
Chapter 1
Introduction

What Is Stat Studio?
Stat Studio is a tool for data exploration and analysis. Stat Studio requires that you
have a license for Base SAS, SAS/STAT, and SAS/IML. Stat Studio runs on a PC
in the Microsoft Windows operating environment. You can use Stat Studio to do the
following:

• explore data through graphs linked across multiple windows

• transform data

• subset data

• analyze univariate distributions

• discover structure and features in multivariate data

• fit and evaluate explanatory models

Figure 1.1 shows the Stat Studio interface with a logistic model for the probability
of a passenger surviving the 1912 Titanic disaster. The figure shows output from the
LOGISTIC procedure and three linked views of the data: a data table, a diagnostic
plot that uses the DIFCHISQ statistic to identify observations that do not fit the model
well, and a line plot that shows the predicted probability of survival as a function of
a passenger’s age, gender, and cabin class (first class, second class, or third class).
Observations that are selected in the diagnostic plot are shown as selected in all other
(graphical and tabular) views of the data. The shapes and colors of observations are
also shared among all views of the data.

Figure 1.1 was created using only the Stat Studio graphical user interface (GUI).
While the GUI provides powerful tools for analyzing data, you can also extend Stat
Studio’s built-in abilities by writing programs. Stat Studio provides an integrated
development environment that enables you to write, debug, and execute programs
that combine the following:

• the flexibility of the SAS/IML matrix language

• the analytical power of SAS/STAT

• the data manipulation capabilities of Base SAS

• the dynamically linked graphics of Stat Studio

2 � Chapter 1. Introduction

Figure 1.1. The Stat Studio Interface

The programming language in Stat Studio, which is called IMLPlus, is an enhanced
version of the IML programming language. The “Plus” part of the name refers to new
features that extend the IML language, including the ability to create and manipulate
statistical graphics and to call SAS procedures.

This book does not require previous knowledge of IML. The emphasis in this book is
on the “Plus” part of the IMLPlus language.

The Purpose of This Book
The purpose of this book is to teach SAS/STAT users how to use Stat Studio in con-
junction with SAS/STAT in order to explore data and visualize statistical models. It
assumes that you are familiar with using Base SAS and procedures such as FREQ,
PRINT, REG, and KDE in SAS/STAT. The examples in this book do not require
knowledge of SAS/IML. A goal of this book is to enable SAS/STAT programmers to
write programs in Stat Studio as quickly as possible.

In particular, this book focuses on how to create dynamically linked graphics so you
can more easily formulate, visualize, evaluate, and revise statistical models. If you
already know how to write DATA and PROC statements to perform a certain analysis,
you can add a few IMLPlus statements to create graphics for visualizing the results.
Thus, you need to learn only a few new commands and techniques in order to get
started with IMLPlus programming.

Chapter 1. Introduction � 3

This book is one of three documents about Stat Studio. You can learn how to use the
Stat Studio GUI to conduct exploratory data analysis and standard statistical analyses
in Stat Studio User’s Guide. That book also shows you how to perform many of
the tasks in this chapter by using menus in the Stat Studio GUI. You can learn more
advanced programming commands and techniques from the Stat Studio online Help,
which you can display by selecting Help I Help Topics from the main menu.

Why Program in Stat Studio?
Although you can use Stat Studio as a point-and-click tool for exploratory data anal-
ysis, there are advantages to writing programs in Stat Studio. Writing programs en-
ables you to do the following:

• create your own customized statistical graphics

• add legends, curves, maps, or other custom features to statistical graphics

• develop interactive programs that use dialog boxes

• extend the built-in analyses by calling SAS procedures

• create custom analyses

• repeat an analysis on different data

• extend the results of SAS procedures by using IML

• share analyses with colleagues who also use Stat Studio

• call functions from libraries written in C/C++, FORTRAN, or Java

Figure 1.2 shows the results of a program that evaluates the mortality of patients
admitted to a certain hospital with congestive heart failure. The program uses a
statewide database to build a logistic model predicting mortality as a function of a
patient’s age and the severity of her condition. The program uses IML to compute an
adjusted mortality rate (with confidence limits) for cardiac physicians employed by
the hospital. The adjusted rates are based on the observed number of deaths, the ex-
pected number of deaths (as predicted by the statewide model), and the mean number
of deaths for this hospital.

