Contents

List of Programs xv
Preface xxix
Acknowledgments xxxi

Part 1 Getting Started 1
Chapter 1 What Is SAS? 3
 1.1 Introduction 3
 1.2 Getting Data into SAS 4
 1.3 A Sample SAS Program 4
 1.4 SAS Names 7
 1.5 SAS Data Sets and SAS Data Types 8
 1.6 The SAS Display Manager and SAS Enterprise Guide 9
 1.7 Problems 9

Chapter 2 Writing Your First SAS Program 11
 2.1 A Simple Program to Read Raw Data and Produce a Report 11
 2.2 Enhancing the Program 18
 2.3 More on Comment Statements 20
 2.4 How SAS Works (a Look Inside the “Black Box”) 22
 2.5 Problems 25

Part 2 DATA Step Processing 27
Chapter 3 Reading Raw Data from External Files 29
 3.1 Introduction 30
 3.2 Reading Data Values Separated by Blanks 30
 3.3 Specifying Missing Values with List Input 32
 3.4 Reading Data Values Separated by Commas (CSV Files) 33
 3.5 Using an Alternative Method to Specify an External File 34
iv Contents

3.6 Reading Data Values Separated by Delimiters Other Than Blanks or Commas 34
3.7 Placing Data Lines Directly in Your Program (the DATALINES Statement) 36
3.8 Specifying INFILE Options with the DATALINES Statement 37
3.9 Reading Raw Data from Fixed Columns—Method 1: Column Input 37
3.10 Reading Raw Data from Fixed Columns—Method 2: Formatted Input 39
3.11 Using a FORMAT Statement in a DATA Step versus in a Procedure 43
3.12 Using Informats with List Input 43
3.13 Supplying an INFORMAT Statement with List Input 45
3.14 Using List Input with Embedded Delimiters 46
3.15 Problems 47

Chapter 4 Creating Permanent SAS Data Sets 53
4.1 Introduction 54
4.2 SAS Libraries—The LIBNAME Statement 54
4.3 Why Create Permanent SAS Data Sets? 55
4.4 Examining the Descriptor Portion of a SAS Data Set Using PROC CONTENTS 56
4.5 Listing All the SAS Data Sets in a SAS Library Using PROC CONTENTS 59
4.6 Viewing the Descriptor Portion of a SAS Data Set Using the SAS Explorer 60
4.7 Viewing the Data Portion of a SAS Data Set Using PROC PRINT 63
4.8 Viewing the Data Portion of a SAS Data Set Using the SAS VIEWTABLE Window 64
4.9 Using a SAS Data Set as Input to a DATA Step 65
4.10 DATA _NULL_: A Data Set That Isn’t 67
4.11 Problems 68
Chapter 5 Creating Formats and Labels 71
 5.1 Adding Labels to Your Variables 71
 5.2 Using Formats to Enhance Your Output 73
 5.3 Regrouping Values Using Formats 76
 5.4 More on Format Ranges 78
 5.5 Storing Your Formats in a Format Library 79
 5.6 Permanent Data Set Attributes 80
 5.7 Accessing a Permanent SAS Data Set with User-Defined Formats 82
 5.8 Displaying Your Format Definitions 83
 5.9 Problems 84

Chapter 6 Reading and Writing Data from an Excel Spreadsheet 87
 6.1 Introduction 87
 6.2 Using the Import Wizard to Convert a Spreadsheet to a SAS Data Set 88
 6.3 Creating an Excel Spreadsheet from a SAS Data Set 93
 6.4 Using an Engine to Read an Excel Spreadsheet 95
 6.5 Using the SAS Output Delivery System to Convert a SAS Data Set to an Excel Spreadsheet 96
 6.6 Problems 98

Chapter 7 Performing Conditional Processing 101
 7.1 Introduction 102
 7.2 The IF and ELSE IF Statements 102
 7.3 The Subsetting IF Statement 105
 7.4 The IN Operator 107
 7.5 Using a SELECT Statement for Logical Tests 108
 7.6 Using Boolean Logic (AND, OR, and NOT Operators) 109
 7.7 A Caution When Using Multiple OR Operators 111
 7.8 The WHERE Statement 112
 7.9 Some Useful WHERE Operators 113
 7.10 Problems 114
Chapter 8 Performing Iterative Processing: Looping 117
8.1 Introduction 117
8.2 DO Groups 118
8.3 The Sum Statement 120
8.4 The Iterative DO Loop 125
8.5 Other Forms of an Iterative DO Loop 129
8.6 DO WHILE and DO UNTIL Statements 131
8.7 A Caution When Using DO UNTIL Statements 134
8.8 LEAVE and CONTINUE Statements 135
8.9 Problems 137

Chapter 9 Working with Dates 141
9.1 Introduction 142
9.2 How SAS Stores Dates 142
9.3 Reading Date Values from Raw Data 143
9.4 Computing the Number of Years between Two Dates 146
9.5 Demonstrating a Date Constant 147
9.6 Computing the Current Date 148
9.7 Extracting the Day of the Week, Day of the Month, Month, and Year from a SAS Date 149
9.8 Creating a SAS Date from Month, Day, and Year Values 150
9.9 Substituting the 15th of the Month when the Day Value Is Missing 151
9.10 Using Date Interval Functions 152
9.11 Problems 157

Chapter 10 Subsetting and Combining SAS Data Sets 161
10.1 Introduction 162
10.2 Subsetting a SAS Data Set 162
10.3 Creating More Than One Subset Data Set in One DATA Step 163
10.4 Adding Observations to a SAS Data Set 164
10.5 Interleaving Data Sets 167
10.6 Combining Detail and Summary Data 168
Chapter 11 Working with Numeric Functions 189

11.1 Introduction 190
11.2 Functions That Round and Truncate Numeric Values 190
11.3 Functions That Work with Missing Values 192
11.4 Setting Character and Numeric Values to Missing 193
11.5 Descriptive Statistics Functions 194
11.6 Computing Sums within an Observation 196
11.7 Mathematical Functions 197
11.8 Computing Some Useful Constants 198
11.9 Generating Random Numbers 199
11.10 Special Functions 201
11.11 Functions That Return Values from Previous Observations 204
11.12 Problems 207

Chapter 12 Working with Character Functions 211

12.1 Introduction 212
12.2 Determining the Length of a Character Value 212
12.3 Changing the Case of Characters 213
12.4 Removing Characters from Strings 214
12.5 Joining Two or More Strings Together 215
12.6 Removing Leading or Trailing Blanks 217
12.7 Using the COMPRESS Function to Remove Characters from a String 218
12.8 Searching for Characters 220
12.9 Searching for Individual Characters 223
12.10 Searching for Words in a String 223
12.11 Searching for Character Classes 225
12.12 Using the NOT Functions for Data Cleaning 226
12.13 Describing a Real Blockbuster Data Cleaning Function 227
12.14 Extracting Part of a String 228
12.15 Dividing Strings into Words 230
12.16 Comparing Strings 232
12.17 Performing a Fuzzy Match 234
12.18 Substituting Characters or Words 235
12.19 Problems 238

Chapter 13 Working with Arrays 243
13.1 Introduction 244
13.2 Setting Values of 999 to a SAS Missing Value for Several Numeric Variables 244
13.3 Setting Values of NA and ? to a Missing Character Value 247
13.4 Converting All Character Values to Lowercase 248
13.5 Using an Array to Create New Variables 249
13.6 Changing the Array Bounds 250
13.7 Temporary Arrays 251
13.8 Loading the Initial Values of a Temporary Array from a Raw Data File 253
13.9 Using a Multidimensional Array for Table Lookup 254
13.10 Problems 257
Contents ix

Part 3 Presenting and Summarizing Your Data 259

Chapter 14 Displaying Your Data 261

14.1 Introduction 262
14.2 The Basics 262
14.3 Changing the Appearance of Your Listing 263
14.4 Changing the Appearance of Values 265
14.5 Controlling the Observations That Appear in Your Listing 266
14.6 Adding Additional Titles and Footnotes to Your Listing 268
14.7 Changing the Order of Your Listing 270
14.8 Sorting by More Than One Variable 272
14.9 Labeling Your Column Headings 273
14.10 Adding Subtotals and Totals to Your Listing 274
14.11 Making Your Listing Easier to Read 277
14.12 Adding the Number of Observations to Your Listing 279
14.13 Double-Spacing Your Listing 280
14.14 Listing the First \(n \) Observations of Your Data Set 281
14.15 Problems 283

Chapter 15 Creating Customized Reports 287

15.1 Introduction 288
15.2 Using PROC REPORT 289
15.3 Selecting Variables to Include in Your Report 291
15.4 Comparing Detail and Summary Reports 291
15.5 Producing a Summary Report 293
15.6 Demonstrating the FLOW Option of PROC REPORT 294
15.7 Using Two Grouping Variables 296
15.8 Changing the Order of Variables in the COLUMN Statement 297
15.9 Changing the Order of Rows in a Report 299
15.10 Applying the ORDER Usage to Two Variables 300
15.11 Creating a Multi-Column Report 301
15.12 Producing Report Breaks 303
15.13 Using a Nonprinting Variable to Order a Report 306
15.14 Computing a New Variable with PROC REPORT 307
15.15 Computing a Character Variable in a COMPUTE Block 308
15.16 Creating an ACROSS Variable with PROC REPORT 310
15.17 Modifying the Column Label for an ACROSS Variable 311
15.18 Using an ACROSS Usage to Display Statistics 311
15.19 Problems 313

Chapter 16 Summarizing Your Data 319
16.1 Introduction 320
16.2 PROC MEANS—Starting from the Beginning 320
16.3 Adding a BY Statement to PROC MEANS 323
16.4 Using a CLASS Statement with PROC MEANS 324
16.5 Applying a Format to a CLASS Variable 325
16.6 Deciding between a BY Statement and a CLASS Statement 327
16.7 Creating Summary Data Sets Using PROC MEANS 327
16.8 Outputting Other Descriptive Statistics with PROC MEANS 328
16.9 Asking SAS to Name the Variables in the Output Data Set 329
16.10 Outputting a Summary Data Set: Including a BY Statement 330
16.11 Outputting a Summary Data Set: Including a CLASS Statement 331
16.12 Using Two CLASS Variables with PROC MEANS 333
16.13 Selecting Different Statistics for Each Variable 337
16.14 Problems 338

