
1

C H A P T E R

1
SAS/ACCESS for MySQL

Introduction to the SAS/ACCESS Interface to MySQL 1
LIBNAME Statement Specifics for MySQL 1

Arguments 2

MySQL LIBNAME Statement Examples 3

Data Set Options for MySQL 3

Pass-Through Facility Specifics for MySQL 4
Examples 5

Autocommit and Table Types 6

Understanding MySQL Update and Delete Rules 6

Passing SAS Functions to MySQL 7

Passing Joins to MySQL 8

Naming Conventions for MySQL 8
Case Sensitivity for MySQL 9

Data Types for MySQL Servers 9

Overview 9

Character Data 10

Numeric Data 10
Other Data Types 11

LIBNAME Statement Data Conversions 12

Introduction to the SAS/ACCESS Interface to MySQL

This document includes details about only the SAS/ACCESS Interface to MySQL. It
should be used as a supplement to the main SAS/ACCESS documentation,
SAS/ACCESS for Relational Databases: Reference.

LIBNAME Statement Specifics for MySQL

This section describes the LIBNAME statements as supported in the SAS/ACCESS
interface to MySQL. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The MySQL
specific syntax for the LIBNAME statement is as follows:

LIBNAME libref mysql <connection-options><LIBNAME-options>;

2 Arguments � Chapter 1

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables.

mysql
is the SAS/ACCESS engine name for the interface to MySQL.

connection-options
provide connection information for the connection to the DBMS. The connection
options for the interface to MySQL are:

USER=<’>username<’>
specifies the MySQL user login ID. If this argument is not specified, the
current user is assumed. If the user name contains spaces or
non-alphanumeric characters, you must enclose the user name in quotation
marks.

PASSWORD=<’>password<’>
specifies the MySQL password that is associated with the MySQL login ID. If
the password contains spaces or non-alphanumeric characters, you must
enclose the password in quotation marks.

DATABASE=<’>database<’>
specifies the MySQL database to which you want to connect. If the database
name contains spaces or non-alphanumeric characters, you must enclose the
database name in quotation marks.

SERVER=<’>server<’>
specifies the server name or IP address of the MySQL server. If the server
name contains spaces or non-alphanumeric characters, you must enclose the
server name in quotation marks.

PORT=port
specifies the port used to connect to the specified MySQL server.

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine naming behavior. The following table
describes LIBNAME options that are supported for MySQL and presents default
values where applicable. See the section about the SAS/ACCESS LIBNAME
statement in SAS/ACCESS for Relational Databases: Reference for detailed
information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for MySQL

Option Default Value

ACCESS= NONE

AUTOCOMMIT= YES

CONNECTION= SHAREDREAD

CONNECTION_GROUP= NONE

DBCOMMIT= 1000 when inserting rows; 0 when
updating rows, deleting rows, or
appending rows to an existing table

SAS/ACCESS for MySQL � Data Set Options for MySQL 3

Option Default Value

DBCONINIT= NONE

DBCONTERM= NONE

DBCREATE_TABLE_OPTS= NONE

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= NONE

DBLIBTERM= NONE

DBMAX_TEXT= 1024

DBPROMPT= NO

DBSASLABEL= COMPAT

DEFER= NO

DIRECT_EXE= NONE

DIRECT_SQL= YES

INSERTBUFF= 0

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= NO

PRESERVE_TAB_NAMES= NO

QUALIFIER= NONE

REREAD_EXPOSURE= NO

SPOOL= YES

SQL_FUNCTIONS= NONE

UTILCONN_TRANSIENT= NO

MySQL LIBNAME Statement Examples

In the following example, the libref MYSQLLIB uses the SAS/ACCESS interface to
MySQL to connect to a MySQL database. The SAS/ACCESS connection options are
USER=, PASSWORD=, DATABASE=, SERVER=, and PORT=.

libname mysqllib mysql user=testuser password=testpass database=mysqldb
server=mysqlserv port=9876;

proc print data=mysqllib.employees;
where dept=’CSR010’;

run;

Data Set Options for MySQL

The following table describes all data set options that are supported for the MySQL
interface. Default values are provided where applicable. See the section about data set

4 Pass-Through Facility Specifics for MySQL � Chapter 1

options in SAS/ACCESS for Relational Databases: Reference for general information
about these options.

