
3

C H A P T E R

1
Performing Queries Using PROC
SQL

Overview 4
Introduction 4

Objectives 4

PROC SQL Basics 4

How PROC SQL Is Unique 5

Writing a PROC SQL Step 6
The SELECT Statement 7

Selecting Columns 8

Creating New Columns 9

Specifying the Table 10

Specifying Subsetting Criteria 10

Ordering Rows 10
Ordering by Multiple Columns 12

Querying Multiple Tables 12

Specifying Columns That Appear in Multiple Tables 13

Specifying Multiple Table Names 14

Subsetting Rows 14
Ordering Rows 15

Summarizing Groups of Data 16

Example 16

Summary Functions 16

Creating Output Tables 17
Example 18

Additional Features 18

Summary 19

Text Summary 19

PROC SQL Basics 19

Writing a PROC SQL Step 19
Selecting Columns 19

Specifying the Table 19

Specifying Subsetting Criteria 19

Ordering Rows 19

Querying Multiple Tables 20
Summarizing Groups of Data 20

Creating Output Tables 20

Additional Features 20

Syntax 20

Sample Programs 20
Querying a Table 20

Summarizing Groups of Data 21

Creating a Table from the Results of a Query on Two Tables 21

4 Overview � Chapter 1

Points to Remember 21
Quiz 21

Overview

Introduction
Sometimes you need quick answers to questions about your data. You might want to

query (retrieve data from) a single SAS data set or a combination of data sets to
� examine relationships between data values
� view a subset of your data
� compute values quickly.

The SQL procedure (PROC SQL) provides an easy, flexible way to query and combine
your data. This chapter shows you how to create a basic query using one or more tables
(data sets). You will also learn how to create a new table from your query.

Objectives
In this chapter, you learn to
� invoke the SQL procedure
� select columns
� define new columns
� specify the table(s) to be read
� specify subsetting criteria
� order rows by values of one or more columns
� group results by values of one or more columns
� end the SQL procedure
� summarize data
� generate a report as the output of a query
� create a table as the output of a query.

PROC SQL Basics
PROC SQL is the SAS implementation of Structured Query Language (SQL), which

is a standardized language that is widely used to retrieve and update data in tables and
in views that are based on those tables.

Performing Queries Using PROC SQL � How PROC SQL Is Unique 5

The following chart shows terms used in data processing, SAS, and SQL that are
synonymous. The SQL terms are used in this chapter.

Data Processing SAS SQL

file SAS data set table

record observation row

field variable column

PROC SQL can often be used as an alternative to other SAS procedures or the DATA
step. You can use PROC SQL to

� retrieve data from and manipulate SAS tables

� add or modify data values in a table
� add, modify, or drop columns in a table
� create tables and views
� join multiple tables (whether they contain columns with the same name)
� generate reports.

Like other SAS procedures, PROC SQL also enables you to combine data from two or
more different types of data sources and present them as a single table. For example,
you can combine data from two different types of external databases, or you can
combine data from an external database and a SAS data set.

How PROC SQL Is Unique
PROC SQL differs from most other SAS procedures in several ways:

� Unlike other PROC statements, many statements in PROC SQL include clauses.
For example, the following PROC SQL step contains two statements: the PROC
SQL statement and the SELECT statement. The SELECT statement contains
several clauses: SELECT, FROM, WHERE, and ORDER BY.

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

� The PROC SQL step does not require a RUN statement. PROC SQL executes each
query automatically. If you use a RUN statement with a PROC SQL step, SAS

6 Writing a PROC SQL Step � Chapter 1

ignores the RUN statement, executes the statements as usual, and generates the
note shown below in the SAS log.

Table 1.1 SAS Log

1884 proc sql;
1885 select empid,jobcode,salary,
1886 salary*.06 as bonus
1887 from sasuser.payrollmaster
1888 where salary<32000
1889 order by jobcode;
1890 run;
NOTE: PROC SQL statements are executed immediately;

The RUN statement has no effect.

