
PROC TEMPLATE
Made Easy
A Guide for SAS® Users

SAS® Press

Kevin D. Smith

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Contents

About This Book .. vii

About The Author ... xiii

Acknowledgments ..xv

Chapter 1: Introduction ... 1

The Template Structure ... 2
Types of Templates .. 5

Data-Dependent Templates .. 5
Data-Independent Templates ... 9

Conclusion .. 12

Chapter 2: Using Styles in Your Reports ... 13

Using Pre-Defined Styles .. 14
Where Are These Styles Coming from? ... 15

Defining a New Style .. 19
Cascading Style Sheets and the SAS Enterprise Guide Style Manager 20
PROC TEMPLATE Styles ... 28
Style Attribute References .. 44

Style Overrides and Conditional Formatting ... 46
Dynamic Style Attribute Values ... 51

Reporting Procedure Styles .. 56
PROC PRINT Styles .. 57
PROC REPORT Styles .. 62
PROC TABULATE Styles .. 68

Inline Formatting .. 79
Putting It All Together .. 81

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

http://support.sas.com/bookstore

Chapter 3: Creating and Customizing Table Templates 95

Defining a Table .. 96
Defining Headers and Footers .. 103
Defining Columns ... 111
Using Computed Column Values As Column Data ... 118
Table Attributes .. 121
Style Overrides and Traffic Lighting ... 122

The CELLSTYLE AS Statement ... 125
Using Table Templates within DATA _NULL_ ... 130

Using Variables in Table Templates ... 135
Using Generic Columns ... 139
DATA Step Tricks ... 140

Inheritance .. 142
Modifying SAS Procedure Tables ... 148

The PROC FREQ Crosstabulation Table .. 153
Putting It All Together .. 167

Chapter 4: Template Management ... 177

Template Stores and the ODS Path ... 177
PROC TEMPLATE Statements .. 183

The DELETE Statement ... 183
The LINK Statement ... 184
The LIST Statement .. 187
The PATH Statement .. 191
The SOURCE Statement .. 191

Appendix A: Compatibility with Previous Versions of SAS 195

Running PROC TEMPLATE Examples ... 195
Styles ... 196

Using Cascading Style Sheets (CSS).. 196
Changes to Style Attribute Names ... 196
Defining Multiple Style Elements Simultaneously ... 197
Inheritance .. 198
The CLASS Statement ... 198

Appendix B: Style Attributes .. 199

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Appendix C: Color Names Defined by SAS/GRAPH 219

Introduction .. 219
Basic Hues .. 220
Blacks .. 220
Blues .. 221
Browns .. 222
Grays.. 223
Greens ... 224
Olives ... 226
Oranges ... 226
Pinks .. 227
Purples .. 228
Reds ... 229
Violets .. 229
Whites .. 230
Yellows .. 230

Index ... 233

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Chapter 3: Creating and Customizing Table
 Templates

Defining a Table .. 134
Defining Headers and Footers ... 141
Defining Columns .. 149
Using Computed Column Values as Column Data 156
Table Attributes .. 159
Style Overrides and Traffic Lighting .. 160

The CELLSTYLE AS Statement ... 163
Using Table Templates within DATA _NULL_ ... 168

Using Variables in Table Templates ... 173
Using Generic Columns ... 177
DATA Step Tricks .. 178

Inheritance .. 180
Modifying SAS Procedure Tables .. 186

The PROC FREQ Crosstabulation Table .. 191
Putting it All Together ... 205

Although many people don’t realize it, almost all tabular output generated by SAS is created using
a table template1. Table templates describe what columns, headers, and footers should appear in the
table. They can also contain style overrides to specify extra style information. In addition, there are
even ways to compute new columns based on columns in the existing data set. Because SAS
generates tables using table templates, you can modify the output of procedures by editing the table
templates that the procedures use. But the real power of table templates is in writing your own from
scratch to create tables that aren’t possible to create using any of the reporting procedures.

In this chapter, we show you how to create your own table templates, how to customize styles and
add traffic lighting, and how to modify the table templates used by SAS procedures.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text
(Partial Chapter)

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text

airodr
Typewritten Text

Defining a Table
You have already seen in previous chapters how to render some simple table templates, but let’s
recap the methods here to refresh our memories. The first method works with all versions of SAS
that have ODS. It uses PROC TEMPLATE to define the table. The DATA step is then used to bind
a data set to that template to create the tabular output. The code below is the simplest table template
that you can create. It simply prints out all columns of the data set using all of the default attributes.