Chapter 17 Counting Frequencies 341
17.1 Introduction 342
17.2 Counting Frequencies 342
17.3 Selecting Variables for PROC FREQ 345
17.4 Using Formats to Label the Output 346
17.5 Using Formats to Group Values 347
17.6 Problems Grouping Values with PROC FREQ 349
17.7 Displaying Missing Values in the Frequency Table 351
17.8 Changing the Order of Values in PROC FREQ 353
17.9 Producing Two-Way Tables 356
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.10</td>
<td>Requesting Multiple Two-Way Tables 358</td>
</tr>
<tr>
<td>17.11</td>
<td>Producing Three-Way Tables 358</td>
</tr>
<tr>
<td>17.12</td>
<td>Problems 360</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>Creating Tabular Reports 363</td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction 364</td>
</tr>
<tr>
<td>18.2</td>
<td>A Simple PROC TABULATE Table 364</td>
</tr>
<tr>
<td>18.3</td>
<td>Describing the Three PROC TABULATE Operators 366</td>
</tr>
<tr>
<td>18.4</td>
<td>Using the Keyword ALL 369</td>
</tr>
<tr>
<td>18.5</td>
<td>Producing Descriptive Statistics 370</td>
</tr>
<tr>
<td>18.6</td>
<td>Combining CLASS and Analysis Variables in a Table 372</td>
</tr>
<tr>
<td>18.7</td>
<td>Customizing Your Table 374</td>
</tr>
<tr>
<td>18.8</td>
<td>Demonstrating a More Complex Table 377</td>
</tr>
<tr>
<td>18.9</td>
<td>Computing Row and Column Percentages 379</td>
</tr>
<tr>
<td>18.10</td>
<td>Displaying Percentages in a Two-Dimensional Table 381</td>
</tr>
<tr>
<td>18.11</td>
<td>Computing Column Percentages 382</td>
</tr>
<tr>
<td>18.12</td>
<td>Computing Percentages on Numeric Variables 384</td>
</tr>
<tr>
<td>18.13</td>
<td>Understanding How Missing Values Affect PROC TABULATE Output 385</td>
</tr>
<tr>
<td>18.14</td>
<td>Problems 390</td>
</tr>
<tr>
<td>Chapter 19</td>
<td>Introducing the Output Delivery System 397</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction 397</td>
</tr>
<tr>
<td>19.2</td>
<td>Sending SAS Output to an HTML File 398</td>
</tr>
<tr>
<td>19.3</td>
<td>Creating a Table of Contents 400</td>
</tr>
<tr>
<td>19.4</td>
<td>Selecting a Different HTML Style 401</td>
</tr>
<tr>
<td>19.5</td>
<td>Choosing Other ODS Destinations 402</td>
</tr>
<tr>
<td>19.6</td>
<td>Selecting or Excluding Portions of SAS Output 403</td>
</tr>
<tr>
<td>19.7</td>
<td>Sending Output to a SAS Data Set 407</td>
</tr>
<tr>
<td>19.8</td>
<td>Problems 409</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>Generating High-Quality Graphics 411</td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction 412</td>
</tr>
<tr>
<td>20.2</td>
<td>Some Basic Concepts 412</td>
</tr>
<tr>
<td>20.3</td>
<td>Producing Simple Bar Charts Using PROC GCHART 413</td>
</tr>
<tr>
<td>20.4</td>
<td>Creating Pie Charts 415</td>
</tr>
<tr>
<td>20.5</td>
<td>Creating Bar Charts for a Continuous Variable 416</td>
</tr>
</tbody>
</table>
Contents

20.6 Creating Charts with Values Representing Categories 418
20.7 Creating Bar Charts Representing Sums 420
20.8 Creating Bar Charts Representing Means 422
20.9 Adding Another Variable to the Chart 423
20.10 Producing Scatter Plots 425
20.11 Connecting Points 427
20.12 Connecting Points with a Smooth Line 430
20.13 Problems 431

Part 4 Advanced Topics 435

Chapter 21 Using Advanced INPUT Techniques 437
21.1 Introduction 438
21.2 Handling Missing Values at the End of a Line 438
21.3 Reading Short Data Lines 440
21.4 Reading External Files with Lines Longer Than 256 Characters 443
21.5 Detecting the End of the File 443
21.6 Reading a Portion of a Raw Data File 445
21.7 Reading Data from Multiple Files 446
21.8 Reading Data from Multiple Files Using a FILENAME Statement 447
21.9 Reading External Filenames from a Data File 447
21.10 Reading Multiple Lines of Data to Form One Observation 448
21.11 Reading Data Conditionally (the Single Trailing @ Sign) 451
21.12 More Examples of the Single Trailing @ Sign 453
21.13 Creating Multiple Observations from One Line of Input 454
21.14 Using Variable and Informat Lists 455
21.15 Using Relative Column Pointers to Read a Complex Data Structure Efficiently 456
21.16 Problems 458
Chapter 22 Using Advanced Features of User-Defined Formats and Informats 462

22.1 Introduction 462
22.2 Using Formats to Recode Variables 462
22.3 Using Formats with a PUT Function to Create New Variables 463
22.4 Creating User-Defined Informats 464
22.5 Reading Character and Numeric Data in One Step 467
22.6 Using Formats (and Informats) to Perform Table Lookup 470
22.7 Using a SAS Data Set to Create a Format 471
22.8 Updating and Maintaining Your Formats 477
22.9 Using Formats within Formats 479
22.10 Using Multilabel Formats 482
22.11 Using the INPUTN Function to Perform a More Complicated Table Lookup 485
22.12 Problems 490

Chapter 23 Restructuring SAS Data Sets 493

23.1 Introduction 494
23.2 Converting a Data Set with One Observation per Subject to a Data Set with Several Observations per Subject: Using a DATA Step 494
23.3 Converting a Data Set with Several Observations per Subject to a Data Set with One Observation per Subject: Using a DATA Step 496
23.4 Converting a Data Set with One Observation per Subject to a Data Set with Several Observations per Subject: Using PROC TRANSPOSE 498
23.5 Converting a Data Set with Several Observations per Subject to a Data Set with One Observation per Subject: Using PROC TRANSPOSE 500
23.6 Problems 501

Chapter 24 Working with Multiple Observations per Subject 505

24.1 Introduction 506
24.2 Identifying the First or Last Observation in a Group 506
24.3 Counting the Number of Visits Using PROC FREQ 509
24.4 Counting the Number of Visits Using PROC MEANS 511
24.5 Computing Differences between Observations 512
24.6 Computing Differences between the First and Last Observation in a BY Group Using the LAG Function 514
24.7 Computing Differences between the First and Last Observation in a BY Group Using a RETAIN Statement 515
24.8 Using a Retained Variable to “Remember” a Previous Value 517
24.9 Problems 518

Chapter 25 Introducing the SAS Macro Language 521
25.1 Introduction 522
25.2 Macro Variables: What Are They? 522
25.3 Some Built-In Macro Variables 523
25.4 Assigning Values to Macro Variables with a %LET Statement 524
25.5 Demonstrating a Simple Macro 525
25.6 A Word about Tokens 527
25.7 Another Example of Using a Macro Variable as a Prefix 529
25.8 Using a Macro Variable to Transfer a Value between DATA Steps 530
25.9 Problems 532

Chapter 26 Introducing the Structured Query Language 535
26.1 Introduction 536
26.2 Some Basics 536
26.3 Joining Two Tables (Merge) 539
26.4 Left, Right, and Full Joins 543
26.5 Concatenating Data Sets 546
26.6 Using Summary Functions 549
26.7 Demonstrating an ORDER Clause 551
26.8 An Example of Fuzzy Matching 551
26.9 Problems 553

Solutions to Odd-Numbered Problems 557
Index 601
Chapter 1

What Is SAS?

1.1 Introduction 3
1.2 Getting Data into SAS 4
1.3 A Sample SAS Program 4
1.4 SAS Names 7
1.5 SAS Data Sets and SAS Data Types 8
1.6 The SAS Display Manager and SAS Enterprise Guide 9
1.7 Problems 9

1.1 Introduction

SAS is a collection of modules that are used to process and analyze data. It began in the late '60s and early '70s as a statistical package (the name SAS originally stood for Statistical Analysis System). However, unlike many competing statistical packages, SAS is also an extremely powerful, general-purpose programming language. We see SAS as the predominant software in the pharmaceutical industry and most Fortune 500
companies. In recent years, it has been enhanced to provide state-of-the-art data mining tools and programs for Web development and analysis.

This book covers most of the basic data management and programming tools provided in Base SAS. Statistical procedures are not covered here.¹

The only way to really learn a programming language is to write lots of programs, make some errors, correct the errors, and then make some more. You can download all the programs and data files used in this book from this book’s companion Web site at http://support.sas.com/cody and from the CD that accompanies this book. If you already have access to SAS at work or school, you are ready to go. If you are learning SAS on your own and do not have a copy of SAS to play with, we highly recommend that you obtain the SAS Learning Edition 4.1. This is a relatively inexpensive, fully functional version of SAS that was developed primarily for students for learning purposes only. Anyone can buy it, either through SAS Publishing, Amazon.com, or other retailers. With a pre-set die date of 12/31/08, you can use the SAS Enterprise Guide 4.1 point-and-click interface, or write and modify SAS code using the SAS Program Editor. You will be able to run any program in this book using the SAS Learning Edition…it is an ideal way to learn SAS.

1.2 Getting Data into SAS

SAS can read data from almost any source. Common sources of data are raw text files, Microsoft Office Excel spreadsheets, Access databases, and most of the common database systems such as DB2 and Oracle. Most of this book uses either text files or Excel spreadsheets as data sources.

1.3 A Sample SAS Program

Let’s start out with a simple SAS program that reads data from a text file and produces some basic reports to give you an overview of the structure of SAS programs.

For this example, we have a text file with data on vegetable seeds. Each line of the file contains the following pieces of information (separated by spaces):

- Vegetable name
- Product code
- Days to germination
- Number of seeds
- Price

In SAS terminology, each piece of information is called a *variable*. (Other database systems, and sometimes SAS, use the term *column.*) A few sample lines from the file are shown here:

File `c:\books\learning\veggies.txt`

<table>
<thead>
<tr>
<th>Item</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucumber</td>
<td>50104-A</td>
<td>55</td>
<td>30</td>
<td>195</td>
</tr>
<tr>
<td>Cucumber</td>
<td>51789-A</td>
<td>56</td>
<td>30</td>
<td>225</td>
</tr>
<tr>
<td>Carrot</td>
<td>50179-A</td>
<td>68</td>
<td>1500</td>
<td>395</td>
</tr>
<tr>
<td>Carrot</td>
<td>50872-A</td>
<td>65</td>
<td>1500</td>
<td>225</td>
</tr>
<tr>
<td>Corn</td>
<td>57224-A</td>
<td>75</td>
<td>200</td>
<td>295</td>
</tr>
<tr>
<td>Corn</td>
<td>62471-A</td>
<td>80</td>
<td>200</td>
<td>395</td>
</tr>
<tr>
<td>Corn</td>
<td>57828-A</td>
<td>66</td>
<td>200</td>
<td>295</td>
</tr>
<tr>
<td>Eggplant</td>
<td>52233-A</td>
<td>70</td>
<td>30</td>
<td>225</td>
</tr>
</tbody>
</table>

In this example, each line of data produces what SAS calls an *observation* (also referred to as a *row* in other systems). A complete SAS program to read this data file and produce a list of the data, a frequency count showing the number of entries for each vegetable, the average price per seed, and the average number of days until germination is shown here:

Program 1-1 A sample SAS program

```sas
* SAS Program to read veggie data file and to produce several reports;

options nocenter nonumber;

data veg;
  infile "c:\books\learning\veggies.txt"
    input Name $ Code $ Days Number Price;
  CostPerSeed = Price / Number;
run;
```
At this point in the book, we won’t explain every line of the program—we’ll just give an overview.

SAS programs often contain DATA steps and PROC steps. DATA steps are parts of the program where you can read or write the data, manipulate the data, and perform calculations. PROC (short for procedure) steps are parts of your program where you ask SAS to run one or more of its procedures to produce reports, summarize the data, generate graphs, and much more. DATA steps begin with the word DATA and PROC steps begin with the word PROC. Most DATA and PROC steps end with a RUN statement (more on this later). SAS processes each DATA or PROC step completely and then goes on to the next step.

SAS also contains global statements that affect the entire SAS environment and remain in effect from one DATA or PROC step to another. In the program above, the OPTIONS and TITLE statements are examples of global statements. It is important to keep in mind that the actions of global statements remain in effect until they are changed by another global statement or until you end your SAS session.

All SAS programs, whether part of DATA or PROC steps, are made up of statements. Here is the rule: all SAS statements end with semicolons. This is an important rule because if you leave out a semicolon where one is needed, the program may not run correctly, resulting in hard-to-interpret error messages.
Chapter 1: What Is SAS?

Let’s discuss some of the basic rules of SAS statements. First, they can begin in any column and can span several lines, if necessary. Because a semicolon determines the end of a SAS statement, you can place more than one statement on a single line (although this is not recommended as a matter of style).

To help make this clear, let’s look at some of the statements in Program 1-1.