� Unlike many other SAS procedures, PROC SQL continues to run after you submit
a step. To end the procedure, you must submit another PROC step, a DATA step,
or a QUIT statement, as shown:

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

quit;

When you submit a PROC SQL step without ending it, the status line displays the
message PROC SQL running.

Note: As a precaution, SAS Enterprise Guide automatically adds a QUIT
statement to your code when you submit it to SAS. However, you should get in the
habit of adding the QUIT statement to your code. �

Writing a PROC SQL Step
Before creating a query, you must first reference the library in which your table is

stored. Then you write a PROC SQL step to query your table.

Performing Queries Using PROC SQL � The SELECT Statement 7

General form, basic PROC SQL step to perform a query:

PROC SQL;
SELECT column-1< ,...column-n>

FROM table-1|view-1< ,...table-n|view-n>
<WHERE expression>
<GROUP BY column-1< , ... column-n>>
<ORDER BY column-1< ,... column-n>>;

where

PROC SQL
invokes the SQL procedure

SELECT
specifies the column(s) to be selected

FROM
specifies the table(s) to be queried

WHERE
subsets the data based on a condition

GROUP BY
classifies the data into groups based on the specified column(s)

ORDER BY
sorts the rows that the query returns by the value(s) of the specified column(s).

CAUTION:
Unlike other SAS procedures the order of clauses with a SELECT statement in

PROC SQL is important. Clauses must appear in the order shown above. �

Note: A query can also include a HAVING clause, which is introduced at the end of
this chapter. To learn more about the HAVING clause, see Chapter 2, “Performing
Advanced Queries Using PROC SQL,” on page 25. �

The SELECT Statement

The SELECT statement, which follows the PROC SQL statement, retrieves and
displays data. It is composed of clauses, each of which begins with a keyword and is
followed by one or more components. The SELECT statement in the following sample
code contains four clauses: the required clauses SELECT and FROM, and the optional
clauses WHERE and ORDER BY. The end of the statement is indicated by a semicolon.

proc sql;
|-select empid,jobcode,salary,
| salary*.06 as bonus
|----from sasuser.payrollmaster
|----where salary<32000
|----order by jobcode;

Note: A PROC SQL step that contains one or more SELECT statements is referred
to as a PROC SQL query. The SELECT statement is only one of several statements
that can be used with PROC SQL. �

8 Selecting Columns � Chapter 1

The following PROC SQL query creates the output report that is shown below:

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

A PROC SQL query produces a result set that can be output as a report, a table, or a
PROC SQL view.

Type of Output PROC SQL Statements

report SELECT

table CREATE TABLE and SELECT

PROC SQL view CREATE VIEW and SELECT

Note: The CREATE TABLE statement is introduced later in this chapter. You can
learn about creating tables in Chapter 5, “Creating and Managing Tables Using PROC
SQL,” on page 159. You can learn more about PROC SQL views in Chapter 7, “Creating
and Managing Views Using PROC SQL,” on page 243. �

You will learn more about the SELECT statement in the following sections.

Selecting Columns

To specify which column(s) to display in a query, you write a SELECT clause, the
first clause in the SELECT statement. After the keyword SELECT, list one or more
column names and separate the column names with commas. In the SELECT clause,
you can both specify existing columns (columns that are already stored in a table) and
create new columns.

The following SELECT clause specifies the columns EmpID, JobCode, Salary, and
bonus. The columns EmpID, JobCode, and Salary are existing columns. The column
named bonus is a new column.

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

Performing Queries Using PROC SQL � Creating New Columns 9

Creating New Columns
You can create new columns that contain either text or a calculation. New columns

will appear in output, along with any existing columns that are selected. Keep in mind
that new columns exist only for the duration of the query, unless a table or a view is
created.

To create a new column, include any valid SAS expression in the SELECT clause list
of columns. You can assign a column alias, a name, to a new column by using the
keyword AS followed by the name that you would like to use.

