
3

C H A P T E R

1
Getting Started with SAS in UNIX
Environments

Starting SAS Sessions in UNIX Environments 4
Invoking SAS 4

SAS Invocation Scripts 5

SAS Configuration Files 5

Regenerating SAS Invocation Scripts 5

Syntax of the SAS Command 5
Example: Invoke an Interactive SAS Session 6

What If SAS Does Not Start? 6

Running SAS in a Foreground or Background Process 6

Selecting a Method of Running SAS in UNIX Environments 7

SAS Windowing Environment in UNIX Environments 7

Introduction to the SAS Windowing Environment 7
What Is the Explorer Window? 8

What Are the Program Editor, Output, and Log Windows? 8

Invoking SAS in the Windowing Environment 8

Exiting SAS in the Windowing Environment 9

Interactive Line Mode in UNIX Environments 9
Introduction to Interactive Line Mode 9

Invoking SAS in Interactive Line Mode 9

Exiting SAS in Interactive Line Mode 9

Batch Mode in UNIX Environments 10

Introduction to Running SAS in Batch Mode 10
Invoking SAS in Batch Mode 10

Submitting a Program to the Batch Queue 10

Writing Data from an External File Using UNIX Pipes 11

Running SAS on a Remote Host in UNIX Environments 11

Introduction to Running SAS on a Remote Host 11

Steps for Running SAS on a Remote Host 11
Preventing SAS from Attempting to Connect to the X Server 12

Troubleshooting Connection Problems 12

X Command Line Options 13

How to Specify X Window System Options 13

Supported X Command Line Options 13
Unsupported X Command Line Options 14

Executing Operating System Commands from Your SAS Session 14

Deciding Whether to Run an Asynchronous or Synchronous Task 14

Executing a Single UNIX Command 15

Example 1: Executing a UNIX Command by Using the X Statement 15
Example 2: Executing a UNIX Command by Using the CALL SYSTEM Routine 15

How SAS Processes a Single UNIX Command 15

Executing Several UNIX Commands 16

4 Starting SAS Sessions in UNIX Environments � Chapter 1

Example: Executing Several Commands Using the %SYSEXEC Macro 16
How SAS Processes Several UNIX Commands 16

Changing the File Permissions for Your SAS Session 16

Executing X Statements in Batch Mode 17

Customizing Your SAS Registry Files 17

Customizing Your SAS Session by Using System Options 18
Ways to Customize Your SAS Session 18

Ways to Specify a SAS System Option 18

Overriding the Default Value for a System Option 18

How SAS Processes System Options Set in One Place 19

How SAS Processes System Options Set in Multiple Places 20

Order of Precedence for Processing System Options 20
Customizing Your SAS Session by Using Configuration and Autoexec Files 20

Customizing Your SAS Session 20

Introduction to Configuration and Autoexec Files 21

Differences between Configuration and Autoexec Files 21

Creating a Configuration File 21
Order of Precedence for Processing SAS Configuration Files 22

Specifying a Configuration File for SAS to Use 22

Defining Environment Variables in UNIX Environments 23

What Is a UNIX Environment Variable? 23

How to Define an Environment Variable for Your Shell 23
Bourne and Korn Shells 23

C Shell 24

Displaying the Value of an Environment Variable 24

Determining the Completion Status of a SAS Job in UNIX Environments 24

Exiting or Interrupting Your SAS Session in UNIX Environments 25

Methods for Exiting SAS 25
Methods for Interrupting or Terminating SAS 25

Using Control Keys 25

Using the SAS Session Manager 26

Using the UNIX kill Command 26

Messages in the SAS Console Log 27
Ending a Process That Is Running as a SAS Server 27

Ending a SAS Process on a Relational Database 27

How to Interrupt a SAS Process 27

Example: Interrupt Menu for PROC SQL 28

How to Terminate a SAS Process 29
What Happens When You Interrupt a SAS Process and the Underlying DBMS Process 30

Starting SAS Sessions in UNIX Environments

Invoking SAS
A SAS session is invoked using a link in the !SASROOT directory. Your UNIX

administrator can add this link to the list of commands for your operating environment.
Ask your system administrator for the command that invokes SAS at your site. At

many sites, the command to invoke SAS is sas, but a different command might have
been defined during the SAS installation process at your site. This documentation
assumes that SAS is invoked by the sas command.

Getting Started with SAS in UNIX Environments � Syntax of the SAS Command 5

Note: Before you start your SAS session, review the different techniques for
interrupting and terminating your SAS session (see “Exiting or Interrupting Your SAS
Session in UNIX Environments ”on page 25). Also, if you cannot stop your SAS session,
contact your system administrator. �

SAS Invocation Scripts
SAS is invoked by scripts that are located in the !SASROOT/bin directory. A SAS

invocation script is created for each language that is installed. The invocation scripts
are named using the language codes of the installed language. For example, sas_en
invokes the English version of SAS. All languages are installed in all locations.

For more information about setting up SAS, refer to the installation documentation
for the UNIX environment.

SAS Configuration Files
SAS creates a separate configuration file for each language that is installed. The

language-specific configuration files have the form
!SASROOT/nls/<language>/sasv9.cfg for each language. An additional configuration
file that is language independent is !SASROOT/sasv9.cfg. This master configuration
file in !SASROOT is used by all languages in addition to the language-specific files in
!SASROOT/nls/<language>/. You can modify these configuration files to meet your
needs. For information about how to customize SAS configuration files, see
“Customizing Your SAS Session by Using Configuration and Autoexec Files” on page 20.

Regenerating SAS Invocation Scripts
The SAS invocation scripts that exist in !SASROOT/bin should not be modified. SAS

Setup enables you to regenerate the default SAS invocation scripts that are located in
!SASROOT/bin. To regenerate the invocation scripts, perform the following steps:

1 Run SAS Setup from !SASROOT/sassetup. Make sure that you have the
appropriate privilege to update files in SASROOT.

2 Select Run Setup Utilities from the SAS Setup Primary Menu.

3 Select Perform SAS Software Configuration.

4 Select Recreate the SAS Invocation Scripts.

Syntax of the SAS Command
The general form of the SAS command is as follows:

sas <-option1…-option-n> <filename>

You can use these arguments with the SAS command:

-option1 ... -option-n
specifies SAS system options to configure your session or X command line options.
See Chapter 18, “System Options under UNIX,” on page 339 and “X Command
Line Options” on page 13 for more information. If you omit any options (either on
the command line or in the configuration file), the SAS (or site-specific) default
options are in effect.

6 What If SAS Does Not Start? � Chapter 1

filename
specifies the name of the file containing the SAS program to be executed.
Specifying a filename on the SAS command invokes a batch SAS session. Omit the
filename to begin an interactive session.

