
3

C H A P T E R

1
Overview of the SAS/ACCESS
Interface to Relational
Databases

About This Document 3
Methods for Accessing Relational Database Data 3

Selecting a SAS/ACCESS Method 4

Methods for Accessing DBMS Tables and Views 4

SAS/ACCESS LIBNAME Statement Advantages
4

Pass-Through Facility Advantages 5

SAS/ACCESS Features for Common Tasks 5

SAS Views of DBMS Data 6

About This Document
This document provides conceptual, reference, and usage information for the

SAS/ACCESS Interface to relational database management systems (DBMSs). The
information in this document applies generally to all relational DBMSs that
SAS/ACCESS software supports. Because availability and behavior of SAS/ACCESS
features vary from one interface to another, you should use the general information in
this document with the DBMS-specific information in reference section of this document
for your SAS/ACCESS interface.

This document is intended for applications programmers and end users who meet the
following conditions:

� familiar with the basics of their DBMS and its SQL (Structured Query Language)
� know how to use their operating environment
� can use basic SAS commands and statements.

Database administrators might also want to read this document to understand how the
interface is implemented and administered.

Methods for Accessing Relational Database Data
SAS/ACCESS Interface to Relational Databases is a family of interfaces—each of

which is licensed separately—with which you can interact with data in other vendor
databases from within SAS. SAS/ACCESS provides the following methods for accessing
relational DBMS data:

� You can use the LIBNAME statement to assign SAS librefs to DBMS objects such
as schemas and databases. After you associate a database with a libref, you can
use a SAS two-level name to specify any table or view in the database. You can
then work with the table or view as you would with a SAS data set.

4 Selecting a SAS/ACCESS Method � Chapter 1

� You can use the Pass-Through Facility to interact with a data source using its
native SQL syntax without leaving your SAS session. SQL statements are passed
directly to the data source for processing.

� You can use ACCESS and DBLOAD procedures for indirect access to DBMS data.
Although SAS still supports these procedures for database systems and
environments on which they were available for SAS Version 6, they are no longer
the recommended method for accessing DBMS data.

See “Selecting a SAS/ACCESS Method” on page 4 for information about when to use
each method.

Not all SAS/ACCESS interfaces support all of these features. See “Introduction” on
page 65 to determine which features are available in your environment.

Selecting a SAS/ACCESS Method

Methods for Accessing DBMS Tables and Views
In SAS/ACCESS, you can often complete a task in several ways. For example, you

can access DBMS tables and views by using the LIBNAME statement or the
Pass-Through Facility . Before processing complex or data-intensive operations, you
might want to test several different features first to determine the most efficient one for
your particular task.

SAS/ACCESS LIBNAME Statement Advantages

You should use the SAS/ACCESS LIBNAME statement for the fastest and most
direct method of accessing your DBMS data except when you need to use
non-ANSI-standard SQL. ANSI-standard SQL is required when you use the
SAS/ACCESS library engine in the SQL procedure. However, the Pass-Through Facility
accepts all SQL extensions that your DBMS provides.

Here are the advantages of using the SAS/ACCESS LIBNAME statement.
� Significantly fewer lines of SAS code are required to perform operations on your

DBMS. For example, a single LIBNAME statement establishes a connection to
your DBMS, lets you specify how data is processed, and lets you easily view your
DBMS tables in SAS.

� You do not need to know the SQL language of your DBMS to access and
manipulate data on your DBMS. You can use SAS procedures such as PROC SQL
or DATA step programming on any libref that references DBMS data. You can
read, insert, update, delete, and append data, and you can also create and drop
DBMS tables by using SAS syntax.

� The LIBNAME statement gives you more control over DBMS operations such as
locking, spooling, and data type conversion through the use of LIBNAME and data
set options.

� The engine can optimize processing of joins and WHERE clauses by passing them
directly to the DBMS, which takes advantage of the indexing and other processing
capabilities of your DBMS. For more information, see “Overview of Optimizing
Your SQL Usage” on page 37.

Overview of the SAS/ACCESS Interface to Relational Databases � SAS/ACCESS Features for Common Tasks 5

� The engine can pass some functions directly to the DBMS for processing.

