Chapter 1

Chapter Contents
GRAPH TEMPLATE LANGUAGE . . . . . ... ... ... .. ...... 5
AQuick Example . . . .. ... L 5
Template Compilation . . . . . .. .. ... oL 7
Runtime Actions . . . . . . . . . . . e 8
BASIC ANATOMY OFANODSGRAPH . . . . . ... ... ... .. ... 9
GRAPHICAL LAYOUTS . . . . . . . e 10
PLOTS . . . e 12
AXES . . e 13
LEGENDS . . . . . e 14
FLEXIBLE TEMPLATES . .. ... ... .. ... .. .. .. ... . ... 15
Expressions and Functions . . . . . . ... ... ... ... ... ..., 15
Dynamics and Macro Variables . . . . . ... .. ... .. ......... 15
Conditional Logic . . . . . . . . ... .. L 17
OUTPUT . . . . s s 18
ODS GRAPHICS Statement . . . . . . . . ... ... ... 18

ODS Styles . . . . . . o e e 19






Chapter 1
Overview
Graph Template Language

The SAS/GRAPH Graph Template Language (GTL) is an extension to the Output
Delivery System (ODS) that enables you to create sophisticated analytical graphics
that are not available from traditional SAS/GRAPH procedure statements. For exam-
ple, using the GTL you can generate Model-Fit plots, Distribution Plots, Comparative
plots, Prediction Plots, and more.

The graphics produced by the GTL are generated by template definitions that control
the graph format and appearance and specify the variable roles to represent in the
graph display. The graphs can then be rendered by associating the templates with a
data source.

e The GTL templates are defined with PROC TEMPLATE. The GTL includes
conditional statements that can be used to determine what graph features are
rendered, layout statements that specify the arrangement of graph features,
plot statements that request specific plot types (such as histograms and scat-
ter plots), and fext and legend statements that specify titles, footnotes, legends,
and other text-based graph elements.

e The GTL templates are rendered using the SGRENDER procedure, which
specifies a data source that contains appropriate data values and the template to
use for rendering the graph.

e You can also modify predefined GTL templates that the SAS System deliv-
ers for use on the SAS statistical procedures. For information on modifying
existing templates, refer to SAS/STAT User’s Guide.

This manual provides a complete reference to the Graphics Template Language. For
detailed usage information, consult the SAS/GRAPH 9.2: Graph Template Language
User’s Guide.

A Quick Example

The data set SASHELP.CLASS is delivered with the SAS System. It includes data
columns named HEIGHT and WEIGHT, which store height and weight measures
for a small sample of subjects. The Graphics Template Language can be used to
generate a histogram that shows the frequency count of the heights recorded in that
data sample:



Fundamentals <+ Overview

40

30

Percent

20+

10+

50 70 90 110 130
Weight

150

The following SAS program produces the graph:

proc template;
define statgraph histogram;
begingraph;
layout overlay;
histogram weight;
endlayout;
endgraph;
end;
run;

ods graphics / width=450px;

ods listing;

proc sgrender data=sashelp.class
template=histogram;

run;

o The DEFINE STATGRAPH statement on PROC TEMPLATE opens a defi-
nition block for defining an graphics template named HISTOGRAM that is
stored in the template folder (also called the template store, by default located

in SASUSER. TEMPLAT).

e The template definition for HISTOGRAM specifies two GTL statements
within a BEGINGRAPH/ENDGRAPH block: LAYOUT OVERLAY and

HISTOGRAM.




Graph Template Language

e The LAYOUT OVERLAY statement is one of the most fundamental layout
statements. It can overlay the results of one or more plot statements, each of
which will share the same plot area, axes, and legends. The layout in this
example specifies only a single element: a HISTOGRAM with bars showing
the distribution of observations of the data column named WEIGHT.

e The ENDLAYOUT statement ends the layout block, the ENDGRAPH state-
ment ends the graph definition, and the END statement ends the template defi-
nition.

e The ODS GRAPHICS statement uses the WIDTH= option to set a width for
the output graph. Because the HEIGHT= option is not specified, GTL will
manage the graph’s aspect ratio and set an appropriate height.

e The ODS LISTING statement opens the LISTING destination for the output.
The LISTING destination is open by default, but specifying it ensures that it is
active for this graph in case another ODS destination has been set in the current
SAS session.

e The DATA= option on PROC SGRENDER specifies SASHELP.CLASS as the
data source for the graph. TEMPLATE= specifies HISTOGRAM as the tem-
plate definition to use for rendering the graph.

Template Compilation

A GTL template describes the structure and appearance of a graph to be produced,
similar to the way a TABLE template describes the organization and content of a
table.