If the file is not in the current directory, specify its full pathname.

Example: Invoke an Interactive SAS Session
To invoke an interactive SAS session, without specifying any SAS system options,

enter

sas

The execution mode will depend on your default settings. For more information, see
“Selecting a Method of Running SAS in UNIX Environments” on page 7.

To specify the NODATE and LINESIZE system options, you could enter

sas -nodate -linesize 80

What If SAS Does Not Start?
If SAS does not start, the SAS log might contain error messages that explain the

failure. However, error messages that SAS issues before the SAS log is initialized are
written to the SAS console log.

Under UNIX, the STDOUT fileref specifies the location of the console log.

Running SAS in a Foreground or Background Process
UNIX is a multitasking operating system, so you can run multiple processes at the

same time. For example, you can have one process running in the foreground and three
in the background.

A foreground process executes while you wait for the prompt; that is, you cannot
execute additional commands while the current command is being executed. After you
enter a command, the shell starts a process to execute the command. After the system
executes the command, the shell displays the prompt and you can enter additional
commands. The following is an example of SAS executing as a foreground process:

sas

A background process executes independently of the shell. After you enter a
command, the shell starts a process to execute the command, and then issues the
system prompt. You can enter other commands or start other background processes
without waiting for your initial command to execute. The following is an example of the
command that is used to execute a background process:

sas&

Note: Both the C shell and the Korn shell include commands that enable you to
move jobs among three possible states: running in the foreground, running in the
background, and suspended. �

Getting Started with SAS in UNIX Environments � Introduction to the SAS Windowing Environment 7

Selecting a Method of Running SAS in UNIX Environments
You can run SAS in the following modes:
� SAS windowing environment
� interactive line mode
� batch mode

Ask your UNIX system administrator which interface or mode of operation is the
default at your site.

SAS Windowing Environment in UNIX Environments

Introduction to the SAS Windowing Environment
You interact with SAS through windows using the keyboard, mouse, menus, and

icons. The windowing environment includes, but is not limited to, the Explorer, Program
Editor, Output, Log, and Results windows. The following display shows the Explorer,
Output, Log, and Program Editor windows. The ToolBox window is also displayed.

Display 1.1 Windows in the SAS Windowing Environment

Your SAS session might default to the windowing environment interface. If you want
to use the windowing environment, you can start your SAS session as a foreground
process, or as a background process by adding an ampersand (&) to your SAS command
line. See “Running SAS in a Foreground or Background Process” on page 6 for an
example of these SAS commands.

For more information about using the windowing environment, see Chapter 7,
“Working in the SAS Windowing Environment,” on page 137.

Note: If you are not using an X display, then you can invoke SAS in interactive line
mode by using the NODMS system option. For more information, see “Interactive Line
Mode in UNIX Environments” on page 9. �

8 Invoking SAS in the Windowing Environment � Chapter 1

What Is the Explorer Window?
Explorer is a windowing environment for managing basic SAS software tasks such as

viewing and managing data sets, libraries, members, applications, and output. The SAS
Explorer is a central access point from which you can do the following:

� manipulate SAS data through a graphical interface

� access the Program Editor, Output, and Log windows (as well as other windows)

� view the results of SAS procedure output in the Results window

� import files into SAS

What Are the Program Editor, Output, and Log Windows?
The Program Editor, Output, and Log windows enable you to edit and execute SAS

programs and display output. For more information about these windows, see the
online SAS Help and Documentation.

Invoking SAS in the Windowing Environment
You can use the following commands to specify which windows open when a SAS

session starts.

� You can open the Program Editor, Output, and Log windows by specifying the
DMS system option:

sas -dms

� You can open the Program Editor, Output, Log, and Results windows, as well as
the Explorer window, by specifying the DMSEXP system option:

sas -dmsexp

� You can open only the Explorer window by specifying the EXPLORER system
option:

sas -explorer

The default specification for invoking SAS is sas -dms -dmsexp. This command
displays the Program Editor, Output, Log, and Results windows as well as the Explorer
window. If you invoke SAS without the -dmsexp option, the Explorer window does not
display.

Getting Started with SAS in UNIX Environments � Exiting SAS in Interactive Line Mode 9

SAS also opens a toolbox from which you can open additional SAS windows. For
more information about the toolbox, see Chapter 7, “Working in the SAS Windowing
Environment,” on page 137.

Exiting SAS in the Windowing Environment
To end your SAS session, enter the BYE or ENDSAS command in the command

window, or select File � Exit from the drop-down menu of the SAS session that you
want to end.

Interactive Line Mode in UNIX Environments

Introduction to Interactive Line Mode
If you are not using an X display, you can invoke SAS in interactive line mode by

using the NODMS system option.
You enter SAS statements line by line in response to prompts issued by SAS. SAS

reads the source statements from the terminal as you enter them. DATA and PROC
steps execute when one of the following occurs:

� a RUN, QUIT, or DATALINES statement is entered
� another DATA or PROC statement is entered
� the ENDSAS statement is entered

To use interactive line mode, you must run SAS in the foreground.

Invoking SAS in Interactive Line Mode
To start an interactive line mode session, invoke SAS with the NODMS or

NODMSEXP system option:

sas -nodms
sas -nodmsexp

By default, SAS log and procedure output (if any) appear on your display as each
step executes.

You can also invoke SAS in interactive line mode and pass parameters to it:

sas -sysparm ’A B C’ progparm.sas

The value A B C is assigned to the SYSPARM macro variable, which can be read by
the program progparm.sas.

After you invoke SAS, the 1? prompt appears, and you can begin entering SAS
statements. After you enter each statement, a line number prompt appears.

Exiting SAS in Interactive Line Mode
You can end the session by pressing the EOF key (usually CTRL+D; see “Using

Control Keys” on page 25) or by issuing the ENDSAS statement:

endsas;

The session ends after all SAS statements have executed.

10 Batch Mode in UNIX Environments � Chapter 1

Batch Mode in UNIX Environments

Introduction to Running SAS in Batch Mode
To run SAS in batch mode, you specify your SAS program name in the SAS

invocation command. You can run batch mode in the foreground, in the background by
specifying an ampersand at the end of the SAS command, or submit your application to
the batch queue by using the batch, at, nohup, or cron UNIX commands. (For more
information, refer to the UNIX man pages for the batch, at, nohup, or cron
commands.) If you start your application with one of these UNIX commands and you
log off of your system, then your application will complete execution. If your application
contains statements that start an interactive procedure such as FSEDIT, then you need
to run your batch application in the foreground.

