PassMidterm are classified as nominal variables. Right-
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click on the column PassClass in the data grid and select Column Info… . Beside 

Modeling Type, click on the black triangle and select Nominal, then OK. Do the same for 

PassMidterm. 

Select Tables→Tabulate and the Control Panel will appear; it shows the general layout 

for a table. Select PassClass, drag and drop it into “Drop zone for columns” and select 

“Add Grouping Columns”. Now that data have been added, the words “Drop zone for 

rows” no longer will be visible, but the “Drop zone for rows” will still be the lower left 

panel of the table. See Figure 5.4.  
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Select PassMidterm, drag and drop it to the panel immediately to the left of the “8” in 

the table; select “Add Grouping Columns”. Click on “Done”. A contingency table 

identical to Figure 5.5 will appear. 

toydataset.jmp

 

The probability of passing the class when you did not pass the midterm is: 

2
P(PassClass(1) P((PassMidterm(0)) 

7
  and the probability of not passing the class 

when you did not pass the midterm: 
5

P(PassClass(0) P((PassMidterm(0)) 
7

  (similar to 

row percentages). The odds of passing the class given that you have failed the midterm is: 

 

2
P(PassClass(1) P((PassMidterm(0)) 27

    
5P(PassClass(0) P((PassMidterm(0)) 5

7

   

Simply considering only the students that did not pass the midterm, the odds the number 

of students that pass the class divided by the number of students that did not pass the 

class. 

Similarly, we calculate the odds of passing the class given that you have passed the 

midterm as: 

10
P(PassClass(1) P((PassMidterm(1)) 1013

    
3P(PassClass(0) P((PassMidterm(1)) 3

13

    

Of the students that did pass the midterm, the odds is the number of students that pass the 

class divided by the number of students that did not pass the class. 
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In the above paragraphs we spoke only of “odds”. Now let us calculate an “odds ratio”. It 

is important to note that this can be done in two equivalent ways. Suppose we want to 

know the odds ratio of passing the class by comparing those who pass the midterm 

(PassMidterm=1 in the numerator) to those who fail the midterm (PassMidterm=0 in the 

denominator). The usual calculation leads to: 

10
Odds of passing the class; given passed the Midterm 503

      8.33.
2Odds of passing the class; given failed the Midterm 6

5

    

which has the following interpretation: the odds of passing the class are 8.33 times the 

odds of failing the course if you pass the midterm. This odds ratio can be converted into a 

probability. We know that P(Y=1)/P(Y=0)=8.33, and by definition P(Y=1)+P(Y=0)=1, so 

solving two equations in two unknowns yields P(Y=0) = (1/(1+8.33)) = (1/9.33)= 0.1072 

and P(Y=1) = 0.8928. As a quick check, observe that 0.8928/0.1072=8.33. Note that the 

log-odds is ln(8.33) = 2.120.  Of course, the user doesn’t have to perform all these 

calculations by hand; JMP will do them automatically.  When a logistic regression has 

been run, simply clicking on the red triangle and selecting “Odds Ratios” will do the 

trick. 

Equivalently, we could compare those who fail the midterm (PassMidterm=0 in the 

numerator) to those who pass the midterm (PassMidterm=1 in the denominator) and 

calculate: 

2
Odds of passing the class; given failed the Midterm 6 15

        0.12
10Odds of passing the class; given passed the Midterm 50 8.33

3

    . 

which tells us that the odds of failing the class are 0.12 times the odds of passing the class 

for a student who passes the midterm. Since P(Y = 0) = 1 - π (the probability of failing 

the midterm) is in the numerator of this odds ratio, we must interpret it in terms of the 

event failing the midterm. It is easier to interpret the odds ratio when it is less than 1 by 

using the following transformation: (OR – 1)*100%. Compared to a person who passes 

the midterm, a person who fails the midterm is 12% as likely to pass the class, or 

equivalently, a person who fails the midterm is 88% less likely, (OR – 1)*100% = (0.12 – 

1)*100%= -88%, to pass the class than someone who passed the midterm. Note that the 

log-odds is ln(0.12) = -2.12. 

The relationships between probabilities, odds (ratios), and log-odds (ratios) are 

straightforward. An event with a small probability has small odds, and also has small log-

odds. An event with a large probability has large odds and also large log-odds. 