You could write the DATA step as shown in Program 1-2. Although this program is identical to the original, notice that it doesn’t look organized, making it hard to read. Notice, too, that spacing is not critical either, though it is useful for legibility. It is a common practice to start each SAS statement on a new line and to indent each statement within a DATA or PROC step by several spaces (this author likes three spaces).

Program 1-2 An alternative version of Program 1-1

```sas
data veg; infile "c:\books\learning\veggies.txt"; input
Name $ Code $ Days Number
Price; CostPerSeed = Price / Number;
run;
```

Another thing to notice about this program is that SAS is not case sensitive. Well, this is almost true. Of course references to external files must match the rules of your particular operating system. So, if you are running SAS under UNIX or Linux, file names will be case-sensitive. As you will see later, you get to name the variables in a SAS data set. The variable names in Program 1-1 are Name, Code, Days, Number, Price, and CostPerSeed. Although SAS doesn’t care whether you write these names in uppercase, lowercase, or mixed case, it does “remember” the case of each variable the first time it encounters that variable and uses that form of the variable name when producing printed reports.

1.4 SAS Names

SAS names follow a simple naming rule: All SAS variable names and data set names can be no longer than 32 characters and must begin with a letter or the underscore (_) character. The remaining characters in the name may be letters, digits, or the underscore character. Characters such as dashes and spaces are not allowed. Here are some valid and invalid SAS names.

Valid SAS Names

- Parts
- LastName
- First_Name
- Ques5
- Cost_per_Pound
- DATE
time
- X12Y34Z56

Invalid SAS Names

- 8_is_enough Begins with a number
- Price per Pound Contains blanks
- Month-total Contains an invalid character (-)
- Num% Contains an invalid character (%)

1.5 SAS Data Sets and SAS Data Types

We will talk a lot about SAS data sets throughout this book. For now, you need to know that when SAS reads data from anywhere (for example, raw data, spreadsheets), it stores the data in its own special form called a SAS data set. Only SAS can read and write SAS data sets. If you opened a SAS data set with another program (Microsoft Word, for example), it would not be a pretty sight—it would consist of some recognizable characters and many funny-looking graphics characters. In other words, it would look like nonsense. Even if SAS is reading data from Oracle tables or DB2, it is actually converting the data into SAS data set format in the background.

The good news is that you don’t ever have to worry about how SAS is storing its data or the structure of a SAS data set. However, it is important to understand that SAS data sets contain two parts: a descriptor portion and a data portion. Not only does SAS store the actual data values for you, it stores information about these values (things like storage lengths, labels, and formats). We’ll discuss that more later.

SAS has only two types of variables: character and numeric. This makes it much simpler to use and understand than some other programs that have many more data types (for example, integer, long integer, and logical). SAS determines a fixed storage length for every variable. Most SAS users never need to think about storage lengths for numerical
values—they are stored in 8 bytes (about 14 or 15 significant digits, depending on your operating system) if you don’t specify otherwise. The majority of SAS users will never have to change this default value (it can lead to complications and should only be considered by experienced SAS programmers). Each character value (data stored as letters, special characters, and numerals) is assigned a fixed storage length explicitly by program statements or by various rules that SAS has about the length of character values.

1.6 The SAS Display Manager and SAS Enterprise Guide

Because SAS runs on many different platforms (mainframes, microcomputers running various Microsoft operating systems, UNIX, and Linux), the way you write and run programs will vary. You might use a general-purpose text editor on a mainframe to write a SAS program, submit it, and send the output back to a terminal or to a file. On PCs, you might use the SAS Display Manager, where you write your program in the Enhanced Editor (Editor window), see any error messages and comments about your program and the data in the Log window, and view your output in the Output window. In addition to the Enhanced Editor, an older program, simply called the Program Editor, is available for Windows and UNIX users. As an alternative to the Display Manager, you may enter the SAS environment using SAS Enterprise Guide, which is a front-end to SAS that allows you to use a menu-driven system to write SAS programs and produce reports.

There are many excellent books published by SAS that offer detailed instructions on how to run SAS programs on each specific platform and the appropriate access method into SAS. This book concentrates on how to write SAS programs. You will find that SAS programs, regardless of what computer or operating system you are using, look basically the same. Typically, the only changes you need to make to migrate a SAS program from one platform to another is the way you describe external data sources and where you store SAS programs and output.

1.7 Problems

Solutions to odd-numbered problems are located at the back of this book and on the CD that accompanies this book. Solutions to all problems are available to professors. If you are a professor, visit the book’s companion Web site at http://support.sas.com/cody for information about how to obtain the solutions to all problems.
1. Identify which of the following variable names are valid SAS names:

 Height
 HeightInCentimeters
 Height_in_centimeters
 Wt-Kg
 x123y456
 76Trombones
 MiXeDCasE

2. In the following list, classify each data set name as valid or invalid:

 Clinic
 clinic
 work
 hyphens-in-the-name
 123GO
 Demographics_2006

3. You have a data set consisting of Student ID, English, History, Math, and Science test scores on 10 students.

 a. The number of variables is __________
 b. The number of observations is __________

4. True or false:

 a. You can place more than one SAS statement on a single line.
 b. You can use several lines for a single SAS statement.
 c. SAS has three data types: character, numeric, and integer.
 d. OPTIONS and TITLE statements are considered global statements.

5. What is the default storage length for SAS numeric variables (in bytes)?
Index

A

ABS function 197–198
absolute column pointer 456–457
ACROSS option, DEFINE statement (REPORT)
 creating ACROSS variable 310
 displaying statistics 311–313
 modifying column label 311
addition in assignment statements 19–20
addresses, standardizing 236–238
AFTER option, RBREAK statement (REPORT) 303
alignment parameter 156
ALL keyword 59, 369, 374–375
ampersand (&) 46
ANALYSIS option, DEFINE statement (REPORT) 292–295, 312
analysis variables
 DEFINE statement (REPORT) 292–295, 312
 TABULATE procedure and 372–373, 377–378
AND operator 109–111
ANOVA procedure 463
ANY functions 225–226
ANYALNUM function 225
ANYALPHA function 225
ANYDIGIT function 225
ANYPUNCT function 225
ANYSPACE function 225
APPEND procedure 478
arithmetic operators 19–20
array reference 245
ARRAY statement
 asterisk (*) in 247–248
 changing array bounds 250–251
 converting character values to lowercase 248–249
 creating variables 249–250
 missing character values in 247–248
 missing numeric values in 245–246
table lookups 254–255
 temporary arrays 251–252
arrays
 CALL routines and 246
 changing bounds 250–251
 converting character values to lowercase 248–249
 creating variables 249–250
 defined 244
 loading initial values from raw data 253
 missing character values in 247–248
 missing numeric values in 244–246
 multidimensional 254–257
 table lookup and 254–257
 temporary 251–257
ASCII coding method 35, 230
assignment statements 19–20, 23
 defined 19
 RETAIN statement and 473
asterisk (*)
 as wildcard 338, 446, 538
 associating formats 374
 in ARRAY statement 247–248
 in assignment statements 19
 in comment statements 19
 TABLE statement (TABULATE) and 368
two-way tables and 356
at sign (@)
 absolute column pointer 456–457
 column pointers and 40
 double trailing (@@) 197, 454–455
 format catalog and 465
 informats and 488
 INPUT statement and 197
 single trailing 130, 451–454
automatic macro variables 523
AUTONAME option, OUTPUT statement (MEANS) 329–330, 337–338
AXIS statement, GCHART procedure 413, 421
ORDER= option 421
Index

B

bar charts
 adding variables to 423–425
 creating for continuous variables 416–418
 producing 413–415
 representing means 422–423
 representing sums 420–422
 with values representing categories 418–420
BEFORE option, RBREAK statement
 (REPORT) 303
BEGINNING alignment, INTNX function 156
BETWEEN AND operator 113
blanks
 concatenation operator and 366
 converting multiple 214–215
 dividing strings into words 230
 IN operator and 267
 missing character values and 192
 raw data separated by 30–31
 removing trailing/leading 217–218, 233–234
 searching for 225
 TABULATE operators and 366, 368
BODY= keyword 400
Boolean operators 107, 109–112
BREAK statement, REPORT procedure
 303–306
 SKIP option 305
 SUMMARIZE option 305
 SUPPRESS option 306
Burlew, Michelle 522
BY groups
 computing differences between first/last observations 514–516
 counters and 508–511
BY statement
 adding subtotals/totals to listings 274–276
 CLASS statement and 327
 easier to read listings 277–278
 MEANS procedure and 323–324, 327, 330–331
 merging data sets 171–173, 181–182
merging data sets with different data types 179–181
merging data sets with different names 177–178
omitting in merges 172–173
outputting summary data sets 330–332
SET statement and 167–168, 507–508
BY SUBJECT statement 498

C

CALL MISSING routine 193, 246, 497
CALL routines 193
 arrays and 246
 restructuring data sets with DATA step 497
CALL SYMPUT routine 531
CARDS statement 36
Carpenter, Art 522
Cartesian product 539–542, 551–552
cases
 changing 213–214
 SAS and 7
 searching for 225–226
CAT function 215–217
CATALOG procedure 465
Cates, Randall 438
CATS function 215–217, 487, 489
CATX function 215–216
CENTER option, DEFINE statement (REPORT) 295
character classes
 ANY functions and 225–226
 defined 219
 NOT functions and 226–227
character functions
 ANY functions 225–226
 changing character case 213–214
 comparing strings 232–234
 concatenating strings 215–217
 data cleaning with 227–228
 determining value lengths 212–213
 dividing strings into words 230–232
 extracting parts of strings 228–230
 fuzzy matching with 234–235
NOT functions 226–227
removing characters from strings 214–215, 218–220
removing trailing/leading blanks 217–218
searching for character classes 225–226
searching for characters 220–223
searching for words in strings 223–225
substituting characters/words 235–238
CHARACTER keyword 247–249
character values
 changing case of 213–214
 character-to-numeric conversions 180, 201–202, 229, 256, 468–469
 comparing 232–234
 converting to lowercase 248–249
 determining length of 212–213
 fuzzy matching for 234–235
 IN operator and 267
 missing values in 192–193
 numeric-to-character conversions 202
 PUT function and 202
 reading in one step 467–470
 removing from strings 214–215, 218–220
 removing trailing/leading blanks 217–218
 replacing missing values for arrays 247–248
 searching for 220–223
 setting as missing 193
 substituting 235–238
character variables
 categories and 365
 COMPUTE blocks and 308–309
 computing frequencies of 342
defined 8
detail reports for 292
DO loops and 130–131
dollar sign ($) and 13
extracting parts of strings 228–230
formats with 74
INPUT function and 201
logical comparison operators and 107
replacing missing values for arrays 247–248
character-to-numeric conversions 229, 468–469
CHART procedure 412–413
CHARTYPE option, MEANS procedure 334–337
CLASS statement
 BY statement and 327
 complex tables 377–378
 MEANS procedure and 324–325, 327, 333–337
 missing values in TABULATE procedure 385–389
 MLF option 483
 outputting summary data sets 331–333
 PRELOADFMT option 484
 TABULATE procedure and 365
class variables
 analysis variables and 372–373
 applying formats to 325–326
 computing percentages on 384
 counting number of visits and 511–512
 formats and 462–463
 missing values and 386–388
 multiple 333–337
 NWAY option, MEANS procedure and 511
 PCTN statistic and 379–380
 TABULATE procedure and 365
CLM statistic 321
CNTLIN= option, FORMAT procedure 471–476, 479, 487
CNTLOUT= option, FORMAT procedure 477
colon (:)
 as delimiter 35
 as modifier 233
 as wildcard 202, 337
 informats and 44, 456
 logical comparison operators and 107
color, setting 413
COLPCTN keyword 382–383
COLPCTSUM keyword 384
column headings
 labeling 273–274
 modifying labels for ACROSS variable 311
 renaming with SQL procedure 540–541
column indices 254
column input 37–39
column pointers 40, 456–457
COLUMN statement, REPORT procedure
 adding 291
 changing order of variables in 297–298
 computing character variables 309
 computing new variables 308
 controlling order of variables 300–301
 creating ACROSS variable 310
 displaying statistics with ACROSS variable 312
 grouping variables and 296–297
 ordering reports with nonprinting variables 307
columns
 computing percentages 379–380, 382–385
 crosstab tables and 356–357
 displaying percentages in 381–382
 fixed 37–43
 TABLE statement (TABULATE) and 367
 variables and 18, 31, 536
 wrapping lines of text 294–296
comma (,)
 changing values appearances 265–266
 column input and 37
 comma informat 180
 formatting bar charts 418
 in CSV files 33
 in multidimensional arrays 256
 IN operator and 267
 in TABLE statement (TABULATE) 367
comma informat 180
comma11. informat 180
comment statements 19–21
COMPARE function 232–234
COMPBL function 214–215
compile stage 22–23
COMPRESS function
 removing characters from strings 214, 218–220
 removing dashes with 180
 searching for characters 221–222
COMPUTE blocks
 computing character variables 308–309
 creating 308
 selecting variables for reports 291
COMPUTE statement, REPORT procedure 308–309
COMPUTED option, DEFINE statement (REPORT) 308
concatenating
 data sets 165, 168, 546–549
 strings 215–217, 366
concatenation operator 215–217, 366
conditional processing
 See also IF statement
 See also WHERE statement
 Boolean operators 107, 109–112
 combining detail/summary data 168–169
 DO UNTIL statement 131–134, 448
 DO WHILE statement 131–135
 ELSE IF statement 102–105
 IN operator 107
 reading data conditionally 451–453
 restructuring data sets with DATA step 496
 SELECT statement 108–109
 subsetting IF statement 105–107
 substituting for missing date values 151–152
CONSTANT function 198–199
constants
 computing 198–199
 date 147–148
 hexadecimal 35
CONTAINS operator 113–114
CONTENTS= keyword 400
CONTENTS procedure
 ALL keyword 59
 conversion process and 98
 documenting data sets with 80–81
Index 605

