
Chapter 1

Overview

Graph Template Language (GTL) . 3
GTL and the Output Delivery System (ODS) . 3
A Quick Example . 4
Template Compilation . 5
Run Time Actions . 6

Basic Anatomy of an ODS Graph . 7

Graphical Layouts . 8

Plots . 10

Axes . 10

Legends . 11

Flexible Templates . 12
Expressions and Functions . 12
Dynamics and Macro Variables . 13
Conditional Logic . 14

Output . 15
ODS GRAPHICS Statement . 15
ODS Styles . 16

About the Examples in this Documentation . 17

Graph Template Language (GTL)

GTL and the Output Delivery System (ODS)
The SAS/GRAPH Graph Template Language (GTL) is an extension to the Output Delivery
System (ODS) that enables you to create sophisticated analytical graphics that are not
available from traditional SAS/GRAPH procedure statements. For example, using the GTL
you can generate Model-Fit plots, Distribution Plots, Comparative plots, Prediction Plots,
and more.

The graphics produced by the GTL are generated by template definitions that control the
graph format and appearance and specify the variable roles to represent in the graph display.
The graphs can then be rendered by associating the templates with a data source.

• The GTL templates are defined with PROC TEMPLATE. The GTL includes
conditional statements that can be used to determine what graph features are rendered,

3

layout statements that specify the arrangement of graph features, plot statements that
request specific plot types (such as histograms and scatter plots), and text and legend
statements that specify titles, footnotes, legends, and other text-based graph elements.

• The GTL templates are rendered using the SGRENDER procedure, which specifies a
data source that contains appropriate data values and the template to use for rendering
the graph.

• You can also modify predefined GTL templates that the SAS System delivers for use
on the SAS statistical procedures. For information about modifying existing templates,
refer to SAS/STAT User’s Guide.

This manual provides a complete reference to the Graphics Template Language. For
detailed usage information, consult the SAS/GRAPH: Graph Template Language User's
Guide.

A Quick Example
The data set SASHELP.CLASS is delivered with the SAS System. It includes data columns
named HEIGHT and WEIGHT, which store height and weight measures for a small sample
of subjects. The Graphics Template Language can be used to generate a histogram that
shows the distribution of weight recorded in that data set:

The following SAS program produces the graph:

proc template;
 define statgraph histogram;
 begingraph;
 layout overlay;
 histogram weight;
 endlayout;
 endgraph;
 end;
run;

4 Chapter 1 • Overview

ods graphics / width=450px;
ods listing;
proc sgrender data=sashelp.class
 template=histogram;
run;

• The DEFINE STATGRAPH statement on PROC TEMPLATE opens a definition block
for defining a graphics template named HISTOGRAM. The HISTOGRAM template
is stored in the template folder (also called the “template store,” by default located in
SASUSER.TEMPLAT).

• The template definition for HISTOGRAM specifies two GTL statements within a
BEGINGRAPH/ENDGRAPH block: LAYOUT OVERLAY and HISTOGRAM.

• The LAYOUT OVERLAY statement is one of the most fundamental layout statements.
It can overlay the results of one or more plot statements, each of which shares the same
plot area, axes, and legends. The layout in this example specifies only a single element:
a HISTOGRAM with bars showing the distribution of observations of the data column
named WEIGHT.

• The ENDLAYOUT statement ends the layout block, the ENDGRAPH statement ends
the graph definition, and the END statement ends the template definition.

• The ODS GRAPHICS statement uses the WIDTH= option to set a width for the output
graph. Because the HEIGHT= option is not specified, GTL manages the graph’s aspect
ratio and set an appropriate height.

• The ODS LISTING statement opens the LISTING destination for the output. The
LISTING destination is open by default. However, explicitly specifying it ensures that
it is active for this graph in case another ODS destination has been set in the current
SAS session.

• The DATA= option on PROC SGRENDER specifies SASHELP.CLASS as the data
source for the graph. TEMPLATE= specifies HISTOGRAM as the template definition
to use for rendering the graph.

Template Compilation
A GTL template describes the structure and appearance of a graph to be produced, similar
to the way a TABLE template describes the organization and content of a table.