Probabilities are always between zero and unity; odds are bounded below by zero but can 

be arbitrarily large; log-odds can be positive or negative and are not bounded, as shown  
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in Figure 5.6. In particular, if the odds ratio is 1 (so the probability of either event is 

0.50), then the log-odds equals zero. Suppose π = 0.55 so the odds ratio 0.55/0.45 = 

1.222. Then we say that the event in the numerator is (1.222-1) = 22.2% more likely to 

occur than the event in the denominator. 

Different software packages adopt different conventions for handling the expression of 

odds ratios in logistic regression. By default JMP has uses the “log odds of 0/1” 

convention which puts the “0” in the numerator and the “1” in the denominator.  This is a 

consequence of the sort order of the columns, which we will address shortly. 

 

To see the practical importance of this, rather than compute a table and perform the above 

calculations, we can simply run a logistic regression. It is important to make sure that 

PassClass is nominal and that PassMidterm is continuous. If PassMidterm is nominal, 

JMP will fit a different but mathematically equivalent model that will give different (but 

mathematically equivalent) results. The scope of the reason for this is beyond this book, 

but interested readers can consult Help→Books→Modeling and Multivariate Methods 

and refer to Appendix A. 

If you have been following along with the book, both variables ought to be classified as 

nominal, so PassMidterm needs to be changed to continuous. Right-click on the column 

PassMidterm in the data grid and select Column Info… . Beside Modeling Type, click on 

the black triangle and select Nominal, then OK. 

Now that the dependent and independent variables are correctly classified as Nominal 

and Continuous, respectively, let’s run the logistic regression: 

Click from the top menu Analyze→Fit Model. Click on PassClass and click on Y. Click 

PassMidterm and click on Add. The Fit Model dialog box should now look like Figure 

5.7. Click Run.  
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Figure 5.8 displays the logistic regression results. 
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Examine the parameter estimates in Figure 5.8. The intercept is 0.91629073 and the slope 

is -2.1202635. The slope gives the expected change in the logit for a one unit change in 

the independent variable, i.e., the expected change on the log of the odds ratio. However, 

if we simply exponentiate the slope, i.e., compute 
2.1202635

0.12e


 , then we get the 0/1 

odds ratio. 

There is no need for us to exponentiate the coefficient manually. JMP will do this for us:  

Click on the red triangle and select Odds Ratios. The Odds Ratios tables are added to the 

JMP output as shown in Figure 5.9.  

 

Unit Odds Ratios refers to the expected change in the odds ratio for a one-unit change in 

the independent variable. Range Odds Ratios refers to the expected change in the odds 

ratio when the independent variable changes from its minimum to its maximum. Since 

the present independent variable is a binary 0-1 variable, these two definitions are the 

same. We get not only the odds ratio, but a confidence interval, too. Notice the right-

skewed confidence interval; this typical of confidence intervals for odds ratios. 

To change from the default “log odds of 0/1” convention which puts the “0” in the 

numerator and the “1” in the denominator, in the data table rightclick on the name of the  

PassClass colum.  Under “Column Properties” select “Value Ordering”. Click on the 

value “1” and click “Move Up” as in Figure 5.10. 
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Then, when you re-run the logistic regression, while the parameter estimates will not 

change, the odds ratios will change to reflect the fact that the “1” is now in the numerator 

and the “0” is in the denominator. 

The independent variable is not limited to being only a nominal (or ordinal) dependent 

variable, it can be continuous. In particular, let’s examine the results using the actual 

score on the midterm, MidtermScore as an independent variable: 

Click Analyze→Fit Model. Click PassClass and click on Y and then click MidtermScore 

and click on Add. Click Run.  
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This time the intercept is 25.6018754 and the slope is -0.3637609, so we expect the log-

odds to decrease by 0.3637609 for every additional point scored on the midterm, as 

shown in Figure 5.11. 

  

To view the effect on the odds ratio itself, as before click on the red triangle and click 

Odds Ratios. Figure 5.12 displays the Odds Ratios tables. 