PROC TEMPLATE;
DEFINE TABLE mytable;
END;
RUN;

DATA _NULL_;
 SET sashelp.class(OBS = 10);
 FILE PRINT ODS = (TEMPLATE = "mytable");
 PUT _ODS_;
RUN;

Here is the output from the code above.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

The DATA _NULL_ statement won’t change in most of the examples in this chapter, so we can
simplify this example using a macro. The following macro is the same one that is defined in
Chapter 1. It encompasses the DATA _NULL_ statement from the code above. We will be using
this macro throughout this chapter to bind data sets to table templates.

%MACRO render(template, dataset);
 DATA _NULL_;
 SET &dataset;
 FILE PRINT ODS=(TEMPLATE="&template");
 PUT _ODS_;
 RUN;
%MEND render;

Here is the example from above using the macro in place of the DATA _NULL_ statement.

PROC TEMPLATE;
DEFINE TABLE mytable;
END;
RUN;

%render(mytable, sashelp.class);

If you are using SAS 9.3, you can use the convenience procedure PROC ODSTABLE. This
procedure combines the definition of the table and binding a data set to the table template in one
step. The example above can be rewritten using PROC ODSTABLE as follows.

PROC ODSTABLE DATA = sashelp.class;
RUN;

When you let PROC TEMPLATE use all defaults, it will display all columns in the data set. You
can limit which columns are displayed by using the COLUMN statement. This works just like the
COLUMN statement in PROC REPORT.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name age height weight;
END;
RUN;

%render(mytable, sashelp.class(OBS = 10));

For SAS 9.3, you can use the simpler PROC ODSTABLE code.

PROC ODSTABLE DATA = sashelp.class(OBS = 10);
 COLUMN name age height weight;
RUN;

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Here is the output when you use the COLUMN statement.

If you have a lot of columns in your data set and they can be expressed using the list notation (e.g.,
a1-a5), you can use the list notation in the COLUMN statement as well.

DATA ab;
 INPUT a1-a5 b1-b5;
DATALINES;
1 2 3 4 5 101 102 103 104 105
6 7 8 9 10 106 107 108 109 110
11 12 13 14 15 111 112 113 114 115
RUN;

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN a1-a5 b1-b5;
END;
RUN;

%render(mytable, ab);

Again, this can be simplified in SAS 9.3 as shown in the following code. For the sake of simplicity,
this will be the last PROC ODSTABLE sample shown. Just keep in mind that if you have SAS 9.3,
you can reduce most of the examples down by taking the content of the table template and using

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

that within PROC ODSTABLE to get the same result. The examples that step outside of the simple
compile-and-render scenario that will not work with PROC ODSTABLE will be noted.

PROC ODSTABLE DATA = ab;
 COLUMN a1-a5 b1-b5;
RUN;

Here is the output from the list notation code.

The COLUMN statement can do more advanced things as well. For example, you can stack values
on top of each other within a cell by grouping the column names in parentheses. The COLUMN
statement here stacks the age, height, and weight variables on top of each other in the same cell.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name (age height weight);
END;
RUN;

%render(mytable, sashelp.class(OBS = 3));

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

The output is shown below.

You might have noticed that the header for the stacked column contains only Age. The variable that
is on the top of the stack determines what the header text is. However, you can change the text of
the header manually. That technique is discussed later in this chapter.

You can combine this stacking feature with the list notation feature too.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN (a1-a5) (b1-b5);
END;
RUN;

%render(mytable, ab(OBS = 2));

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Here is the output from the previous code.

Another way to stack is with groups of columns. In this method, you group the columns together
with parentheses and then stack each group on top of each other using an asterisk (*). The
following code stacks sex over age and height over weight:

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name (sex height) * (age weight);
END;
RUN;

%render(mytable, sashelp.class(OBS = 4));

The output below is created by this COLUMN statement.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

When using this method, it is sometimes easier to see what the output table will look like by
putting a line break after each asterisk in the COLUMN statement. That way, your COLUMN
statement looks a lot like the resulting table.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name (sex height) *
 (age weight);
END;
RUN;

%render(mytable, sashelp.class);

Of course, the list notation for variables works with this stacking method as well. Here is an
example.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN (a1-a5) *
 (b1-b5);
END;
RUN;

%render(mytable, ab);

The output from this code is shown below.