The program implements many of the features listed previously. It creates a custom
graphic with explanatory text. It calls DATA steps and the LOGISTIC procedure. It
extends the results of the LOGISTIC procedure by using IML to compute adjusted
mortality rates. It presents Stat Studio’s dynamically linked graphics to enable you to
explore why some physicians have high rates of patient mortality, to decide whether
those rates are unacceptably high, and to evaluate the overall performance of this hos-
pital’s staff compared to staff at other hospitals in the state. Although not shown in
Figure 1.2, the program even uses a dialog box to enable you to choose the explana-
tory effects used to create the logistic model.

4 � Chapter 1. Introduction

Figure 1.2. Results of an IMLPlus Program

Features of IMLPlus Programs
IMLPlus programs such as the one that created Figure 1.2 share certain features. They
typically include the following steps:

1. If the data are not already in a SAS data set in a library, put them there (Chapter
2).

2. Call a SAS procedure (Chapter 4).

3. Read in results produced by the procedure (Chapter 5, Chapter 6, Chapter 7)
and, optionally, use IML for additional analysis.

4. Create graphs that use the results (Chapter 3, Chapter 5, Chapter 6).

5. Customize attributes of the graphs (Chapter 8, Chapter 9, Chapter 10).

The chapters of this book describe these steps in detail. Later chapters build on earlier
chapters.

In each chapter, you write a short program that illustrates a few key ideas. You should
type the program into the program window. You can create a new program window
by selecting File I New Workspace from the main Stat Studio menu. For your
convenience, the program for each chapter is also distributed with Stat Studio.

Chapter 1. Introduction � 5

The remainder of this chapter discusses concepts that are useful in IMLPlus program-
ming but might not be familiar to the average SAS programmer.

• IMLPlus programs use classes and methods to manage dynamically linked
graphics. The section “Understanding Classes, Objects, and Methods” on page
5 explains these concepts in general, while the section “The DataObject Class”
on page 6 focuses on a class that is particularly important in Stat Studio.

• IMLPlus programs that call SAS procedures require transferring data between
an in-memory version of the data, and SAS data sets. The section “Where Are
the Data?” on page 8 introduces this concept. Chapter 2, “Reading and Writing
Data,” discusses it in detail and gives examples.

Understanding Classes, Objects, and Methods
SAS is a procedural programming language. (So are FORTRAN and C.) SAS pro-
gramming tends to be action-oriented. The procedure (or IML module) is the “unit”
of programming. The procedure manipulates and analyzes the data.

In contrast, the IMLPlus programming language borrows ideas from object-oriented
programming. An important idea in object-oriented programming is the concept of a
class. A class is an abstract package of data and of functions that query, retrieve, or
manipulate the data. These functions are usually called methods .

An object is a concrete realization (or instance) of a class. To create an object, you
need to specify the data to the creation routine for the class. To call methods in
IMLPlus, you use a “dot notation” syntax in which the method name is appended to
the name of the object. The form of the syntax is Object.Method(arguments), as
shown in the following examples.

In SAS/IML, all variables are matrices. In IMLPlus, a variable is implicitly assumed
to be an IML matrix unless the variable is declared to refer to an object. You can
specify that an IMLPlus variable refers to an object by using the declare keyword.

For example, to create a variable named dobj that refers to an object of the DataObject
class, you can specify the data to the CreateFromFile method of the class:

declare DataObject dobj;
dobj = DataObject.CreateFromFile("Hurricanes");
dobj.Sort("latitude");

The dobj object is declared in the first line, created in the second, and manipulated in
the third by calling a method. The Sort method sorts the data in dobj by the latitude
variable. The data set on disk is not affected; it was used only to create the initial
instance of the object.

Note: To simplify the discussion, the remainder of this document refers to objects by
the name of their class. Thus a DataObject object is called merely a “DataObject”
instead of an “instance of the DataObject class.”