Invoking SAS in Batch Mode
To invoke SAS in batch mode, you must specify a filename in the SAS command. For

example, if weekly.sas is the file that contains the SAS statements to be executed, and
you want to specify the NODATE and LINESIZE system options, you would enter the
following command:

sas weekly.sas -nodate -linesize 90

The command would run the program in the foreground. If you want to run the
program in the background, add the ampersand to the end of the command:

sas weekly.sas -nodate -linesize 90 &

SAS creates a .log file and a .lst file in the current directory that contains the log and
procedure output.

Submitting a Program to the Batch Queue
To submit your program to the batch queue, you can use the batch, at, nohup, or

cron commands. For example, you could submit weekly.sas from your shell prompt as
follows:

$ at 2am
sas weekly.sas
<control-D>
warning: commands will be executed using /usr/bin/sh
job 8400.a at Wed Jun 11 02:00:00 2008
$

If you create a file that contains the SAS command (for example, cmdfile.sh) that is
necessary to run your program, then you can enter the following command at your shell
prompt:

at 2am < cmdfile.sh

SAS sends the output to a file that has the same name as the program. The output file
has an extension of .lst. The log file writes to a file with an extension of .log. Both of
these files are written to your current directory. Refer to the UNIX man pages for these
commands for more information on submitting jobs to the batch queue. For more

Getting Started with SAS in UNIX Environments � Steps for Running SAS on a Remote Host 11

information about routing output, see Chapter 4, “Printing and Routing Output,” on
page 89.

If you submit a file in batch mode, then a line that is greater than 256 bytes will be
truncated. An explicit message about this truncation is written to the SAS log.

Note: If your program contains statements that start an interactive procedure such
as the FSEDIT procedure, you will need to run your program as a foreground process. �

Writing Data from an External File Using UNIX Pipes
You can use a UNIX pipe to write data from an external file to a SAS program. For

example, suppose that your data resides in the external file mydata and your SAS
program myprog.sas includes this statement:

infile stdin;

Issue this command to have myprog.sas read data from the external file mydata:

cat mydata | sas myprog.sas

For information about using external files, see Chapter 3, “Using External Files and
Devices,” on page 67. See “File Descriptors in the Bourne and Korn Shells” on page 78
for another way to have a SAS program read data from an external file.

Running SAS on a Remote Host in UNIX Environments

Introduction to Running SAS on a Remote Host
When you invoke SAS in an interactive mode, you can run SAS on your local host, or

you can run SAS on a remote host and interact with the session through an X server
running on your workstation. The server provides the display services that are needed
for the X Window System.

Most of the time, the server name is derived from the computer’s name. For example,
if your computer is named green, the name of the server is green:0.0. In most cases,
the X server will already be running when you log in. If you need to start your server
manually, consult the documentation that is provided with your X Window System
software.

To run SAS on a remote host, you must tell SAS which display to use by either setting
the DISPLAY environment variable or specifying the -display X command line option.

Steps for Running SAS on a Remote Host
To run SAS on a remote host, follow these steps:
1 Make sure that the clients running on the remote host have permission to connect

to your server. With most X servers, authorization is controlled by using an
.Xauthority file that is located in the user’s home directory. Additionally, the
xhost command can be used to circumvent authority. To use the xhost client to
permit all remote hosts to connect to your server, enter the following command at
the system prompt on the system that is running your X server:

xhost +

If your system does not control access with the xhost client, consult your
system documentation for information on allowing remote access.

12 Preventing SAS from Attempting to Connect to the X Server � Chapter 1

For information about editing and displaying authorization information, see the
UNIX man page for xauth.

2 Log in to the remote system, or use a remote shell.
3 Identify your server as the target display for X clients that are run on the remote

host. You can identify your server in one of two ways:

a Set the DISPLAY environment variable. In the Bourne and Korn shells, you
can set the DISPLAY variable as follows:

DISPLAY=green:0.0
export DISPLAY

In the Korn shell, you can combine these two commands:

export DISPLAY=green:0.0

In the C shell, you must use the UNIX setenv command:

setenv DISPLAY green:0.0

The DISPLAY variable will be used by all X clients on the system.

Note: To determine the shell for your current system, type ps at the UNIX
command prompt or check the value of the SHELL environment variable. �

b Use the DISPLAY system option. For example:

sas -display green:0.0

If you have trouble establishing a connection, you can try using an IP address
instead of a display name, for example:

-display 10.22.1.1:0.0

Note: This option is a command line option for the X Window System, not
for SAS. Specifying this option in a SAS configuration file or in the
SASV9_OPTIONS environment variable might cause problems when you are
running other interfaces. �

Preventing SAS from Attempting to Connect to the X Server
To prevent SAS from attempting to connect to the X server, unset the DISPLAY

environment variable and use the -noterminal SAS option on the command line. The
-noterminal option specifies that you do not want to display the SAS session. You
must specify this option to generate a graph in batch mode. You must also specify this
option when you use PROC IMPORT and PROC EXPORT. For more information, see
"Running SAS/GRAPH Programs" in SAS/GRAPH: Reference.

Troubleshooting Connection Problems
If SAS cannot establish a connection to your display, it prints a message that

indicates the nature of the problem and then terminates. An example of a message that
you might receive is the following:

ERROR: The connection to the X display server could not be made.
Verify that the X display name is correct, and that you have
access authorization. See the online Help for more information

Getting Started with SAS in UNIX Environments � Supported X Command Line Options 13

about connecting to an X display server.

Make sure that you have brought up the SAS session correctly. You might need to
use the xhost client (enter xhost +) or some other method to change display
permissions. You can also specify the NODMS system option when you invoke SAS to
bring your session up in line mode.

If you are unable to invoke SAS, try running another application such as xclock. If
you cannot run the application, you should contact your UNIX system administrator for
assistance.

X Command Line Options

How to Specify X Window System Options
When you invoke some X clients, such as SAS, you can use command line options

that are passed to the X Window System. In general, you should specify X Window
System options after SAS options on the command line.

Supported X Command Line Options
The following list describes the X command line options that are available when you

invoke a SAS session from the command prompt.

-display host:server.screen
specifies the name or IP address of the terminal on which you want to display the
SAS session. For example, if your display node is wizard whose IP address is
10.22.1.1:0.0, you might enter

-display wizard:0.0

or

-display 10.22.1.1:0.0

-name instance-name
reads the resources in your SAS resource file that begin with instance-name. For
example, -name MYSAS reads the resources that begin with MYSAS, such as

MYSAS.dmsfont: Cour14
MYSAS.defaultToolbox: True

-title string
specifies a title for your SAS session window. Titles can contain up to 64
characters. Window titles are displayed in the case in which they are entered,
which can be lower case, mixed case, or upper case. To use multiple words in the
title, enclose the words in single or double quotation marks. For example,
-title MYSAS produces MYSAS:Explorer in the title bar of the Explorer window.