Note: A column alias must follow the rules for SAS names. �

In the sample PROC SQL query, shown below, an expression is used to calculate the
new column: the values of Salary are multiplied by .06. The keyword AS is used to
assign the column alias bonus to the new column.

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

A column alias is useful because it allows you to reference the column elsewhere in
the query.

Note: You can learn more about referencing a calculated column from other clauses
in Chapter 2, “Performing Advanced Queries Using PROC SQL,” on page 25. �

Also, the column alias will appear as a column heading in the output.
The following output shows how the calculated column bonus is displayed. Notice

that the column alias bonus appears in lowercase, exactly as it is specified in the
SELECT clause.

In the SELECT clause, you can specify a label for an existing or a new column. If both
a label and a column alias are specified for a new column, the label will be displayed as
the column heading in the output. If only a column alias is specified, it is important
that you specify the column alias exactly as you want it to appear in the output.

10 Specifying the Table � Chapter 1

Note: You can learn about creating new columns that contain text and about
specifying labels for columns in Chapter 2, “Performing Advanced Queries Using PROC
SQL,” on page 25. �

Specifying the Table

After writing the SELECT clause, you specify the table to be queried in the FROM
clause. Type the keyword FROM, followed by the name of the table, as shown:

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

The PROC SQL step above queries the permanent SAS table Payrollmaster, which is
stored in a SAS library to which the libref Sasuser has been assigned.

Specifying Subsetting Criteria

To subset data based on a condition, use a WHERE clause in the SELECT statement.
As in the WHERE statement and the WHERE command used in other SAS procedures,
the expression in the WHERE clause can be any valid SAS expression. In the WHERE
clause, you can specify any column(s) from the underlying table(s). The columns
specified in the WHERE clause do not have to be specified in the SELECT clause.

In the following PROC SQL query, the WHERE clause selects rows in which the
value of the column Salary is less than 32,000. The output is also shown.

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

Ordering Rows

The order of rows in the output of a PROC SQL query cannot be guaranteed, unless
you specify a sort order. To sort rows by the values of specific columns, you can use the

Performing Queries Using PROC SQL � Ordering Rows 11

ORDER BY clause in the SELECT statement. Specify the keywords ORDER BY,
followed by one or more column names separated by commas.

In the following PROC SQL query, the ORDER BY clause sorts rows by values of the
column JobCode:

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode;

Note: In this example, the ORDER BY clause is the last clause in the SELECT
statement, so the ORDER BY clause ends with a semicolon. �

In the output of the sample query, shown below, the rows are sorted by the values of
JobCode. By default, the ORDER BY clause sorts rows in ascending order.

To sort rows in descending order, specify the keyword DESC following the column
name. For example, the preceding ORDER BY clause could be modified as follows:

order by jobcode desc;

In the ORDER BY clause, you can alternatively reference a column by the column’s
position in the SELECT clause list rather than by name. Use an integer to indicate the
column’s position. The ORDER BY clause in the preceding PROC SQL query has been
modified, below, to specify the column JobCode by the column’s position in the SELECT
clause list (2) rather than by name:

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by 2;

12 Ordering by Multiple Columns � Chapter 1

Ordering by Multiple Columns
To sort rows by the values of two or more columns, list multiple column names (or

numbers) in the ORDER BY clause, and use commas to separate the column names (or
numbers). In the following PROC SQL query, the ORDER BY clause sorts by the values
of two columns, JobCode and EmpID:

proc sql;
select empid,jobcode,salary,

salary*.06 as bonus
from sasuser.payrollmaster
where salary<32000
order by jobcode,empid;

The rows are sorted first by JobCode and then by EmpID, as shown in the following
output.

Note: You can mix the two types of column references, names and numbers, in the
ORDER BY clause. For example, the preceding ORDER BY clause could be rewritten
as follows:

order by 2,empid;

�

Querying Multiple Tables
This topic deals with the more complex task of extracting data from two or more

tables.
Previously, you learned how to write a PROC SQL step to query a single table.

