
1

C H A P T E R

1
Overview of SAS BI Web
Services

What Are SAS BI Web Services? 1
Deciding Between .NET and Java 2

Installation and Administration Differences 2

Client Differences 3

Creating SAS BI Web Services 3

Use Web Services: Prerequisite 3
Use XMLA Web Services 3

Use Generated Web Services 4

Overview of Security for Web Services 5

Understanding Error Codes 6

What Are SAS BI Web Services?
A Web service is an interface that enables communication between distributed

applications. Web services enable cross-platform integration by enabling applications
that are written in various programming languages to communicate by using a
standard Web-based protocol, typically the Simple Object Access Protocol (SOAP). This
functionality makes it possible for businesses to bridge the gaps between different
applications and systems.

There are two implementations of SAS BI Web Services: one written in Java that
requires a servlet container, and another written in C# that uses the .NET framework.
For information about the differences between SAS BI Web Services for .NET and SAS
BI Web Services for Java, see “Deciding Between .NET and Java” on page 2.

The following figure shows how Web services work.

Figure 1.1 Web Services Communications

A client, such as a Web application or desktop application, obtains the Web Service
Description Language (WSDL) from the Web service. The WSDL describes the methods
that are available, the endpoint (where to call the Web service), and the format of the
XML that is required to call the Web service.

Web service clients and servers transport XML data by using a data envelope that is
called a SOAP envelope. Any client that can send and receive SOAP messages can



2 Deciding Between .NET and Java � Chapter 1

access Web services. SAS supports SOAP bindings over HTTP. The client sends XML
requests and parameters in a SOAP envelope to the Web service, which tells the Web
service to either discover or execute stored processes.

Discover and Execute are the two methods that are specified for XMLA. The Discover
method consists of middle-tier code that calls the SAS Metadata Server to get the
requested metadata. The Execute method consists of middle-tier code that calls the
SAS Stored Process Server to invoke stored processes.

The stored process that is requested is executed by a SAS Stored Process Server.
Usually any number of simple string parameters are passed to the stored process, and a
stream of XML data is returned. The input parameters to the stored process can be
nothing or a combination of simple string parameters and any number of XML streams.

Before SAS 9.2, you could write XML for Analysis (XMLA) Web services only.
Starting with SAS 9.2, you can use SAS Management Console to deploy a set of stored
processes as a generated Web service. For more information, see “What Are Generated
Web Services?” on page 23.

Deciding Between .NET and Java

Installation and Administration Differences

� What operating environment are you using?
� SAS BI Web Services for .NET can be installed only in the following

operating environments:
� Windows XP
� Windows 2003
� Windows Vista Business
� Windows Vista Ultimate
� Windows Vista Enterprise
� Windows Server 2008

� SAS BI Web Services for Java can be installed in any operating environment
that is supported by SAS middle tier components.

� How do you want to administer the Web services?
� SAS BI Web Services for .NET are administered by using IIS.
� SAS BI Web Services for Java are administered by using JBoss, BEA

WebLogic, or IBM WebSphere. If you install SAS BI Web Services for Java,
then you also need to have a Java Virtual Machine for an application server.

� Which Web service stack do you want to use? (A stack is the engine that performs
SOAP processing.)

� SAS BI Web Services for .NET use the .NET Web service stack (Web Services
Enhancements 3.0). The .NET stack supports Message Transmission
Optimization Mechanism (MTOM) attachments.

� SAS BI Web Services for Java use the Apache Axis2 Web service stack. This
stack supports both MTOM attachments and SOAP Messages with
Attachments (SwA). If your service uses attachments and your client is .NET,
then use MTOM, which is enabled by default.



Overview of SAS BI Web Services � Use XMLA Web Services 3

SAS BI Web Services for .NET and SAS BI Web Services for Java also differ in the
way they handle logging and configuration. SAS BI Web Services for .NET use .NET
logging, and SAS BI Web Services for Java use SAS Foundation Services for logging.
For more information about configuring Web services, see the SAS Intelligence
Platform: Web Application Administration Guide.