All templates are stored, compiled programs. The following source program produces a
simple GTL template named SCATTER:

proc template;
 define statgraph scatter;
 begingraph;
 layout overlay;
 scatterplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

When this code is submitted, the statement keywords and options are parsed, just as with
any other procedure. If no syntax error is detected, an output template named SCATTER
is created and stored in the default template folder SASUSER.TEMPLAT. No graph is
produced. Note the following:

Graph Template Language (GTL) 5

• Any required arguments in the template must be specified. In this example, X= and Y=
in the SCATTERPLOT statement must specify variables for the analysis, but no
checking for the existence of these variables is done at compile time. (Unlike other SAS
procedures, PROC TEMPLATE does not perform a compile and then run sequence,
which includes variable validation.)

• No reference to an input data set appears in the template.

Run Time Actions
To produce a graph, a GTL template must be bound to a data source using the SGRENDER
procedure. The following example uses SGRENDER to bind the SCATTER template to
the SAS data set SASHELP.CLASS, which is delivered with the SAS system:

ods listing;
proc sgrender data=sashelp.class
 template=scatter;
run;

Generally, an ODS data object is constructed by comparing the template references to
column names with variables that exist in the current data set. In the current example,
SASHELP.CLASS contains variables named HEIGHT and WEIGHT. Because these
variable names match the variables that are named on template SCATTER, variables
HEIGHT and WEIGHT are added to the data object, while other variables in
SASHELP.CLASS are ignored. (It is possible for a template to define new computed
columns based on existing columns.)

After all the observations have been read, the data object and template definition are passed
to a graph renderer, which produces an image file for the graph. The image file is then
automatically integrated into the ODS destination. In this example, a PNG image is created
in the LISTING destination. The visual properties of the graph are determined by the ODS
style that is in effect.

Note: Template SCATTER is a restrictive definition: it can create a plot only with variables
named HEIGHT and WEIGHT. A GTL template can be made more flexible by
introducing dynamics or macro variables that supply variables and other information
at run time. For more information, see “Flexible Templates” on page 12.

6 Chapter 1 • Overview

Basic Anatomy of an ODS Graph
The GTL is flexible and able to produce many different types of graphs with varying layout
features. The following figure shows the basic anatomy of an ODS graph:

Graph
the output produced from all of the statements that are nested in a BEGINGRAPH
statement block. The graph comprises all of the graphics elements in the template
definition.

Title Area
area for one or more titles. This area is always displayed above all cells in the graph.

Footnote Area
area for one or more footnotes. This area is always displayed below all cells in the
graph.

Cell
refers collectively to the area containing the plot areas. In this diagram, there are two
cells, each of which contains two axes for the plot area. A cell can also contain
descriptive text and legends. Graphs are often described as single-cell or multi-cell.

Plot Area
the display area for plot-statement results. This area is bounded by the axes (when
present) and can also contain data labels and other text that annotates the graph.

Axis
refers collectively to the axis line, the major and minor tick marks, the major tick values,
and the axis label.

Plots
refers collectively to all plot statements that can be overlaid in the plot area. This
includes graphical items such as fit lines, scatter plots, reference lines, and many others.

Basic Anatomy of an ODS Graph 7

Legend
refers collectively to one or more legend entries, each made up of a graphical value and
a text label. The legend can also have a title and border. Legends can also display a
color ramp corresponding to a continuous response range.

Graphical Layouts
One of most powerful features of the GTL is the syntax built around hierarchical statement
blocks called “layouts.” The outermost layout block determines

• The overall organization of the graph—whether it uses a single-cell or a multi-cell
display.

• What statements are allowed in the block. Generally, layout blocks can contain plots,
lines of text, a legend, or even another layout.

• How the contained statements interact.

Table 1.1 Outermost Layouts in GTL

Layout Description

OVERLAY General purpose layout for displaying 2-D plots
in a single-cell.

OVERLAY3D Layout for displaying 3-D plots in a single-cell.

OVERLAYEQUATED Specialized OVERLAY with equated axes.

GRIDDED Basic grid of plots. All cells are independent.

LATTICE Advanced multi-cell layout. Axes can be shared
across columns or rows and be external to grid.
Many grid labeling and alignment features.

DATALATTICE Generates a classification panel from the values
of 1 or 2 classifiers.

DATAPANEL Generates a classification panel from the values
of n classifiers.

For example, the following graph is a two-cell graph produced using the LAYOUT
LATTICE statement as the outermost template in the layout.