Table 1.2 Data Set Options for MySQL

Option Default Value

AUTOCOMMIT= the current LIBNAME option setting

DBCOMMIT= the current LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= the current LIBNAME option setting

DBGEN_NAME= DBMS

DBINDEX= the current LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= YES

DBPROMPT= the current LIBNAME option setting

DBSASLABEL= COMPAT

DBSASTYPE= See “Data Types for MySQL Servers” on
page 9.

DBTYPE= See “LIBNAME Statement Data
Conversions” on page 12.

INSERTBUFF= 0

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= current LIBNAME option setting

QUALIFIER= the current LIBNAME option setting

SASDATEFORMAT= DATETIME20.0

UPDATE_ISOLATION_LEVEL= the current LIBNAME option setting

Pass-Through Facility Specifics for MySQL
See the section about the Pass-Through Facility in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.
The Pass-Through Facility specifics for MySQL are as follows:
� The dbms-name is mysql.
� The database-connection-arguments for the CONNECT statement are as follows:

USER=<’>MySQL-login-ID<’>
specifies an optional MySQL login ID. If USER= is not specified, the current
user is assumed. If you specify USER=, you also must specify PASSWORD=.

PASSWORD=<’>MySQL-password<’>

SAS/ACCESS for MySQL � Examples 5

specifies the MySQL password that is associated with the MySQL login ID. If
you specify PASSWORD=, you also must specify USER=.

DATABASE=<’>database-name<’>
specifies the MySQL database.

SERVER=<’>server-name<’>
specifies the name or IP address of the MySQL server to which to connect. If
server-name is omitted or set to localhost, a connection to the local host is
established.

PORT=port
specifies the port on the server that is used for the TCP/IP connection.

Examples
The following example uses the alias DBCON for the DBMS connection (the

connection alias is optional):

proc sql;
connect to mysql as dbcon

(user=testuser password=testpass server=mysqlserv
database=mysqldb port=9876);

quit;

The following example connects to MySQL and sends it two EXECUTE statements to
process:

proc sql;
connect to mysql (user=testuser password=testpass server=mysqlserv

database=mysqldb port=9876);
execute (create table whotookorders as

select ordernum, takenby,
firstname, lastname, phone

from orders, employees
where orders.takenby=employees.empid)

by mysql;
execute (grant select on whotookorders

to testuser) by mysql;
disconnect from mysql;

quit;

The following example performs a query, shown in highlighted text, on the MySQL
table CUSTOMERS:

proc sql;
connect to mysql (user=testuser password=testpass server=mysqlserv

database=mysqldb port=9876);
select *

from connection to mysql
(select * from customers
where customer like ’1%’);

disconnect from mysql;
quit;

6 Autocommit and Table Types � Chapter 1

Autocommit and Table Types
MySQL supports several table types, two of which are MyISAM (the default) and

INNODB. A single database can contain tables of different types. The behavior of a
table is determined by its table type. For example, by definition, a table created of
MyISAM type does not support transactions. Consequently, all DML statements
(updates, deletes, inserts) are automatically committed. If you need transactional
support, specify a table type of INNODB in the DBCREATE_TABLE_OPTS LIBNAME
option. This table type allows for updates, deletes, and inserts to be rolled back if an
error occurs; or updates, deletes, and inserts to be committed if the SAS DATA step or
procedure completes successfully.

By default, the MYSQL libname engine sets AUTOCOMMIT=YES regardless of the table
type. If you are using tables of the type INNODB, set the LIBNAME option
AUTOCOMMIT=NO to improve performance. To control how often COMMITS are
executed, set the DBCOMMIT option.

