
Chapter 1
Introduction to Optimization
Overview

Operations Research tools are directed toward the solution of resource management
and planning problems. Models in Operations Research are representations of the
structure of a physical object or a conceptual or business process. Using the tools of
Operations Research involves the following:

� defining a structural model of the system under investigation

� collecting the data for the model

� analyzing the model

SAS/OR software is a set of procedures for exploring models of distribution net-
works, production systems, resource allocation problems, and scheduling problems
using the tools of Operations Research.

The following list suggests some of the application areas where optimization-based
decision support systems have been used. In practice, models often contain elements
of several applications listed here.

� Product-mix problems find the mix of products that generates the largest re-
turn when there are several products competing for limited resources.

� Blending problems find the mix of ingredients to be used in a product so that
it meets minimum standards at minimum cost.

� Time-staged problems are models whose structure repeats as a function of
time. Production and inventory models are classic examples of time-staged
problems. In each period, production plus inventory minus current demand
equals inventory carried to the next period.

� Scheduling problems assign people to times, places, or tasks so as to opti-
mize people’s preferences or performance while satisfying the demands of the
schedule.

� Multiple objective problems have multiple, possibly conflicting, objectives.
Typically, the objectives are prioritized and the problems are solved sequen-
tially in a priority order.

� Capital budgeting and project selection problems ask for the project or set
of projects that will yield the greatest return.

� Location problems seek the set of locations that meets the distribution needs
at minimum cost.

� Cutting stock problems find the partition of raw material that minimizes waste
and fulfills demand.

4 � Chapter 1. Introduction to Optimization

A problem is formalized with the construction of a model to represent it. These
models, called mathematical programs, are represented in SAS data sets and then
solved using SAS/OR procedures. The solution of mathematical programs is called
mathematical programming. Since mathematical programs are represented in SAS
data sets, they can be saved, easily changed, and re-solved. The SAS/OR procedures
also output SAS data sets containing the solutions. These can then be used to produce
customized reports. In addition, this structure enables you to build decision support
systems using the tools of Operations Research and other tools in the SAS System as
building blocks.

The basic optimization problem is that of minimizing or maximizing an objective
function subject to constraints imposed on the variables of that function. The objec-
tive function and constraints can be linear or nonlinear; the constraints can be bound
constraints, equality or inequality constraints, or integer constraints. Traditionally,
optimization problems are divided into linear programming (LP; all functions and
constraints are linear) and nonlinear programming (NLP).

The data describing the model are supplied to an optimizer (such as one of the pro-
cedures described in this book), an optimizing algorithm is used to determine the
optimal values for the decision variables so the objective is either maximized or min-
imized, the optimal values assigned to decision variables are on or between allowable
bounds, and the constraints are obeyed. Determining the optimal values is the process
called optimization.

This chapter describes how to use SAS/OR software to solve a wide variety of op-
timization problems. We describe various types of optimization problems, indicate
which SAS/OR procedure you can use, and show how you provide data, run the pro-
cedure, and obtain optimal solutions.

In the next section we broadly classify the SAS/OR procedures based on the types of
mathematical programming problems they can solve.

Linear Programming Problems

PROC OPTLP

PROC OPTLP solves linear programming problems that are submitted either in an
MPS-format file or in an MPS-format SAS data set.

The MPS file format is a format commonly used for describing linear programming
(LP) and integer programming (IP) problems (Murtagh 1981; IBM 1988). MPS-
format files are in text format and have specific conventions for the order in which
the different pieces of the mathematical model are specified. The MPS-format SAS
data set corresponds closely to the MPS file format and is used to describe linear
programming problems for PROC OPTLP. For more details, refer to Chapter 14,
“The MPS-Format SAS Data Set.”

PROC OPTLP provides three solvers to solve the LP: primal simplex, dual simplex,
and interior point. The simplex solvers implement a two-phase simplex method, and

PROC INTPOINT � 5

the interior point solver implements a primal-dual predictor-corrector algorithm. For
more details refer to Chapter 15, “The OPTLP Procedure.”

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling linear programming
problems. The language allows a model to be expressed in a form that matches the
mathematical formulation. Within OPTMODEL you can declare a model, pass it
directly to various solvers, and review the solver result. You can also save an instance
of a linear model in data set form for use by PROC OPTLP. For more details, refer to
Chapter 6, “The OPTMODEL Procedure.”

PROC LP

The LP procedure solves linear and mixed integer programs with a primal simplex
solver. It can perform several types of post-optimality analysis, including range anal-
ysis, sensitivity analysis, and parametric programming. The procedure can also be
used interactively.

PROC LP requires a problem data set that contains the model. In addition, a primal
and active data set can be used for warm starting a problem that has been partially
solved previously.

The problem data describing the model can be in one of two formats: dense or sparse.
The dense format represents the model as a rectangular coefficient matrix. For details
see the section “Dense Format” on page 11. The sparse format, on the other hand,
represents only the nonzero elements of a rectangular coefficient matrix. See the
section “Sparse Format” on page 12 for more details.

For more details on PROC LP refer to Chapter 3, “The LP Procedure.”

PROC INTPOINT

The INTPOINT procedure solves linear programming problems using the interior
point algorithm.

The constraint data can be specified in either the sparse or dense input format. This is
the same format that is used by PROC LP; therefore, any model-building techniques
that apply to models for PROC LP also apply to PROC INTPOINT.