Client Differences
Web service clients cannot generally identify differences between SAS BI Web

Services for .NET and SAS BI Web Services for Java. If the client conforms to the
usage rules for Web services, then the client should be able to use either platform.

One difference for the Web service client is how the path is returned for the name of
the stored process (DataSourceName). SAS BI Web Services for Java return a fully
qualified path. SAS BI Web Services for .NET return a simple path. In both cases, you
get the name of the stored process to invoke by using the Discover method of the same
Web service.

Creating SAS BI Web Services

Use Web Services: Prerequisite
Before you can use Web services, you need to perform the following steps:

1 Decide whether you want to use SAS BI Web Services for .NET or SAS BI Web
Services for Java. Install SAS BI Web Services and the SAS Metadata Server.

Note: When you install SAS 9.2 BI Web Services, you are actually installing
two Web services: the XMLA Web services that were available with SAS 9.1, and
the new WebServiceMaker Web service that is used create generated Web
services. �

2 Write a SAS program to use as a stored process with Web services. See “Writing
SAS Programs for XMLA Web Services” on page 9.

3 Define a stored process server, if one is not already defined.

4 Define a stored process by using SAS Management Console. Use XMLA Web
Service as a keyword and Stream as the stored process output type when
defining a stored process to be called by an XMLA Web service.

Use XMLA Web Services
On the client side, perform the following steps to use XMLA Web services:

1 Locate the Web Service Description Language File (WSDL). You can access the
WSDL for a SAS BI Web Service by appending a ’?WSDL’ onto the service endpoint.

2 Write the code for the client application that uses either the Discover method or
the Execute method to call the Web service.

3 Run the code.



4 Use Generated Web Services � Chapter 1

For XMLA Web services, the SAS code that implements the Web service, the
metadata, and the client code that calls the Web service must all be synchronized. The
following table shows how to synchronize these items:

Table 1.1 Items to Synchronize

Item SAS Program Metadata Client Code

Name The name of the file
that contains the SAS
code.

Associates the name of
the SAS Stored
Process with the name
of the file.

<StoredProcess name=
’MyStoredProcess’>

Input Data Reads XML from the
fileref.

libname instream
xml;

The name of the
fileref, which must
match the name of the
data source.

<Stream name=’instream’>
<XMLDataFromClientHere...
</Stream>

Input Parameters Macros.

&tablename

The parameter name
is specified in the
metadata. Parameters
are treated as strings,
regardless of the type
that is specified in the
metadata.

<Parameter
name=’tablename’>
myParam</Parameter>

Output Data Writes output to the
_WEBOUT fileref as
XML.

libname _WEBOUT
xml xmlmeta=
&_XMLSCHEMA;

Designates the output
as ’Streaming’.

Uses the XML that is
returned.

Use Generated Web Services
Follow these steps to use generated Web services:
1 Generate a new Web service:

a Determine URL of the Web Service Maker endpoint.
b In SAS Management Console, select a set of stored processes and then select

Actions � Deploy As Web Service to generate a new Web service that can be
used to call the selected stored processes.

In the Web Service Maker URL field of the Deploy as Web Service wizard,
type the endpoint URL or select an existing URL. The user who performs this
action should belong to the SAS BI Web Services Users metadata group so
that the new Web service can be stored in metadata. The metadata is created
only if the service is successfully deployed in the target container. The new
Web service will contain one operation for each stored process that you
selected.

Upon successful deployment, a message displays that tells you the
endpoint URL for the newly deployed Web service.

2 Create clients to call the Web service.

A Web service can be created with multiple operations in it. Each operation
corresponds to a stored process, and has the same name as the stored process, unless
there is a naming conflict. If the name of the stored process conflicts with another
name, then a new operation name is created.



Overview of SAS BI Web Services � Overview of Security for Web Services 5

Overview of Security for Web Services
A default installation of SAS BI Web Services for Java or .NET is not highly secure.