MidtermScore

  

For a one unit increase in the midterm score, the new odds ratio will be 69.51% of the old 

odds ratio or, equivalently, we expect to see a 30.5% reduction in the odds ratio 

(0.695057 – 1)*100%=-30.5%). For example, suppose a hypothetical student has a 

midterm score of 75%. His log odds of failing the class would be 25.6018754 – 

0.3637609*75 = -1.680192, so his odds of failing the class would be exp(-1.680192) = 
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0.1863382; that is, he is much more likely to pass than fail. Converting odds to 

probabilities (0.1863328/(1+0.1863328) = 0.157066212786159), we see that his 

probability of failing the class is 0.15707, and his probability of passing the class is 

0.84293. Now, if he increased his score by one point to 76, then his log odds of failing 

the class would be 25.6018754 – 0.3637609*76 = -2.043953. Thus, his odds of failing the 

class becomes exp(-2.043953)= 0.1295157. So, his probability of passing the class would 

rise to 0.885334, and his probability of failing the class would fall to 0.114666. With 

respect to the Unit Odds Ratio, which equals 0.695057, we see that a one unit increase in 

the test score changes the odds ratio from 0.1863382 to 0.1295157. In accordance with 

the estimated coefficient for the logistic regression, the new odds ratio is 69.5% of the old 

odds ratio because 0.1295157/0.1863382 = 0.695057. 

Finally, we can use the logistic regression to compute probabilities for each observation. 

As noted, the logistic regression will produce an estimated logit for each observation. 

These can be used, in the obvious way, to compute probabilities for each observation. 

Consider a student whose midterm score is 70. His estimated logit is 25.6018754 – 

0.3637609(70) = 0.1386124. Since exp(0.1386129) = 1.148679 = /(1-), we can solve 

for  (the probability of failing) = 0.534597.  

We can obtain the estimated logits and probabilities by clicking the red triangle on 

“Normal Logistic Fit” and selecting Save Probability Formula. Four columns will be 

added to the worksheet: Lin[0], Prob[0] and Prob[1]. These give for each observation the 

estimated logit, the probability of failing the class, and the probability of passing the 

class, respectively. Observe that the sixth student has a midterm score of 70. Look up his 

estimated probability of failing (Prob[0]); it is very close to what we just calculated 

above. See Figure 5.13. The difference being the computer carries 16 digits through its 

calculations, while we carried only six. 
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The fourth column (Most Likely PassClass) classifies the observation either 1 or 0 

depending upon whether the probability is greater than or less than 50%. We can observe 

how well our model classifies all the observations (using this cut off point of 50%) by 

producing a confusion matrix: Click on the red triangle and select Confusion matrix. 

Figure 5.14 displays the confusion matrix for our example. The rows of the confusion are 

the actual classification, that is, whether PassClass is 0 or 1. The columns are the 

predicted classification from the model, that is, the predicted 0/1 values from that last 

fourth column using our logistic model and a cut point of .50. Correct classifications are 

along the main diagonal from upper left to lower right. We see the model classified 6 

students as not passing the class, and actually they did not pass the class. The model also 

classifies 10 students as passing the class when they actually did. The values on the other 

diagonal, both equal to 2, are misclassifications. The results of the confusion matrix will 

be examined in more detail when we discuss model comparison in Chapter 9. 
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Of course, before we can use the model we have to check the model’s assumptions, etc. 

The first step is to verify the linearity of the logit; this can be done by plotting the 

estimated logit against PassClass: Click on Graph→Scatterplot Matrix. Click on Lin[0] 

and click Y, columns and click MidtermScore and click X. Click OK. As shown in Figure 

5.15, the linearity assumption appears to be perfectly satisfied.

 

The analog to the ANOVA F Test for linear regression is found under the Whole Model 

Test, shown in Figure 5.16, in which the Full and Reduced models are compared. The 

null hypothesis for this test is that all the slope parameters are equal to zero. Since 

Prob→ChiSq is 0.0004, this null hypothesis is soundly rejected. For a discussion of other 

statistics found here, such as BIC and Entropy RSquare, see the JMP Help. 
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The next important part of model checking is the Lack of Fit test. See Figure 5.17. It 

compares the model actually fitted to the saturated model. The saturated model is a model 

generated by JMP that contains as many parameters as there are observations, and so fits 

the data very well. The null hypothesis for this test is that there is no difference between 

the estimated model and the saturated model. If this hypothesis is rejected, then more 

variables (such as cross-product or squared terms) need to be added to the model. In the 

present case, as can be seen, Prob>ChiSq=0.7032. We can therefore conclude that we do 

not need to add more terms to the model. 