14 Unsupported X Command Line Options � Chapter 1

-xrm string
specifies a resource to override any defaults. For example, the following resource
turns off the Confirm dialog box when you exit SAS:

-xrm ’SAS.confirmSASExit: False’

Unsupported X Command Line Options
SAS does not support the following X command line options because their

functionality is not applicable to SAS or is provided by SAS resources. Refer to
“Overview of X Resources” on page 163 for more information on SAS resources.

-geometry
Window geometry is specified by the SAS.windowHeight, SAS.windowWidth,
SAS.maxWindowHeight, and SAS.maxWindowWidth resources.

-background, -bg
These options are ignored.

-bordercolor, -bd
These options are ignored. Refer to “Defining Colors and Attributes for Window
Elements (CPARMS)” on page 197 for a description of specifying the color of
window borders.

-borderwidth, -bw
These options are ignored. The width of window borders is set by SAS.

-foreground, -fg
These options are ignored.

-font, -fn
SAS fonts are specified by the SAS.DMSFont, SAS.DMSboldFont, and
SAS.DMSfontPattern resources.

-iconic
This option is ignored.

-reverse, -rv, +rv
These options are ignored. Refer to “Defining Colors and Attributes for Window
Elements (CPARMS)” on page 197 for a description of specifying reverse video.

-selectionTimeout
Timeout length is specified by the SAS.selectTimeout resource.

-synchronous, +synchronous
The XSYNC command controls the X synchronization.

-xn1language
This option is ignored.

Executing Operating System Commands from Your SAS Session

Deciding Whether to Run an Asynchronous or Synchronous Task
You can execute UNIX commands from your SAS session either asynchronously or

synchronously. When you run a command as an asynchronous task, the command
executes independently of all other tasks that are currently running. To run a

Getting Started with SAS in UNIX Environments � Executing a Single UNIX Command 15

command asynchronously, you must use the SYSTASK statement. See “SYSTASK
Statement” on page 332 for information about executing commands asynchronously.

When you execute one or more UNIX commands synchronously, then you must wait
for those commands to finish executing before you can continue working in your SAS
session. You can use the CALL SYSTEM routine, %SYSEXEC macro program
statement, X statement, and X command to execute UNIX commands synchronously.
The CALL SYSTEM routine can be executed with a DATA step. The %SYSEXEC macro
statement can be used inside macro definitions, and the X statement can be used
outside of DATA steps and macro definitions. You can enter the X command on any SAS
command line. See “CALL SYSTEM Routine” on page 259 and “Macro Statements in
UNIX Environments” on page 285 for more information.

Executing a Single UNIX Command
To execute only one UNIX command, you can enter the X command, X statement,

CALL SYSTEM routine, or %SYSEXEC macro statement as follows:

X command

X command;

CALL SYSTEM (’command’);

%SYSEXEC command;

Note: When you use the %SYSEXEC macro statement, if the UNIX command you
specify includes a semicolon, you must enclose the UNIX command in a macro quoting
function. Refer to SAS Macro Language: Reference for more information about quoting
functions. �

Example 1: Executing a UNIX Command by Using the X Statement
You can use the X statement to execute the ls UNIX command (in a child shell) as

follows:

x ls -l;

Example 2: Executing a UNIX Command by Using the CALL SYSTEM Routine
Inside a DATA step, you can use the CALL SYSTEM routine to execute a cd

command, which will change the current directory of your SAS session:

data _null_;
call system (’cd /users/smith/report’);
run;

The search for any relative (partial) filenames during the SAS session will now begin in
the /users/smith/report directory. When you end the session, your current directory
will be the directory in which you started your SAS session.

For more information about the CALL SYSTEM routine, see “CALL SYSTEM
Routine” on page 259.

How SAS Processes a Single UNIX Command
When you specify only one command, SAS checks to see whether the command is cd,

pwd, setenv, or umask and, if so, executes the SAS equivalent of these commands. The
SAS cd and pwd commands are equivalent to their Bourne shell counterparts. The SAS

16 Executing Several UNIX Commands � Chapter 1

setenv command is equivalent to its C shell namesake. The SAS umask command is
equivalent to the numeric mode of the umask command supported by the Bourne, Korn,
and C shells. These four commands are built into SAS because they affect the
environment of the current SAS session. When executed by SAS software, they affect
only the SAS environment and the environment of any shell programs started by the
SAS session. They do not affect the environment of the shell program that began your
SAS session.

If the command is not cd, pwd, or setenv, SAS starts a shell in which it executes the
command that you specified. The shell that is used depends on the SHELL
environment variable. If the command is umask, but you do not specify a mask, then
SAS passes the command to the shell in which the current SAS session was started.
For more information about the umask command, see “Changing the File Permissions
for Your SAS Session” on page 16.

Executing Several UNIX Commands
You can also use the X command, X statement, CALL SYSTEM routine, and

%SYSEXEC macro statement to execute several UNIX commands:

X ’command-1;...command-n’

X ’command-1;...command-n’;

CALL SYSTEM (’command-1;...command-n’);

%SYSEXEC quoting-function(command-1;...command-n);

Separate each UNIX command with a semicolon (;).

Note: When you use the %SYSEXEC macro statement to execute several UNIX
commands, because the list of commands uses semicolons as separators, you must
enclose the string of UNIX commands in a macro quoting function. Refer to SAS Macro
Language: Reference for more information on quoting functions. �

Example: Executing Several Commands Using the %SYSEXEC Macro
The following code defines and executes a macro called pwdls that executes the pwd

and ls -l UNIX commands:

%macro pwdls;
%sysexec %str(pwd;ls -l);
%mend pwdls;
%pwdls;

This example uses %str as the macro quoting function.

How SAS Processes Several UNIX Commands
When you specify more than one UNIX command (that is, a list of commands

separated by semicolons), SAS passes the entire list to the shell and does not check for
the cd, pwd, setenv, or umask commands, as it does when a command is specified by
itself (without semicolons).

For more information about how SAS processes the cd, pwd, setenv, or umask
commands, see “How SAS Processes a Single UNIX Command” on page 15.

Changing the File Permissions for Your SAS Session
At invocation, a SAS session inherits the file permissions from the parent shell. Any

file that you create will inherit these permissions. If you want to change or remove file

Getting Started with SAS in UNIX Environments � Customizing Your SAS Registry Files 17

permissions from within SAS, issue the following command in the X statement:umask.
The umask command applies a new “mask” to a file, that is, it sets new file permissions
for any new file that you create. In this way, the umask command can provide file
security by restricting access to new files and directories for the current process.

The default value for umask is 000, but you can set different values for umask in your
.kshrc and .cshrc files. These values affect all child processes that are executed in the
shell. Any subsequent file that you create during the current SAS session will inherit
the permissions that you specified. The permissions of a file created under a given
mask are calculated in octal representation.