All templates are stored, compiled programs. The following source program produces
a simple GTL template named SCATTER:

proc template;
define statgraph scatter;
begingraph;
layout overlay;
scatterplot x=height y=weight;
endlayout;
endgraph;
end;
run;

When this code is submitted, the statement keywords and options are parsed, just as
with any other procedure. If no syntax error is detected, an output template named
SCATTER is created and stored in the default template folder SASUSER. TEMPLAT.
No graph is produced. Note the following:

e Any required arguments in the template must be specified. In this example, X=
and Y= on the SCATTERPLOT statement must specify variables for the analy-
sis, but no checking for the existence of these variables is done at compile time.
(Unlike other SAS procedures, PROC TEMPLATE does not do a compile/run
sequence, which includes variable validation.)



Fundamentals <+ Overview

e No reference to an input data set appears in the template.

Runtime Actions

To produce a graph, a GTL template must be bound to a data source using the
SGRENDER procedure. The following example uses SGRENDER to bind the
SCATTER template to the SAS data set SASHELP.CLASS, which is delivered with
the SAS system:

ods listing;

proc sgrender data=sashelp.class
template=scatter;
run;

140

120 H

100 - ° ©o

Weight

80

60

50 55 60 65 70
Height

Generally, an ODS data object is constructed by comparing the template references
to column names with variables that exist in the current data set. In the current exam-
ple, SASHELP.CLASS contains varialbes named HEIGHT and WEIGHT. Because
these variable names match the variables that are named on template SCATTER, vari-
ables HEIGHT and WEIGHT are added to the data object, while other variables in
SASHELP.CLASS are ignored. (It is possible for a template to define new computed
columns based on existing columns.)

After all the observations have been read, the data object and template definition are
passed to a graph renderer, which produces an image file for the graph. The image
file is then automatically integrated into the ODS destination. In this example, a PNG
image is created in the LISTING destination. The visual properties of the graph are
determined by the ODS style that is in effect.

Note. Template SCATTER is a restrictive definition: it can only create a plot of vari-
ables named HEIGHT and WEIGHT. A GTL template can be made more flexible by
introducing dynamics or macro variables that supply variables and other information
at runtime. For more information, see “Flexible Templates™” on page 15.



Basic Anatomy of an ODS Graph

Basic Anatomy of an ODS Graph

The GTL is flexible and able to produce many different types of graphs with varying
layout features. The following figure shows the basic anatomy of an ODS graph:

Title

b

Plot Area
1

Car Performance Profile

Plots

| T T T T T T
| 2000 3000 4000 5000 6000 7000

400

Weight (LBS)

- [ O Asia + Europe > USA | AX

N N\ \

Graph Legend Cell
Graph the output produced from all of the statements that are nested in a
BEGINGRAPH statement block. The graph comprises all of the
graphics elements in the template definition.

Title Area area for one or more titles. This area is always displayed above all

Footnote Area

Cell

Plot Area

AXxis

Plots

Legend

cells in the graph.

area for one or more footnotes. This area is always displayed below
all cells in the graph.

refers collectively to the area containing the plot areas. In this di-
agram, there are two cells, each of which contains two axes for
the plot area. A cell can also contain descriptive text and legends.
Graphs are often described as single-cell or multi-cell.

the display area for plot-statement results. This area is bounded by
the axes (when present) and may also contain data labels and other
text that annotates the graph.

refers collectively to the axis line, the major and minor tick marks,
the major tick values, and the axis label.

refers collectively to all plot statements that can be overlaid in the
plot area. This includes graphical items such as fit lines, scatter
plots, reference lines, and many others.

refers collectively to one or more legend entries, each made up of
a graphical value and a text label. The legend can also have a title



Fundamentals <+ Overview

and border. Legends can also display a color ramp corresponding
to a continuous response range.

Graphical Layouts

One of most powerful features of the GTL is the syntax built around hierarchical
statement blocks called layouts. The outermost layout block determines

e The overall organization of the graph — whether it uses a single-cell or a multi-
cell display.

e What statements are allowed in the block. Generally, layout blocks may con-
tain plots, lines of text, a legend, or even another layout.

e How the contained statements interact.

Table 1.1. Outermost Layouts in GTL
Layout Description

OVERLAY General purpose layout for displaying 2D plots in a
single-cell.

OVERLAY3D Layout for displaying 3D plots in a single-cell.
OVERLAYEQUATED Specialized OVERLAY with equated axes.
GRIDDED Basic grid of plots. All cells are independent.

LATTICE Advanced multi-cell layout. Axes can be shared
across columns or rows and be external to grid. Many
grid labelling and alignment features.