 

Let’s turn now to a more realistic dataset with several independent variables. During this 

discussion we will also present briefly some of the issues that should be addressed and 

some of the thought processes during a statistical study.  

Cellphone companies are very interested in determining which customers might switch to 

another company; this is called “churning”. Predicting which customers might be about 

to churn enables the company to make special offers to these customers, possibly 

stemming their defection. Churn.jmp contains data on 3333 cellphone customers, 
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including the variable Churn (0 means the customer stayed with the company, 1 means 

the customer left the company). Before we can begin constructing a model for customer 

churn, we need to discuss model building for logistic regression. Statistics and 

econometrics texts devote entire chapters to this concept; in several pages we can only 

sketch the broad outline. The first thing to do is make sure that the data are loaded 

correctly. Observe that Churn is classified as Continuous; be sure to change it to 

Nominal. One way is to right-click on the Churn column in the data table, select “Column 

Info…” and under “Modeling Type” choose “Nominal”. Another way is to look at the list 

of variables on the left side of the data table, find Churn, click on the blue triangle (which 

denotes a continuous variable) and change it to nominal (the blue triangle then becomes a 

red histogram). Check to make sure that all binary variables are classified as Nominal. 

This includes Intl_Plan, VMail_Plan, E_VMAIL_PLAN, and D_VMAIL_PLAN. Should 

Area_Code be classified as Continuous or Nominal? (Nominal is the correct answer!) 

CustServ_Call, the number of calls to customer service, could be treated as either 

continuous or nominal/ordinal; we treat it as continuous. 

When building a linear regression model and the number of variables is not so large that 

this cannot be done manually, one place to begin is by examining histograms and 

scatterplots of the continuous variables, and crosstabs of the categorical variables as 

discussed in Chapter 3. Another very useful device as discussed in Chapter 3 is the 

scatterplot/correlation matrix which can, at a glance, suggest potentially useful 
independent variables that are correlated with the dependent variable. The 

scatterplot/correlation matrix approach cannot be used with logistic regression, which is 

nonlinear, but a method similar in spirit can be applied.  

We are now faced with a similar situation that was discussed in Chapter 4 in which our 

goal is to build a model that follows the principle of parsimony, that is, a model which 

explains as much as possible of the variation in Y while using as few significant 

independent variables as possible. However, now with multiple logistic regression, we 

are in a nonlinear situation. We have four approaches we could take. We briefly list and 

discuss each of these approaches and some of their advantages and disadvantages: 

■ Include all the variables. In this approach you just input all the independent 

variables into the model. An obvious advantage of this approach is that it is fast 

and easy. However, depending on the dataset, most likely several independent 

variables will be insignificantly related to the dependent variable. Including 

variables that are not significant can cause severe problems—weaken the 

interpretation of the coefficients and lessen the prediction accuracy of the model. 

This approach definitely does not follow the principle of parsimony, and it can 

cause numerical problems for the nonlinear solver that may lead to a failure to 

obtain an answer. 

■ Bivariate method. In this approach you search for independent variables that 

may have predictive value for the dependent variable by running a series of 

bivariate logistic regressions, i.e., we run a logistic regression for each of the 
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independent variables, searching for "significant" relationships. A major 

advantage of this approach is that it is the one most agreed upon by statisticians 

[1]. On the other hand, this approach is not automated, very tedious and is 

limited by the analyst’s ability to run the regressions; that is, it is not practical 

with very large data sets.  Further, it misses interaction terms which, as we shall 

see, can be very important. 

■ Stepwise. In this approach you would use the Fit Model platform, change the 

Personality to Stepwise and Direction to Mixed. The Mixed option is like 

Forward Stepwise, but variables can be dropped after they have been added. An 

advantage of this approach is that it is automated, so, it is fast and easy. The 

disadvantage of stepwise is that it could lead to possible interpretation and 

prediction errors depending on the data set. However, using the Mixed option, as 

opposed to the Forward or Backward Direction option, tends to lessen the 

magnitude and likelihood of these problems. 