8 Chapter 1 • Overview

The LAYOUT LATTICE statement is typically used to create a multi-cell layout of plots
that are aligned across columns and rows. In the following template, which produced the
graph, plot statements are specified within nested LAYOUT OVERLAY statements. Thus,
the LATTICE automatically aligns the plot areas and tick display areas in the plots. The
LATTICE layout is a good layout to choose when you want to compare the results of related
plots.

proc template;
 define statgraph lattice;
 begingraph;
 entrytitle "Car Performance Profile";
 layout lattice / border=true pad=10 opaque=true
 rows=1 columns=2 columngutter=3;
 layout overlay;
 scatterplot x=horsepower y=mpg_city /
 group=origin name="cars";
 regressionPlot x=horsepower y=mpg_city / degree=2;
 endlayout;

 layout overlay;
 scatterplot x=weight y=mpg_city / group=origin;
 regressionPlot x=weight y=mpg_city / degree=2;
 endlayout;

 sidebar;
 discretelegend "cars";
 endsidebar;
 endlayout;
 endgraph;
 end;
run;

For detailed information about each layout, see the chapter for that layout type.

Graphical Layouts 9

Plots
The plots in the GTL are classified in different ways, depending on the context of the
discussion.

Within layout blocks, plots are often classified according to graphical dimension: whether
they are projected in two or three visual dimensions. Thus, plots in the GTL are often
referred to as 2-D or 3-D plots, based on their graphical dimensions, not their data
dimensions.

Relative to their input data, plots are classified according to the statements that calculate
summary statistics from raw input data, and those that use calculated statistics as input
parameters on the plot statement. Thus, many GTL plot statements have two versions:
BARCHART and BARCHARTPARM, HISTOGRAM and HISTOGRAMPARM, and so
forth. The main distinction between such plots is the nature of the input data that they
accept:

• The “non-parm” version (for example, BARCHART) computes its values from raw,
unsummarized data. For example, a BARCHART computes the summary values it
needs for the bars in the chart. Such plots are often referred to as “computed plots.”

• The “parm” version (for example, BARCHARTPARM) does not summarize or
compute values from the input data but instead simply renders the input data it is given.
Thus, the input data must be pre-summarized, perhaps by a SAS procedure. The “parm”
version of plots, often referred to as “parameterized plots,” produce the same result as
the non-parm version. However, they don’t perform the calculations or data
summarizations needed to achieve the result.

Chapter 12, “Key Concepts for Using Plots,” on page 111 discusses general concepts that
apply across plot types. For detailed information about a particular plot, see the chapter for
that plot.

Axes
The GTL uses various criteria to determine the displayed axis features for a graph.
Generally, axis features are based on the layout type, the order of plot statements in the
layout and the options specified on those statements, the use of “primary” and “secondary”
axes on the plots (when secondary axes are supported), the plot type, the column(s) of data
that contribute to defining the axis range, and the data formats for the contributing data
columns.

Depending on the layout type, 2-D plots can have up to four independent axes that can be
displayed: X, Y, X2, and Y2. The X and Y axes are considered the primary axes, and the
X2 and Y2 axes are considered the secondary axes. By default, the X2 and Y2 axes are not
displayed. When requested, the secondary axes can be displayed as copies of the primary
axes, or data can be mapped separately to them. The following figure identifies the X, Y,
X2, and Y2 axes.

10 Chapter 1 • Overview

All 3-D plots display the standard X, Y, and Z axes.

For more information about axis features in GTL, see Chapter 41, “Axis Features in
Layouts,” on page 391.

Legends
Many plot statements support a GROUP= option that partitions the data into unique values,
performs separate analysis, if necessary, and automatically assigns distinct visual
properties to each group value. The visual properties of group values are defined by the
style in effect.

Legends are not automatically displayed for plots with group values. Rather, an appropriate
legend statement must be added to the template to generate the desired legend. In the
following example, a legend is added to display markers and line patterns that show the
association between the group values from a scatter plot and corresponding linear
regression lines. The example shows the mechanism that GTL uses to associate a legend
with its corresponding plot(s): a name is assigned to each plot that must be represented in
the legend, and these names are then used as arguments for the legend statement (in this
case, DISCRETELEGEND).

proc template;
 define statgraph scatterfit;
 begingraph;

Legends 11

 entrytitle "Linear Regression By Gender";
 layout overlay;
 scatterplot x=height y=weight / group=sex name="scat";
 regressionplot x=height y=weight/ group=sex name="reg";
 discretelegend "scat" "reg" / border=true;
 endlayout;
 endgraph;
 end;
run;

For more information about managing legends in GTL, see SAS/GRAPH: Graph Template
Language User's Guide.

Flexible Templates
Several features in the GTL can make template definitions less restrictive on input data and
more general in nature. These features enable a single compiled template to produce many
output variations.