For more details on PROC INTPOINT refer to Chapter 2, “The INTPOINT
Procedure.”

6 � Chapter 1. Introduction to Optimization

Network Problems

PROC NETFLOW

The NETFLOW procedure solves network flow problems with linear side constraints
using either a network simplex algorithm or an interior point algorithm. In addition,
it can solve linear programming (LP) problems using the interior point algorithm.

Networks and the Network Simplex Algorithm

PROC NETFLOW’s network simplex algorithm solves pure network flow problems
and network flow problems with linear side constraints. The procedure accepts the
network specification in formats that are particularly suited to networks. Although
network problems could be solved by PROC LP, the NETFLOW procedure generally
solves network flow problems more efficiently than PROC LP.

Network flow problems, such as finding the minimum cost flow in a network, re-
quire model representation in a format that is specialized for network structures. The
network is represented in two data sets: a node data set that names the nodes in the
network and gives supply and demand information at them, and an arc data set that
defines the arcs in the network using the node names and gives arc costs and capaci-
ties. In addition, a side-constraint data set is included that gives any side constraints
that apply to the flow through the network. Examples of these are found later in this
chapter.

The constraint data can be specified in either the sparse or dense input format. This is
the same format that is used by PROC LP; therefore, any model-building techniques
that apply to models for PROC LP also apply to network flow models having side
constraints.

Linear and Network Programs Solved by the Interior Point Algorithm

The data required by PROC NETFLOW for a linear program resemble the data for
nonarc variables and constraints for constrained network problems. They are similar
to the data required by PROC LP.

The LP representation requires a data set that defines the variables in the LP using
variable names, and gives objective function coefficients and upper and lower bounds.
In addition, a constraint data set can be included that specifies any constraints.

When solving a constrained network problem, you can specify the INTPOINT option
to indicate that the interior point algorithm is to be used. The input data are the same
whether the simplex or interior point method is used. The interior point method is
often faster when problems have many side constraints.

The constraint data can be specified in either the sparse or dense input format. This
is the same format that is used by PROC LP; therefore, any model-building tech-
niques that apply to models for PROC LP also apply to LP models solved by PROC
NETFLOW.

PROC LP � 7

PROC INTPOINT

The INTPOINT procedure solves the Network Program with Side Constraints
(NPSC) problem using the interior point algorithm.

The data required by PROC INTPOINT are similar to the data required by PROC
NETFLOW when solving network flow models using the interior point algorithm.

The constraint data can be specified in either the sparse or dense input format. This
is the same format that is used by PROC LP and PROC NETFLOW; therefore, any
model-building techniques that apply to models for PROC LP or PROC NETFLOW
also apply to PROC INTPOINT.

For more details on PROC INTPOINT refer to Chapter 2, “The INTPOINT
Procedure.”

Mixed Integer Linear Problems

PROC OPTMILP

The OPTMILP procedure solves general mixed integer linear programs (MILPs)
—linear programs in which a subset of the decision variables are constrained to
be integers. The OPTMILP procedure solves MILPs with an LP-based branch-and-
bound algorithm augmented by advanced techniques such as cutting planes and pri-
mal heuristics.

The OPTMILP procedure requires a MILP to be specified using a SAS data set that
adheres to the MPS format. See Chapter 14, “The MPS-Format SAS Data Set,” for
details about the MPS-format data set.

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling mixed integer linear
programming problems. The language allows a model to be expressed in a form
that matches the mathematical formulation. Within OPTMODEL you can declare a
model, pass it directly to various solvers, and review the solver result. You can also
save an instance of a mixed integer linear model in data set form for use by PROC
OPTMILP. For more details, refer to Chapter 6, “The OPTMODEL Procedure.”

PROC LP

The LP procedure solves MILPs with a primal simplex solver. To solve a MILP you
need to identify the integer variables. You can do this with a row in the input data
set that has the keyword INTEGER for the type variable. It is important to note that
integer variables must have upper bounds explicitly defined.

As with linear programs, you can specify MIP problem data using sparse or dense
format. For more details see Chapter 3, “The LP Procedure.”

8 � Chapter 1. Introduction to Optimization

Quadratic Programming Problems

PROC OPTQP

The OPTQP procedure solves quadratic programs—problems with quadratic objec-
tive function and a collection of linear constraints, including general linear constraints
along with lower and/or upper bounds on the decision variables.

You can specify the problem input data in one of two formats: QPS-format flat file
or QPS-format SAS data set. For details on the QPS-format data specification, refer
to Chapter 14, “The MPS-Format SAS Data Set.” For more details on the OPTQP
procedure, refer to Chapter 17, “The OPTQP Procedure.”

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling quadratic program-
ming problems. The language allows a model to be expressed in a form that matches
the mathematical formulation. Within OPTMODEL you can declare a model, pass it
directly to various solvers, and review the solver result. You can also save an instance
of a quadratic model in data set form for use by PROC OPTQP. For more details,
refer to Chapter 6, “The OPTMODEL Procedure.”

Nonlinear Problems

PROC OPTMODEL

PROC OPTMODEL provides a language for concisely modeling nonlinear program-
ming (NLP) problems. The language allows a model to be expressed in a form
that matches the mathematical formulation. Within OPTMODEL you can declare
a model, pass it directly to various solvers, and review the solver result. For more
details, refer to Chapter 6, “The OPTMODEL Procedure.”