Rendering columns in this manner will use the default attributes for the columns themselves. There
are many attributes that you can use to change the way the columns look, and they will be
discussed later in this chapter.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Defining Headers and Footers
Table templates can contain two types of headers: table headers and column headers. Luckily, both
types of headers are defined the same way. This section describes how to define headers and how
to apply them to tables. The next section deals with applying headers to a column.

To define a header, use the standard PROC TEMPLATE method of utilizing a DEFINE statement
that has a template type and name to start the definition, and an END statement to end it. In this
case, the type can be HEADER or FOOTER. Headers go at the top of the table, and footers go at
the bottom of the table. The following code shows a definition of each of these types:

DEFINE HEADER myheader;
END;

DEFINE FOOTER myfooter;
END;

Defining a header or footer doesn’t make much sense unless you associate some text with it. This is
done by using the TEXT statement, as shown here2.

DEFINE HEADER myheader;
 TEXT 'Class Information';
END;

The value given in the TEXT statement can be any combination of quoted strings, dynamic
variables (as specified in the DYNAMIC statement), macro variables (as specified in the MVAR
statement), and built-in variables.

Dynamic, macro, and built-in variables are discussed in the Dynamic Variables section of this
chapter. The _LABEL_variable in the following code is an example of a built-in variable that
inserts the data object’s label.

DEFINE HEADER myheader;
 TEXT 'Class Information (' _LABEL_ ')';
END;

Now that we have a header definition, we need to attach it to a table. This can be done in one of
two ways: 1) use the HEADER statement3 or 2) define the header within a table definition. The
HEADER statement is much like the simple form of the COLUMN statement because you list the
names of the headers that you want to appear in the table. However, because most headers you
create will be specific to a particular table template, the second method is more common. Here is an
example of applying a header to a table using Method 14.

PROC TEMPLATE;
 DEFINE HEADER my.header;
 TEXT 'Class Information';
 END;

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

 DEFINE TABLE mytable;
 HEADER my.header;
 END;
RUN;

%render(mytable, sashelp.class);

Here is an example of applying a header to a table using Method 2:

PROC TEMPLATE;
DEFINE TABLE mytable;
 DEFINE HEADER myheader;
 TEXT 'Class Information';
 END;
END;
RUN;

%render(mytable, sashelp.class(OBS = 6));

As you can see, defining a header outside of the table is more work. In addition, this is a case where
PROC ODSTABLE cannot be used to define all parts of the table. PROC ODSTABLE can only
contain the statements and objects from a single table template. If you use PROC ODSTABLE, you
have to use a separate PROC TEMPLATE step just to define the external header. Defining a header
outside of a table is most common when you are going to use that header definition within more
than one table definition. The need for this is not as common, so you might not use that particular
method much.

Here is what the HTML output for either of the above code blocks looks like.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

You can add as many headers to the table as you want. They will appear in the table in the same
order that they do in the table definition.

PROC TEMPLATE;
DEFINE TABLE mytable;
 DEFINE HEADER first;
 TEXT 'First';
 END;
 DEFINE HEADER second;
 TEXT 'Second';
 END;
 DEFINE HEADER third;
 TEXT 'Third';
 END;
 DEFINE HEADER fourth;
 TEXT 'Fourth';
 END;
END;
RUN;

%render(mytable, sashelp.class(OBS = 3));

This code produces the output shown below.

As you can see from the last two examples, table headers span the entire width of the table. You
can change this by giving end points to the header using the START= and END= attributes. The
values of these attributes are the names of the columns where the table header should start and end,
respectively. The following code shows the same header as in the first example, but it only spans
the first three columns.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

PROC TEMPLATE;
DEFINE TABLE mytable;
 DEFINE HEADER myheader;
 TEXT 'Class Information';
 START = name;
 END = age;
 END;
END;
RUN;

%render(mytable, sashelp.class(OBS = 6));

The output is shown below.

Now let’s combine stacking with spanning. The stacking behavior is similar to the way that the
blocks in the game Tetris stack up. The headers fall and fill in empty spaces. If they encounter any
other header as they fall, that is their final resting spot. ODS stretches the cells vertically to fill the
empty spaces. The following code defines four headers with various spans. It’s probably not
something that you would do in reality, but it does show you the flexibility of table headers.