Note: The value of a mask can be either numeric or symbolic. For more information
about this command, see the UNIX man page for umask. �

Executing X Statements in Batch Mode
If you run your SAS program in batch mode and if your operating system supports

job control, the program will be suspended when an X statement within the program
needs input from the terminal.

If you run your SAS program from the batch queue by submitting it with the at or
batch commands, SAS processes any X statements as follows:

� If the X statement does not specify a command, SAS ignores the statement.
� If any UNIX command in the X statement attempts to get input, it receives an

end-of-file (standard input is set to /dev/null).
� If any UNIX command in the X statement writes to standard output or standard

error, the output is mailed to you unless it was previously redirected.

Customizing Your SAS Registry Files
SAS registry files store information about the SAS session. The SAS registry is the

central storage area for configuration data for SAS. The following list identifies some of
the data that is stored in the registry:

� the libraries and file shortcuts that SAS assigns at start–up. These shortcuts
could include secure information, such as your password.

� the printers that are defined for use and their print setup.
� configuration data for various SAS products.

The Sasuser registry file (called regstry.sas7bitm) contains your user defaults. These
registry entries can be customized by using the SAS Registry Editor or by using PROC
REGISTRY. For more information, see “The SAS Registry” in SAS Language Reference:
Concepts.

CAUTION:
For experienced users only. Registry customization is generally performed by
experienced SAS users and system administrators. �

18 Customizing Your SAS Session by Using System Options � Chapter 1

Customizing Your SAS Session by Using System Options

Ways to Customize Your SAS Session
You can customize your SAS environment in several ways. One way is through the

use of SAS system options. For information about other ways to customize a SAS
session, see Chapter 8, “Customizing the SAS Windowing Environment,” on page 161.

Ways to Specify a SAS System Option
SAS options can be specified in one or more ways:

� in a configuration file

� in the SASV9_OPTIONS environment variable

� in the SAS command

� in an OPTIONS statement (either in a SAS program or an autoexec file)

� in the System Options window

Table 18.1 on page 342 shows where each SAS system option can be specified.
Any options that do not affect the initialization of SAS, such as CENTER and

NOCENTER, can be specified and changed at any time.
Some options can be specified only in a configuration file, in the SASV9_OPTIONS

variable, or in the SAS command. These options determine how SAS initializes its
interfaces with the operating system and the hardware; they are often called
configuration options. After you start a SAS session, these options cannot be changed.
Usually, configuration files specify options that you would not change very often. In
those cases when you need to change an option just for one job, specify the change in
the SAS command.

Overriding the Default Value for a System Option
The default values for SAS system options will be appropriate for many of your SAS

programs. However, you can override a default setting using one or more of the
following methods:

configuration file
Modify your current configuration file (see “Order of Precedence for Processing
SAS Configuration Files” on page 22) or create a new configuration file. Specify
SAS system options in the file by preceding each with a hyphen. For ON/OFF
options, just list the keyword corresponding to the appropriate setting. For options
that accept values, list the keyword identifying the option followed by the option
value. All SAS system options can appear in a configuration file.

For example, a configuration file might contain these option specifications:

-nocenter
-verbose
-linesize 64

SASV9_OPTIONS environment variable
Specify SAS system options in the SASV9_OPTIONS environment variable before
you invoke SAS. See “Defining Environment Variables in UNIX Environments” on
page 23.

Getting Started with SAS in UNIX Environments � How SAS Processes System Options Set in One Place 19

Settings that you specify in the SASV9_OPTIONS environment variable affect
SAS sessions that are started when the variable is defined.

For example, in the Korn shell, you would use:

export SASV9_OPTIONS=’-fullstimer -nodate’

SAS command
Specify SAS system options in the SAS command. Precede each option with a
hyphen:

sas -option1 -option2...

For ON/OFF options, list the keyword corresponding to the appropriate setting.
For options that accept values, list the keyword that identifies the option, followed
by the option value. For example,

sas -nodate -work mywork

Settings that you specify in the SAS command last for the duration of the SAS
session or, for those options that can be changed within the session, until you
change them. All options can be specified in the SAS command.

OPTIONS statement within a SAS session
Specify SAS system options in an OPTIONS statement at any point within a SAS
session. The options are set for the duration of the SAS session or until you
change them. When you specify an option in the OPTIONS statement, do not
precede its name with a hyphen (-). If the option has an argument, use = after the
option name.

For example,

options nodate linesize=72;
options editcmd=’/usr/bin/xterm -e vi’;

Refer to SAS Language Reference: Dictionary for more information about the
OPTIONS statement. Not all options can be specified in the OPTIONS statement.
To find out about a specific option, look up its name in Table 18.1 on page 342.

OPTIONS statement in an autoexec file
Specify SAS system options in an OPTIONS statement in an autoexec file. For
example, your autoexec file could contain the following statements:

options nodate pagesize=80;
filename rpt ’/users/myid/data/report’;

System Options window
Change the SAS system options from within the System Options window.

In general, use quotation marks to enclose filenames and pathnames specified in the
OPTIONS statement or the System Options window. Do not use quotation marks
otherwise. Any exceptions are discussed under the individual option. You can use the
abbreviations listed in Table 2.6 on page 51 to shorten the filenames and pathnames
you specify.

How SAS Processes System Options Set in One Place
If the same option is set more than once within the SAS command, a configuration

file, or the SASV9_OPTIONS environment variable, only the last setting is used; the
others are ignored. For example, the DMS option is ignored in the following SAS
command:

sas -dms -nodms

20 How SAS Processes System Options Set in Multiple Places � Chapter 1

The DMS option is also ignored in the following configuration file:

-dms
-linesize 80
-nodms

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, or
SASHELP system options more than one time, the last value that is specified is the
value that SAS uses. If you want to add additional pathnames to the pathnames
already specified by one of these options, you must use the APPEND or INSERT system
options. For more information, see “APPEND System Option” on page 355 and
“INSERT System Option” on page 377.

How SAS Processes System Options Set in Multiple Places
When the same option is set in more than one place, the most recent specification is

used. The following places are listed in order of precedence. For example, a setting
made in the System Options window or OPTIONS statement will override any other
setting, but if you set a system option using the SASV9_OPTIONS environment
variable, then this option will override only the setting for the same system option in
your configuration file.

Order of Precedence for Processing System Options
The precedence for processing system options is as follows:

1 System Options window or OPTIONS statement (from a SAS session or job).

2 autoexec file that contains an OPTIONS statement (after SAS initializes).

3 SAS command.

4 SASV9_OPTIONS environment variable.

5 configuration files (before SAS initializes). For more information, see “Order of
Precedence for Processing SAS Configuration Files” on page 22.