examine data sets with 56–58
listing data sets with 59
NODS option 59
VARNUM option 58, 149
CONTINUE statement 135–136
continuous variables
creating bar charts for 416–418
with values representing categories 418–420
converting
character values to lowercase 248–249
characters to numbers 180, 201–202, 229, 256, 468–469
data sets into CSV files 96–98
data sets into spreadsheets 93–95
Fahrenheit to Celsius 250
missing numeric values 244–246
multiple blanks 214–215
numbers to characters 202
spreadsheets into CSV files 87–88
spreadsheets with Import Wizard 88–92
with XLS engines 95–96
Corel WordPerfect 402
counters
arrays and 246
BY groups and 508
FREQ procedure and 509–511
in DATA step 253
setting 508
sum statement and 120, 124
CREATE clause (SQL) 538
crosstab tables 356–358
CSV files
converting data sets into 96–98
converting spreadsheets into 87–88
embedded delimiters in 46
informat and 44
reading data values 33
CTRL+C key combination 134
curly brackets () 245, 254
current date 148–149
customized reports
applying ORDER usage to variables 300–301
changing order of variables in 297–298
changing row order in 299–300
comparing detail/summary reports 291–293
COMPUTE blocks in 308–309
computing new variables for 307–308
creating ACROSS variable 310
displaying statistics with ACROSS variable 311–313
FLOW option, REPORT procedure 294–296
grouping variables 296–297
modifying labels for ACROSS variable 311
multi-column 301–302
ordering with nonprinting variables 306–307
producing breaks in 303–306
producing summary reports 293–294
REPORT procedure and 288–290
selecting variables for 291
D
dash (-) 180
data cleaning
NOT functions for 226–227
VERIFY function 227–228
with character functions 227–228
data _NULL_ reporting 68, 444
DATA= option, SURVEYSELECT procedure 200
data portion (data sets)
defined 56
viewing 63–64
viewing with SAS VIEWTABLE window 64–65
data sets 8
See also merging data sets
See also permanent data sets
See also summary data sets
accessing with user-defined formats 82
Index

data sets (continued)
 adding observations to 164–167
 combining detail/summary data 168–170
 concatenating 165, 168, 546–549
 controlling observations in 173–175
 converting spreadsheets to 88–92
 converting via ODS 96–98
 creating formats 471–476
 creating spreadsheets from 93–95
 descriptor portion of 22, 56–58, 60–63, 73
documenting 80
 interleaving 167–168
 JOIN option, SYMBOL statement 429
 naming conventions 7
 naming variables in output 329–330
 output 329–330, 408–409
 permanent attributes for 80–81
 restructuring using DATA step 494–497
 restructuring using TRANSPOSE procedure 497–500
 SAS processing 22–24
 sending output to 407–409
 subsetting 112, 162–164
 tables and 536
 updating master files 183–184
 virtual 474
 WHERE statement and 112
DATA step
 combining detail/summary data 169
 counters in 253, 508
 creating labels in 72–73
 creating summary data sets 336–337
 data sets as input to 65–66
defined 6
 end of file and 176–177
 FORMAT statement in 43, 79–80
 INPUTN function in 485–490
 LABEL statement in 73, 79–80
 labeling column headings 273
 %LET statement and 524
 nested formats in 480–481
 NULL keyword and 67–68
 restructuring data sets using 494–497
 SAS processing 22–24
 semi-colon (;) and 36
 SET statement and 177
 SQL procedure and 536, 549
 subsetting data steps 163–164
 transferring values between 530–532
data structures, reading 456–457
data summaries
 See summarizing data
data types 8, 179–181
data view 474
DATALINES statement 36–37, 448
date constant 147–148
date interval functions 152–157
date9. format 43, 145, 523
dates
 automatic macro variables and 523
 computing current 148–149
 computing years between 146–147
 creating from day values 150–151
 creating from month values 150–151
 creating from year values 150–151
 extracting day of month from 149–150
 extracting day of week from 149–150
 extracting year from 149–150
 INPUT function and 201
 interval functions for 152–157
 reading values from raw data 143–145
 storing 142
 substituting missing values for 151–152
day of month
 extracting 149–150
 substituting for missing values 151–152
day of week 149–150, 419
debugging 68
DEFINE statement, REPORT procedure
 ACROSS option 310, 311–313
 ANALYSIS option 292–295, 312
 CENTER option 295
 COMPUTED option 308
 creating ACROSS variable 310
 DISPLAY option 292–293, 295
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>displaying statistics with ACROSS variable</td>
<td>311–313</td>
</tr>
<tr>
<td>FLOW option</td>
<td>294–296</td>
</tr>
<tr>
<td>GROUP option</td>
<td>293–294, 296–297, 303–305</td>
</tr>
<tr>
<td>LEFT option</td>
<td>295</td>
</tr>
<tr>
<td>MEAN option</td>
<td>293–294, 312</td>
</tr>
<tr>
<td>modifying column label for ACROSS variable</td>
<td>311</td>
</tr>
<tr>
<td>NOPRINT option</td>
<td>307–308</td>
</tr>
<tr>
<td>ORDER= option</td>
<td>299–301, 303–305</td>
</tr>
<tr>
<td>ordering reports with nonprinting variables</td>
<td>307</td>
</tr>
<tr>
<td>RIGHT option</td>
<td>295</td>
</tr>
<tr>
<td>DELETE statement</td>
<td>120, 454</td>
</tr>
<tr>
<td>DELIMITER= option, INFILE statement</td>
<td>35</td>
</tr>
<tr>
<td>delimiters</td>
<td></td>
</tr>
<tr>
<td>blanks as</td>
<td>30–32</td>
</tr>
<tr>
<td>commas as</td>
<td>33</td>
</tr>
<tr>
<td>defined</td>
<td>23–24</td>
</tr>
<tr>
<td>dividing strings into words</td>
<td>230</td>
</tr>
<tr>
<td>DLM= option for</td>
<td>34–35</td>
</tr>
<tr>
<td>embedded in list input</td>
<td>46</td>
</tr>
<tr>
<td>DESCENDING option</td>
<td></td>
</tr>
<tr>
<td>ORDER option, DEFINE statement</td>
<td></td>
</tr>
<tr>
<td>(REPORT) 300–301</td>
<td></td>
</tr>
<tr>
<td>SORT procedure</td>
<td>270–271</td>
</tr>
<tr>
<td>descriptive statistics</td>
<td></td>
</tr>
<tr>
<td>outputting with MEANS procedure</td>
<td>328–329</td>
</tr>
<tr>
<td>TABULATE procedure and</td>
<td>370–372</td>
</tr>
<tr>
<td>descriptive statistics functions</td>
<td>194–196</td>
</tr>
<tr>
<td>descriptor portion (data sets)</td>
<td>22</td>
</tr>
<tr>
<td>examining</td>
<td>56–58</td>
</tr>
<tr>
<td>labels in</td>
<td>73</td>
</tr>
<tr>
<td>viewing with SAS Explorer</td>
<td>60–63</td>
</tr>
<tr>
<td>detail reports</td>
<td>291–293</td>
</tr>
<tr>
<td>DIF function</td>
<td>204, 207, 513</td>
</tr>
<tr>
<td>digits, searching for</td>
<td>225</td>
</tr>
<tr>
<td>DIM function</td>
<td>248</td>
</tr>
<tr>
<td>DISCRETE option, VBAR statement</td>
<td></td>
</tr>
<tr>
<td>(GCHART) 419–420</td>
<td></td>
</tr>
<tr>
<td>Display Manager</td>
<td>9, 406</td>
</tr>
<tr>
<td>DISPLAY option, DEFINE statement</td>
<td></td>
</tr>
<tr>
<td>(REPORT) 292–293, 295</td>
<td></td>
</tr>
<tr>
<td>displaying data</td>
<td>262–263</td>
</tr>
<tr>
<td>adding number of observations to listings</td>
<td>279</td>
</tr>
<tr>
<td>adding subtotals/totals to listings</td>
<td>274–277</td>
</tr>
<tr>
<td>adding titles/footnotes to listings</td>
<td>268–270</td>
</tr>
<tr>
<td>changing listing appearance</td>
<td>263–265</td>
</tr>
<tr>
<td>changing listing order</td>
<td>270–272</td>
</tr>
<tr>
<td>changing values appearances</td>
<td>265–266</td>
</tr>
<tr>
<td>controlling observation appearance in</td>
<td>266–267</td>
</tr>
<tr>
<td>listings</td>
<td></td>
</tr>
<tr>
<td>double-spacing listings</td>
<td>280</td>
</tr>
<tr>
<td>easier to read listings</td>
<td>277–278</td>
</tr>
<tr>
<td>labeling column headings</td>
<td>273–274</td>
</tr>
<tr>
<td>listing specified number of observations</td>
<td>281–283</td>
</tr>
<tr>
<td>sorting by multiple variables</td>
<td>272–273</td>
</tr>
<tr>
<td>division in assignment statements</td>
<td>19–20</td>
</tr>
<tr>
<td>DLM= option, INFILE statement</td>
<td>34–35, 37</td>
</tr>
<tr>
<td>DO statement</td>
<td></td>
</tr>
<tr>
<td>arrays in</td>
<td>246</td>
</tr>
<tr>
<td>converting character values to lowercase</td>
<td>249</td>
</tr>
<tr>
<td>DO groups and</td>
<td>119</td>
</tr>
<tr>
<td>iterative looping</td>
<td>125–129</td>
</tr>
<tr>
<td>iterative processing and</td>
<td>118–120</td>
</tr>
<tr>
<td>multidimensional arrays and</td>
<td>256</td>
</tr>
<tr>
<td>other forms</td>
<td>129–131</td>
</tr>
<tr>
<td>DO UNTIL statement</td>
<td>131–134, 448</td>
</tr>
<tr>
<td>DO WHILE statement</td>
<td>131–135</td>
</tr>
<tr>
<td>documenting data sets</td>
<td>80</td>
</tr>
<tr>
<td>DOL option, RBREAK statement (REPORT)</td>
<td>303</td>
</tr>
<tr>
<td>dollar sign ($)</td>
<td></td>
</tr>
<tr>
<td>changing values appearances</td>
<td>265–266</td>
</tr>
<tr>
<td>column input and</td>
<td>37</td>
</tr>
<tr>
<td>formats and</td>
<td>74</td>
</tr>
<tr>
<td>informats and</td>
<td>180, 465</td>
</tr>
<tr>
<td>variable names and</td>
<td>13, 31</td>
</tr>
<tr>
<td>dollar11.2 format</td>
<td>43, 75</td>
</tr>
<tr>
<td>DONUT statement</td>
<td>414</td>
</tr>
<tr>
<td>DOUBLE option, PRINT procedure</td>
<td>280</td>
</tr>
</tbody>
</table>
double trailing at sign (@@) 197, 454–455
double-spacing listings 280
DROP= data set option
counting number of visits and 510, 512
DROP statement and 163
variable selection and 337
DROP= option, TRANSPOSE procedure 499
DROP statement
DROP= data set option and 163
dropping variables from data sets 337
retained variables and 516
shortening 202
DSD= option, INFILE statement
CSV files and 33, 88
DATALINES statement and 37
DLM= option and 35
DUL option, RBREAK statement (REPORT) 303