PROC TEMPLATE;
DEFINE TABLE mytable;
 DEFINE HEADER first;
 TEXT 'First';
 START = name;
 END = name;
 END;
 DEFINE HEADER second;
 TEXT 'Second';
 START = sex;

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

 END = weight;
 END;
 DEFINE HEADER third;
 TEXT 'Third';
 START = sex;
 END = height;
 END;
 DEFINE HEADER fourth;
 TEXT 'Fourth';
 START = height;
 END = weight;
 END;
END;
RUN;

%render(mytable, sashelp.class(OBS = 4));

Here is the output.

When we mentioned the HEADER statement previously, it might have sounded like the only time
that you would use it is to include external header definitions. While it works fine for that, you can
also use the HEADER statement on internal header definitions. In fact, you can mix and match
internal and external headers in the same table. Going back to our Tetris example, while in the
game of Tetris you have to accept the tiles that the game chooses for you in the order that it
chooses for you, when dealing with table headers, you can reorder and exclude headers from being
applied to a table by using the HEADER statement. Here is the last example again, but this time we
are excluding the first header and reversing the order in which the headers are applied to the table.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

PROC TEMPLATE;
DEFINE TABLE mytable;
 DEFINE HEADER first;
 TEXT 'First';
 START = name;
 END = name;
 END;
 DEFINE HEADER second;
 TEXT 'Second';
 START = sex;
 END = weight;
 END;
 DEFINE HEADER third;
 TEXT 'Third';
 START = sex;
 END = height;
 END;
 DEFINE HEADER fourth;
 TEXT 'Fourth';
 START = height;
 END = weight;
 END;
 HEADER fourth third second;
END;
RUN;

%render(mytable, sashelp.class(OBS = 4));

The output for this code is shown below.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Note that the position of the HEADER statement is important when you define more headers than
will appear in the table5. Each time you define a table header, that header is automatically added to
the header list. If you were to put the HEADER statement at the beginning of this table definition,
you would still have four table headers in the order: fourth, third, second, first.

Common Table Header and Footer Attributes
There are various attributes besides START= and END= that you can use to change the behavior of
headers and footers. The complete list can be seen in the SAS 9.3 Output Delivery System: User’s
Guide, Second Edition. There are approximately two dozen attributes from which to choose. If you
look closely in the documentation, you’ll see that many of these attributes are used only by the
ODS Listing output. Below is a list of the most common header and footer attributes.

FIRST_PANEL=ON | OFF
specifies whether or not a spanning header appears only on the first panel if the header is
broken across multiple panels. This option applies only to output that supports paneling.

JUST=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the text of the header.

LAST_PANEL=ON | OFF
specifies whether or not a spanning footer appears only on the last panel if the footer is broken
across multiple panels. This option applies only to output that supports paneling.

PARENT=header-path
specifies a header definition to inherit from. Inheritance will be discussed later in this chapter.

PREFORMATTED=ON | OFF
specifies whether or not to treat the text of the header as preformatted text. Preformatted text
preserves all whitespace and sets the font to a monospace font. Using this option also appends
`fixed' to the default style element name used for the header or footer. For example, header
would become headerfixed, rowfooter would become rowfooterfixed, etc.

PRINT=ON | OFF
specifies whether or not the header should be printed.

SPLIT=’character’
specifies a character that will be treated as a newline character. Whenever the specified
character is encountered in the text of the header, a line break is put in its place. Using the
SPLIT= attribute isn’t necessary to put line breaks in a header (though it is the recommended
way). If you do not specify a character with the SPLIT= attribute and the first character of the
header text isn’t an alphanumeric character, a blank, an underscore (_), a hypen (-), a period
(.), or a percent sign (%), the first character of the header text will automatically become the
split character. For example, the header text “/Age/Height/Weight” would automatically
convert “/” characters into newlines if SPLIT= was not specified.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

STYLE=style-override
specifies a style override to apply to the header. Style overrides are discussed in “Style
Overrides and Conditional Formatting” in Chapter 2.

VJUST=TOP | CENTER | BOTTOM
specifies the vertical alignment of the header text.