DATALATTICE Generates a classification panel from the values of 1
or 2 classifiers.

DATAPANEL Generates a classification panel from the values of n
classifiers.

For example, the following graph is a two-cell graph produced using the LAYOUT
LATTICE statement as the outermost template in the layout.

10



Graphical Layouts

Car Performance Profile
ofe:l:
22.5 225
20.0 20.0
= =
O 17.54 O 175-
[©) [©)
o o
= =
15.0 - 15.0
o 0 B’ X +
12.5 12.5+
+ + + X
1O'o_| T |>§< T T 1004 T T T T - |><
100 200 300 400 500 3000 4000 5000 6000 7000
Horsepower Weight (LBS)
O Asia + Europe X USA

The LAYOUT LATTICE statement is typically used to create a multi-cell layout of
plots that are aligned across columns and rows. In the following template, which pro-
duced the graph, plot statements are specified within nested LAYOUT OVERLAY
statements so that the LATTICE will automatically align the plot areas and tick dis-
play areas in the plots. The LATTICE layout is a good layout to choose when you
want to compare the results of related plots.

proc template;
define statgraph lattice;
begingraph;
entrytitle "Car Performance Profile";
layout lattice / border=true pad=10 opaque=true
rows=1 columns=2 columngutter=3;
layout overlay;
scatterplot x=horsepower y=mpg city /
group=origin name="cars";
regressionPlot x=horsepower y=mpg city / degree=2;
endlayout;

layout overlay;
scatterplot x=weight y=mpg city / group=origin;
regressionPlot x=weight y=mpg_city / degree=2;
endlayout;

sidebar;

discretelegend "cars";
endsidebar;

11



Fundamentals <+ Overview

endlayout;
endgraph;
end;
run;

For detailed information on each layout, see the chapter for that layout type.

Plots

The plots in the GTL are classified in different ways, depending on the context of the
discussion.

Within layout blocks, plots are often classified according to graphical dimension:
whether they are projected in two or three visual dimensions. Thus, plots in the GTL
are often referred to as 2D or 3D plots, based on their graphical dimensions, not their
data dimensions.

Relative to their input data, plots are classified according to the statements that
calculate summary statistics from raw input data, and those that use calculated
statistics as input parameters on the plot statement. Thus, many GTL plot state-
ments have two versions: BARCHART and BARCHARTPARM, HISTOGRAM and
HISTOGRAMPARM, and so forth. The main distinction between such plots is the
nature of the input data they accept:

e The “non-parm” version (for example, BARCHART) computes its values from
raw, unsummarized data. For example, a BARCHART computes the summary
values it needs for the bars in the chart. Such plots are often referred to as
computed plots.

e The “parm” version (for example, BARCHARTPARM) does not summarize or
compute values from the input data but instead simply renders the input data
it is given. Thus, the input data must be pre-summarized, perhaps by a SAS
procedure. The “parm” version of plots, often referred to as parameterized
plots, produce the same result as the non-parm version, they just don’t perform
the calculations or data summarizations needed to achieve the result.

Chapter 12, “Key Concepts for Using Plots,” discusses general concepts that apply
across plot types. For detailed information about a particular plot, see the chapter for
that plot.

12



Axes

Axes

The GTL uses various criteria to determine the displayed axis features for a graph.
Generally, axis features are based on the layout type, the order of plot statements
in the layout and the options specified on those statements, the use of primary and
secondary axes on the plots (when secondary axes are supported), the plot type, the
column(s) of data that contribute to defining the axis range, and the data formats for
the contributing data columns.

Depending on the layout type, 2D plots may have up to four independent axes that can
be displayed: X, Y, X2, and Y2. The X and Y axes are considered the primary axes,
and the X2 and Y2 axes are considered the secondary axes. By default, the X2 and
Y2 axes are not displayed. When requested, the secondary axes can be displayed as
copies of the primary axes, or data can be mapped separately to them. The following
figure identifies the X, Y, X2, and Y2 axes.

Y axis
o
1
T
o
Y2 axis

For more information on axis features in GTL, see Chapter 41, “Axis Features in
Layouts.”

13



Fundamentals <+ Overview

Legends

Many plot statements support a GROUP= option that partitions the data into unique
values, performs separate analysis, if necessary, and automatically assigns distinct vi-
sual properties to each group value. The visual properties of group values are defined
by the style in effect.