For example, if a configuration file specifies NOSTIMER, you can override the setting
in the SAS command by specifying –FULLSTIMER.

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, or
SASHELP system option more than one time, the last value that is specified is the
value that SAS uses. If you want to add additional pathnames to the pathnames
already specified by one of these options, you must use the APPEND or INSERT system
options to add the new pathname. See “APPEND System Option” on page 355 and
“INSERT System Option” on page 377 for more information.

Customizing Your SAS Session by Using Configuration and Autoexec
Files

Customizing Your SAS Session
You can customize your SAS environment in several ways. To customize your SAS

environment at the point of invocation, you can use configuration and autoexec files. For
information about how to customize a SAS session using the windowing environment,
see Chapter 8, “Customizing the SAS Windowing Environment,” on page 161.

Getting Started with SAS in UNIX Environments � Creating a Configuration File 21

Introduction to Configuration and Autoexec Files
You can customize your SAS session by defining configuration and autoexec files. You

can use these files to specify system options and to execute SAS statements
automatically whenever you start a SAS session. (SAS system options control many
aspects of your SAS session, including output destinations, the efficiency of program
execution, and the attributes of SAS files and libraries. Refer to SAS Language
Reference: Dictionary for a complete description of SAS system options.)

The configuration file (for SAS 9.2) is typically named sasv9.cfg, and the autoexec file
is named autoexec.sas. These files typically reside in the directory where SAS was
installed. By default, this directory is the !SASROOT directory.

You can have customized configuration and autoexec files in your user home
directory. If you do, then SAS will use the customizations specified in these files when
you start a SAS session. For more information about the order of precedence SAS uses
when processing configuration files, see “Order of Precedence for Processing SAS
Configuration Files” on page 22.

SAS system options can be restricted by a UNIX system administrator, so that once
they are set by the administrator, they cannot be changed by a user. A system option
can be restricted globally, by group, and by user. For more information, see the
configuration guide for the UNIX environment on support.sas.com, and see in SAS
Language Reference: Dictionary.

Differences between Configuration and Autoexec Files
The differences between configuration files and autoexec files are as follows:

� Configuration files can contain only SAS system option settings, while autoexec
files can contain any valid SAS statement. For example, you might want to create
an autoexec file that includes an OPTIONS statement to change the default values
of various system options and LIBNAME and FILENAME statements for the SAS
libraries and external files that you use most often.

� Configuration files are processed before SAS initializes, while autoexec files are
processed immediately after SAS initializes but before it processes any source
statements. An OPTIONS statement in an autoexec file is equivalent to
submitting an OPTIONS statement as the first statement of your SAS session.

Creating a Configuration File
To create a configuration file, follow these steps:

1 Use a text editor to write the SAS system options into a UNIX file. Save the file as
either sasv9.cfg or .sasv9.cfg. (See “Order of Precedence for Processing SAS
Configuration Files” on page 22 for more information.)

2 Specify one or more system options on each line. Use the same syntax that you
would use for specifying system options with the SAS command, but do not include
the SAS command itself. For example, a configuration file might contain the
following lines:

-nocenter
-verbose
-linesize 64
-work /users/myid/tmp

3 Save and close the configuration file.

22 Order of Precedence for Processing SAS Configuration Files � Chapter 1

Order of Precedence for Processing SAS Configuration Files
SAS is shipped with a default configuration file in the !SASROOT directory. Your

on-site SAS personnel can edit this configuration file so that it contains whichever
options are appropriate to your site.

You can also create one or more of your own configuration files. SAS reads option
settings from each of these files in the following order:*

1 sasv9.cfg in the !SASROOT directory. (See Appendix 1, “The !SASROOT Directory,”
on page 421.)

2 sasv9_local.cfg in the !SASROOT directory. (See Appendix 1, “The !SASROOT
Directory,” on page 421.)

3 .sasv9.cfg in your home directory. (Notice the leading period.)

4 sasv9.cfg in your home directory.

5 sasv9.cfg in your current directory.

6 any restricted configuration files. Restricted configuration files contain system
options that are set by the site administrator and cannot be changed by the user.
Options can be restricted globally, by group, or by user. For more information
about restricted configuration files, see the configuration guide for the UNIX
environment.

For each system option, SAS uses the last setting it encounters; any other settings
are ignored. For example, if the WORKPERMS system option is specified in sasv9.cfg
in the !SASROOT directory and in sasv9.cfg in your current directory, SAS will use the
value specified in sasv9.cfg in your current directory.

Specifying a Configuration File for SAS to Use
When you specify a configuration file for SAS to use, you bypass the search of the

configuration files listed in “Order of Precedence for Processing SAS Configuration
Files” on page 22.

Note: SAS still processes any restricted configuration files that exist. The settings in
these files take precedence over the settings in the configuration file that you specify. �

To specify a configuration file, complete one of the following steps:

� specify a configuration file with the CONFIG system option in the SAS command:

sas -config filename

� specify a configuration file in the SASV9_OPTIONS environment variable. See
“Defining Environment Variables in UNIX Environments” on page 23. For
example, in the Korn shell, you would use:

export SASV9_OPTIONS=’-config filename’

� define the environment variable SASV9_CONFIG. See “Defining Environment
Variables in UNIX Environments” on page 23. For example, in the Korn shell, you
would use:

export SASV9_CONFIG=filename

filename is the name of a file that contains SAS system options.

* For future releases of SAS, the names of these files will change accordingly.

Getting Started with SAS in UNIX Environments � How to Define an Environment Variable for Your Shell 23

If you have specified a configuration file in the SASV9_OPTIONS or SASV9_CONFIG
environment variables, you can prevent SAS from using that file by specifying
NOCONFIG in the SAS command.

If SAS cannot find SASV9_OPTIONS, the following message is written to the SAS log:

ERROR: Cannot open [/fullpath/filename]: No such
file or directory.

Defining Environment Variables in UNIX Environments

What Is a UNIX Environment Variable?
UNIX environment variables are variables that apply to both the current shell and to

any subshells it creates (for example, when you send a job to the background or execute
a script). If you change the value of an environment variable, the change is passed
forward to subsequent shells but not backward to the parent shell.

In a SAS session, you can use the SASV9_OPTIONS environment variable to specify
system options and the SASV9_CONFIG environment variable to specify a
configuration file. You can also use environment variables as filerefs and librefs in
various statements and commands. Filerefs and librefs consist of uppercase letters,
digits, and the underscore character in environment variable names. Other characters
are not recognized by SAS.