As opposed to setting values of these attributes explicitly, it is possible to set the attribute values
dynamically at run time as well. This is not as useful when using the PROC ODSTABLE
procedure, but it can be very handy when creating reusable table templates from PROC
TEMPLATE.

One statement within both header and footer definitions is the NOTES statement. The NOTES
statement is like a comment, but it is stored with the header definition so that it can be viewed later.
Here is an example of using the NOTES statement based on the very first header definition that we
created in this chapter.

PROC TEMPLATE;
DEFINE HEADER my.header;
 NOTES "Externally defined header for tables that
 use Sashelp.Class";
 TEXT "Class Information";
END;
RUN;

The last three statements available in headers and footers that we are going to discuss, DYNAMIC,
MVAR, and NMVAR, are used to set run-time attribute values. These values come from dynamic
variables set in the DATA step and macro variables6. Because this behavior is shared between
tables, columns, headers, and footers, the explanation for this feature is can be found in “Using
Variables in Table Templates.”

Almost all of the discussion in this section deals with headers; we didn’t say much about footers.
The syntax for creating footers is identical to headers. The only difference is that they are located at
the bottom of the table rather than at the top. The figure below shows the output of the last header
example with all of the headers changed to footers.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

So far we have covered the basics of putting together columns to form a table as well as adding
headers and footers. Many more advanced operations are available for columns. Because some of
these operations involve header definitions, we saved the discussion of column definitions until
now.

Defining Columns
Although the COLUMN statement describes the overall structure of the table columns, the columns
themselves can have their own definitions just like headers and footers. A column definition can
define what the column should look like, what the column header should contain, and what data
column should be used. It can even calculate the data values themselves. Putting columns in a table
is just like putting headers in a table. You have two choices:

1. Use the COLUMN statement to create columns based on the data columns in a data set7
2. Define the column within a table definition

You can also use a combination of these methods where you define the overall structure of the table
using the COLUMN statement and then create column definitions for the columns that need special
treatment.

Let’s go back to our first table that used the COLUMN statement.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name age height weight;
END;
RUN;

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

%render(mytable, sashelp.class);

The following table template is equivalent but is not nearly as convenient.

PROC TEMPLATE;
DEFINE TABLE mytable;
 DEFINE COLUMN name;
 END;
 DEFINE COLUMN age;
 END;
 DEFINE COLUMN height;
 END;
 DEFINE COLUMN weight;
 END;
END;
RUN;

%render(mytable, sashelp.class);

Using a hybrid approach, you can use the COLUMN statement to define the overall structure, and
then use column definitions to apply specific behavior. This would look something like the
following.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name age height weight;
 DEFINE height;
 END;
 DEFINE weight;
 END;
END;
RUN;

%render(mytable, sashelp.class);

Note that when you use both a COLUMN statement and column definitions, specifying the
template type in the column definition is optional. PROC TEMPLATE already knows that it is a
column because of the information in the COLUMN statement8. Also, just as with headers, the
position of the COLUMN statement is important. In the example above, if you were to define more
column templates than there are columns listed in the COLUMN statement, they would
automatically be appended to the end of the column list. To explicitly limit which columns go into
a table, put the COLUMN statement at the end of the table definition9.

All of the column templates in that last code snippet were kind of nonsensical because they didn’t
do anything other than the default behavior, which can be gotten simply by listing the columns in
the COLUMN statement. However, defining column templates is necessary when you start to add
customization. Let’s say that we wanted to change the column header for the column Name to

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

‘First Name’. The simplest way would be to add a column definition for that column and set the
HEADER= attribute.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name age height weight;
 DEFINE name;
 HEADER = 'First Name';
 END;
END;
RUN;

%render(mytable, sashelp.class(OBS=6));

The resulting output is shown below.