E

e (mathematical constant) 198–199
EBCDIC coding method 35, 230
ELSE IF statement 102–105
embedded delimiters 46
END alignment, INTNX function 156
END= data set option 475, 478
end of file
DATA step and 176–177
detecting 443–445
end of line 438–440
END= option
INFOLE statement 443–446
SET statement 445
END statement
DO groups and 119
iterative DO loop and 126, 134
LEAVE statement and 135
ENDCOMP statement, REPORT procedure 308–309
engines
conversion process and 54
reading spreadsheets with 95–96
Enterprise Guide 9
EQ operator 103
equal sign (=)
formats and 74, 78
in labels 72
WHERE statement operator and 113
equations, graphing 128–129
Excel spreadsheets
converting into CSV files 87–88
converting with Import Wizard 88–92
converting with ODS 96–98
creating from data sets 93–95
reading with engines 95–96
EXCEPT operator 546
EXCLUDE statement, FORMAT procedure 84
execution stage 22–24
EXP function 197–198
Explorer
conversion process and 98
documenting data sets with 80
viewing data sets with 60–63
exponentiation in assignment statements 19–20
EXPORT statement 95
Export Wizard 93–95
external files
alternative methods for 34
PUT statement and 202
reading 447–448
reading long 443

F

Fahrenheit-to-Celsius conversion 250
FancyPrinter style 401
FILE PRINT statement 444
FILENAME statement
reading external files 447–448
reading from multiple files 446–447
sending output to HTML files 399
specifying external files 34
filerefs 34, 448
FILEVAR option, INFOLE statement 448
FIND function 221–224
FINDC function 223
FINDW function 223–225
FIRSTOBS= data set option 92, 282
FIRSTOBS= option, INFILE statement 445–446
fixed columns
 column input 37–39
 formatted input 39–43
FLOW option, DEFINE statement (REPORT) 294–296
FMTLIB option, FORMAT procedure
 format definitions and 82, 84
 listing formats 473, 479
 SELECT statement and 488
 viewing catalog entries 465
FMTSEARCH= system option 80, 82
folders 59
fonts, setting 413
FOOTNOTE statement
 displaying data with 268, 270
 RESET=all graphics option and 412
footnotes 268–270
format catalog 465
format definitions 82–84
format library 79
FORMAT= option, TABULATE procedure 366
FORMAT procedure
 CNTLIN= option 471–476, 479, 487
 CNTLOUT= option 477
 creating numeric informats 487
 enhancing output with 73–74
 EXCLUDE statement 84
 FMTLIB option 82, 84, 465, 473, 479, 488
 INVALUE statement 465–466, 469
 LIBRARY= option 79
 SELECT statement 84, 488
 storing formats 79
 user-defined formats 380, 464
 VALUE statement 74, 78, 482–485
FORMAT statement
 applying formats to class variables 325–326
 associating formats with 41–42, 73
 changing values appearances 265–266
 for bar charts 418
 formatting date values 144
 in DATA step 43, 79–80
 labeling output 346–347
 TABLES statement and 77
formats 41–43
 applying to class variables 325–326
 associating with asterisk (*) 374
 creating 73, 471–476
 DATA_NULL_ reporting and 68
 enhancing output with 73–76
 for date values 144–145
 formats within 479–481
 in DATA step 43
 labeling output with 346–347
 listing for variables 80
 maintaining 477–479
 multi-label 482–485
 problems when grouping values 349–350
 PUT function and 463–464
 recoding variables with 462–463
 regrouping values using 76–77
 specifying ranges 78–79
 storing 79
 table lookup and 470–471
 to group values 347–348
 updating 477–479
 user-defined 79–82, 380, 464
 formatted input 39–43
 forward slash (/) as relative line pointer 450
 in assignment statements 19
 statement options and 330
 four-digit years 145
 FRAME= keyword 400
 FREQ procedure 13, 342–344
 See also TABLES statement, FREQ procedure
 changing order of values in 353–356
 counting number of visits with 509–511
 displaying missing values 351–352
 formats and 74, 77, 462
 grouping values through formats 347–348
FREQ procedure (continued)
 labeling output with formats 346–347
 listing observations per quarter 154
 multiple two-way tables 358
 NOPRINT option 509
 ORDER= option 353–356
 output example 402–403
 problems when grouping values 349–350
 producing three-way tables 358–360
 producing two-way tables 356–357
 sample SAS program 16
 selecting variables for 345–346
 FREQ variable 331, 337
 frequencies
 See FREQ procedure
 FROM clause (SQL) 537, 539–542
 full joins 543–545
 fuzzy matching/merge 234–235, 541, 551–552

G
 GCHART procedure
 adding variables to charts 423–425
 AXIS statement 413, 421
 bar charts representing means 422–423
 bar charts representing sums 420–422
 charts with values representing categories 418–420
 creating bar charts for continuous variables 416–418
 creating pie charts 415–416
 PIE statement 414–415
 producing bar charts 413–415
 VBAR statement 414, 417–424
 GE operator 103
 GLM procedure 463
 global statements 6, 13
 GOPTIONS statement 413–414
 VSIZE= option 414
 GPLOT procedure
 See also SYMBOL statement, GPLOT procedure
 example of 129, 154
 PLOT statement 426
 producing scatter plots 425–427
 grand mean 332
 graphics 412–413
 adding variables to charts 423–425
 bar charts representing means 422–423
 bar charts representing sums 420–422
 charts with values representing categories 418–420
 connecting points 427–429
 connecting points with smooth line 429–430
 creating pie charts 415–416
 creating pie charts for continuous variables 416–418
 producing bar charts 413–415
 producing scatter plots 425–427
 graphing equations 128–129
 Gregorian calendar 41
 GROUP option, DEFINE statement (REPORT) 293–294, 296–297, 303–305
 GROUP= option, VBAR statement (GCHART) 423
 grouping
 values through formats 347–348
 values with FREQ procedure 349–350
 variables 296–297
 GT operator 103

H
 Haworth, Lauren 382
 HAXIS option, PLOT statement (GPLOT) 426
 HBAR statement 414
 HBAR3D statement 414
 HEADING= option, PRINT procedure 282
 HEADLINE option, REPORT procedure 297
 hexadecimal constants 35
 HTML files
 creating table of contents 400–401
 selecting different styles 401–402
 sending output to 398–399
 hyphen (-) 180
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICD-9 codes</td>
<td>472–477</td>
</tr>
<tr>
<td>ID statement</td>
<td></td>
</tr>
<tr>
<td>controlling listing appearance</td>
<td>264–265</td>
</tr>
<tr>
<td>easier to read listings</td>
<td>277–278</td>
</tr>
<tr>
<td>variables in</td>
<td>75</td>
</tr>
<tr>
<td>IF statement</td>
<td></td>
</tr>
<tr>
<td>See also subsetting IF statement</td>
<td></td>
</tr>
<tr>
<td>arrays and</td>
<td>246</td>
</tr>
<tr>
<td>computing differences between observations</td>
<td>513</td>
</tr>
<tr>
<td>conditional processing</td>
<td>102–105</td>
</tr>
<tr>
<td>DO groups and</td>
<td>119–120</td>
</tr>
<tr>
<td>example</td>
<td>67</td>
</tr>
<tr>
<td>in procedures</td>
<td>112</td>
</tr>
<tr>
<td>missing character values in arrays</td>
<td>248</td>
</tr>
<tr>
<td>MISSING function</td>
<td>104</td>
</tr>
<tr>
<td>restructuring data sets with DATA step</td>
<td>496</td>
</tr>
<tr>
<td>substituting for missing date values</td>
<td>151–152</td>
</tr>
<tr>
<td>IMPORT procedure</td>
<td>91</td>
</tr>
<tr>
<td>Import Wizard</td>
<td>88–92</td>
</tr>
<tr>
<td>IN= data set option</td>
<td></td>
</tr>
<tr>
<td>checking missing values</td>
<td>175–176</td>
</tr>
<tr>
<td>controlling observations with</td>
<td>173–175</td>
</tr>
<tr>
<td>IN operator</td>
<td></td>
</tr>
<tr>
<td>conditional processing</td>
<td>107</td>
</tr>
<tr>
<td>controlling observation appearance in listings</td>
<td>267</td>
</tr>
<tr>
<td>listed</td>
<td>103</td>
</tr>
<tr>
<td>INDEX function</td>
<td>222</td>
</tr>
<tr>
<td>index variables</td>
<td>128–130</td>
</tr>
<tr>
<td>INDEXW function</td>
<td>223</td>
</tr>
<tr>
<td>INFILE statement</td>
<td></td>
</tr>
<tr>
<td>DELIMITER= option</td>
<td>35</td>
</tr>
<tr>
<td>DLM= option</td>
<td>34–35, 37</td>
</tr>
<tr>
<td>DSD= option</td>
<td>33, 35, 37, 88</td>
</tr>
<tr>
<td>END= option</td>
<td>443–446</td>
</tr>
<tr>
<td>filerefs in</td>
<td>34</td>
</tr>
<tr>
<td>FILEVAR option</td>
<td>448</td>
</tr>
<tr>
<td>FIRSTOBS= option</td>
<td>445–446</td>
</tr>
<tr>
<td>LRECL option</td>
<td>443</td>
</tr>
<tr>
<td>MISSOVER option</td>
<td>443</td>
</tr>
<tr>
<td>OBS= option</td>
<td>445–446</td>
</tr>
<tr>
<td>options in DATALINES statement</td>
<td>37</td>
</tr>
<tr>
<td>PAD option</td>
<td>143, 442–443</td>
</tr>
<tr>
<td>PUT statement and</td>
<td>68</td>
</tr>
<tr>
<td>reading external filenames</td>
<td>447–448</td>
</tr>
<tr>
<td>reading long external files</td>
<td>443</td>
</tr>
<tr>
<td>reading raw data with</td>
<td>12, 31</td>
</tr>
<tr>
<td>SAS processing</td>
<td>22</td>
</tr>
<tr>
<td>TRUNCOVER option</td>
<td>143, 443</td>
</tr>
<tr>
<td>infinite loops</td>
<td>134–135</td>
</tr>
<tr>
<td>informat lists</td>
<td>455–456</td>
</tr>
<tr>
<td>informat modifiers</td>
<td>44, 46</td>
</tr>
<tr>
<td>INFORMAT statement</td>
<td>45</td>
</tr>
<tr>
<td>formats</td>
<td>40–41</td>
</tr>
<tr>
<td>at sign (@) and</td>
<td>488</td>
</tr>
<tr>
<td>colon (:) and</td>
<td>44, 456</td>
</tr>
<tr>
<td>creating numeric</td>
<td>488–489</td>
</tr>
<tr>
<td>defined</td>
<td>40</td>
</tr>
<tr>
<td>INFORMAT statement</td>
<td>45</td>
</tr>
<tr>
<td>INPUT function</td>
<td>201–202</td>
</tr>
<tr>
<td>INPUTN function</td>
<td>485–490</td>
</tr>
<tr>
<td>reading data in one step</td>
<td>467–470</td>
</tr>
<tr>
<td>reading date values from raw data</td>
<td>143</td>
</tr>
<tr>
<td>table lookup and</td>
<td>470–471</td>
</tr>
<tr>
<td>user-defined</td>
<td>464–467</td>
</tr>
<tr>
<td>variable lists and</td>
<td>455–456</td>
</tr>
<tr>
<td>with list input</td>
<td>43–44</td>
</tr>
<tr>
<td>inner joins</td>
<td>543–545</td>
</tr>
<tr>
<td>input buffer</td>
<td>22</td>
</tr>
<tr>
<td>INPUT function</td>
<td>201–202</td>
</tr>
<tr>
<td>character-to-numeric conversion</td>
<td>180, 201–202, 229, 256, 468–469</td>
</tr>
<tr>
<td>nested formats and</td>
<td>481</td>
</tr>
<tr>
<td>table lookups and</td>
<td>471, 486, 488–489</td>
</tr>
<tr>
<td>user-defined informat and</td>
<td>464, 466</td>
</tr>
<tr>
<td>INPUT statement</td>
<td></td>
</tr>
<tr>
<td>ampersand (&) modifier in</td>
<td>46</td>
</tr>
<tr>
<td>at sign (@) in</td>
<td>197</td>
</tr>
<tr>
<td>CSV files and</td>
<td>88</td>
</tr>
<tr>
<td>informat lists and</td>
<td>455–456</td>
</tr>
<tr>
<td>INFORMAT statement and</td>
<td>45</td>
</tr>
<tr>
<td>informats and</td>
<td>43–44</td>
</tr>
<tr>
<td>INPUT function and</td>
<td>202</td>
</tr>
</tbody>
</table>
missing values at end of line 438–440
multiple lines of data for observations 448–450
multiple observations from line of input 454–455
reading data conditionally 451–453
reading raw data with 12, 31
reading short data lines 440–443
relative column pointers 456–457
SAS processing 22, 24
single trailing at sign (@) 130
trailing at sign (@) and 454
variable lists and 455–456
INPUTN function 485–490
INT function 190–191
INTCK function 152–155
interleaving data sets 167–168
INTERPOL= option, SYMBOL statement 427–429
INTERSECTION operator 546
INTNX function 152–153, 155–157
INVALUE statement, FORMAT procedure 465–466, 469
JUST option 466
UPCASE option 466, 469
IS MISSING operator 113
IS NULL operator 113
iterative DO loop 125–129
other forms 129–131
iterative processing
See looping