Legends are not automatically displayed for plots with group values. Rather, an ap-
propriate legend statement must be added to the template to generate the desired leg-
end. In the following example, a legend is added to display markers and line patterns
that show the association between the group values from a scatter plot and corre-
sponding linear regression lines. The example shows the mechanism that GTL uses
to associate a legend with its corresponding plot(s): a name is assigned to each plot
that will be represented in the legend, and these names are then used as arguments for
the legend statement (in this case, DISCRETELEGEND).

proc template;
define statgraph scatterfit;
begingraph;
entrytitle "Linear Regression By Gender";
layout overlay;
scatterplot x=height y=weight / group=sex name="scat";
regressionplot x=height y=weight/ group=sex name="reg";
discretelegend "scat" "reg" / border=true;
endlayout;
endgraph;
end;
run;

Linear Regression By Gender

140 4

120 +

100 4

Weight

80

60

50 55 60 65 70
Height

For more information on managing legends in GTL, see SAS/GRAPH 9.2: Graph
Template Language User’s Guide.

14



Flexible Templates

Flexible Templates

Several features in the GTL can make template definitions less restrictive on input
data and more general in nature. These features enable a single compiled template to
produce many output variations.

Expressions and Functions

In the GTL, expressions can be used to compute constants and data columns. The
expressions must be enclosed in an EVAL construct. Within the expression you can
use DATA step functions, arithmetic operators, and other special functions supported
by the GTL.

Expressions are also useful in text statements like ENTRY and ENTRYTITLE, both
of which support rich text and have special text commands such as {SUP}, {SUB},
and {UNICODE}, which enable subscripting, superscripting, and Unicode charac-
ters.

The following template shows how the + symbol is included in the title line using its
hexadecimal Unicode value. Also, new data columns are computed for the upper and
lower error bars of the scatter plot, based on the input columns MEANWEIGHT and
STDERR.

proc template;
define statgraph expression;
begingraph;
entrytitle "Errorbars show " {unicode "00Bl1l"x} "2 SE";
layout overlay;
scatterplot x=age y=meanweight /
yerrorlower=eval (meanweight - 2xstderr)
yerrorupper=eval (meanweight + 2*stderr);
seriesplot x=age y=meanweight;
endlayout;
endgraph;
end;
run;

For more information on using expressions and functions, see Chapter 53, “Dynamics
and Macro Variables, Expressions, Functions, Conditional Logic.”

Dynamics and Macro Variables

An extremely useful technique for generalizing templates is to define dynamics
and/or macro variables that resolve when the template is executed. The following
PROC TEMPLATE statements can be used in a DEFINE STATGRAPH block:

15



Fundamentals <+ Overview

Template Statement Purpose Value supplied by ...

DYNAMIC defines dynamic(s) 1) DYNAMIC= suboption of
ODS= option of FILE PRINT,
or 2) DYNAMIC statement of

PROC SGRENDER
MVAR defines macro vari- %LET or CALL SYMPUT( )
able(s)
NMVAR defines macro vari- %LET or CALL SYMPUT( )
able(s) that resolves
to a number(s)
NOTES provides informa- user-supplied text
tion about the graph
definition

The following example defines a template named DYNAMICS that can create a his-
togram and density plot for any variable. It defines both macro variables and dy-
namics for runtime substitution. No data dependent information is hard coded in the
template.

Note. You can initialize macro variables with %LET statements and dynamics with
SGRENDER’s DYNAMIC statement.

proc template;
define statgraph dynamics;
mvar SYSDATE9 SCALE;
nmvar BINS;
dynamic VAR VARLABEL;
begingraph;
entrytitle "Histogram of " VAR;
entrytitle "with Normal Distribution";
layout overlay / xaxisopts=(label=VARLABEL);
histogram VAR / scale=SCALE nbins=BINS;
densityplot VAR / normal();
endlayout;
entryfootnote halign=right "Created: " SYSDATEY9 /
textattrs=GraphValueText;
endgraph;
end;
run;

%$let bins=6;
%let scale=count;
proc sgrender data=sashelp.class
template=dynamics;
dynamic var="Height" varlabel="Height in Inches";
run;

16



Flexible Templates

Histogram of Height
with Normal Distribution

1N

N / j\
0- T T T T T T T T
45 50 55 60 65 70 75 80

Count

Height in Inches
Created: 21MAY2008

For more information on using dynamics and macro variables, see Chapter 53,
“Dynamics and Macro Variables, Expressions, Functions, Conditional Logic.”

Conditional Logic

Using conditional logic, you can create templates that have multiple visual results or
output representations, depending on existing conditions. The evaluation of a logical
expression must generate one or more complete statements (not portions of state-
ments). All conditional logic uses one of the following constructs:

if ( condition ) if ( condition )
statement(s); statement(s);
endif; else
statement(s);
endif;

On the IF statement, condition must be enclosed in parentheses and may be any
standard SAS expression involving arithmetic, logical operators, comparison opera-
tors, Boolean operators, or concatenation operators; the expression can also use SAS
DATA step functions. The expression resolves to a single numeric value, which is
true or false.