While this works for simple headers, you might want to use a full header definition instead of just a
string. The following form enables you to add styles and other visual effects to headers as we will
see later. In the case of column headers, you must use the HEADER= attribute to associate a header
definition with a column. It is not automatically applied as is the case in a table header. The output
for this code is identical to the output from the previous example:

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name age height weight;
 DEFINE name;
 DEFINE HEADER nameheader;
 TEXT 'First Name';
 END;

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

 HEADER = nameheader;
 END;
END;
RUN;

%render(mytable, sashelp.class);

Let’s go back to a problem that we had in the column stacking example. When stacking columns,
the header for the resulting column is always the header from the column that is on the top of the
stack. Let’s put a header on that column to include the headers for all of the columns in the stack.
We also use this opportunity to show off the SPLIT= header attribute described in the previous
section.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name (age height weight);
 DEFINE age;
 DEFINE HEADER ageheightweight;
 TEXT 'Age*Height*Weight';
 SPLIT = '*';
 END;
 HEADER = ageheightweight;
 END;
END;
RUN;

%render(mytable, sashelp.class(OBS = 3));

The output for this example is shown below.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Another common thing to do with a column template is to change the data format. This is done
using the FORMAT= attribute. The value is simply a SAS format. Let’s continue to use the
definition from the last example to try out the FORMAT= attribute. We want all of the numbers in
our Age/Height/Weight column to line up. You can do this by formatting all of the numbers the
same way. You can make them all integers with the following code.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name (age height weight);
 DEFINE age;
 DEFINE HEADER ageheightweight;
 TEXT 'Age*Height*Weight';
 SPLIT = '*';
 END;
 HEADER = ageheightweight;
 FORMAT = 3.;
 END;
 DEFINE height;
 FORMAT = 3.;
 END;
 DEFINE weight;
 FORMAT = 3.;
 END;
END;
RUN;
%render(mytable, sashelp.class(OBS = 3));

Here is the output from the code above.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Common Table Column Attributes
There are many other column attributes that can be used to affect the behavior of columns. Just as
with headers, many of the attributes are used only for ODS Listing output. The Listing-only
attributes have been left out of this list. For a full list of column attributes and descriptions, see the
SAS 9.3 Output Delivery System: User’s Guide, Second Edition.

BLANK_DUPS=ON | OFF
specifies whether or not to leave a cell empty if the value in the previous row was the same.

DATA_FORMAT_OVERRIDE=ON | OFF
specifies whether or not the format from the data column should take precedence over the
format in the template.

DATANAME=column-name
specifies the name of the data column to use rather than using the name of the data column that
matches the column name.

DROP=ON | OFF
specifies whether or not to include the column in an output data set. This option applies only to
the ODS Output destination.

FORMAT=SAS-format
specifies a SAS format to use for the data in the column.

FORMAT_WIDTH=positive-integer
specifies the format width for the column. This attribute is mainly intended for procedure
writers. In most cases, you should use the FORMAT= attribute.

FORMAT_NDEC=positive-integer
specifies the number of decimals for the column. This attribute is mainly intended for
procedure writers. In most cases, you should use the FORMAT= attribute.

FUZZ=number
specifies a numeric value that is used as a minimum value for data in the cells. Any value that
is less than the value given in FUZZ= is treated as zero.

GENERIC=ON | OFF
specifies whether or not the column template can be used by multiple columns in the table. The
details about generic columns will be discussed later in this chapter.

HEADER=header-specification
specifies the header for the column. The value of header-specification can be either a quoted
string or the name of a header template.

ID=ON | OFF
specifies whether or not the column should be repeated on each data panel. This applies only to
output types that support paneling.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

JUST=LEFT | CENTER | RIGHT
specifies the horizontal alignment of the column’s content. The default behavior is to left align
character content and right align numeric content. Because of some details in the way that
alignments are evaluated, setting the alignment using the TEXTALIGN= style attribute in a
style override is preferred over this method.

LABEL=’text’
specifies a label to use instead of the label supplied in the data set.

MERGE=ON | OFF
specifies whether or not the content of the current data cell should be merged with the content
of the following column’s data.

PARENT=column-path
specifies a column definition to inherit from. Inheritance will be discussed later in this chapter.

PREFORMATTED=ON | OFF
specifies whether or not to treat the text of the column as preformatted text. Preformatted text
preserves all whitespace and sets the font to a monospace font. Using this option also sets the
style element to datafixed.

PRE_MERGE=ON | OFF
specifies whether or not the content of the current data cell should be merged with the content
of the previous column’s data.

PRINT=ON | OFF
specifies whether or not the column should be printed.

PRINT_HEADERS=ON | OFF
specifies whether or not the column header should be printed.

STYLE=style-override
specifies a style override to apply to the header. Style overrides are discussed in the “Style
Overrides and Conditional Formatting” section in Chapter 2.