You can solve the following types of nonlinear programming problems using PROC
OPTMODEL:

� Nonlinear objective function, linear constraints: Invoke the constrained
nonlinear programming (NLPC) solver. For more details about the NLPC
solver, refer to Chapter 10, “The NLPC Nonlinear Optimization Solver.”

� Nonlinear objective function, nonlinear constraints: Invoke the sequential
programming (SQP) or interior point nonlinear programming (IPNLP) solver.
For more details about the SQP solver, refer to Chapter 13, “The Sequential
Quadratic Programming Solver.” For more details about the IPNLP solver,
refer to Chapter 7, “The Interior Point Nonlinear Programming Solver.”

� Nonlinear objective function, no constraints: Invoke the unconstrained non-
linear programming (NLPU) solver. For more details about the NLPU solver,
refer to Chapter 11, “The Unconstrained Nonlinear Programming Solver.”

PROC NLP � 9

PROC NLP

The NLP procedure (NonLinear Programming) offers a set of optimization tech-
niques for minimizing or maximizing a continuous nonlinear function subject to lin-
ear and nonlinear, equality and inequality, and lower and upper bound constraints.
Problems of this type are found in many settings ranging from optimal control to
maximum likelihood estimation.

Nonlinear programs can be input into the procedure in various ways. The objective,
constraint, and derivative functions are specified using the programming statements
of PROC NLP. In addition, information in SAS data sets can be used to define the
structure of objectives and constraints, and to specify constants used in objectives,
constraints, and derivatives.

PROC NLP uses the following data sets to input various pieces of information:

� The DATA= data set enables you to specify data shared by all functions in-
volved in a least-squares problem.

� The INQUAD= data set contains the arrays appearing in a quadratic program-
ming problem.

� The INEST= data set specifies initial values for the decision variables, the val-
ues of constants that are referred to in the program statements, and simple
boundary and general linear constraints.

� The MODEL= data set specifies a model (functions, constraints, derivatives)
saved at a previous execution of the NLP procedure.

As an alternative to supplying data in SAS data sets, some or all data for the model
can be specified using SAS programming statements. These are similar to those used
in the SAS DATA step.

For more details on PROC NLP refer to Chapter 4, “The NLP Procedure.”

10 � Chapter 1. Introduction to Optimization

Model Building
Model generation and maintenance are often difficult and expensive aspects of ap-
plying mathematical programming techniques. The flexible input formats for the
optimization procedures in SAS/OR software simplify this task.

PROC LP

A small product-mix problem serves as a starting point for a discussion of different
types of model formats supported in SAS/OR software.

A candy manufacturer makes two products: chocolates and toffee. What combination
of chocolates and toffee should be produced in a day in order to maximize the com-
pany’s profit? Chocolates contribute $0.25 per pound to profit, and toffee contributes
$0.75 per pound. The decision variables are chocolates and toffee.

Four processes are used to manufacture the candy:

1. Process 1 combines and cooks the basic ingredients for both chocolates and
toffee.

2. Process 2 adds colors and flavors to the toffee, then cools and shapes the con-
fection.

3. Process 3 chops and mixes nuts and raisins, adds them to the chocolates, and
then cools and cuts the bars.

4. Process 4 is packaging: chocolates are placed in individual paper shells; toffee
is wrapped in cellophane packages.

During the day, there are 7.5 hours (27,000 seconds) available for each process.

Firm time standards have been established for each process. For Process 1, mixing
and cooking take 15 seconds for each pound of chocolate, and 40 seconds for each
pound of toffee. Process 2 takes 56.25 seconds per pound of toffee. For Process 3,
each pound of chocolate requires 18.75 seconds of processing. In packaging, a pound
of chocolates can be wrapped in 12 seconds, whereas a pound of toffee requires 50
seconds. These data are summarized as follows:

Available Required per Pound
Time chocolates toffee

Process (sec) (sec) (sec)
1 Cooking 27,000 15 40
2 Color/Flavor 27,000 56.25
3 Condiments 27,000 18.75
4 Packaging 27,000 12 50

The objective is to

Maximize: 0.25(chocolates) + 0.75(toffee)

which is the company’s total profit.

PROC LP � 11

The production of the candy is limited by the time available for each process. The
limits placed on production by Process 1 are expressed by the following inequality:

Process 1: 15(chocolates) + 40(toffee)� 27,000

Process 1 can handle any combination of chocolates and toffee that satisfies this in-
equality.

The limits on production by other processes generate constraints described by the
following inequalities:

Process 2: 56.25(toffee) � 27,000

Process 3: 18.75(chocolates) � 27,000

Process 4: 12(chocolates) + 50(toffee) � 27,000

This linear program illustrates the type of problem known as a product mix example.
The mix of products that maximizes the objective without violating the constraints is
the solution. Two formats — dense or sparse — can be used to represent this model.

Dense Format

The following DATA step creates a SAS data set for this product mix problem. Notice
that the values of CHOCO and TOFFEE in the data set are the coefficients of those
variables in the equations corresponding to the objective function and constraints.
The variable –id– contains a character string that names the rows in the data set. The
variable –type– is a character variable that contains keywords that describe the type
of each row in the problem data set. The variable –rhs– contains the right-hand-side
values.

data factory;
input _id_ $ CHOCO TOFFEE _type_ $ _rhs_;
datalines;

object 0.25 0.75 MAX .
process1 15.00 40.00 LE 27000
process2 0.00 56.25 LE 27000
process3 18.75 0.00 LE 27000
process4 12.00 50.00 LE 27000
;

To solve this problem by using PROC LP, specify the following:

proc lp data = factory;
run;

You can also solve this problem by using PROC OPTLP. PROC OPTLP requires a
linear program to be specified using a SAS data set that adheres to the MPS format, a
widely accepted format in the optimization community. You can use the SAS macro
%LP2MPSD to convert typical PROC LP format data sets into MPS-format SAS data
sets. The macro is available online at the SAS Customer Support Center.