Expressions and Functions
In the GTL, expressions can be used to compute constants and data columns. The
expressions must be enclosed in an EVAL construct. Within the expression you can use
DATA step functions, arithmetic operators, and other special functions supported by the
GTL.

Expressions are also useful in text statements like ENTRY and ENTRYTITLE. Both of
these statements support rich text and have special text commands such as {SUP}, {SUB},
and {UNICODE}, which enable subscripting, superscripting, and Unicode characters.

The following template shows how the ± symbol is included in the title line using its
hexadecimal Unicode value. Also, new data columns are computed for the upper and lower
error bars of the scatter plot, based on the input columns MEANWEIGHT and STDERR.

proc template;
 define statgraph expression;
 begingraph;
 entrytitle "Errorbars show " {unicode "00B1"x} "2 SE";
 layout overlay;
 scatterplot x=age y=meanweight /

12 Chapter 1 • Overview

 yerrorlower=eval(meanweight - 2*stderr)
 yerrorupper=eval(meanweight + 2*stderr);
 seriesplot x=age y=meanweight;
 endlayout;
 endgraph;
 end;
run;

For more information about using expressions, see Chapter 54, “Expressions,” on page
541. For more information about using functions, see Chapter 55, “Functions,” on page
545.

Dynamics and Macro Variables
An extremely useful technique for generalizing templates is to define dynamics, macro
variables, or both. The dynamics and macro variables resolve when the template is
executed. The following PROC TEMPLATE statements can be used in a DEFINE
STATGRAPH block:

Template Statement Purpose Value supplied by...

DYNAMIC defines dynamic(s) either of the following:

• DYNAMIC= suboption
of ODS= option of FILE
PRINT

• DYNAMIC statement of
PROC SGRENDER

MVAR defines macro variable(s) %LET or CALL SYMPUT()

NMVAR defines macro variable(s) that
resolves to a number(s)

%LET or CALL SYMPUT()

NOTES provides information about
the graph definition

user-supplied text

The following example defines a template named DYNAMICS that can create a histogram
and density plot for any variable. It defines both macro variables and dynamics for run time
substitution. No data-dependent information is hard coded in the template.

Note: You can initialize macro variables with %LET statements and dynamics with
SGRENDER’s DYNAMIC statement.

proc template;
 define statgraph dynamics;
 mvar SYSDATE9 SCALE;
 nmvar BINS;
 dynamic VAR VARLABEL;
 begingraph;
 entrytitle "Histogram of " VAR;
 entrytitle "with Normal Distribution";
 layout overlay / xaxisopts=(label=VARLABEL);
 histogram VAR / scale=SCALE nbins=BINS;
 densityplot VAR / normal();
 endlayout;

Flexible Templates 13

 entryfootnote halign=right "Created: " SYSDATE9 /
 textattrs=GraphValueText;
 endgraph;
 end;
run;

%let bins=6;
%let scale=count;
proc sgrender data=sashelp.class
 template=dynamics;
 dynamic var="Height" varlabel="Height in Inches";
run;

For more information about using dynamics and macro variables, see Chapter 53,
“Dynamics and Macro Variables,” on page 539.

Conditional Logic
Using conditional logic, you can create templates that have multiple visual results or output
representations, depending on existing conditions. The evaluation of a logical expression
must generate one or more complete statements (not portions of statements). All conditional
logic uses one of the following constructs:

if (condition)
 statement(s);
endif;

if (condition)
 statement(s);
else
 statement(s);
endif;

On the IF statement, condition must be enclosed in parentheses. The condition can be any
standard SAS expression involving arithmetic, logical operators, comparison operators,
Boolean operators, or concatenation operators. The expression can also use SAS DATA
step functions. The expression resolves to a single numeric value, which is true or false.

In the following example, a histogram is conditionally overlaid with a normal distribution
curve, a Kernel Density Estimate distribution curve, both, or neither:

proc template;
 define statgraph conditional;
 dynamic VAR VARLABEL BINS CURVE;

14 Chapter 1 • Overview

 begingraph;
 entrytitle "Histogram of " VAR;
 layout overlay / xaxisopts=(label=VARLABEL);
 histogram VAR / nbins=BINS;

 if (upcase(CURVE) in ("ALL" "KERNEL"))
 densityplot VAR / kernel() name="k"
 legendlabel="Kernel"
 lineattrs=(pattern=dash);
 endif;

 if (upcase(CURVE) in ("ALL" "NORMAL"))
 densityplot VAR / normal() name="n"
 legendlabel="Normal";
 endif;

 discretelegend "n" "k";
 endlayout;
 endgraph;
 end;
run;

Note that the legend syntax does not have to be made conditional. At run time, each plot
name in the legend is checked. If the plot does not exist, its name is removed from the
legend name list. If no names appear in the DISCRETELEGEND statement, the legend
“drops out” and the histogram is resized to fill the remaining space.