Pass-Through Facility Advantages
Here are the advantages of using the Pass-Through Facility.

� You can use Pass-Through Facility statements so the DBMS can optimize queries,
particularly when you join tables. The DBMS optimizer can take advantage of
indexes on DBMS columns to process a query more quickly and efficiently.

� Pass-Through Facility statements let the DBMS optimize queries when queries
have summary functions (such as AVG and COUNT), GROUP BY clauses, or
columns that expressions create (such as the COMPUTED function). The DBMS
optimizer can use indexes on DBMS columns to process queries more rapidly.

� On some DBMSs, you can use Pass-Through Facility statements with SAS/AF
applications to handle transaction processing of DBMS data. Using a SAS/AF
application gives you complete control of COMMIT and ROLLBACK transactions.
Pass-Through Facility statements give you better access to DBMS return codes.

� The Pass-Through Facility accepts all extensions to ANSI SQL that your DBMS
provies.

SAS/ACCESS Features for Common Tasks
The following table contains a list of tasks and the features that you can use to

accomplish them.

Table 1.1 SAS/ACCESS Features for Common Tasks

Task SAS/ACCESS Features

LIBNAME statement*

Pass-Through Facility

Read DBMS
tables or views

View descriptors**

LIBNAME statement*

DBLOAD procedure

Create DBMS
objects, such as
tables

Pass-Through Facility’s EXECUTE statement

LIBNAME statement*

View descriptors**

Update, delete,
or insert rows
into DBMS
tables Pass-Through Facility’s EXECUTE statement

DBLOAD procedure with APPEND option

LIBNAME statement and APPEND procedure*

Append data to
DBMS tables

Pass-Through Facility’s EXECUTE statement

LIBNAME statement and SAS Explorer window*

LIBNAME statement and DATASETS procedure*

LIBNAME statement and CONTENTS procedure*

List DBMS
tables

LIBNAME statement and SQL procedure dictionary tables*

6 SAS Views of DBMS Data � Chapter 1

Task SAS/ACCESS Features

LIBNAME statement and SQL procedure’s DROP TABLE statement*

LIBNAME statement and DATASETS procedure’s DELETE statement*

DBLOAD procedure with SQL DROP TABLE statement

Delete DBMS
tables or views

Pass-Through Facility’s EXECUTE statement

* LIBNAME statement refers to the SAS/ACCESS LIBNAME statement.
** View descriptors refer to view descriptors that are created in the ACCESS procedure.

SAS Views of DBMS Data
SAS/ACCESS enables you to create a SAS view of data that exists in a relational

database management system. A SAS data view defines a virtual data set that is
named and stored for later use. A view contains no data, but rather describes data that
is stored elsewhere. There are three types of SAS data views:

� DATA step views are stored, compiled DATA step programs.
� SQL views are stored query expressions that read data values from their

underlying files, which can include SAS data files, SAS/ACCESS views, DATA step
views, other SQL views, or relational database data.

� SAS/ACCESS views (also called view descriptors) describe data that is stored in
DBMS tables. This is no longer a recommended method for accessing relational
DBMS data. Use the CV2VIEW procedure to convert existing view descriptors into
SQL views.

You can use all types of views as inputs into DATA steps and procedures. You can
specify views in queries as if they were tables. A view derives its data from the tables
or views that are listed in its FROM clause. The data accessed by a view is a subset or
superset of the data in its underlying table(s) or view(s).

You can use SQL views and SAS/ACCESS views to update their underlying data if
the view is based on only one DBMS table or if it is based on a DBMS view that is
based on only one DBMS table and if the view has no calculated fields. You cannot use
DATA step views to update the underlying data; you can use them only to read the data.

Your options for creating a SAS view of DBMS data are determined by the
SAS/ACCESS feature that you are using to access the DBMS data. The following table
lists the recommended methods for creating SAS views.

Table 1.2 Creating SAS Views

Feature You Use to Access DBMS Data SAS View Technology You Can Use

SAS/ACCESS LIBNAME statement SQL view or DATA step view of the DBMS table

SQL Procedure Pass-Through Facility SQL view with CONNECTION TO component