12 � Chapter 1. Introduction to Optimization

Sparse Format

Typically, mathematical programming models are sparse. That is, few of the coef-
ficients in the constraint matrix are nonzero. The dense problem format shown in
the previous section is an inefficient way to represent sparse models. The LP proce-
dure also accepts data in a sparse input format. Only the nonzero coefficients must
be specified. It is consistent with the standard MPS sparse format, and much more
flexible; models using the MPS format can be easily converted to the LP format.

Although the factory example in the last section is not sparse, an example of the
sparse input format for that problem is illustrated here. The sparse data set has four
variables: a row type identifying variable (–type–), a row name variable (–row–), a
column name variable (–col–), and a coefficient variable (–coef–).

data sp_factory;
format _type_ $8. _row_ $10. _col_ $10.;
input _type_ $_row_ $ _col_ $ _coef_ ;
datalines;

max object . .
. object chocolate .25
. object toffee .75
le process1 . .
. process1 chocolate 15
. process1 toffee 40
. process1 _RHS_ 27000
le process2 . .
. process2 toffee 56.25
. process2 _RHS_ 27000
le process3 . .
. process3 chocolate 18.75
. process3 _RHS_ 27000
le process4 . .
. process4 chocolate 12
. process4 toffee 50
. process4 _RHS_ 27000
;

To solve this problem using PROC LP specify the following:

proc lp data = sp_factory
sparsecondata;

run;

The Solution Summary (shown in Figure 1.1) gives information about the solution
that was found, including whether the optimizer terminated successfully after finding
the optimum.

When PROC LP solves a problem, it uses an iterative process. First, the procedure
finds a feasible solution that satisfies the constraints. Second, it finds the optimal
solution from the set of feasible solutions. The Solution Summary lists the number
of iterations in each of these phases, the number of variables in the initial feasible

PROC LP � 13

solution, the time the procedure required to solve the problem, and the number of
matrix inversions necessary.

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 475

Phase 1 Iterations 0
Phase 2 Iterations 3
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 6
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

Figure 1.1. Solution Summary

After performing three Phase 2 iterations, the procedure terminated successfully with
an optimal objective value of 475.

Separating the Data from the Model Structure

It is often desirable to keep the data separate from the structure of the model. This
is useful for large models with numerous identifiable components. The data are best
organized in rectangular tables that can be easily examined and modified. Then,
before the problem is solved, the model is built using the stored data. This process of
model building is known as matrix generation. In conjunction with the sparse format,
the SAS DATA step provides a good matrix generation language.

For example, consider the candy manufacturing example introduced previously.
Suppose that, for the user interface, it is more convenient to organize the data so
that each record describes the information related to each product (namely, the con-
tribution to the objective function and the unit amount needed for each process). A
DATA step for saving the data might look like this:

data manfg;
format product $12.;
input product $ object process1 - process4 ;
datalines;

chocolate .25 15 0.00 18.75 12
toffee .75 40 56.25 0.00 50
licorice 1.00 29 30.00 20.00 20
jelly_beans .85 10 0.00 30.00 10

14 � Chapter 1. Introduction to Optimization

RHS . 27000 27000 27000 27000
;

Notice that there is a special record at the end having product –RHS–. This record
gives the amounts of time available for each of the processes. This information could
have been stored in another data set. The next example illustrates a model where the
data are stored in separate data sets.

Building the model involves adding the data to the structure. There are as many ways
to do this as there are programmers and problems. The following DATA step shows
one way to use the candy data to build a sparse format model to solve the product
mix problem.

data model;
array process object process1-process4;
format _type_ $8. _row_ $12. _col_ $12. ;
keep _type_ _row_ _col_ _coef_;

set manfg; /* read the manufacturing data */

/* build the object function */

if _n_=1 then do;
type=’max’; _row_=’object’; _col_=’ ’; _coef_=.;
output;

end;

/* build the constraints */

do over process;
if _i_>1 then do;

type=’le’; _row_=’process’||put(_i_-1,1.);
end;
else _row_=’object’;
col=product; _coef_=process;
output;

end;
run;

The sparse format data set is shown in Figure 1.2.

PROC NETFLOW � 15

Obs _type_ _row_ _col_ _coef_

1 max object .
2 max object chocolate 0.25
3 le process1 chocolate 15.00
4 le process2 chocolate 0.00
5 le process3 chocolate 18.75
6 le process4 chocolate 12.00
7 object toffee 0.75
8 le process1 toffee 40.00
9 le process2 toffee 56.25
10 le process3 toffee 0.00
11 le process4 toffee 50.00
12 object licorice 1.00
13 le process1 licorice 29.00
14 le process2 licorice 30.00
15 le process3 licorice 20.00
16 le process4 licorice 20.00
17 object jelly_beans 0.85
18 le process1 jelly_beans 10.00
19 le process2 jelly_beans 0.00
20 le process3 jelly_beans 30.00
21 le process4 jelly_beans 10.00
22 object _RHS_ .
23 le process1 _RHS_ 27000.00
24 le process2 _RHS_ 27000.00
25 le process3 _RHS_ 27000.00
26 le process4 _RHS_ 27000.00

Figure 1.2. Sparse Data Format

The model data set looks a little different from the sparse representation of the candy
model shown earlier. It not only includes additional products (licorice and jelly
beans), but it also defines the model in a different order. Since the sparse format
is robust, the model can be generated in ways that are convenient for the DATA step
program.