Suppose you now want to examine data that is stored in two tables. PROC SQL allows
you to combine tables horizontally, in other words, to combine rows of data.

Performing Queries Using PROC SQL � Specifying Columns That Appear in Multiple Tables 13

In SQL terminology, combining tables horizontally is called joining tables. Joins do
not alter the original tables.

Suppose you want to create a report that displays the following information for
employees of a company: employee identification number, last name, original salary,
and new salary. There is no single table that contains all of these columns, so you will
have to join the two tables Sasuser.Salcomps and Sasuser.Newsals. In your query, you
want to select four columns, two from the first table and two from the second table. You
also need to ensure that the rows you join belong to the same employee. To check this,
you want to match employee identification numbers for rows that you merge and to
select only the rows that match.

This type of join is known as an inner join. An inner join returns a result set for all
of the rows in a table that have one or more matching rows in another table.

Note: For more information about PROC SQL joins, see Chapter 3, “Combining
Tables Horizontally Using PROC SQL,” on page 79. �

You can write a PROC SQL step to combine tables. To join two tables for a query, you
can use a PROC SQL step such as the one below. This step uses the SELECT
statement to join data from the tables Salcomps and Newsals. Both of these tables are
stored in a SAS library to which the libref Sasuser has been assigned.

proc sql;
select salcomps.empid,lastname,

newsals.salary,newsalary
from sasuser.salcomps,sasuser.newsals
where salcomps.empid=newsals.empid
order by lastname;

We will examine each clause of this PROC SQL step.

Specifying Columns That Appear in Multiple Tables
When you join two or more tables, list the columns that you want to select from both

tables in the SELECT clause. Separate all column names with commas.
If the tables that you are querying contain same-named columns and you want to list

one of these columns in the SELECT clause, you must specify a table name as a prefix
for that column. Specifying a table-name prefix with a column that only exists in one
table is syntactically acceptable.

Note: Prefixing a table name to a column name is called qualifying the column
name. �

The following PROC SQL step joins the two tables Sasuser.Salcomps and
Sasuser.Newsals, both of which contain columns named EmpID. To tell PROC SQL
where to read the column EmpID, the SELECT clause specifies the table name Salcomps

14 Specifying Multiple Table Names � Chapter 1

as a prefix for Empid. The Newsals prefix for Salary is not required, but it is correct
syntax and it identifies the source table for this column.

proc sql;
select salcomps.empid,lastname,

newsals.salary,newsalary
from sasuser.salcomps,sasuser.newsals

where salcomps.empid=newsals.empid
order by lastname;

Specifying Multiple Table Names
When you join multiple tables in a PROC SQL query, you specify each table name in

the FROM clause, as shown below:

proc sql;
select salcomps.empid,lastname,

newsals.salary,newsalary
from sasuser.salcomps,sasuser.newsals
where salcomps.empid=newsals.empid
order by lastname;

As in the SELECT clause, you separate names in the FROM clause (in this case,
table names) with commas.

Subsetting Rows
As in a query on a single table, the WHERE clause in the SELECT statement selects

rows from two or more tables, based on a condition. When you join multiple tables,
ensure that the WHERE clause specifies columns with data whose values match, to
avoid unwanted combinations.

In the following example, the WHERE clause selects only rows in which the value for
EmpID in Sasuser.Salcomps matches the value for EmpID in Sasuser.Newsals. Qualified
column names must be used in the WHERE clause to specify each of the two EmpID
columns.

proc sql;
select salcomps.empid,lastname,

newsals.salary,newsalary
from sasuser.salcomps,sasuser.newsals
where salcomps.empid=newsals.empid
order by lastname;

The output is shown, in part, below.