Note: The DBCOMMIT option can affect SAS/ACCESS performance. Experiment
with a value that best fits your table size and performance needs before using it for
production jobs. Transactional tables require significantly more memory and disk space
requirements. �

Understanding MySQL Update and Delete Rules
To avoid data integrity problems when updating or deleting data, you need a primary

key defined on your table. Refer to the MySQL documentation for more information
regarding table types and transactions.

The following example uses AUTOCOMMIT=NO and DBTYPE to create the primary
key, and DBCREATE_TABLE_OPTS to determine the MySQL table type.

libname invty mysql user=dbitest server=d6687 database=test autocommit=no
reread_exposure=no;

proc sql;
drop table invty.STOCK23;
quit;

/* Create DBMS table with primary key and of type INNODB*/
data invty.STOCK23(drop=PARTNO DBTYPE=(RECDATE="date not null,

primary key(RECDATE)") DBCREATE_TABLE_OPTS="type = innodb");
input PARTNO $ DESCX $ INSTOCK @17

RECDATE date7. @25 PRICE;
format RECDATE date7.;
datalines;

K89R seal 34 27jul95 245.00
M447 sander 98 20jun95 45.88
LK43 filter 121 19may96 10.99
MN21 brace 43 10aug96 27.87
BC85 clamp 80 16aug96 9.55
KJ66 cutter 6 20mar96 24.50
UYN7 rod 211 18jun96 19.77
JD03 switch 383 09jan97 13.99
BV1I timer 26 03jan97 34.50
;

SAS/ACCESS for MySQL � Passing SAS Functions to MySQL 7

proc sql;
update invty.STOCK23 set price=price*1.1 where INSTOCK > 50;
quit;

Passing SAS Functions to MySQL
The interface to MySQL passes the following SAS functions to MySQL for processing

when the is set to ALL. Where the MySQL function name differs from the SAS function
name, the MySQL name appears in parentheses. See “Passing Functions to the DBMS
using PROC SQL” in SAS/ACCESS for Relational Databases: Reference for information.

ABS

ARCOS (ACOS)

ARSIN (ASIN)

ATAN

BYTE

CEIL (CEILING)

COMPRESS

COS

COT

DATE

DATETIME

DAY

EXP

FLOOR

HOUR

INDEX

LOWCASE (LCASE)

LENGTH

LOG

LOG10

MINUTE

MOD

MONTH

QTR

REPEAT

SECOND

SIGN

SIN

8 Passing Joins to MySQL � Chapter 1

SOUNDEX

SQRT

SUBSTR

TAN

TIME

TODAY

TRIM (TRIMN)

UPCASE (UCASE)

WEEKDAY

YEAR

Passing Joins to MySQL
In order for a multiple libref join to pass to MySQL, all of the following components

of the LIBNAME statements must match exactly:

user

password

database

server

See “Passing Joins to the DBMS” in SAS/ACCESS for Relational Databases:
Reference for more information about when and how SAS/ACCESS passes joins to the
DBMS.

Naming Conventions for MySQL
MySQL database identifiers that can be named include databases, tables, and

columns. The MySQL documentation contains extensive on naming conventions. The
following are some of the naming conventions that you must use.

� All identifier names must be from 1 to 64 characters long, except for aliases, which
may be 255 characters.

� Database names must be unique. For each user within a database, names of
database objects must be unique across all users (for example, if a database
contains a department table created by user A, no other user can create a
department table in the same database).

Note: MySQL does not recognize the notion of schema. Consequently, tables
are automatically visible to all users with appropriate privileges. Column names
and index names must be unique within a table. �

� Database names can use any character that is allowed in a directory name except
for periods and backward and forward slashes.

� Table names may use any character allowed in a filename except for periods and
forward slashes.

� Column and alias names allow all characters.