If the problem had more products, you could increase the size of the manfg data set
to include the new product data. Also, if the problem had more than four processes,
you could add the new process variables to the manfg data set and increase the size
of the process array in the model data set. With these two simple changes and
additional data, a product mix problem having hundreds of processes and products
can be solved.

PROC NETFLOW

Network flow problems can be described by specifying the nodes in the network and
their supplies and demands, and the arcs in the network and their costs, capacities,
and lower flow bounds. Consider the simple transshipment problem in Figure 1.3 as
an illustration.

16 � Chapter 1. Introduction to Optimization

�

	

�
factory–2

�

	

�
factory–1

�

	

�
warehouse–2

�

	

�
warehouse–1

�

	

�
customer–3

�

	

�
customer–2

�

	

�
customer–1

-

-�
�
�
�
�
�
���@

@
@
@
@
@
@@R

��
��

��
��*

HHHHHHHHj

J
J
J
J
J
J
J
J
J
J
Ĵ

�

��
��

��
��*

HHHHHHHHj

500

500

�50

�200

�100

Figure 1.3. Transshipment Problem

Suppose the candy manufacturing company has two factories, two warehouses, and
three customers for chocolate. The two factories each have a production capacity of
500 pounds per day. The three customers have demands of 100, 200, and 50 pounds
per day, respectively.

The following data set describes the supplies (positive values for the supdem vari-
able) and the demands (negative values for the supdem variable) for each of the
customers and factories.

data nodes;
format node $10. ;
input node $ supdem;
datalines;

customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;

Suppose that there are two warehouses that are used to store the chocolate before
shipment to the customers, and that there are different costs for shipping between each
factory, warehouse, and customer. What is the minimum cost routing for supplying
the customers?

Arcs are described in another data set. Each observation defines a new arc in the
network and gives data about the arc. For example, there is an arc between the
node factory–1 and the node warehouse–1. Each unit of flow on that arc costs 10.

PROC NETFLOW � 17

Although this example does not include it, lower and upper bounds on the flow across
that arc can be listed here.

data network;
format from $12. to $12.;
input from $ to $ cost ;
datalines;

factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;

You can use PROC NETFLOW to find the minimum cost routing. This procedure
takes the model as defined in the network and nodes data sets and finds the minimum
cost flow.

proc netflow arcout=arc_sav
arcdata=network nodedata=nodes;

node node; /* node data set information */
supdem supdem;
tail from; /* arc data set information */
head to;
cost cost;
run;

proc print;
var from to cost _capac_ _lo_ _supply_ _demand_

flow _fcost_ _rcost_;
sum _fcost_;
run;

PROC NETFLOW produces the following messages in the SAS log:

NOTE: Number of nodes= 7 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 3 .
NOTE: Total supply= 1000 , total demand= 350 .
NOTE: Number of arcs= 10 .
NOTE: Number of iterations performed (neglecting

any constraints)= 7 .
NOTE: Of these, 2 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 3050 .
NOTE: The data set WORK.ARC_SAV has 10 observations

and 13 variables.

18 � Chapter 1. Introduction to Optimization

The solution (Figure 1.4) saved in the arc–sav data set shows the optimal amount
of chocolate to send across each arc (the amount to ship from each factory to each
warehouse and from each warehouse to each customer) in the network per day.

_ _
_ S D _ _
C U E _ F R
A P M F C C

f c P _ P A L O O
O r o A L L N O S S
b o t s C O Y D W T T
s m o t _ _ _ _ _ _ _

1 warehouse_1 customer_1 3 99999999 0 . 100 100 300 .
2 warehouse_2 customer_1 5 99999999 0 . 100 0 0 4
3 warehouse_1 customer_2 4 99999999 0 . 200 200 800 .
4 warehouse_2 customer_2 5 99999999 0 . 200 0 0 3
5 warehouse_1 customer_3 4 99999999 0 . 50 50 200 .
6 warehouse_2 customer_3 6 99999999 0 . 50 0 0 4
7 factory_1 warehouse_1 10 99999999 0 500 . 0 0 5
8 factory_2 warehouse_1 5 99999999 0 500 . 350 1750 .
9 factory_1 warehouse_2 7 99999999 0 500 . 0 0 .
10 factory_2 warehouse_2 9 99999999 0 500 . 0 0 2

====
3050

Figure 1.4. ARCOUT Data Set

Notice which arcs have positive flow (–FLOW– is greater than 0). These arcs indi-
cate the amount of chocolate that should be sent from factory–2 to warehouse–1 and
from there to the three customers. The model indicates no production at factory–1
and no use of warehouse–2.