■ Decision Trees. A Decision Tree is a data mining technique that can be used for 

variable selection and will be discussed in Chapter 8. The advantage of using 

decision trees is that it is automated, and it is fast and easy to run. Further, it is a 

popular variable reduction approach taken by many data mining analysts, [2]. 

However, somewhat like the stepwise approach, the decision tree approach could 

lead to some statistical issues. In this case, significant variables identified by a 

decision tree are very sample dependent. These issues will be discussed further 

in Chapter 8. 

No one approach is a clear cut winner. Nevertheless, we do not recommend using the 

“Include all the variables” approach. If the data set is too large and/or you do not have the 

time, we recommend that you run both the stepwise and decision trees models and 

compare the results. The dataset churn.jmp is not too large, so we will apply the bivariate 

approach. 

While it is traditional to choose α = 0.05, in this preliminary stage we adopt a more lax 

standard, α = 0.25. The reason for this is we want to include, if possible, a group of 

variables that individually are not significant but together are significant. Having 

identified an appropriate set of candidate variables, run a logistic regression including all 

of them. Compare the coefficient estimates from the multiple logistic regression with the 

estimates from the bivariate logistic regressions. Look for coefficients that have changed 

in sign or have dramatically changed in magnitude, as well as changes in significance; 

such changes indicate the inadequacy of the simple bivariate models, and confirm the 

necessity of adding more variables to the model.  

Three important ways to improve a model are as follows: 
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■ If the logit appears to be nonlinear when plotted against some continuous 

variable, one resolution is to convert the continuous variable to a few dummies, 

say, three, that cut the variable at its 25
th
, 50

th
 and 75

th
 percentiles. 

■ If a histogram shows that a continuous variable has an excess of observations at 

zero (which can lead to nonlinearity in the logit), adding a dummy variable that 

equals one if the variable equals zero and equals zero otherwise.  

■ Finally, a seemingly-continuous variable that is actually discrete can be broken 

up into a handful of dummy variables, e.g., zip codes. 

Before we can begin modeling, we must first explore the data. With our churn data set, 

creating and examining the histograms of the continuous variables reveals nothing much 

of interest, except VMail_Message, which has an excess of zeros (see the second point in 

the previous paragraph). Figure 5.18 shows plots for Intl_Calls and VMail_Message. To 

produce such plots, select Analyze→Distribution, click on Intl_Calls and then “Y, 

Columns” and “OK”. To add the Normal Quantile Plot, click on the red arrow next to 

Intl_Calls and select “Normal Quantile Plot”. Here it is obvious that Intl_Calls is skewed 

right. We note that a logarithmic transformation of this variable might be in order, but we 

will not pursue the idea. 

Intl_Calls and VMail_Message

  

 

A correlation matrix of the continuous variables (Graph→Scatterplot Matrix, put the 

desired variables in Y, Columns) turns up a curious pattern: Day_Charge and Day_Mins, 

Eve_Charge and Eve_Mins, Night_Charge and Night_Mins, and Intl_Charge and Intl_Mins 

all are perfectly correlated. The charge is obviously a linear function of the number of 

minutes. Therefore we can drop the “Charge” variables from our analysis (we could also 

drop the “Mins” variables instead; it doesn’t matter which one we drop). If our dataset 

had a very large number of variables, the scatterplot matrix would be too big to 

comprehend. In such a situation, we would choose groups of variables for which to make 

scatterplot matrices, and examine those. 
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A scatterplot matrix for the four binary variables turns up an interesting association. 

E_VMAIL_PLAN and D_VMAIL_PLAN are perfectly correlated; both have common 1s and 

where the former has -1 the latter has zero. It would be a mistake to include both of these 

variables in the same regression (try it and see what happens). Let’s delete 

E_VMAIL_PLAN from the data set and also delete VMail_Plan as it agrees perfectly with 

E_VMAIL_PLAN: when the former has a “no” the latter has a “-1”, and similarly for “yes” 

and “+1”.  

Phone is more or less unique to each observation (we ignore the possibility that two 

phone numbers are the same but have different area codes), and therefore should not be 

included in the analysis. So, we will drop Phone from the analysis. 

A scatterplot matrix between the remaining continuous and binary variables turns up a 

curious pattern: D_VMAIL_PLAN and VMailMessage have a correlation of 0.96. They 

have zeros in common, and where the former has 1s the latter has numbers (see again 

point two in the above paragraph, we won’t have to create a dummy variable to solve the 

problem as D_VMAIL_PLAN will do the job nicely). 