J
JOIN option, SYMBOL statement 428–429
JOURNAL style 402
JUST option, INVALUE statement (FORMAT) 466

K
KEEP= data set option 163, 337, 510
KEEP statement 496
KEYLABEL statement, TABULATE procedure 375–376, 380, 383
keywords, renaming 375

L
LABEL option, PRINT procedure 273, 279
LABEL statement 72
adding number of observations to listings 279
in DATA step 73, 79–80
labeling column headings 273–274
labels
adding to variables 71–73
defining format 479
for column headings 273–274
formats for 346–347
listing for variables 80
modifying for ACROSS variable 311
multi-label formats 482–485
Lafler, Kirk 536
LAG function 204–207, 512–515
LARGEST function 195
LE operator 103
leading blanks, removing 217–218
LEAVE statement 135–136, 496
LEFT function 217–218
left joins 543–545
LEFT option, DEFINE statement (REPORT) 295
LENGTH function 212–213
LENGTH statement
 CONSTANT function and 199
dividing strings into words 231
extracting parts of strings 229
index variables and 130
maintaining formats 478
SET statement and 167
LENGTHC function 213
LENGTHN function 212–213
less than sign (<) 78
%LET statement 524–525
LIBNAME statement 54–55, 58
libraries 59
LIBRARY= option, FORMAT procedure 79
librefs
 defined 54–55
 macro variables specifying 529–530
 storing formats 79
LIKE operator 113–114
LINE= option, SYMBOL statement 429
line pointers 450
LINESIZE= system option 282
list input
 blanks in 30–31
 defined 23
 INFORMAT statement with 45
 informs with 43–44
 missing values at end of line 438–440
 specifying missing values 32
 with embedded delimiters 46
LISTING destination 408
listings
 See also reports
 adding number of observations to 279
 adding subtotals/totals to 274–277
 changing appearance of 263–265
 changing order of 270–272
 CONTENTS procedure and 59
 controlling observation appearance in 266–267
 double-spacing 280
 easier to read 277–278
 formats and 74
 OBS= option 281–283
 ODS statement and 399
 PRINT procedure and 63–64
LOG function 197–198
Log window 15–16
LOG10 function 197–198
logical comparison operators
 Boolean logic 107, 109–112
 conditional processing and 107
 listed 103
longitudinal data 506
looping
 arrays and 246
 CONTINUE statement 135–136
 converting character values to lowercase 249
 DO groups and 118–120
 DO UNTIL statement 131–134
 DO WHILE statement 131–135
 infinite 134–135
 iterative DO loop 125–131
 LEAVE statement 135–136
 multidimensional arrays and 256
 restructuring data sets with DATA step 496
 sum statement and 120–125
LOWCASE function 214, 235
lowercase
 converting character values to 248–249
 LOWCASE function 214, 235
LRECL option, INFILE statement 443
LT operator 103
M
%MACRO statement 525
macro variables
 as prefixes 529–530
 assigning values with %LET statement 524–525
 automatic 523
 built-in 523
 defined 522
 tokens and 527–529
 transferring values between DATA steps 530–532
macros 525–527
many-to-many merge 182
master files, updating 183–184
mathematical functions 197–199
MAX function 195
MAX statistic 321
MAXDEC statistic 321
MAXIS= option, VBAR statement (GCHART) 421
MDY function 150–152
MEAN function 194, 549–550
MEAN option, DEFINE statement (REPORT) 293–294, 312
MEAN statistic 321, 327–328, 378
means, bar charts representing 422–423
MEANS procedure 14, 320–322
 applying formats to class variables 325–326
 BY statement and 323–324, 327, 330–331
 CHARTYPE option 334–337
 CLASS statement with 324–325, 327, 333–337
 combining detail/summary data 169
 counting number of visits with 509, 511–512
 creating summary data sets 327–328
 formats and 74, 462–463
 labels example 72–73
 macro variables transferring values 530–532
 multilabel formats 482–483
 multiple class variables with 333–337
 NOPRINT option 327–328, 511–512
 NWAY option 332–333, 336, 511
 outputting descriptive statistics with 328–329
 outputting summary data sets 330–333
 sample SAS program 16
 selecting statistics for variables 337–338
 sending output to HTML files 398
 SQL procedure and 549
 statistic options listed 321
 VAR statement and 322, 329–330
MEDIAN statistic 321
%MEND statement 525
MERGE statement 171, 182, 510
MERGENOBY system option 173
merging data sets 170–172
 controlling observations 173–175
 many-to-many 182
 omitting BY statement 172–173
 one-to-many 181
 one-to-one 181
 with different data types 179–181
 with different names 177–178
merging tables 539–545
METHOD= option, SURVEYSELECT
 procedure 200
Microsoft Office Word 402
MIDDLE alignment, INTNX function 156
MIDPOINTS= option, VBAR statement
 (GCHART) 417–418
MIN function 195–196
MIN statistic 321
MISSING function
 IF statement and 104
 numeric functions and 192–193
 substituting for missing date values 152
 testing for missing values 496
 true value for 120
MISSING option
 TABLES statement (FREQ) 351–352
 TABULATE procedure 387–388
MISSING routine 193, 246, 497
missing values
 adding observations to data sets 166
 at end of line 438–440
 checking with IN= data set option 175–176
 conditional processing and 103
 DATA step and 66
 FREQ procedure and 351–352
 grouping problem with 349–350
 in numeric functions 192–193
 on class variables 386
 printing 485
 replacing for character variables 247–248
 replacing for numeric variables 244–246
 setting 193
 specifying with list input 32
 substituting for dates 151–152
 sum statement and 123
 table lookups and 471
 TABULATE procedure and 385–389
 testing for 496
MISSOVER option, INFILE statement 443
MISSPRINT= option, TABLES statement
 (FREQ) 388
Index 615

MISSTEXT= option, TABLE statement (TABULATE) 389, 485
MLF option, CLASS statement 483
mmddyy10. format 145, 480
mmddyy10. informat 40–42, 479
modifiers
 COMPARE function and 233
 COMPRESS function and 219–220
defined 219
informat 44, 46
MONTH function 149

months
 creating dates from 150–151
 date interval functions 152–157
 extracting from dates 149–150
MPRINT system option 525
multi-column reports 301–302
multidimensional arrays 254–257
MULTILABEL option, VALUE statement (FORMAT) 482–485
multi-level sorts 272–273
multiplication in assignment statements 19–20

N

N function 194–195
N= option, PRINT procedure 279
N statistic 321, 375, 378
NA value 247–248
names 7–8
naming conventions
 data sets 7
 librefs 55
 variables 7
NE operator 103
negation in assignment statements 19–20
nested formats 479–481
nesting operator 368
NMISS function 195
NMISS statistic 321, 375
NOCENTER system option 16, 263
NOCOL option, TABLES statement (FREQ) 359
NOCUM option, TABLES statement (FREQ) 345
NODS option, CONTENTS procedure 59
NOHEADING option, PIE statement (GCHART) 415
NOOBS option, PRINT procedure 97, 265
NOPERCENT option, TABLES statement (FREQ) 346, 359
NOPRINT option
 DEFINE statement (REPORT) 307–308
 FREQ procedure 509
 MEANS procedure 327–328, 511–512
 procedures and 408
NOROW option, TABLES statement (FREQ) 359
NOSEPS option, TABULATE procedure 376, 381
NOT functions 226–227
NOT operator 109–111
NOTALNUM function 227
NOTALPHA function 227
NOTDIGIT function 226–227
NOWD option, REPORT procedure 289–290
NULL keyword 67–68
numeric functions
 computing constants with 198–199
 computing sums with 196–197
descriptive statistics functions 194–196
generating random numbers 199–201
mathematical functions 197–198
missing values in 192–193
return values from observations 204–207
rounding numeric values 190–191
setting missing values 193
special functions 201–203
truncating numeric values 190–191
numeric values
 character-to-numeric conversions 180, 201–202, 229, 256, 468–469
 IN operator and 267
 missing values in 192–193
numeric-to-character conversions 202
reading in one step 467–470
numeric values (continued)
 replacing missing values for arrays 244–246
 rounding 190–191
 truncating 190–191
numeric variables
 computing frequencies of 342
 computing percentages on 384–385
 computing statistics on 14, 321
 defined 8
 informats and 467–470
 logical comparison operators and 107
 replacing missing values for arrays 244–246
 summary reports for 292
NWAY option, MEANS procedure 332–333, 336, 511