�

	

�
factory–2

�

	

�
factory–1

�

	

�
warehouse–2

�

	

�
warehouse–1

�

	

�
customer–3

�

	

�
customer–2

�

	

�
customer–1

-

-�
�
�
�
�
�
���@

@
@
@
@
@
@@R

��
��

��
��*

HHHHHHHHj

J
J
J
J
J
J
J
J
J
J
Ĵ

�

��
��

��
��*

HHHHHHHHj

500

500

�50

�200

�100

350 50

100

200

Figure 1.5. Optimal Solution for the Transshipment Problem

PROC OPTMODEL � 19

PROC OPTMODEL

Modeling a Linear Programming Problem

Consider the candy manufacturer’s problem described in the section “PROC LP” on
page 10. You can formulate the problem using PROC OPTMODEL and solve it using
the primal simplex solver as follows:

proc optmodel;

/* declare variables */
var choco, toffee;

/* maximize objective function (profit) */
maximize profit = 0.25*choco + 0.75*toffee;

/* subject to constraints */
con process1: 15*choco + 40*toffee <= 27000;
con process2: 56.25*toffee <= 27000;
con process3: 18.75*choco <= 27000;
con process4: 12*choco + 50*toffee <= 27000;

/* solve LP using primal simplex solver */
solve with lp / solver = primal_spx;

/* display solution */
print choco toffee;

quit;

The optimal objective value and the optimal solution are displayed in the following
summary output:

Proc OPTMODEL

Solver Results

Technique Primal Simplex
Status Optimal
Iterations 2
Objective profit
Objective Value 475

choco toffee

1000 300

You can observe from the preceding example that PROC OPTMODEL provides an
easy and intuitive way of modeling and solving mathematical programming models.

20 � Chapter 1. Introduction to Optimization

Modeling a Nonlinear Programming Problem

The following optimization problem illustrates how you can use some features of
PROC OPTMODEL to formulate and solve nonlinear programming problems. The
objective of the problem is to find coefficients for an approximation function that
matches the values of a given function, f(x), at a set of points P . The approximation
is a rational function with degree d in the numerator and denominator:

r(x) =
�0 +

Pd
i=1 �ix

i

�0 +
Pd

i=1 �ix
i

The problem can be formulated by minimizing the sum of squared errors at each point
in P :

min
X
x2P

[r(x)� f(x)]2

The following code implements this model. The function f(x) = 2x is approximated
over a set of points P in the range 0 to 1. The function values are saved in a data set
that is used by PROC OPTMODEL to set model parameters:

data points;
/* generate data points */
keep f x;
do i = 0 to 100;

x = i/100;
f = 2**x;
output;

end;

proc optmodel;
/* declare, read, and save our data points */
set points;
number f{points};
read data points into points = [x] f;

/* declare variables and model parameters */
number d=1; /* linear polynomial */
var a{0..d};
var b{0..d} init 1;
constraint fixb0: b[0] = 1;

/* minimize sum of squared errors */
min z=sum{x in points}

((a[0] + sum{i in 1..d} a[i]*x**i) /
(b[0] + sum{i in 1..d} b[i]*x**i) - f[x])**2;

/* solve and show coefficients */
solve;
print a b;
quit;

PROC OPTMODEL � 21

The expression for the objective z is defined using operators that parallel the mathe-
matical form. In this case the polynomials in the rational function are linear, so d is
equal to 1.

The constraint fixb0 forces the constant term of the rational function denomina-
tor, b[0], to equal 1. This causes the resulting coefficients to be normalized. The
OPTMODEL presolver preprocesses the problem to remove the constraint. An un-
constrained solver is used after substituting for b[0].

The SOLVE statement selects a solver, calls it, and displays the status. The PRINT
command then prints the values of coefficient arrays a and b:

Proc OPTMODEL

Solver Results

Technique L-BFGS
Status Normal
Iterations 10
Objective z
Objective Value 0.0000591

[1] a b

0 0.99817 1.00000
1 0.42064 -0.29129

The approximation for f(x) = 2x between 0 and 1 is therefore

fapprox(x) =
0:99817 + 0:42064x

1� 0:29129x

22 � Chapter 1. Introduction to Optimization

Matrix Generation
It is desirable to keep data in separate tables, and then to automate model building
and reporting. This example illustrates a problem that has elements of both a product
mix problem and a blending problem. Suppose four kinds of ties are made: all silk,
all polyester, a 50-50 polyester-cotton blend, and a 70-30 cotton-polyester blend.

The data include cost and supplies of raw material, selling price, minimum contract
sales, maximum demand of the finished products, and the proportions of raw materi-
als that go into each product. The objective is to find the product mix that maximizes
profit.

The data are saved in three SAS data sets. The program that follows demonstrates
one way for these data to be saved.

data material;
format descpt $20.;
input descpt $ cost supply;
datalines;

silk_material .21 25.8
polyester_material .6 22.0
cotton_material .9 13.6
;

data tie;
format descpt $20.;
input descpt $ price contract demand;
datalines;

all_silk 6.70 6.0 7.00
all_polyester 3.55 10.0 14.00
poly_cotton_blend 4.31 13.0 16.00
cotton_poly_blend 4.81 6.0 8.50
;

data manfg;
format descpt $20.;
input descpt $ silk poly cotton;
datalines;

all_silk 100 0 0
all_polyester 0 100 0
poly_cotton_blend 0 50 50
cotton_poly_blend 0 30 70
;

The following program takes the raw data from the three data sets and builds a linear
program model in the data set called model. Although it is designed for the three-
resource, four-product problem described here, it can easily be extended to include
more resources and products. The model-building DATA step remains essentially the
same; all that changes are the dimensions of loops and arrays. Of course, the data
tables must expand to accommodate the new data.