6 � Chapter 1. Introduction

Caution: IML is not a case-sensitive language. That is, if you define a matrix named
MyMatrix, you can refer to the matrix as “mymatrix,” “MyMaTrIx,” or any other
combination of uppercase and lowercase letters. The names of IMLPlus classes and
methods, however, are case-sensitive. There is no class named “dataobject” (lower-
case), only “DataObject.” There is no method in the DataObject class named “sort,”
only “Sort” (capitalized).

The DataObject Class
The most important class in Stat Studio is the DataObject class. The DataObject class
manages an in-memory version of your data. It provide methods to query, retrieve,
and manipulate the data. It manages graphical information about observations such
as the shape and color of markers, the selected state of observations, and whether
observations are displayed in plots or hidden. Figure 1.3 is a schematic depiction of
a DataObject.

Figure 1.3. Using a DataObject

A DataObject is usually created from a SAS data set. (Other methods of creating
DataObjects, such as from Excel files or from IML matrices, are discussed in the on-
line Help.) However, once created, the data in the DataObject are independent from
the data used to initialize it. For example, you might use methods of the DataObject
class to add new variables, transform existing variables, sort by one or more vari-
ables, delete observations, or exclude observations from being plotted. None of these
operations affect the original SAS data set unless the DataObject is saved back onto
disk using the same filename.

The DataObject class provides methods that query the data. For example, a
DataObject can provide you with the number of variables and observations in the

Chapter 1. Introduction � 7

in-memory copy of the data. You can query for a variable’s label or format, or for
whether a variable contains nominal numeric data. You can request the DataObject
to return a vector containing the values of a particular variable. The values can then
be used in a statistical analysis or to subset the data.

The DataObject class does not have any visible manifestation. Rather, you can create
tabular and graphical views of the data from a DataObject. Every data table and every
plot has an underlying DataObject, and usually several plots or tables share the same
DataObject.

The most important role of the DataObject class is to synchronize all graphs and
data tables that view the same data. Thus it is the DataObject class that enables
dynamically linked views of data. This is schematically depicted in Figure 1.4.

Figure 1.4. The DataObject Role

For example, the DataObject class keeps track of which observations are selected.
When you interact with a graph or data table in order to select observations, your
selections are remembered by the underlying DataObject. All graphs and tables that
are linked to the DataObject are alerted so that they can update their displays to
display the new set of selected observations.

Similarly, the DataObject class contains methods that manage markers for each obser-
vation. You can set the shape and color of an observation marker by using DataObject
methods. Whenever an individual observation is plotted, it will have the same shape
and color in all graphs that display it.

In summary, the DataObject class is an in-memory version of data, together with
methods to query and manipulate data and graphical attributes associated with ob-
servations. The purpose of the DataObject class is to ensure that all graphical and
tabular views of the data display observations with the same markers and selection
state.

8 � Chapter 1. Introduction

Where Are the Data?
Stat Studio runs in a Microsoft Windows operating environment, but it can commu-
nicate with SAS running on other computers. The PC running Stat Studio is called
the client. The computer running SAS is called the SAS server. If SAS is running on
the same PC that is running Stat Studio, then the client and server machines are the
same.

There is a fundamental difference between the Stat Studio graphics and the Stat
Studio analyses. The DataObject class, which coordinates all of the dynamically
linked graphics and tables, runs on the client and keeps its data in memory on the
client. Similarly, the graphics and tables run on the client. The analyses, by contrast,
are performed using SAS procedures, and so the analyses run on the SAS server. The
SAS procedures must read from a SAS data set in a library on the server.

To perform an analysis, you must get data out of the DataObject and write the data to
a SAS data set in a server library. Similarly, after an analysis is complete, you might
want to get the results (such as observation-wise statistics) out of a server data set and
add them to the in-memory DataObject. Figure 1.5 illustrates this idea.

Figure 1.5. Data Flow

Thus it is important to know how to pass data between a DataObject and SAS data
sets on the server. In Chapter 2, “Reading and Writing Data,” you learn how to move
variables between a DataObject and a server data set. You also learn how to read and
write SAS data sets on the client or on the server, and how to create a DataObject
from various sources of data.