SAS/ACCESS for MySQL � Overview 9

� A name cannot be a MySQL reserved word unless the name is enclosed in
quotation marks. See the MySQL documentation for more information about
reserved words.

� Embedded spaces and other special characters are not permitted unless the name
is enclosed in quotation marks.

� Embedded quotation marks are not permitted.
� Case sensitivity is set when a server is installed. By default, the names of

database objects are case-sensitive on UNIX and not case-sensitive on Windows.
For example, the names CUSTOMER and customer are different on a case-sensitive
server.

Note: By default, column and table names are not quoted in the SAS/ACCESS
interface to MySQL. To quote the table and column names, you must use the LIBNAME
statement PRESERVE_TAB_NAMES=. �

Case Sensitivity for MySQL
In MySQL, databases and tables correspond to directories and files within those

directories. Consequently, the case sensitivity of the underlying operating system
determines the case sensitivity of database and table names. This means database and
table names are case-insensitive in Windows, and case-sensitive in most varieties of
UNIX.

In SAS, names can be entered in either uppercase or lowercase. MySQL recommends
that you adopt a consistent convention of either all uppercase or all lowercase
tablenames, especially on UNIX hosts. This can be easily implemented by starting your
server with -O lower_case_table_names=1. Please see the MySQL documentation for
more details.

If your server is on a case-sensitive platform, and you choose to allow case sensitivity,
be aware that when you reference MYSQL objects through the SAS/ACCESS interface,
objects are case-sensitive and require no quotation marks. Furthermore, in the
pass-through facility, all MySQL object names are case-sensitive. The names are passed
to MySQL exactly as they are typed.

For more information about case sensitivity and MySQL names, see Naming
Conventions for MySQL.

Data Types for MySQL Servers

Overview
Every column in a table has a name and a data type. The data type tells MySQL

how much physical storage to set aside for the column and the form in which the data
is stored.

10 Character Data � Chapter 1

Character Data
BLOB

contains binary data of variable length up to 64 kilobytes. Variables entered into
columns of this type must be inserted as character strings.

CHAR (n)
contains fixed-length character string data with a length of n, where n must be at
least 1 and cannot exceed 255 characters.

ENUM (“value1”, “value2”, “value3”,...)
contains a character value that can be chosen from the list of allowed values. You
can specify up to 65535 ENUM values. If the column contains a string not
specified in the value list, the column value is set to “0”.

LONGBLOB
contains binary data of variable length up to 4 gigabytes. Variables entered into
columns of this type must be inserted as character strings. Available memory
considerations might limit the size of a LONGBLOB data type.

LONGTEXT
contains text data of variable length up to 4 gigabytes. Available memory
considerations might limit the size of a LONGTEXT data type.

MEDIUMBLOB
contains binary data of variable length up to 16 megabytes. Variables entered into
columns of this type must be inserted as character strings.

MEDIUMTEXT
contains text data of variable length up to 16 megabytes.

SET (“value1”, “value2”, “value3”,...)
contains zero or more character values that must be chosen from the list of
allowed values. You can specify up to 64 SET values.

TEXT
contains text data of variable length up to 64 kilobytes.

TINYBLOB
contains binary data of variable length up to 256 bytes. Variables entered into
columns of this type must be inserted as character strings.

TINYTEXT
contains text data of variable length up to 256 bytes.

VARCHAR (n)
contains character string data with a length of n, where n is a value from 1 to 255.

Numeric Data
BIGINT (n)

specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for BIGINT can range from
-9223372036854775808 to 9223372036854775808.

DECIMAL (length, decimals)
specifies a fixed-point decimal number, where length is the total number of digits
(precision), and decimals is the number of digits to the right of the decimal point
(scale).

SAS/ACCESS for MySQL � Other Data Types 11

DOUBLE (length, decimals)
specifies a double-precision decimal number, where length is the total number of
digits (precision), and decimals is the number of digits to the right of the decimal
point (scale). Values can range from approximately –1.8E308 to –2.2E-308 and
2.2E-308 to 1.8E308 (if UNSIGNED is specified).