To summarize, we have dropped 7 of the original 23 variables from the dataset: Phone, 

Day_Charge, Eve_Charge, Night_Charge, Intl_Charge, E_VMAIL_PLAN, VMail_Plan, so 

there are now 16 variables left, one of which is the dependent variable, Churn. We have 

15 possible independent variables to consider. 

Next comes the time-consuming task of running several bivariate (two-variable, one 

dependent and one independent) analyses, some of which will be logistic regressions 

(when the independent variable is continuous) and some of which will be contingency 

tables (when the independent variable is categorical). In total we have 15 bivariate 

analyses to run. What about Area Code? JMP reads it as a continuous variable, but it’s 

really nominal, so be sure to change it from continuous to nominal. Similarly, be sure that 

D_VMAIL_PLAN is set as a nominal variable, not continuous.  

Do not try to keep track of the results in your head, or by referring to the 15 bivariate 

analyses that would fill your computer screen. Make a list of all 15 variables that need to 

be tested, and write down the test result (e.g., the relevant p-value) and your conclusion 

(e.g., “include” or “exclude”). This not only prevents simple errors, it is a useful record of 

your work should you have to come back to it later. There are few things more pointless 

than conducting an analysis that concludes with a 13 variable logistic regression, only to 

have some reason to rerun the analysis and now wind up with a 12 variable logistic 

regression. Unless you have documented your work, you will have no idea why the 

discrepancy exists or which is the correct regression. 

Below we briefly show how to conduct both types of bivariate analyses, one for a 

nominal independent variable and one for a continuous independent variable. We leave 

the other 14 to the reader.  
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Examining the results of a contingency table of Churn vs. State (Analyze→Fit Y by X, 

click Churn (which is nominal) and then click Y, Response, click State and then click X, 

Factor; and click OK) at the bottom of the table of results are the Likelihood Ratio and 

Pearson tests, both of which test the null hypothesis that State does not affect Churn, and 

both of which reject the null. State matters. On the other hand, performing a logistic 

regression of Churn on VMail_Message (Analyze→Fit Y by X, click Churn and click Y, 

Response and click VMail_Message and click X, Factor; and click OK), under “Whole 

Model Test” that Prob>ChiSq, the p-value of less than 0.0001, so we conclude that 

VMail_message affects Churn. Remember that for all these tests, we are setting α 

(probability of Type I error) = 0.25.  

In the end, we have 10 candidate variables for possible inclusion in our multiple logistic 

regression model:  

State Intl_Plan D_VMAIL_PLAN 

VMail_Message Day_Mins Eve_Mins 

Night_Mins Intl_Mins Intl_Calls 

CustServ_Call   

 

Remember that the first three of these variables (the first row) should be set to nominal, 

and the rest to continuous (of course, leave the dependent variable Churn as nominal!).  

Let’s run our initial multiple logistic regression with Churn as the dependent variable and 

the above 10 variables as independent variables: 

Click Analyze→Fit Model, click Churn and click Y, and select the above 10 variables (to 

select variables that are not consecutive, click on each variable while holding down the 

Ctrl key), and click Add. Check the box next to Keep dialog open. Click Run.  

The Whole Model Test lets us know that our included variables have an effect on the 

Churn and with a p-value less than .0001, as shown in Figure 5.19. 
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The Lack Of Fit test tells us that we have done a good job explaining Churn. From the 

Lack of Fit we see that –LogLikelihood for the Full model is 1037.4471. Now, linear 

regression minimizes the sum of squared residuals, so when comparing two linear 

regressions the preferred one has the smaller sum of squared residuals. In the same way, 

the nonlinear optimization of the logistic regression minimizes the –LogLikelihood 

(which is equivalent to maximizing the LogLikelihood), so the model with the smaller –

LogLikelihood is preferred to a model with a larger –LogLikelihood. 