Matrix Generation � 23

data model;
array raw_mat {3} $ 20 ;
array raw_comp {3} silk poly cotton;
length _type_ $ 8 _col_ $ 20 _row_ $ 20 _coef_ 8 ;
keep _type_ _col_ _row_ _coef_ ;

/* define the objective, lower, and upper bound rows */

row=’profit’; _type_=’max’; output;
row=’lower’; _type_=’lowerbd’; output;
row=’upper’; _type_=’upperbd’; output;
type=’ ’;

/* the object and upper rows for the raw materials */

do i=1 to 3;
set material;
raw_mat[i]=descpt; _col_=descpt;
row=’profit’; _coef_=-cost; output;
row=’upper’; _coef_=supply; output;

end;

/* the object, upper, and lower rows for the products */

do i=1 to 4;
set tie;
col=descpt;
row=’profit’; _coef_=price; output;
row=’lower’; _coef_=contract; output;
row=’upper’; _coef_=demand; output;

end;

/* the coefficient matrix for manufacturing */

type=’eq’;
do i=1 to 4; /* loop for each raw material */

set manfg;
do j=1 to 3; /* loop for each product */

col=descpt; /* % of material in product */
row = raw_mat[j];
coef = raw_comp[j]/100;
output;

col = raw_mat[j]; _coef_ = -1;
output;

/* the right-hand side */

if i=1 then do;
col=’_RHS_’;
coef=0;
output;

end;

24 � Chapter 1. Introduction to Optimization

end;
type=’ ’;

end;
stop;

run;

The model is solved using PROC LP, which saves the solution in the PRIMALOUT
data set named solution. PROC PRINT displays the solution, shown in Figure 1.6.

proc lp sparsedata primalout=solution;

proc print ;
id _var_;
var _lbound_--_r_cost_;

run;

VAR _LBOUND_ _VALUE_ _UBOUND_ _PRICE_ _R_COST_

all_polyester 10 11.800 14.0 3.55 0.000
all_silk 6 7.000 7.0 6.70 6.490
cotton_material 0 13.600 13.6 -0.90 4.170
cotton_poly_blend 6 8.500 8.5 4.81 0.196
polyester_material 0 22.000 22.0 -0.60 2.950
poly_cotton_blend 13 15.300 16.0 4.31 0.000
silk_material 0 7.000 25.8 -0.21 0.000
PHASE_1_OBJECTIVE 0 0.000 0.0 0.00 0.000
profit 0 168.708 1.7977E308 0.00 0.000

Figure 1.6. Solution Data Set

The solution shows that 11.8 units of polyester ties, 7 units of silk ties, 8.5 units of
the cotton-polyester blend, and 15.3 units of the polyester-cotton blend should be
produced. It also shows the amounts of raw materials that go into this product mix to
generate a total profit of 168.708.

Exploiting Model Structure
Another example helps to illustrate how the model can be simplified by exploiting
the structure in the model when using the NETFLOW procedure.

Recall the chocolate transshipment problem discussed previously. The solution re-
quired no production at factory–1 and no storage at warehouse–2. Suppose this
solution, although optimal, is unacceptable. An additional constraint requiring the
production at the two factories to be balanced is needed. Now, the production at the
two factories can differ by, at most, 100 units. Such a constraint might look like this:

-100 <= (factory_1_warehouse_1 + factory_1_warehouse_2 -
factory_2_warehouse_1 - factory_2_warehouse_2) <= 100

The network and supply and demand information are saved in the following two data
sets:

Exploiting Model Structure � 25

data network;
format from $12. to $12.;
input from $ to $ cost ;
datalines;

factory_1 warehouse_1 10
factory_2 warehouse_1 5
factory_1 warehouse_2 7
factory_2 warehouse_2 9
warehouse_1 customer_1 3
warehouse_1 customer_2 4
warehouse_1 customer_3 4
warehouse_2 customer_1 5
warehouse_2 customer_2 5
warehouse_2 customer_3 6
;

data nodes;
format node $12. ;
input node $ supdem;
datalines;

customer_1 -100
customer_2 -200
customer_3 -50
factory_1 500
factory_2 500
;

The factory-balancing constraint is not a part of the network. It is represented in the
sparse format in a data set for side constraints.

data side_con;
format _type_ $8. _row_ $8. _col_ $21. ;
input _type_ _row_ _col_ _coef_ ;
datalines;

eq balance . .
. balance factory_1_warehouse_1 1
. balance factory_1_warehouse_2 1
. balance factory_2_warehouse_1 -1
. balance factory_2_warehouse_2 -1
. balance diff -1
lo lowerbd diff -100
up upperbd diff 100
;

This data set contains an equality constraint that sets the value of DIFF to be the
amount that factory 1 production exceeds factory 2 production. It also contains im-
plicit bounds on the DIFF variable. Note that the DIFF variable is a nonarc variable.

You can use the following call to PROC NETFLOW to solve the problem:

proc netflow
conout=con_sav

26 � Chapter 1. Introduction to Optimization

arcdata=network nodedata=nodes condata=side_con
sparsecondata ;
node node;
supdem supdem;
tail from;
head to;
cost cost;
run;

proc print;
var from to _name_ cost _capac_ _lo_ _supply_ _demand_

flow _fcost_ _rcost_;
sum _fcost_;
run;

The solution is saved in the con–sav data set, as displayed in Figure 1.7.