For more information about using conditional logic, see Chapter 56, “Conditional Logic,”
on page 549.

Output
When using the GTL, you focus primarily on defining template definitions that produce
specific graphs and generate a particular output layout. Ultimately, you must also tailor the
graphical environment to get the exact output that you desire. The ODS GRAPHICS
statement is available for tailoring the graphical environment, and ODS styles enable you
to manage the output appearance.

ODS GRAPHICS Statement
The ODS GRAPHICS statement is used to modify the environment in which graphics
templates are executed. The ODS GRAPHICS statement is used to control

• whether ODS graphics is enabled

• the type and name of the image created

• the size of the image

• whether features such as scaling and anti-aliasing are used.

The following ODS GRAPHICS statement uses the HEIGHT= and WIDTH= options to
set an aspect ratio for the output image.

ods graphics on / height=175px width=200px;
 proc sgrender data=sashelp.class
 template=scatter;

Output 15

 run;
ods graphics off;

For more information about using the ODS GRAPHICS statement in GTL, see
SAS/GRAPH: Graph Template Language User's Guide. For a more complete discussion
of the ODS GRAPHICS statement, see SAS Output Delivery System: User’s Guide.

ODS Styles
When any graphics template is executed, there is always an ODS style in effect that governs
the appearance of the output. The following ODS statement sends graphics output to the
RTF output destination using the LISTING style:

ods rtf style=listing;

ods graphics on / height=175px width=200px border=off;
 proc sgrender data=sashelp.class
 template=scatter;
 run;
ods graphics off;

ods rtf close;

Support for ODS styles is highly integrated into GTL syntax. By default, the graphical
appearance features of most plot and text statements are mapped to corresponding style
elements and associated attributes. Because of this, your output tables and graphs always
have a reasonable overall appearance. Moreover, output for a given ODS destination has
a consistent look (for example, table colors and graph colors don’t clash).

The following figures show how a graph’s appearance can be changed by using references
to style elements to set the graph’s appearance options. This technique permits changes in
graph appearance by style modification instead of graphical template modification. The
graphs in the figures are generated with the following GTL statement:

contourplotparm x=x y=y z=density /
 contourtype=fill nhint=9
 colormodel=ThreeColorRamp ;

The following style template shows the definition for the ThreeColorRamp style element:

style ThreeColorRamp /
 endcolor = GraphColors("gramp3cend")
 neutralcolor = GraphColors("gramp3cneutral")
 startcolor = GraphColors("gramp3cstart");

16 Chapter 1 • Overview

For more information about the use of ODS styles in GTL, see SAS/GRAPH: Graph
Template Language User's Guide. For a more complete discussion of ODS styles, see SAS
Output Delivery System: User’s Guide. The SAS/STAT User’s Guide also has a detailed
discussion for using styles with ODS Graphics.

About the Examples in this Documentation
The programs in this documentation often provide all of the code that you need to generate
the graphs that are shown in the figures. We encourage you to copy and paste the code into
your SAS session and generate the graphs for yourself. The graphs that you generate in the
LISTING destination are rendered in their default 640 pixel by 480 pixel size. The
exception is the examples that show you how to change the graph size.

The graphical output in this documentation does not show graphs in their default size
because of the limitations of the production system used. The maximum graph width that
can be included in this document is 495 pixels. Hence, all graphs are scaled down to fit.

When graphs that are produced with ODS graphics are reduced in size, several automatic
processes take place to optimize the appearance of the output. Among the differences
between default size graphs and smaller graphs are that the smaller graphs have scaled
down font sizes. Also, their numeric axes might display a reduced number of ticks and tick
values. Thus, the graphs that you generate from the example programs will not always look
identical to the graphs that are shown in the figures. However, both graphs will accurately
represent the data.

When producing your graphical output, you can scale the graph size and also modify font
attributes if needed. The SAS/GRAPH: Graph Template Language User's Guide provides
chapters that explain how to set fonts, DPI, anti-aliasing, and other features that contribute
to producing professional-looking graphics of any size in any output format.

About the Examples in this Documentation 17

18 Chapter 1 • Overview