Performing Queries Using PROC SQL � Ordering Rows 15

Note: In the table Sasuser.Newsals, the Salary column has the label Employee
Salary, as shown in this output. �

CAUTION:
If you join tables that do not contain one or more columns with tables that do not

have matching data values, several unexpected results might occur. Either you might
produce a large amount of data or you might produce all possible row combinations. �

Ordering Rows
As in PROC SQL steps that query just one table, the ORDER BY clause specifies

which column(s) should be used to sort rows in the output. In the following query, the
rows will be sorted by LastName:

proc sql;
select salcomps.empid,lastname,

newsals.salary,newsalary
from sasuser.salcomps,sasuser.newsals
where salcomps.empid=newsals.empid
order by lastname;

16 Summarizing Groups of Data � Chapter 1

Summarizing Groups of Data
We can use PROC SQL steps to create detail reports. But you might also want to

summarize data in groups. To group data for summarizing, you can use the GROUP BY
clause. The GROUP BY clause is used in queries that include one or more summary
functions. Summary functions produce a statistical summary for each group that is
defined in the GROUP BY clause.

The following example demonstrates the GROUP BY clause and summary functions.

Example
Suppose you want to determine the total number of miles traveled by frequent-flyer

program members in each of three membership classes (Gold, Silver, and Bronze).
Frequent-flyer program information is stored in the table Sasuser.Frequentflyers. To
summarize your data, you can submit the following PROC SQL step:

proc sql;
select membertype,

sum(milestraveled) as TotalMiles
from sasuser.frequentflyers
group by membertype;

In this case, the SUM function totals the values of the MilesTraveled column to
create the TotalMiles column. The GROUP BY clause groups the data by the values of
MemberType.

As in the ORDER BY clause, in the GROUP BY clause you specify the keywords
GROUP BY, followed by one or more column names separated by commas.

The results show total miles by membership class (MemberType).

Note: If you specify a GROUP BY clause in a query that does not contain a
summary function, your clause is changed to an ORDER BY clause, and a message to
that effect is written to the SAS log. �

Summary Functions
To summarize data, you can use the following summary functions with PROC SQL.

Notice that some functions have more than one name to accommodate both SAS and
SQL conventions. Where multiple names are listed, the first name is the SQL name.

AVG,MEAN mean or average of values

COUNT, FREQ, N number of nonmissing values

CSS corrected sum of squares

CV coefficient of variation (percent)

MAX largest value

Performing Queries Using PROC SQL � Creating Output Tables 17

MIN smallest value

NMISS number of missing values

PRT probability of a greater absolute value of student’s t

RANGE range of values

STD standard deviation

STDERR standard error of the mean

SUM sum of values

T student’s t value for testing the hypothesis that the
population mean is zero

USS uncorrected sum of squares

VAR variance

Creating Output Tables

To create a new table from the results of a query, use a CREATE TABLE statement
that includes the keyword AS and the clauses that are used in a PROC SQL query:
SELECT, FROM, and any optional clauses, such as ORDER BY. The CREATE TABLE
statement stores your query results in a table instead of displaying the results as a
report.

General form, basic PROC SQL step for creating a table from a query result:

PROC SQL;
CREATE TABLE table-name AS
SELECT column-1< ,...column-n>

FROM table-1|view-1< ,...table-n|view-n>
<WHERE expression>
<GROUP BY column-1<,... column-n>>
<ORDER BY column-1< ,... column-n>>;

where

table-name
specifies the name of the table to be created.

Note: A query can also include a HAVING clause, which is introduced at the end of
this chapter. To learn more about the HAVING clause, see Chapter 2, “Performing
Advanced Queries Using PROC SQL,” on page 25. �

18 Example � Chapter 1

Example
Suppose that after determining the total miles traveled for each frequent-flyer

membership class in the Sasuser.Frequentflyers table, you want to store this
information in the temporary table Work.Miles. To do so, you can submit the following
PROC SQL step:

proc sql;
create table work.miles as

select membertype,
sum(milestraveled) as TotalMiles

from sasuser.frequentflyers
group by membertype;

Because the CREATE TABLE statement is used, this query does not create a report.
The SAS log verifies that the table was created and indicates how many rows and
columns the table contains.

Table 1.2 SAS Log

NOTE: Table WORK.MILES created, with three rows and two columns.