Note: A SAS/ACCESS product initializes the environment variables it needs when
loading. Any changes that you make to an environment variable after initialization will
not be recognized. For more information, see the documentation for your SAS/ACCESS
product. �

How to Define an Environment Variable for Your Shell
The way in which you define an environment variable depends on the shell that you

are running. (To determine which shell you are running, type ps at the command
prompt or echo $SHELL to see the current value of the SHELL environment variable.)

Bourne and Korn Shells
In the Bourne shell and in the Korn shell, use the export command to export one or

more variables to the environment. For example, these commands make the value of
the variable scname available to all subsequent shell scripts:

$ scname=phonelist
$ export scname

In the Korn shell, you can combine these commands into one command:

$ export scname=phonelist

If you change the value of scname, then the new value affects both the shell variable
and the environment variable. If you do not export a variable, only the shell script in
which you define has access to its value.

24 Displaying the Value of an Environment Variable � Chapter 1

C Shell
In the C shell (csh and tcsh), you set (define and export) environment variables with

the setenv (set environment) command. For example, this command is equivalent to
the commands shown previously:

% setenv scname phonelist

Displaying the Value of an Environment Variable
To display the values of individual environment variables, use the echo command

and parameter substitution. An example is: echo $SHELL which returns the current
value of the SHELL environment variable. Use the env (or printenv) command to
display all environment variables and their current values.

Determining the Completion Status of a SAS Job in UNIX Environments
The exit status for the completion of a SAS job is returned in $STATUS for the C shell,

and in $? for the Bourne and Korn shells. A value of 0 indicates normal termination.
You can affect the exit status code by using the ABORT statement. The ABORT
statement takes an optional integer argument, n, which can range from 0 to 255.

Note: Return codes of 0–6 and return codes greater than 977 are reserved for use by
SAS. �

The following table summarizes the values of the exit status code.

Table 1.1 Exit Status Code Values

Condition Exit Status Code

All steps terminated normally 0

SAS System issued warnings 1

SAS System issued errors 2

User issued ABORT statement 3

User issued ABORT RETURN statement 4

User issued ABORT ABEND statement 5

SAS could not initialize because of a severe error 6

User issued ABORT RETURN n statement n

User issued ABORT ABEND n statement n

If you specify the ERRORABEND SAS system option on the command line, and the
job has errors, the exit status code is set to 5.

UNIX exit status codes are in the range 0-255. Numbers greater than 255 might not
print what you expect because the code is interpreted as a signed byte.

Getting Started with SAS in UNIX Environments � Methods for Interrupting or Terminating SAS 25

Exiting or Interrupting Your SAS Session in UNIX Environments

Methods for Exiting SAS
Use one of the following methods to exit a SAS session:
� Select File � Exit if you are using SAS in the windowing environment.
� Use endsas;.
� Enter BYE in the ToolBox if you are using SAS in the windowing environment.
� Use CTRL+D if this control key sequence is your EOF command and if you are

using SAS in interactive line mode.

Methods for Interrupting or Terminating SAS
In addition to the methods for exiting SAS, SAS provides methods for interrupting or

terminating a SAS session. SAS does not recommend that you use these methods until
you have tried to exit SAS by one of the methods listed in “Methods for Exiting SAS” on
page 25.

You can interrupt or terminate SAS in the following ways:
� Press the interrupt or quit control key.
� Use the SAS Session Manager.
� Enter the UNIX kill command. Use this command when all other methods of

exiting SAS have failed.
Using the UNIX kill command on a SAS process that is running might corrupt

data sets that are open for write or update access.

Using Control Keys
Control keys enable you to interrupt or terminate your session by pressing the

interrupt or quit key sequence. However, control keys can be used only when your SAS
program is running in interactive line mode or in batch mode in the foreground. You
cannot use control keys to stop a background job.

Note: You cannot use control keys to stop a batch job that has been submitted with
the batch, at, nohup, or cron command. �

Because control keys vary from system to system, issue the UNIX stty command to
determine which key sends which signal. The stty command varies considerably
among UNIX operating environments, so check the UNIX man page for stty before
using the command. Usually, one of these forms of the command will print all of the
current terminal settings:

stty
stty -a
stty everything

The output should contain lines similar to these:

intr = ^C; quit = ^\; erase = ^H;
kill = ^U; eof = ^D; eol = ^@

26 Methods for Interrupting or Terminating SAS � Chapter 1

The caret (^) represents the CTRL key. In this example, CTRL+C is the interrupt
key and CTRL+\ is the quit key.

Pressing the quit key is equivalent to specifying the -SIGTERM option on the kill
command.

Using the SAS Session Manager
If you invoke SAS in the windowing environment, you can use the SAS Session

Manager to interrupt or terminate your SAS session. The SAS Session Manager is
automatically minimized when you start SAS. To interrupt or terminate your SAS
session, open the SAS Session Manager window and click Interrupt or Terminate.

If asynchronous SAS/CONNECT tasks are running when you terminate a SAS
session, these tasks are terminated and no warning message is displayed.

Note: Clicking Interrupt is equivalent to specifying the -SIGINT option on the
kill command. Clicking Terminate is equivalent to specifying the -SIGTERM option on
the kill command. �

For more information about the SAS Session Manager, see “The SAS Session
Manager (motifxsassm) in UNIX” on page 141.

Using the UNIX kill Command
Note: Use the kill command only after you have tried all other methods to exit

your SAS session. �

The kill command sends an interrupt or terminate signal to SAS, depending on
which signal you specify. You can use the kill command to interrupt or terminate a
SAS session running in any mode. The kill command cannot be issued from within a
SAS session. You must issue it from another terminal or from another window (if your
terminal permits it).

The format of the kill command is:

kill <-signal-name> pid

To send the interrupt signal, specify -SIGINT. To send the terminate signal, specify
-SIGTERM. Use the ps command and its options to determine the process identification
number (pid) of the SAS session that you want to interrupt or terminate.

The results of using the ps command differ in different operating environments. See
the UNIX man page for your operating environment for specific information about the
ps command and its options. Adding options helps to determine which process you
want to kill if you have more than one SAS process running. Also, servers (metadata,
OLAP, and so on) leave a process identification number in their start-up directories.
You can use this number with the kill command.

The following table lists some of the important kill signals.

Table 1.2 Description of Important kill Signals

Signal Option Description

0 SIGNULL Checks access to process
identifier

1 SIGHUP Causes SAS to terminate

2 SIGINT Causes SAS to interrupt the
session

3 SIGQUIT Causes SAS to terminate and
generates a core file

Getting Started with SAS in UNIX Environments � How to Interrupt a SAS Process 27

Signal Option Description

9 SIGKILL Causes a forced termination of
the SAS session

15 SIGTERM Causes SAS to terminate

For more information, see the UNIX man pages for the ps and kill commands.