FLOAT (length, decimals)
specifies a floating-point decimal number, where length is the total number of
digits (precision) and decimals is the number of digits to the right of the decimal
point (scale). Values can range from approximately –3.4E38 to –1.17E-38 and
1.17E-38 to 3.4E38 (if UNSIGNED is specified).

INT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for INT can range from –2147483648 to
2147483647.

MEDIUMINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for MEDIUMINT can range from –8388608
to 8388607.

SMALLINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for SMALLINT can range from –32768 to
32767.

TINYINT (n)
specifies an integer value, where n indicates the display width for the data. You
might experience problems with MySQL if the data column contains values that
are larger than the value of n. Values for TINYINT can range from -128 to 127.

Other Data Types

DATE
contains date values. Valid dates are from January 1, 1000, to December 31, 9999.
The default format is YYYY-MM-DD, for example, 1961–06–13.

DATETIME
contains date and time values. Valid values are from 00:00:00 on January 1, 1000,
to 23:59:59 on December 31, 9999. The default format is YYYY-MM-DD
HH:MM:SS, for example, 1992–09–20 18:20:27.

TIME
contains time values. Valid times are –838 hours, 59 minutes, 59 seconds to 838
hours, 59 minutes, 59 seconds. The default format is HH:MM:SS, for example,
12:17:23.

TIMESTAMP
contains date and time values used to mark data operations. Valid values are from
00:00:00 on January 1, 1970, to 2037. The default format is YYYY-MM-DD
HH:MM:SS, for example, 1995–08–09 15:12:27.

12 LIBNAME Statement Data Conversions � Chapter 1

LIBNAME Statement Data Conversions
The following table shows the default SAS variable formats that SAS/ACCESS

assigns to MySQL data types during input operations when you use the LIBNAME
statement.

Table 1.3 LIBNAME Statement: Default SAS Formats for MySQL Data Types

MySQL Column Type SAS Data Type Default SAS Format

CHAR(n) character $n.

VARCHAR(n) character $n.

TINYTEXT character $n.

TEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

MEDIUMTEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

LONGTEXT character $n. (where n is the value of the
DBMAX_TEXT= option)

TINYBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

BLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

MEDIUMBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

LONGBLOB character $n. (where n is the value of the
DBMAX_TEXT= option)

ENUM character $n.

SET character $n.

TINYINT numeric 4.0

SMALLINT numeric 6.0

MEDIUMINT numeric 8.0

INT numeric 11.0

BIGINT numeric 20.

DECIMAL numeric m.n

FLOAT numeric

DOUBLE numeric

DATE numeric DATE

TIME numeric TIME

SAS/ACCESS for MySQL � LIBNAME Statement Data Conversions 13

MySQL Column Type SAS Data Type Default SAS Format

DATETIME numeric DATETIME

TIMESTAMP numeric DATETIME

The following table shows the default MySQL data types that SAS/ACCESS assigns
to SAS variable formats during output operations when you use the LIBNAME
statement.

Table 1.4 LIBNAME Statement: Default MySQL Data Types for SAS Variable
Formats

SAS Variable Format MySQL Data Type

m.n* DECIMAL ([m-1],n)**

n (where n <= 2) TINYINT

n (where n <= 4) SMALLINT

n (where n <=6) MEDIUMINT

n (where n <= 17) BIGINT

other numerics DOUBLE

$n (where n <= 255) VARCHAR(n)

$n (where n > 255) TEXT

datetime formats TIMESTAMP

date formats DATE

time formats TIME

* n in MySQL data types is equivalent to w in SAS formats.
** DECIMAL types are created as (m-1, n). SAS includes space to write the value, the decimal

point, and a minus sign (if necessary) in its calculation for precision These must be removed
when converting to MySQL.

14