TEXT_SPLIT=’character’
specifies a character that will be treated as a newline character. Whenever the specified
character is encountered in the text of the column, a line break is put in its place.

VARNAME=variable-name
specifies the name to use for the variable in an output data set.

VJUST=TOP | CENTER | BOTTOM
specifies the vertical alignment of the column’s content.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

Just as with headers, columns also have an attribute-like statement called NOTES that embeds a
comment into the template that can be viewed later. Also, like headers, the attribute values can be
set dynamically at run time as discussed in “Reusable Table Templates and DATA _NULL_” later
in this chapter.

So far we have been using only data that is explicitly defined in a data set, but you can create
columns whose data is based on combinations of data in a data set. This type of column is
discussed in the following section.

Using Computed Column Values as Column Data
Although you do need a data set to render a table template, you do not necessarily need a data
column for each column in the table. You can create columns that are computed from other data in
the table. These are called “computed columns.” The COMPUTE AS statement determines whether
a column is associated with a data column or an expression. This statement takes a standard
expression as its argument. The expression is evaluated for every observation in the input data set
to get the resulting output data value. Here is the general format of the COMPUTE AS statement:

COMPUTE AS expr;

Since we have been using the SASHELP.CLASS data set, let’s continue that trend and use that
information to compute something useful. One thing that can be calculated using that information
is the body mass index (BMI). This is one measure to determine if someone is underweight, normal
weight, or overweight. It is computed using the following formula10.

where weight is expressed in pounds and height is in inches.

Now that we have all of the information, let’s add a new column to the table that contains each
individual’s BMI.

PROC ODSTABLE DATA = sashelp.class(OBS = 7);
 COLUMN name age height weight bmi;
 DEFINE bmi;
 COMPUTE AS (weight * 703) / (height * height);
 HEADER = 'BMI';
 FORMAT = 2.;
 END;
RUN;

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

The resulting output is shown below.

A method to create new data values in a column is by using the TRANSLATE INTO statement.
This type of column doesn’t generate a new column; rather it simply takes the data in a column and
converts it into a different representation. It is kind of like using a SAS format, but it gives you the
full power of an expression in both the matching of a value and the generating of a value. In
addition, the value of the column can be based on the values of any number of columns, just like in
the case of the COMPUTE AS statement. The general form of the TRANSLATE INTO statement
is as follows.

TRANSLATE expr-1a INTO expr-1b,
 ...

 expr-na INTO expr-nb;

The data in the column is tested against the expressions on the left side of the INTO keyword. If the
expression is true, then the data that is printed in the output is generated by the expression on the
right side of the INTO keyword. Let’s look at an example.

We do not care about the exact weight values for the individuals in the SASHELP.CLASS data set
if they are above or below a certain value. However, those values are different for the male and
female students. For male students, we only care if the weight is between 90 and 120. Any values
outside that range can be represented by ‘< 90’ and ‘> 110’, respectively. For females, we want to
do the same thing, except the values are 70 and 100. We could not accomplish this with a SAS
format because it requires the data from two columns.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

PROC TEMPLATE;
DEFINE TABLE mytable;
 COLUMN name sex age height weight;
 DEFINE sex;
 PRINT = OFF;
 END;
 DEFINE weight;
 TRANSLATE (sex = 'M' AND weight > 110) INTO '> 110',
 (sex = 'M' AND weight < 90) INTO '< 90',
 (sex = 'F' AND weight > 100) INTO '> 100',
 (sex = 'F' AND weight < 70) INTO '< 70';
 STYLE = {TEXTALIGN = RIGHT};
 END;
END;
RUN;

%render(mytable, sashelp.class(OBS = 7));

In this case, because we are using the sex variable in the calculation, we need to include it in the
COLUMN statement as well. Tturn it off by using PRINT=OFF in the column definition. The
value of the weight column is referenced as ‘weight’ in the expression. However, you could also
use the keyword _VAL_ which refers to the data value of the current column. This does not make
any difference when the TRANSLATE INTO statement is on a column; however, the same
TRANSLATE INTO statement can be used in the table context to apply to all of the columns in a
table. In that case, the _VAL_ keyword would correspond to whichever column the expression was
currently being applied to. Here is the output from the code above.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

The TRANSLATE INTO statement can be used on the table itself. There are attributes, just like in
columns, headers, and footers, that can be used on tables to affect their behaviors as well. Some of
these attributes don’t make sense until after you know some things about columns and headers, so
we saved the discussion of them until now.