Tip: In this example, you are instructed to save the data to a temporary table that
will be deleted at the end of the SAS session. To save the table permanently in the
Sasuser library, use the libref Sasuser instead of the libref Work in the CREATE TABLE
clause.

Additional Features
To further refine a PROC SQL query that contains a GROUP BY clause, you can use

a HAVING clause. A HAVING clause works with the GROUP BY clause to restrict the
groups that are displayed in the output, based on one or more specified conditions.

For example, the following PROC SQL query groups the output rows by JobCode.
The HAVING clause uses the summary function AVG to specify that only the groups
that have an average salary that is greater than 40,000 will be displayed in the output.

proc sql;
select jobcode,avg(salary) as Avg

from sasuser.payrollmaster
group by jobcode
having avg(salary)>40000
order by jobcode;

Note: You can learn more about the use of the HAVING clause in Chapter 2,
“Performing Advanced Queries Using PROC SQL,” on page 25. �

Performing Queries Using PROC SQL � Text Summary 19

Summary

This section contains the following:

� a text summary of the material taught in this chapter

� syntax for statements and options

� sample programs

� points to remember.

Text Summary

PROC SQL Basics
PROC SQL uses statements that are written in Structured Query Language (SQL),

which is a standardized language that is widely used to retrieve and update data in
tables and in views that are based on those tables. When you want to examine
relationships between data values, subset your data, or compute values, the SQL
procedure provides an easy, flexible way to analyze your data.

PROC SQL differs from most other SAS procedures in several ways:

� Many statements in PROC SQL, such as the SELECT statement, include clauses.

� The PROC SQL step does not require a RUN statement.

� PROC SQL continues to run after you submit a step. To end the procedure, you
must submit another PROC step, a DATA step, or a QUIT statement.

Writing a PROC SQL Step
Before creating a query, you must assign a libref to the SAS library in which the

table to be used is stored. Then you submit a PROC SQL step. You use the PROC SQL
statement to invoke the SQL procedure.

Selecting Columns
To specify which column(s) to display in a query, you write a SELECT clause as the

first clause in the SELECT statement. In the SELECT clause, you can specify existing
columns and create new columns that contain either text or a calculation.

Specifying the Table
You specify the table to be queried in the FROM clause.

Specifying Subsetting Criteria
To subset data based on a condition, write a WHERE clause that contains an

expression.

Ordering Rows
The order of rows in the output of a PROC SQL query cannot be guaranteed, unless

you specify a sort order. To sort rows by the values of specific columns, use the ORDER
BY clause.

20 Syntax � Chapter 1

Querying Multiple Tables
You can use a PROC SQL step to query data that is stored in two or more tables. In

SQL terminology, this is called joining tables. Follow these steps to join multiple tables:
1 Specify column names from one or both tables in the SELECT clause and, if you

are selecting a column that has the same name in multiple tables, prefix the table
name to that column name.

2 Specify each table name in the FROM clause.
3 Use the WHERE clause to select rows from two or more tables, based on a

condition.
4 Use the ORDER BY clause to sort rows that are retrieved from two or more tables

by the values of the selected column(s).

Summarizing Groups of Data
You can use a GROUP BY clause in your PROC SQL step to summarize data in

groups. The GROUP BY clause is used in queries that include one or more summary
functions. Summary functions produce a statistical summary for each group that is
defined in the GROUP BY clause.

Creating Output Tables
To create a new table from the results of your query, you can use the CREATE

TABLE statement in your PROC SQL step. This statement enables you to store your
results in a table instead of displaying the query results as a report.

Additional Features
To further refine a PROC SQL query that contains a GROUP BY clause, you can use

a HAVING clause. A HAVING clause works with the GROUP BY clause to restrict the
groups that are displayed in the output, based on one or more specified conditions.