In the following example, a histogram is conditionally overlaid with a normal distri-
bution curve, a Kernel Density Estimate distribution curve, both, or neither:

proc template;
define statgraph conditional;
dynamic VAR VARLABEL BINS CURVE;
begingraph;
entrytitle "Histogram of " VAR;
layout overlay / xaxisopts=(label=VARLABEL) ;
histogram VAR / nbins=BINS;

17



Fundamentals <+ Overview

if (upcase(CURVE) in ("ALL" "KERNEL"))
densityplot VAR / kernel() name="k"
legendlabel="Kernel"
lineattrs=(pattern=dash);
endif;

if (upcase(CURVE) in ("ALL" "NORMAL"))
densityplot VAR / normal() name="n"
legendlabel="Normal";
endif;

discretelegend "n" "k";
endlayout;
endgraph;
end;
run;

Note that the legend syntax does not have to be made conditional. At runtime each
plot name in the legend is checked. If the plot does not exist, its name is removed from
the legend name list. If no names appear on the DISCRETELEGEND statement, the
legend “drops out” and the histogram is resized to fill the remaining space.

For more information on using conditional logic, see Chapter 53, “Dynamics and
Macro Variables, Expressions, Functions, Conditional Logic.”

Output

When using the GTL, most of your focus will be on defining template definitions that
produce specific graphs and generate a particular output layout. Ultimately, you will
also need to tailor the graphical environment to get the exact output you desire. The
ODS GRAPHICS statement is available for tailoring the graphical environment, and
ODS styles enable you to manage the output appearance.

ODS GRAPHICS Statement

The ODS GRAPHICS statement is used to modify the environment in which graphics
templates are executed. The ODS GRAPHICS statement is used to control

e whether ODS graphics is enabled
e the type and name of the image created
o the size of the image

e whether features such as scaling and anti-aliasing are used.

The following ODS GRAPHICS statement uses the HEIGHT= and WIDTH= options
to set an aspect ratio for the output image.

ods graphics on / height=175px width=200px;
proc sgrender data=sashelp.class

18



Output

template=scatter;
run;
ods graphics off;

For more information on using the ODS GRAPHICS statement in GTL, see
SAS/GRAPH 9.2: Graph Template Language User’s Guide. For a more complete dis-
cussion of the ODS GRAPHICS statement, see SAS Output Delivery System: User’s
Guide.

ODS Styles

When any graphics template is executed, there is always an ODS style in effect that
governs the appearance of the output. The following ODS statement sends graphics
output to the RTF output destination using the LISTING style:

ods rtf style=listing;

ods graphics on / height=175px width=200px border=off;
proc sgrender data=sashelp.class
template=scatter;
run;
ods graphics off;

ods rtf close;

Support for ODS styles is highly integrated into GTL syntax. By default, the graph-
ical appearance features of most plot and text statements are mapped to correspond-
ing style elements and associated attributes. Because of this, your output tables and
graphs always have a reasonable overall appearance and output for a given ODS des-
tination has a consistent look (for example, table colors and graph colors don’t clash).

The following figures show how a graph’s appearance can be changed by using refer-
ences to style elements to set the graph’s appearance options. This technique permits
changes in graph appearance by style modification instead of graphical template mod-
ification. The graphs in the figures are generated with the following GTL statement:

contourplotparm x=x y=y z=density /
contourtype=fill nhint=9
colormodel=ThreeColorRamp ;

The following style template shows the definition for the ThreeColorRamp style ele-
ment:

style ThreeColorRamp /
endcolor = GraphColors ("gramp3cend")
neutralcolor GraphColors ("gramp3cneutral")
startcolor GraphColors ("gramp3cstart");

19



Fundamentals + Overview

Style=LISTING
0.0018
0.0015
0.0013
E 0.001 &
o 23
S 2
= 00075 &
0.0005
.00025
0
Height
Style=JOURNAL
250 1 0.0018
0.0015
200 1 0.0013
E 0.001 &
[«2] 23
S 2
=z 150 100075 A
0.0005
100 4 .00025
0
T T T T
55 60 65 70 75
Height

For more information on the use of ODS styles in GTL, see SAS/GRAPH 9.2: Graph
Template Language User’s Guide. For a more complete discussion of ODS styles,
see SAS Output Delivery System: User’s Guide. The SAS/STAT User’s Guide also
has a detailed discussion for using styles with ODS Graphics.

20