_ _
_ S D _ _

_ C U E _ F R
N A P M F C C

f A c P _ P A L O O
O r M o A L L N O S S
b o t E s C O Y D W T T
s m o _ t _ _ _ _ _ _ _

1 warehouse_1 customer_1 3 99999999 0 . 100 100 300 .
2 warehouse_2 customer_1 5 99999999 0 . 100 0 0 1.0
3 warehouse_1 customer_2 4 99999999 0 . 200 75 300 .
4 warehouse_2 customer_2 5 99999999 0 . 200 125 625 .
5 warehouse_1 customer_3 4 99999999 0 . 50 50 200 .
6 warehouse_2 customer_3 6 99999999 0 . 50 0 0 1.0
7 factory_1 warehouse_1 10 99999999 0 500 . 0 0 2.0
8 factory_2 warehouse_1 5 99999999 0 500 . 225 1125 .
9 factory_1 warehouse_2 7 99999999 0 500 . 125 875 .
10 factory_2 warehouse_2 9 99999999 0 500 . 0 0 5.0
11 diff 0 100 -100 . . -100 0 1.5

====
3425

Figure 1.7. CON–SAV Data Set

Notice that the solution now has production balanced across the factories; the pro-
duction at factory 2 exceeds that at factory 1 by 100 units.

Exploiting Model Structure � 27

�

	

�
factory–2

�

	

�
factory–1

�

	

�
warehouse–2

�

	

�
warehouse–1

�

	

�
customer–3

�

	

�
customer–2

�

	

�
customer–1

-

-�
�
�
�
�
�
���@

@
@
@
@
@
@@R

��
��

��
��*

HHHHHHHHj

J
J
J
J
J
J
J
J
J
J
Ĵ

�

��
��

��
��*

HHHHHHHHj

500

500

�50

�200

�100

225

125

50

100

75

125

Figure 1.8. Constrained Optimum for the Transshipment Problem

28 � Chapter 1. Introduction to Optimization

Report Writing
The reporting of the solution is also an important aspect of modeling. Since the
optimization procedures save the solution in one or more SAS data sets, reports can
be written using any of the tools in the SAS language.

The DATA Step

Use of the DATA step and PROC PRINT is the most common way to produce reports.
For example, from the data set solution shown in Figure 1.6, a table showing the
revenue of the optimal production plan and a table of the cost of material can be
produced with the following program.

data product(keep= _var_ _value_ _price_ revenue)
material(keep=_var_ _value_ _price_ cost);

set solution;
if _price_>0 then do;

revenue=_price_*_value_; output product;
end;
else if _price_<0 then do;

price=-_price_;
cost = _price_*_value_; output material;

end;
run;

/* display the product report */

proc print data=product;
id _var_;
var _value_ _price_ revenue ;
sum revenue;
title ’Revenue Generated from Tie Sales’;

run;

/* display the materials report */

proc print data=material;
id _var_;
var _value_ _price_ cost;
sum cost;
title ’Cost of Raw Materials’;

run;

This DATA step reads the solution data set saved by PROC LP and segregates the
records based on whether they correspond to materials or products—namely whether
the contribution to profit is positive or negative. Each of these is then displayed to
produce Figure 1.9.

Other Reporting Procedures � 29

Revenue Generated from Tie Sales

VAR _VALUE_ _PRICE_ revenue

all_polyester 11.8 3.55 41.890
all_silk 7.0 6.70 46.900
cotton_poly_blend 8.5 4.81 40.885
poly_cotton_blend 15.3 4.31 65.943

=======
195.618

Cost of Raw Materials

VAR _VALUE_ _PRICE_ cost

cotton_material 13.6 0.90 12.24
polyester_material 22.0 0.60 13.20
silk_material 7.0 0.21 1.47

=====
26.91

Figure 1.9. Tie Problem: Revenues and Costs

Other Reporting Procedures

The GCHART procedure can be a useful tool for displaying the solution to mathe-
matical programming models. The con–solv data set that contains the solution to the
balanced transshipment problem can be effectively displayed using PROC GCHART.
In Figure 1.10, the amount that is shipped from each factory and warehouse can be
seen by submitting the following SAS code:

title;
proc gchart data=con_sav;

hbar from / sumvar=_flow_;
run;

30 � Chapter 1. Introduction to Optimization

Figure 1.10. Tie Problem: Throughputs

The horizontal bar chart is just one way of displaying the solution to a mathematical
program. The solution to the Tie Product Mix problem that was solved using PROC
LP can also be illustrated using PROC GCHART. Here, a pie chart shows the relative
contribution of each product to total revenues.

proc gchart data=product;
pie _var_ / sumvar=revenue;

title ’Projected Tie Sales Revenue’;
run;

References � 31

Figure 1.11. Tie Problem: Projected Tie Sales Revenue

The TABULATE procedure is another procedure that can help automate solution re-
porting. Several examples in Chapter 3, “The LP Procedure,” illustrate its use.

References
IBM (1988), Mathematical Programming System Extended/370 (MPSX/370) Version

2 Program Reference Manual, volume SH19-6553-0, IBM.

Murtagh, B. A. (1981), Advanced Linear Programming, Computation and Practice,
New York: McGraw-Hill.

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function,” Computer Journal, 3, 175–184.

32