Syntax
LIBNAME libref ’SAS-data-library’;

PROC SQL;
CREATE TABLE table-name AS
SELECT column-1<,...column-n>

FROM table-1|view-1< ,...table-n|view-n>
<WHERE expression>
<GROUP BY column-1<,...column-n>>
<ORDER BY column-1< ,...column-n>>;

QUIT;

Sample Programs

Querying a Table
proc sql;

select empid,jobcode,salary,
salary*.06 as bonus

Performing Queries Using PROC SQL � Quiz 21

from sasuser.payrollmaster
where salary<32000
order by jobcode;

quit;

Summarizing Groups of Data
proc sql;

select membertype,
sum(milestraveled) as TotalMiles

from sasuser.frequentflyers
group by membertype;

quit;

Creating a Table from the Results of a Query on Two Tables
proc sql;

create table work.miles as
select salcomps.empid,lastname,

newsals.salary,newsalary
from sasuser.salcomps,sasuser.newsals
where salcomps.empid=newsals.empid
order by 2;

quit;

Points to Remember
� Do not use a RUN statement with the SQL procedure.
� Do not end a clause with a semicolon unless it is the last clause in the statement.
� When you join multiple tables, be sure to specify columns that have matching data

values in the WHERE clause in order to avoid unwanted combinations.
� To end the SQL procedure, you can submit another PROC step, a DATA step, or a

QUIT statement.

Quiz
Select the best answer for each question. After completing the quiz, check your

answers using the answer key in the appendix.
1 Which of the clauses in the PROC SQL program below is written incorrectly?

proc sql;
select style sqfeet bedrooms

from choice.houses
where sqfeet ge 800;

a SELECT
b FROM
c WHERE
d both a and c

2 How many statements does the program below contain?

proc sql;
select grapes,oranges,

22 Quiz � Chapter 1

grapes + oranges as sumsales
from sales.produce
order by sumsales;

a two
b three
c four
d five

3 Complete the following PROC SQL query to select the columns Address and
SqFeet from the table List.Size and to select Price from the table List.Price.
(Only the Address column appears in both tables.)

proc sql;

from list.size,list.price;

a select address,sqfeet,price

b select size.address,sqfeet,price

c select price.address,sqfeet,price

d either b or c

4 Which of the clauses below correctly sorts rows by the values of the columns Price
and SqFeet?

a order price, sqfeet

b order by price,sqfeet

c sort by price sqfeet

d sort price sqfeet

5 Which clause below specifies that the two tables Produce and Hardware be
queried? Both tables are located in a library to which the libref Sales has been
assigned.

a select sales.produce sales.hardware

b from sales.produce sales.hardware

c from sales.produce,sales.hardware

d where sales.produce, sales.hardware

6 Complete the SELECT clause below to create a new column named Profit by
subtracting the values of the column Cost from those of the column Price.

select fruit,cost,price,

a Profit=price-cost

b price-cost as Profit

c profit=price-cost

d Profit as price-cost

Performing Queries Using PROC SQL � Quiz 23

7 What happens if you use a GROUP BY clause in a PROC SQL step without a
summary function?

a The step does not execute.
b The first numeric column is summed by default.
c The GROUP BY clause is changed to an ORDER BY clause.
d The step executes but does not group or sort data.

8 If you specify a CREATE TABLE statement in your PROC SQL step,

a the results of the query are displayed, and a new table is created.
b a new table is created, but it does not contain any summarization that was

specified in the PROC SQL step.
c a new table is created, but no report is displayed.
d results are grouped by the value of the summarized column.

9 Which statement is true regarding the use of the PROC SQL step to query data
that is stored in two or more tables?

a When you join multiple tables, the tables must contain a common column.
b You must specify the table from which you want each column to be read.
c The tables that are being joined must be from the same type of data source.
d If two tables that are being joined contain a same-named column, then you

must specify the table from which you want the column to be read.
10 Which clause in the following program is incorrect?

proc sql;
select sex,mean(weight) as avgweight

from company.employees company.health
where employees.id=health.id
group by sex;

a SELECT
b FROM
c WHERE
d GROUP BY

24