Examining the p-values of the independent variables in the Parameter Estimates, a 

variable for which Prob>ChiSq is less than 0.05 is said to be significant, otherwise it is 

said to be insignificant, similar to what is practiced in linear regression. The regression 

output gives two sets of tests, one for the “Parameter Estimates” and another for “Effect 

Likelihood Ratio Tests”. We shall focus on the latter. To see why, consider the State 
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variable, which is really not one variable but many dummy variables. We are not so much 

interested in whether any particular state is significant or not (which is what the 

Parameter Estimates tell us) but whether, overall, the collection of state dummy variables 

is significant. This is what the Effect Likelihood Ratio Tests tells us; the effect of all the 

state dummies is significant with a “Prob>ChiSq” of 0.0010. True, many of the State 

dummies are insignificant, but overall State is significant; we will keep this variable as it 

is. It may prove worthwhile to reduce the number of state dummies into a handful of 

significant states and small clusters of “other” states that are not significant, but we will 

not pursue this line of inquiry here.  

We can see that all the variables in the model are significant. We may be able to derive 

some new variables that help improve the model. We will provide two examples of 

deriving new variables—(1) Converting a continuous variable into discrete variables; (2) 

Producing interaction variables. 

Let us try to break up a continuous variable into a handful of discrete variables. An 

obvious candidate is CustServ_Call. Look at its distribution in Figure 5.20. 

Analyze→Distribution, select CustServ_Call, select “Y, Columns” and click “OK”. 

Click the red arrow next to CustServ_Call and uncheck “Outlier Box Plot”, then choose 

“Histogram Options”→“Show Counts”. 

 

Let’s create a new nominal variable called CustServ, so that all the counts for 5 and 

greater are collapsed into a single cell: 

Click Cols→New Columns. For column name type CustServ, for Modeling 

Type change it to Nominal and then click the drop arrow for Column Properties 

and click Formula. In Formula dialog box, click on Conditional→If. Then, in 

the top expr click on CustServ_Call and type <=4 and in the top then clause 
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click on CustServ_Call. For the else clause type in 5. See Figure 5.21. Click OK 

and click OK.  

 

Now drop the CustServ_Call variable from the Logistic Regression and add the new 

CustServ nominal variable, which is equivalent to adding some dummy variables. Our 

new value of -LogLikelihood is 970.6171, which constitutes a very substantial 

improvement in the model. 

Another possible important way to improve a model is to introduce interactions terms, 

that is, the product of two or more variables. Best practice would be to consult with 

subject-matter experts and seek their advice. Some thought is necessary to determine 

meaningful interactions, but it can pay off in substantially improved models. Thinking 

about what might make a cell phone customer want to switch to another carrier, we have 

all heard a friend complain about getting charged an outrageous amount for making an 

international call. Based on this observation, we could conjecture that customers who 
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make international calls and who are not on the international calling plan might be more 

irritated and more likely to churn. A quick bivariate analysis shows that there are more 

than a few such persons in the dataset. Tables→Tabulate, drag and drop Intl_Plan to 

“Drop zone for columns”, drag and drop Intl_Calls to “Drop zone for rows” and choose 

“Add Grouping Columns”. Observe that almost all customers make international calls, 

but most of them are not on the international plan (which gives cheaper rates for 

international calls). For example, for the customers who made no international call, all 18 

of them were not on the international calling plan. For the customers who made 8 

international calls, 106 were not on the internationl calling plan, and only 10 of them 

were. There is quite the potential for irritated customers here! This is confirmed by 

examining the output from the previous logistic regression. The parameter estimate for 

“Intl_Plan[no]” is positive and significant. This means that when a customer does not 

have an international plan, the probability that he churns increases. 

Customers who make international calls and don’t get the cheap rates are perhaps more 

likely to churn than customers who make international calls and get cheap rates. Hence 

the interaction term Int_Plan*Intl_Mins might be important. To create this interaction 

term, we have to create a new dummy variable for Intl_Plan, because the present variable 

is not numeric and cannot be multiplied by Intl_Mins: 

First, click on the Intl_Plan column in the data table to select it. Then select 

Cols→Recode. Under New Value, where it has No, type in 0 and right below 

that where it has Yes, type 1. For the “In Place” pull down menu, select “New 

Column” and click “OK”. The new variable Intl_Plan2 is created. However, it is 

still nominal. Rightclick on this colum, and under “Column Info…” change the 

Data Type to “Numeric” and the Modeling Type to “Continuous”. Click “OK”. 

(This variable has to be continuous so that we can use it in the interaction term, 

which is created by multiplication; nominal variables cannot be multiplied.) 