O
OBS= data set option 92, 281–283
OBS= option, INFILE statement 445–446
observations
 adding to data sets 164–167
 adding to listings 279
 checking missing values for 175–176
 combining detail/summary data 168–170
 computing differences between 512–514
 computing differences between first/last 514–516
 computing sums within 196–197
 controlling appearance in listings 266–267
 controlling in merged data sets 173–175
 counting number of visits 509–512
 detail reports about 291
 functions returning values from 204–207
 identifying first/last in groups 506–509
 listing per quarter 154
 listing specified number of 281–283
 multiple 454–455
 reading multiple lines from 448–450
 restructuring data sets using DATA step 494–497
 restructuring data sets using TRANSPOSE procedure 497–500
 retained variables and 515–517
 table rows and 18, 31, 536
ODS (Output Delivery System)
 choosing destinations 402–403
 converting data sets into spreadsheets 96–98
 creating table of contents 400–401
 procedures and 397–398
 selecting different HTML styles 401–402
 selecting/excluding output 403–407
 sending output to data sets 407–409
 sending output to HTML files 398–399
ODS CLOSE statement 97
ODS CSV statement 97
ODS EXCLUDE statement 403, 406–407
ODS HTML CLOSE statement 399
ODS HTML FILE statement 399
ODS HTML statement 400
ODS OUTPUT statement 408
ODS SELECT statement 403–407, 409
 PERSIST option 407
ODS statement 399
ODS TRACE statement 404–406, 408
OL option, RBREAK statement (REPORT) 303
ON clause (SQL) 543–545
one-to-many merge 181
one-to-one merge 181
operators
 arithmetic 19–20
 asterisk (*) as 368
 Boolean 107, 109–112
 comma as 367
 concatenation 215–217, 366
 for TABULATE procedure 366–368
 in WHERE statement 113–114
 logical comparison 103, 107
 UNION 546–549
OR operator 107, 109–112
ORDER clause (SQL) 551
ORDER= option
 AXIS statement (GCHART) 421
DEFINE statement (REPORT) 299–301, 303–305
FREQ procedure 353–356
OTHER keyword 349–350, 471, 475
OTHERWISE statement 108–109
OUT= option
 OUTPUT statement, MEANS procedure 327
 procedures and 407
 SORT procedure 271
 SURVEYSELECT procedure 200
output
See also ODS (Output Delivery System)
 choosing destinations 402–403
 for summary data sets 330–333
 formats in 73–76
 labeling with formats 346–347
 missing values in TABULATE procedure 385–389
 selecting/excluding portions of 403–407
 sending to data sets 407–409
 sending to HTML files 398–399
output data sets
 creating simplified reports with 409
 determining structure of 408
 naming variables in 329–330
Output Delivery System
See ODS
output objects 398, 404–406
OUTPUT statement
 counting number of visits and 512
 iterative DO loop 126, 128–129
 SAS processing 24
 subsetting data sets 164
 AUTONAME option 329–330, 337–338
 OUT= option 327
Output window 15, 67–68
P
PAD option, INFILE statement 143, 442–443
PAGEBY statement 276
PANELS= option, REPORT procedure 301–302
parentheses ()
 ARRAY statement and 245
 Boolean operators and 110
 in assignment statements 20
 logical comparison operators and 107
 variable lists in 455
PATH statement 400
PATTERN statement 412–414, 425
PCTN statistic 379–380, 383
PCTSUM statistic 384
PDF output destination 402–403
PDV (Program Data Vector) 22–24
 adding observations to data sets 166–167
 combining detail/summary data 169
 merging data sets with different names 178
 missing character values in arrays 247
 RETAIN statement and 516
 subsetting data sets 163
PERCENT format 169, 531
percent sign (%) 114, 522
percentages
 computing 379–380, 382–383
 computing on numeric variables 384–385
 in two-dimensional tables 381–382
period (.)
 list input and 32
 macro processor and 529–530
 missing values and 192, 388–389
 permanent data sets and 54–55
permanent data sets
 as input to DATA step 65–66
 examining with CONTENTS procedure 56–58
 LIBNAME statement and 54–55
 listing with CONTENTS procedure 59
 NULL keyword and 67–68
 reason for creating 55
 user-defined formats with 79–82
 viewing with PRINT procedure 63–64
 viewing with SAS Explorer 60–63
permanent data sets (continued)
viewing with SAS VIEWTABLE window 64–65
PERSIST option, ODS SELECT statement 407
pi (mathematical constant) 198–199
pie charts 415–416
PIE statement, GCHART procedure 414–415
NOHEADING option 415
PIE3D statement 414
PLOT procedure 412
PLOT statement, GPLOT procedure 426
 HAXIS option 426
 VAXIS option 426
plus sign (+) 123, 456–457
Prairie, Katherine 536
PREFIX= option, TRANSPOSE procedure 500
PRELOADFMT option, CLASS statement 484
PRINT procedure
 adding 31
 adding number of observations to listings 279
 adding subtotals/totals to listings 274–277
 adding titles/footnotes to listings 268–270
 changing listing appearance 263–265
 changing listing order 270–272
 changing values appearances 265–266
 controlling observation appearance in listings 266–267
 customized reports and 288
 displaying data with 262–263
 DOUBLE option 280
double-spacing listings 280
easier to read listings 277–278
FORMAT statement 41–42, 75, 265–266
HEADING= option 282
ID statement and 75
LABEL option 273, 279
labeling column headings 273–274
listing specified number of observations 281–283
N= option 279
NOOBS option 97, 265
output data sets and 408
REPORT procedure and 283, 288, 290
sending output to HTML files 398
SORT procedure and 299
sorting by multiple variables 272–273
viewing data sets with 63–64
WHERE statement and 336
PRINTMISS option, TABLE statement (TABULATE) 484–485
PRINTTO procedure 407
PROC steps
 creating labels in 72–73
 defined 6
%LET statement and 524
SAS processing 24
procedures
 FORMAT statement and 43
 IF statement in 112
 NOPRINT option in 408
 ODS and 397–398
 OUT= option in 407
Program Data Vector
 See PDV
programs, SAS
 See SAS programs
PROPCase function 214–215
punctuation
 dividing strings into words 230
 searching for 225
PUT function 201–203
 creating variables with 463–464
 formats and 463–464
 merging data sets 180
 nested formats and 481
 table lookups and 471
PUT statement
 controlling observations example 174
 end of file and 444
 in DATA step 67–68
 PUT function and 202
PUTC function 489
PUTN function 489
p-values 407–409
Q

Q1 statistic 321
Q3 statistic 321
QRANGE statistic 321
quarters, date interval functions 152–157

queries
 Cartesian product 539
demonstrating 537–538
question mark (?) 247–248, 446
QUIT statement 537
quotation marks ("")
in TITLE statement 57–58
macro variables and 523
missing character values and 192
XLS engine and 96