Messages in the SAS Console Log
If SAS encounters an error or warning condition when the SAS log is not available,

then any messages that SAS issues are written to the SAS console log. Normally, the
SAS log is unavailable only early in SAS initialization and late in SAS termination.

If you are using the -STDIO option, the log is displayed in stderr, and the listing is
displayed in STDOUT.

Ending a Process That Is Running as a SAS Server
If you need to end a process running as a SAS server, use one of the following

methods:
� If you are using the SAS Metadata Server, use the SAS Management Console to

end a process.
� If you are using another SAS server, use the UNIX scripts that shipped with the

servers to stop the process. You can also use these scripts to start (or restart) a
server, as well as determine whether the server is already running. For more
information about these scripts, contact your site administrator.

Note: If the server does not respond to the UNIX script, then you can use the
kill command to end the server process. For more information, see “Using the
UNIX kill Command” on page 26. �

Ending a SAS Process on a Relational Database

How to Interrupt a SAS Process
CAUTION:

When you interrupt a SAS process, you might terminate the current query. If you are
using the current query to create a new data set, then the data set is still created
even if the query is terminated. If you are using the current query to overwrite a
data set, the data set is not overwritten if the query is terminated. In most cases you
do not receive a warning that the query did not complete. �

The method that you use to interrupt a SAS process depends on how you invoke SAS.
� If you are running SAS in interactive line mode or in batch mode using a

foreground process, then you can use either of the following methods to interrupt
SAS:

� Press the control key sequence that is set to interrupt in the shell that
invoked SAS. In most cases, this control key sequence is CTRL+C. See the
man page for the stty command to determine the appropriate key sequence
for your environment.

28 How to Interrupt a SAS Process � Chapter 1

� Use the -SIGINT option in the kill command. For more information, see
“Using the UNIX kill Command” on page 26.

� If you are running the SAS windowing environment in the foreground, then click
Interrupt in the SAS Session Manager window.

Note: You can access the SAS Session Manager by invoking SAS with the -dms or
-dmsexp option. Select SAS: Session Management from the menu. �

� If you are running SAS in batch mode, then you must click Interrupt in the SAS
Session Manager window. You cannot use a control key sequence to interrupt the
SAS process.

The interrupt signal is sent to the host supervisor. The supervisor determines which
DATA steps or procedures are running, and gives you options to interrupt these DATA
steps or procedures. The actions that you can take appear in the interrupt menu. After
you select an action, the host supervisor performs the operation you selected. Because
the options in the interrupt menu are dependent on what is currently executing, you
might see a different interrupt menu for the following:

� each SAS procedure. The only option that procedures can act on is the Halt
Datastep/Proc option.

� a DATA step. The options available when SAS is processing a DATA step are
different from when SAS is processing a procedure.

� each SAS application. For example, SAS webAF has a different interrupt menu
than the one for PROC SQL.

Note: Depending on the relational database, the interrupt signal might be handled
differently. The interrupt signal is not handled until a safe point in the code is reached
that allows the interrupt handler to be run safely. �

Example: Interrupt Menu for PROC SQL
The following is an example of the interrupt menu that you might see if you issue an

interrupt signal while SAS is processing a PROC SQL statement:

Select:
1. Cancel Submitted Statements
2. Halt Datastep/Proc: SQL
C. Cancel the dialog
T. Terminate the SAS System

The following table explains each of these options:

Getting Started with SAS in UNIX Environments � How to Terminate a SAS Process 29

Table 1.3 Description of Interrupt Menu Options for PROC SQL

Option Description What This Option Does

1 Cancel Submitted
Statements

Selecting this option will end the current DATA step or procedure
and the underlying DBMS process. Outstanding source code that
is waiting to execute will be flushed from the system. In
interactive mode, you will return to the command prompt.

2 Halt Datastep/Proc:
SQL

If you select this option and SAS is currently executing an SQL
procedure, then the following menu appears:
Press:

C to continue
Q to cancel the current query
S to cancel the submitted statements
X to exit SQL procedure
?

� If you select C, then the menu will disappear, but because
the current query ended when you interrupted the SAS
process, SAS will not return to the current query. Instead,
SAS will begin processing the next line of code.

� If you select Q, then SAS cancels the current query even if
it is on a relational database. SAS continues processing the
next statement.

� If you select S, then all of the PROC SQL statements that
you submitted are canceled.

� If you select X, SAS exits the current SQL procedure and
starts processing the next statement in the submit block.

C Cancel the dialog Selecting this option returns you to normal processing; however,
the current query might have been interrupted. If you are
running a long query and the control is on the DBMS server, then
selecting C will end the current query. If you are running a short
query and SAS has the control, then selecting C will cause the
interrupt menu to disappear and the current query will continue.
To determine whether the query was interrupted while reading or
writing out the DBMS data, use PROC PRINT to view the
partially created DBMS table or SAS data set.

T Terminate SAS Selecting this option ends your SAS session as well as the current
query.

How to Terminate a SAS Process
The method that you use to terminate a SAS process depends on how you invoke SAS.
� If you are running the SAS windowing environment in the foreground, then click

Terminate in the SAS Session Manager window.
� If you are running an interactive SAS process in the background, then you must

click Terminate in the SAS Session Manager window. You cannot use a control
key sequence to terminate the SAS process.

If you click Terminate in the SAS Session Manager, then a dialog box appears
confirming that you want to end the session. If you click OK, then both the SAS session
and the current query are terminated. If you click Cancel, then you are returned to the
SAS session.

30 What Happens When You Interrupt a SAS Process and the Underlying DBMS Process � Chapter 1

What Happens When You Interrupt a SAS Process and the Underlying
DBMS Process
CAUTION:

Interrupting a SAS process and the underlying DBMS process might kill all jobs that are
running on your DBMS. Interrupting your SAS and DBMS processes should be an
exception. Extensive care should be taken when you construct your queries.

If SAS sends SQL to an RDBMS, there is no way to interrupt the SQL statements
because SAS no longer has control of them. The statements are running in the
RDBMS. �

Note: In this section, SAS process refers to a series of events. It is not the process
on the operating system. When you interrupt or terminate a SAS process, the process
on the operating system might still be running. �

When you interrupt or terminate a query on a server, the following processes stop:

� processing of current extractions. For example, suppose you forgot to include a
WHERE clause in your SQL query and are now extracting 1 billion rows into SAS.
Issuing an interrupt stops the SAS process and the extract step in the DBMS.

� processing of queries that are in progress on the server. For example, you have a
very complex extract query that runs for a long time before producing a result.
Issuing an interrupt stops the SAS and DBMS processes. As a result, the complex
query running on your DBMS server is interrupted and terminated.

� update, delete, and insert processing. For example, you are updating, deleting, or
inserting many rows in your DBMS. An interrupt stops the SAS and DBMS
processes.