To create the interaction term:  

Click Cols→New Column and call the new variable IntlPlanMins. Under 

Column Properties select Formula. Click on Intl_Plan2, click on the times sign 

(“x”) in the middle of the dialog box, click on Intl_Mins and click OK. Click OK 

again.  

Now add the variable IntlPlanMins as the 11
th
 independent variable in multiple logistic 

regression that includes CustServ and run it. The variable IntlPlanMins is significant, and 

the –LogLikelihood has dropped to 947.1450, as shown in Figure 5.22. This is a 

substantial drop for adding one variable. Doubtless other useful interaction terms could 

be added to this model, but we will not further pursue this line of inquiry. 
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Now that we have built an acceptable model, it is time to validate the model. We have 

already checked the Lack Of Fit, but now we have to check linearity of the logit. From 

the red arrow, select Save Probability Formula which adds four variables to the dataset: 

Lin[0] (which is the logit), Prob[0], Prob[1] and the predicted value of Churn, Most Likely 

Churn”. Now we have to plot the logit against each of the continuous independent 

variables – the categorical independent variables do not offer much opportunity to reveal 

nonlinearity (plot some and see this for yourself). All the relationships of the continuous 

variables can be quickly viewed by generating a scatterplot matrix and then clicking the 

red triangle and Fit Line. Nearly all the red fitted lines are horizontal or near horizontal. 

For all of the logit vs. independent variable plots, there is no evidence of nonlinearity.  

We can also see how well our model is predicting by examining the confusion matrix 

which is shown in Figure 5.23. 

  

The actual number of churners in the dataset is 326+157 = 483. The model predicted a 

total of 258 (=101+157) churners. The number of bad predictions made by the model is 

326+101 = 427, which comprises 326 predicted not to churn that actually did churn, and 

101 predicted to churn that did not churn. Further, observe in the Prob[1] column of the 

data table that we have the probability that any customer will churn. Right click on this 

column and select sort; this will sort all the variables in the dataset according to the 

probability of churning. Scroll to the top of the dataset. Look at the Churn column. It has 
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mostly ones and some zeroes here at the top, where the probabilities are all above 0.85. 

Scroll all the way to the bottom and see that the probabilities now are all below 0.01, and 

the values of Churn are all zero. We really have modeled the probability of churning. 

Now that we have built a model for predicting churn, how might we use it? We could 

take the next month’s data (when we do not yet know who has churned) and predict who 

is likely to churn. Then these customers can be offered special deals to keep them with 

the company, so that they do not churn. 

[1] Hosmer, D. W. and S. Lemeshow. Applied Logistic Regression. New York ; 

Chichester ; Brisbane : J. Wiley and Sons, 2001. 

[2] Pollack, R. Data Mining Methods and Applications (Discrete Mathematics & Its 
Applications), Lawrence, K., Kudyba, S. and R. Klimberg, (eds.), Taylor and 

Francis Publishers, Dec 2007. 

1. Consider the logistic regression for the toy dataset, where π is the probability of 

passing the class: 

 log 25.60188 0.363761 
ˆ

ˆ1
MidtermScore




 



 
  

 

Consider two students, one who scores 67% on the midterm and one who scores 

73% on the midterm. What are the odds that each fails the class? What is the 

probability that each fails the class? 

2. Consider the first logistic regression for the Churn dataset, the one with 10 

independent variables. Consider two customers, one with an international plan 

and one without. What are the odds that each churns? What is the probability that 

each churns? 

3. We have already found that the interaction term IntlPlanMins significantly 

improves the model. Find another interaction term that does so. 
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4. Without deriving new variables such as CustServ or creating interaction terms 

such as IntlPlanMins, use a stepwise method to select variables for the Churn 

dataset. Compare your results to the bivariate method used in the chapter; pay 

particular attention to the fit of the model and the confusion matrix. 

5. Use the Freshmen1.jmp dataset and build a logistic regression model to predict 

whether or not a student returns. Perhaps the continuous variables Miles from 

Home and Part Time Work Hours do not seem to have an effect. See whether 

turning them into discrete variables makes a difference (e.g., turn Miles from 

Home into some dummy variables, 0-20 miles, 21-100 miles, more than 100 

miles). 
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