Table Attributes
Table attributes are used to affect the behavior of the table itself, as well as some header and
column behaviors. Just like with columns and headers, many of the attributes are ODS Listing-
specific and will not be discussed here. A complete list of attributes can be found in the SAS 9.3
Output Delivery System: User’s Guide, Second Edition.

BYLINE=ON | OFF
specifies whether or not to print the byline before the table.

CLASSLEVELS=ON | OFF
specifies whether or not to enable the BLANK_DUPS= attribute on a column if the previous
column also has BLANK_DUPS= enabled and its value changed in the current row.

CONTENTS=ON | OFF
specifies whether or not to put the table in the table of contents.

CONTENTS_LABEL=’string’
specifies the label to use for the table in the table of contents, the Results window, and the
trace record.

DATA_FORMAT_OVERRIDE=ON | OFF
specifies whether or not the format from the data column should take precedence over the
format in the template.

LABEL=’text’
specifies a label for the table. If no label is provided, the label from the data set will be used. If
it does not have a label, the text of the first table header is used.

NEWPAGE=ON | OFF
specifies whether or not to force a page break before the table.

ORDER_DATA=ON | OFF
specifies whether or not the order of the columns in the data set should override the order of
the columns specified in the template.

PARENT=table-path
specifies a table definition to inherit from. Inheritance will be discussed later in this chapter.

PRINT_FOOTERS=ON | OFF
specifies whether or not to print the table footers.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

PRINT_HEADERS=ON | OFF
specifies whether or not to print the table headers.

STYLE=style-override
specifies a style override to apply to the header. Style overrides are discussed in “Style
Overrides and Conditional Formatting” in Chapter 2.

USE_FORMAT_DEFAULTS=ON | OFF
specifies whether or not the width and number of decimals should be taken from the default
values for the format name rather than the template.

USE_NAME=ON | OFF
specifies the column name as the column header if neither the column definition nor the data
set specifies one.

Just as with columns, headers, and footers, tables also support a NOTES statement that enables you
to store a comment with the table that describes what the table is for.

While we have only shown each attribute with explicit values here, it is possible to have attribute
values dynamically set at run time rather than at compile time. This is not as useful when you are
using the PROC ODSTABLE convenience procedure to generate tables, but it can be quite
powerful when you are creating reusable table templates using PROC TEMPLATE.

While the attributes described for columns, headers, footers, and tables have enabled us to change
various aspects of behavior, the look and feel defined by the overall style remains. It is possible to
override style attributes within the table family of templates, and even do traffic lighting based on
the data in the table. These techniques are discussed in the following section.

Style Overrides and Traffic Lighting

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

About The Author

Kevin D. Smith has been a software developer at SAS since 1997. He
has supported PROC TEMPLATE and other underlying ODS
technologies for most of that time. Kevin has spoken at numerous SAS
Global Forums as well as at regional and local SAS users groups with
the “From Scratch” series of presentations that were created to help
users of any level master various ODS technologies. Kevin is also the
author of many of the ODS tip sheets available on the SAS support
Web site.

Learn more about this author by visiting his author page at
http://support.sas.com/smithk. There you can download free chapters,
access example code and data, read the latest reviews, get updates, and
more.

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

http://support.sas.com/smithk

Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.
ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

BUY THIS BOOK

PROC TEMPLATE allows you to
take advantage of all that the
Output Delivery System has to
offer, and PROC TEMPLATE
Made Easy teaches you how.

Visit go.sas.com/ksmithbook
to order your copy today.

Email us: sasbook@sas.com
Call: 800-727-3228

SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S105478US.0213Smith, Kevin. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Copyright © 2013, SAS Institute Inc., Cary, North Carolina, USA.

ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore.

http://www.sas.com/apps/sim/redirect.jsp?detail=TR18019
mailto: sasbook@sas.com

	Contents
	Chapter 3: Creating and Customizing Table Templates (Partial Chapter)
	Defining a Table
	Defining Headers and Footers
	Common Table Header and Footer Attributes

	Defining Columns
	Common Table Column Attributes

	Using Computed Column Values as Column Data
	Table Attributes
	Style Overrides and Traffic Lighting

	About The Author
	Additional Resources