The default security mechanism is SAS authentication. All requests and responses are
sent as clear-Text. If users want to authenticate as a specific user, then they can send a
user name and password as clear-Text as part of the WS-Security headers.
Authentication is performed by authenticating client credentials at the SAS Metadata
Server. Whenever user names and passwords must be sent as clear-Text, SSL should be
enabled to provide transport layer security.

If you are using XMLA Web services or generated Web services, an anonymous user
can be configured. Anonymous users cannot use the Web Service Maker; credentials
must always be provided to use the Web Service Maker. If you are using XMLA Web
services, you can pass user credentials as XMLA properties in the payload.

SAS BI Web Services can be secured by using Web authentication. This provides a
way for SAS BI Web Services to identify the calling user by using basic Web
authentication. The following two types of Web authentication can be configured:

� WS-Security message-level security
� HTTP transport-level security

Note: Web authentication can be used with both XMLA Web services and generated
Web services but cannot be used with the Web Service Maker Web service. The Web
Service Maker must be able to authenticate one-time-passwords that are generated by
SAS Management Console clients. �

SAS BI Web Services for .NET can be secured by using Web Services Enhancements
3.0 for Microsoft .NET, which enables support for the latest security and
interoperability standards for Web services. For detailed information about using Web
Services Enhancements 3.0, WS-Security, and WS-Policy to secure SAS BI Web
Services, see the SAS Intelligence Platform: Web Application Administration Guide.
The current release of SAS BI Web Services for Java does not support WS-Policy.

Consult with your administrator to determine how Web services are configured at
your site and how you can invoke them. For more information about setting up Web
service security, see the SAS Intelligence Platform: Web Application Administration
Guide.



6 Understanding Error Codes � Chapter 1

Understanding Error Codes
Errors generally fall into one of five categories, and are assigned the appropriate

error code for that category. The following table describes these error codes:

Table 1.2 Error Codes

Error Code Description

1000 Specifies an invalid user name or password (the client application
might want to re-prompt the user for credentials).

2000 Specifies a client error (the client application might want to pass in
different parameters). This error might occur for one of the following
reasons:

� invalid prompt value

� required parameter is missing

� invalid request against schema

� invalid stored process name (for XMLA Web services only)

� no ReadMetadata permission for the stored process

3000 Specifies a SAS error. This error is generated when the stored
process generates a SYSCC macro variable that is not listed in the
AcceptableSyssc configuration option. An additional attribute is
added to indicate that the actual error number that SYSCC was set
to. The SYSMSG string is also included in the message.

4000 Specifies a configuration error. This indicates a problem that the
administrator of the service should be notified about. The
administrator should be able to examine logs on the service to
determine the cause of this error. This error might occur for one of
the following reasons:

� invalid default credentials for the anonymous user

� invalid trusted credentials

� metadata server or stored process server is unreachable

� invalid configuration file

5000 Specifies a timeout error. This error occurs if the user configures SAS
BI Web Services with a stored process timeout and the execution of a
stored process exceeds this timeout.

Note: Before SAS 9.2, XMLA returned an error code of 99 for almost all errors. �



Overview of SAS BI Web Services � Understanding Error Codes 7

The following code is an example of a generated SOAP fault that has an error code of
4000:

<SOAP-ENV:Fault>
<faultcode>Server</faultcode>
<faultstring>The XML for Analysis provider encountered an error</faultstring>
<faultactor>XML for Analysis Provider>XML for Analysis Provider</faultactor>
<detail>

<sas:Fault code="4000">
<sas:Exception message="The configured credentials are invalid.">

<sas:Exception message="The config file contains invalid metadata
credentials."/>

<sas:Exception message="The user ’anon’ is unknown.">
<sas:Exception message="’anon’ is not defined in metadata."/>

</sas:Exception>
</sas:Exception>

</sas:Fault>
</detail>

</SOAP-ENV:Fault>