R

random numbers, generating 199–201, 524
RANUNI function 199–201
raw data
 loading initial values from arrays 253
 reading 11–18
 reading column input 37–39
 reading date values from 143–145
 reading formatted input 39–43
 reading from multiple files 446
 reading from multiple files with
 FILENAME statement 447
 reading portion of 445–446
 reading short data lines 441–442
 separated by blanks 30–31
 separated by commas 33
RBREAK statement, REPORT procedure
 303–306
 AFTER option 303
 BEFORE option 303
 DOL option 303
 DUL option 303
 OL option 303
 SUMMARIZE option 303
 UL option 303
reading
 character data in one step 467–470
complex data structures 456–457
data conditionally 451–453
date values from raw data 451–453
external files 447–448
from multiple files 446
from multiple files with FILENAME
 statement 447
long external files 443
multiple lines of data for observations 448–450
numeric data in one step 467–470
portion of raw data file 445–446
raw data 11–18
raw data separated by blanks 30–31
raw data separated by commas 33
raw data with column input 37–39
raw data with formatted input 39–43
short data lines 440–443
spreadsheets with engines 95–96
relative column pointers 456–457
relative line pointers 450
RENAME= data set option
 counting number of visits and 510, 512
 renaming variables 177–178, 473
SET statement and 202
RENAME= option, TRANSPOSE procedure 499
RENAME statement 337
REPORT procedure 289–290
 See also COLUMN statement, REPORT
 procedure
 See also DEFINE statement, REPORT
 procedure
applying ORDER usage to variables
 300–301
BREAK statement 303–306
changing row order 299–300
comparing detail/summary reports 291–293
COMPUTE blocks in
 308–309
COMPUTE statement 308–309
computing new variables 307–308
creating ACROSS variable 310
REPORT procedure (continued)
 displaying statistics with ACROSS variable 311–313
ENDCOMP statement 308–309
 grouping variables 296–297
HEADLINE option 297
 modifying column label for ACROSS variable 311
multi-column reports 301–302
NOWD option 289–290
ordering reports with nonprinting variables 306–307
PANELS= option 301–302
PRINT procedure and 283, 288, 290
producing report breaks 303–306
producing summary reports 293–294
RBREAK statement 303–306
 selecting variables for report 291
SPLIT= option 294–296
reports
 See also customized reports
 See also displaying data
 See also listings
BY statement vs. CLASS statement 324
DATA _NULL_ reporting 68
detail reports 291–293
 multi-column 301–302
output data sets and 409
producing 11–18
summary reports 291–294, 303
RESET=all graphics option 412–413
restructuring data sets
 with DATA step 494–497
 with TRANPOSE procedure 497–500
RETAIN statement
 assignment statement and 473
 computing differences between first/last observations 515–516
default missing values and 497
setting initial values with 121–122
retained variables 515–517
return values from observations 204–207
right joins (SQL) 543–545
RIGHT option, DEFINE statement (REPORT) 295
ROUND function 147, 190–191, 201
rounding numeric values 190–191
row indices 254
ROWPCTN keyword 382–383
ROWPCTSUM keyword 384
rows
 changing report order 299–300
 computing percentages 379–380, 384–385
crosstab tables and 356–357
displaying percentages in 381–382
 observations and 18, 31, 536
RTF output destination 402–403
RTS= option, TABLE statement (TABULATE) 381
RUN statement
 need for 13
SAS processing 24
 semicolon (;) and 36
S
 SAME keyword 469
SAMEDAY alignment, INTNX function 156
 SAMPSIZE= option, SURVEYSELECT procedure 200
SAS
 getting data into 4
 inner workings of 22–24
 overview 3–4
SAS/ACCESS 88
SAS Display Manager 9, 406
SAS Enterprise Guide 9
SAS Explorer
 conversion process and 98
documenting data sets with 80
 viewing data sets with 60–63
SAS/GRAph
 See graphics
SAS library 59
SAS macros 525–527
SAS names 7–8
SAS programs
debugging 68
enhancing 18–20
interrupting 134
producing reports 11–18
reading raw data 11–18
sample 4–7
submitting 14
writing data lines in 36
SAS sessions 58
SAS/STAT 200
SCAN function 230–232, 306
scatter plots 425–427
searching
for blanks 225
for cases 225–226
for character classes 225–226
for character values 220–222
for characters 220–223
for digits 225
for punctuation 225
for words in strings 223–225
seed numbers 199
SEED= option, SURVEYSELECT procedure 200
SELECT clause (SQL) 537, 539–542
SELECT statement
conditional processing and 108–109
FORMAT procedure 84, 488
LEAVE statement and 135
maintaining formats 477, 479
semi-colon (;)
comment statements and 21
DATA step and 36
RUN statement and 36
SAS programs and 6
sessions 58
SET statement 66
adding observations to data sets 164–167
arrays and 246
BY statement and 167–168, 507–508
combining detail/summary data 168–169
concatenating data sets 546
DATA step and 177
END= option 445
macro variables transferring values 530–531
missing character values in arrays 247–248
subsetting data sets 163
single trailing at sign (@) 130, 451–454
SKIP option, BREAK statement (REPORT) 305
slash
See forward slash
SMALLEST function 196
Social Security numbers 180
SORT procedure
changing listing order 270–271
DESCENDING option 270–271
OUT= option 271
PRINT procedure and 299
sort flag and 168
sorting by multiple variables 272–273
sorting multiple variables 272–273
spaces
See blanks
special functions 201–203
SPEDIS function 234–235, 552
SPLIT= option, REPORT procedure 294–296
SPSS 244, 246
SQL procedure 536–538
concatenating data sets 546–549
FROM clause 537, 539–542
full joins 543–545
fuzzy matching 551–552
joining tables 539–542
left joins 543–545
ON clause 543–545
ORDER clause 551
right joins 543–545
SELECT clause 537, 539–542
summary functions 549–550
UNION operator 546–549
WHERE clause 537, 541–542, 552
SQRT function 127, 197–198
square brackets [] 245, 480
ssn11. format 180
standardizing addresses 236–238
STAR statement 414
statements
 basic rules 6
 imbedding comments in 20–21
statistics
 bar charts representing 420–422
 computing 14
 computing row/column percentages 379–380
 descriptive 328–329, 370–372
 descriptive statistics functions 194–196
 displaying with ACROSS variables 311–313
 grand mean 332
 in summary reports 293–294
 naming variables in output data sets 329–330
 options with MEANS procedure 321
 outputting summary data sets 330–331
 outputting with MEANS procedure 328–329
 RBREAK statement and 303
 selecting for variables 337–338, 371
 summary reports and 291
 t-tests 407
 underscore (_) and 329, 337–338
STD statistic 321
storing
 dates 142
 formats 79
strings
 comparing 232–234
 concatenating 215–217
 dividing into words 230–232
 extracting parts of 228–230
 removing characters from 214–215, 218–220
 searching for words in 223–225
STRIP function 217–218
SUBGROUP= option, VBAR statement (GCHART) 424
subscripts 245
subsetting data sets 112, 162–164
subsetting IF statement 105–107
 controlling observations with 174
 LENGTHN function and 213
 subsetting data sets and 162
SUBSTR function 228–230
subtotals
 adding to listings 274–277
 producing in reports 303–306
 subtraction in assignment statements 19–20
 SUM function 195–197, 549–550
 sum statement 120–125
 adding subtotals/totals to listings 274, 276
 iterative DO loop and 125
SUM statistic 321, 384, 421
SUMMARIZE option
 BREAK statement (REPORT) 305
 RBREAK statement (REPORT) 303
summarizing data
 applying formats to class variables 325–326
 BY statement with MEANS procedure 323–324, 327
 CLASS statement with MEANS procedure 324–325, 327
 creating summary data sets 327–328
 multiple class variables when 333–337
 naming variables in output data sets 329–330
 outputting descriptive statistics 328–329
 outputting summary data sets 330–333
 selecting statistics for variables 337–338
 with MEANS procedure 320–322
summary data sets
 creating in DATA step 336–337
 creating with MEANS procedure 327–328
 outputting in BY statement 330–331
 outputting in CLASS statement 331–333
 selecting statistics for variables 337–338
SUMMARY procedure
 creating summary data sets 327–328
 formats and 463
 multilabel formats 482
selecting statistics for variables 337–338
summary reports
 BREAK statement and 303
 comparing with detail reports 291–293
 producing 293–294
sums, bar charts representing 420–422
SUMVAR= option, VBAR statement (GCHART) 421–422
SUPPRESS option, BREAK statement (REPORT) 306
SURVEYSELECT procedure 200
 DATA= option 200
 METHOD= option 200
 OUT= option 200
 SAMPSIZE= option 200
 SEED= option 200
swap and drop technique 202, 221
SYMBOL statement 412–413
 connecting points 427–429
 connecting points with smooth line 429–430
 INTERPOL= option 427–429
 JOIN option 428–429
 LINE= option 429
 producing scatter plots 425–426
 VALUE= option 426
 WIDTH= option 428
SYMPUT routine 531
&SYSTIME macro variable 523
&T
 tab character 35
table lookup
 formats and 470–471
 informats and 470–471
 INPUTN function 485–490
 multidimensional arrays for 254–257
 table of contents 400–401
TABLE statement, TABULATE procedure 365
 asterisk (*) in 368
 comma in 367
 concatenation operator and 366
descriptive statistics and 370–372
missing values and 385
MISSTEXT= option 389, 485
PRINTMISS option 484–485
RTS= option 381
tables
 See also columns
 See also rows
 See also TABULATE procedure
 combining class/analysis variables in 372–373
 complex 377–378
 controlling dimensions of 368
 creating 312
 crosstab 356–358
 customizing 374–377
 data sets and 536
 joining 539–545
 merging 539–545
 observations and 18, 31
 three-way 358–360
 two-dimensional 381–382
 two-way 356–358
 variables and 18, 31
TABLES statement, FREQ procedure 13
 counting number of visits 509
 formats and 77
 MISSING option 351–352
 MISSPRINT= option 388
 multiple two-way tables 358
 NOCOL option 359
 NOCUM option 345
 NOPERCENT option 346, 359
 NOROW option 359
 producing two-way tables 356–357
 selecting variables and 345–346
tabular reports
 See TABULATE procedure
TABULATE procedure 364–365
 See also TABLE statement, TABULATE procedure
 ALL keyword 369
TABULATE procedure (continued)
- analysis variables and 372–373, 377–378
- CLASS statement and 365
- class variables and 365
- combining class/analysis variables 372–373
- complex tables 377–378
- computing percentages on numeric variables 384–385
- computing row/column percentages 379–380, 382–383
- controlling decimal places with 322
- creating tables 312
- customizing tables 374–377
- FORMATA= option 366
- formats and 463
- KEYLABEL statement 375–376, 380, 383
- MISSING option 387–388
- missing values and 385–389
- multi-label formats 482–484
- NOSEPS option 376, 381
- operators for 366–368
- percentages in two-dimensional tables 381–382
- producing descriptive statistics 370–372
- temporary arrays 251–252
- loading initial values into 253
- table lookups with 254–257
- _TEMPORARY_ keyword 252, 256
- text wrapping 294–296
- three-way tables 358–360
- TITLE statement 13
 - automatic macro variables in 523
 - connecting points and 428
 - displaying data with 268–270
 - quotation marks in 57–58
 - RESET=all graphics option and 412
 - sample SAS program 16
- titles
 - adding to listings 268–270
 - font settings in 413
- TODAY function 148–149
tokens 527–529
totals
 - adding to listings 274–277
 - producing in reports 303–306
trailing blanks, removing 217–218, 233–234
transaction files 183–184
TRANSLATE function 235–237, 256
TRANSPOSE procedure 497–500
- DROP= option 499
- PREFIX= option 500
- RENAME= option 499
TRANWRD function 235–238
TRIM function
 - NOT functions and 227
 - removing trailing blanks 217–218, 233–234
truncating numeric values 190–191
TRUNCOVER option, INFILE statement 143, 443
TTEST procedure 407–408
t-tests 407–408
t-values 407–409
two-digit years 145
two-dimensional tables 381–382
two-way tables 356–358
type= option, VBAR statement (GCHART) 421–422
TYPE variable 332–337
U
UL option, RBREAK statement (REPORT) 303
underscore (_) as wildcard 114
conversion process and 92, 96
naming conventions and 7
statistics and 329, 337–338
UNION ALL CORRESPONDING operator 546
UNION ALL operator 546
UNION CORRESPONDING operator 546
UNION operator (SQL) 546–549
UNIVARIATE procedure 403–405
UPCASE function 214, 235
UPCASE option, INVALUE statement
(FORMAT) 466, 469
UPDATE statement 183–184
uppercase 214, 235
user-defined formats 79–82, 380, 464
user-defined informats 464–467

V
VALUE= option, SYMBOL statement (G PLOT) 426
VALUE statement, FORMAT procedure 74, 78, 482–485
MULTILABEL option 482–485
VAR statement 14
 changing listing appearance with 263–265
descriptive statistics and 370
double dash in 149
ID statement and 75
MEANS procedure and 322, 328–330
TABLE statement (TABULATE) and 365
VAR statistic 321
variable lists 149, 455–456
variable names
 array references and 245
defined 13
in INPUT statement 31
informs and 43–44
variables
 See also character variables
 See also class variables
 See also macro variables
 See also numeric variables
adding labels to 71–73
adding to bar charts 423–425
applying ORDER usage to 300–301
changing order in COLUMN statement 297–298
computing frequencies of 342–344
computing with REPORT procedure 307–308
 continuous 416–420
 controlling decimal places 322
 controlling listing appearance 263–265
 creating 249–250, 463–464
defining usage for 296
 FREQ 331, 337
grouping 296–297
in ID statements 75
listing formats 80
listing labels 80
missing values in TABULATE procedure 385–389
naming conventions 7
naming in output data sets 329–330
nonprinting 306–307
recoding with formats 462–463
retained 515–517
selecting for FREQ procedure 345–346
selecting for reports 291
selecting statistics for 337–338, 371
setting initial values for 121–122
sorting by multiple 272–273
sum statement and 123
swap and drop technique 202
table columns and _TYPE_ 332–337
types of 8
VAR statement and 149
WHERE statement and 162
VARNUM option, CONTENTS procedure 58, 149
VAXIS option, PLOT statement (G PLOT) 426
VBAR statement, GCHART procedure 414
DISCRETE option 419–420
GROUP= option 423
MAXIS= option 421
MIDPOINTS= option 417–418
SUBGROUP= option 424
SUMVAR= option 421–422
TYPE= option 421–422
VBAR3D statement 414
VERIFY function 227–228
VIEWTABLE Window 64–65
virtual data sets 474
visits, counting number of 509–512
VSIZE=4 option, GOPTIONS statement 414

W
$w. informat 40
w.d informat 40
WEEKDAY function 149, 419
WHEN statement 108–109
WHERE clause (SQL) 537
 fuzzy matching 552
 joining tables 541–542
WHERE= data set option 499
WHERE statement
 controlling observation appearance in listings 266–267
 subsetting data sets 112, 162
 TYPE variable in 336
 useful operators 113–114
WIDTH= option, SYMBOL statement 428
wildcards
 asterisk (*) as 338, 446, 538
 colon (:) as 202, 337
 for WHERE statement operators 114
 question mark as 446
Williams, Christianna 536
words
 dividing strings into 230–232
 searching for in strings 223–225
 substituting 235–238
 wrapping lines of text 294–296

X
XLS engine 95–96
X-Y plots 425–427

Y
YEAR function 149
YEARCUTOFF system option 145, 150
years
 computing between dates 146–147
 creating dates from 150–151
 date interval functions 152–157
 extracting from dates 149–150
 four-digit 145
 two-digit 145
YRDIF function 146–147

Z
Zdeb, Mike 180
Symbols
& (ampersand) 46
* (asterisk)
 See asterisk (*)
@ (at sign)
 See at sign (@)
@@ (double trailing @ sign) 197, 454–455
: (colon)
 See colon (:
, (comma)
 See comma (,
{ } (curly brackets) 245, 254
$ (dollar sign)
 See dollar sign ($)
= (equal sign)
 See equal sign (=)
/ (forward slash)
 See forward slash (/)
- (hyphen) 180
< (less than sign) 78
() (parentheses)
 See parentheses ()
% (percent sign) 114, 522
. (period)
 See period (.)
+ (plus sign) 123, 456–457
? (question mark) 247–248, 446
" (quotation marks)
 See quotation marks ("
; (semicolon)
 See semicolon (;)
[] (square brackets) 245, 480
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.