
5

C H A P T E R

2
SAS Data Set Options

Definition of Data Set Options 6

Syntax 6
Using Data Set Options 6

Using Data Set Options with Input or Output SAS Data Sets 6

How Data Set Options Interact with System Options 7
Data Set Options by Category 7

Dictionary 9

ALTER= Data Set Option 9
BUFNO= Data Set Option 10

BUFSIZE= Data Set Option 11
CNTLLEV= Data Set Option 13

COMPRESS= Data Set Option 14

DLDMGACTION= Data Set Option 16
DROP= Data Set Option 17

ENCODING= Data Set Option 18

ENCRYPT= Data Set Option 18
FILECLOSE= Data Set Option 20

FIRSTOBS= Data Set Option 20
GENMAX= Data Set Option 22

GENNUM= Data Set Option 23

IDXNAME= Data Set Option 25
IDXWHERE= Data Set Option 26

IN= Data Set Option 27

INDEX= Data Set Option 29
KEEP= Data Set Option 30

LABEL= Data Set Option 31
OBS= Data Set Option 32

OBSBUF= Data Set Option 38

OUTREP= Data Set Option 40
POINTOBS= Data Set Option 42

PW= Data Set Option 43

PWREQ= Data Set Option 44
READ= Data Set Option 44

RENAME= Data Set Option 45
REPEMPTY= Data Set Option 47

REPLACE= Data Set Option 48

REUSE= Data Set Option 49
SORTEDBY= Data Set Option 50

SORTSEQ= Data Set Option 52

SPILL= Data Set Option 52
TOBSNO= Data Set Option 60

6 Definition of Data Set Options Chapter 2

TYPE= Data Set Option 60

WHERE= Data Set Option 61
WHEREUP= Data Set Option 63

Data Set Option 65

Definition of Data Set Options
Data set options specify actions that apply only to the SAS data set with which they

appear. They let you perform such operations as
� renaming variables
� selecting only the first or last n observations for processing
� dropping variables from processing or from the output data set
� specifying a password for a data set.

Syntax
Specify a data set option in parentheses after a SAS data set name. To specify

several data set options, separate them with spaces.

(option-1=value-1<...option-n=value-n>)

These examples show data set options in SAS statements:
� data scores(keep=team game1 game2 game3);

� proc print data=new(drop=year);

� set old(rename=(date=Start_Date));

Using Data Set Options

Using Data Set Options with Input or Output SAS Data Sets
Most SAS data set options can apply to either input or output SAS data sets in DATA

steps or procedure (PROC) steps. If a data set option is associated with an input data
set, the action applies to the data set that is being read. If the option appears in the
DATA statement or after an output data set specification in a PROC step, SAS applies
the action to the output data set. In the DATA step, data set options for output data
sets must appear in the DATA statement, not in any OUTPUT statements that may be
present.

Some data set options, such as COMPRESS=, are meaningful only when you create a
SAS data set because they set attributes that exist for the life of the data set. To
change or cancel most data set options, you must re-create the data set. You can change
other options (such as PW= and LABEL=) with PROC DATASETS. For more
information, see the “DATASETS Procedure” in Base SAS Procedures Guide.

When data set options appear on both input and output data sets in the same DATA
or PROC step, SAS applies data set options to input data sets before it evaluates
programming statements or before it applies data set options to output data sets.
Likewise, data set options that are specified for the data set being created are applied
after programming statements are processed. For example, when using the RENAME=
data set option, the new names are not associated with the variables until the DATA
step ends.

SAS Data Set Options Data Set Options by Category 7

In some instances, data set options conflict when they are used in the same
statement. For example, you cannot specify both the DROP= and KEEP= data set
options for the same variable in the same statement. Timing can also be an issue in
some cases. For example, if using KEEP= and RENAME= on a data set specified in the
SET statement, KEEP= needs to use the original variable names, because SAS will
process KEEP= before the data set is read. The new names specified in RENAME= will
apply to the programming statements that follow the SET statement.

How Data Set Options Interact with System Options
Many system options and data set options share the same name and have the same

function. System options remain in effect for all DATA and PROC steps in a SAS job or
session unless they are respecified.

The data set option overrides the system option for the data set in the step in which
it appears. In this example, the OBS= system option in the OPTIONS statement
specifies that only the first 100 observations will be processed from any data set within
the SAS job. The OBS= data set option in the SET statement, however, overrides the
system option for data set TWO and specifies that only the first 5 observations will be
read from data set TWO. The PROC PRINT step prints the data set FINAL. This data
set contains the first 5 observations from data set TWO, followed by the first 100
observations from data set THREE:

options obs=100;

data final;
set two(obs=5) three;

run;

proc print data=final;
run;

Data Set Options by Category

Table 2.1 Categories and Descriptions of Data Set Options

Category SAS Data Set Option Description

Data Set Control “ALTER= Data Set
Option” on page 9

Assigns an alter password to a SAS file and enables
access to a password-protected SAS file

“BUFNO= Data Set
Option” on page 10

Specifies the number of buffers to be allocated for
processing a SAS data set

“BUFSIZE= Data Set
Option” on page 11

Specifies the permanent buffer page size for an output
SAS data set

“CNTLLEV= Data Set
Option” on page 13

Specifies the level of shared access to SAS data sets

“COMPRESS= Data Set
Option” on page 14

Controls the compression of observations in an output
SAS data set

“DLDMGACTION= Data
Set Option” on page 16

Specifies what type of action to take when a SAS data set
in a SAS data library is detected as damaged

8 Data Set Options by Category Chapter 2

Category SAS Data Set Option Description

“ENCODING= Data Set
Option” on page 18

Overrides the encoding for processing a specific input or
output SAS data set

“ENCRYPT= Data Set
Option” on page 18

Encrypts SAS data files

“GENMAX= Data Set
Option” on page 22

Requests generations for a data set and specifies the
maximum number of versions

“GENNUM= Data Set
Option” on page 23

References a specific generation of a data set

“INDEX= Data Set Option”
on page 29

Defines indexes when a SAS data set is created

“LABEL= Data Set
Option” on page 31

Specifies a label for the SAS data set

“OBSBUF= Data Set
Option” on page 38

Determines the size of the view buffer for processing a
DATA step view

“OUTREP= Data Set
Option” on page 40

Specifies the data representation for the output SAS data
set

“PW= Data Set Option” on
page 43

Assigns a read, write, or alter password to a SAS file and
enables access to a password-protected SAS file

“PWREQ= Data Set
Option” on page 44

Controls the pop up of a requestor window for a data set
password

“READ= Data Set Option”
on page 44

Assigns a read password to a SAS file and enables access
to a read-protected SAS file

“REPEMPTY= Data Set
Option” on page 47

Controls replacement of like-named temporary or
permanent SAS data sets when the new one is empty

“REPLACE= Data Set
Option” on page 48

Controls replacement of like-named temporary or
permanent SAS data sets

“REUSE= Data Set
Option” on page 49

Specifies whether new observations are written to free
space in compressed SAS data sets

“SORTEDBY= Data Set
Option” on page 50

Specifies how the data set is currently sorted

“SORTSEQ= Data Set
Option” on page 52

Specifies the collating sequence to be used by the SORT
procedure

“SPILL= Data Set Option”
on page 52

Specifies whether to create a spill file for non-sequential
processing of a DATA step view

“TOBSNO= Data Set
Option” on page 60

Specifies the number of observations to be transmitted in
each multi-observation exchange with a SAS server

“TYPE= Data Set Option”
on page 60

Specifies the data set type for a specially structured SAS
data set

“ Data Set Option” on page
65

Assigns a write password to a SAS file and enables
access to a write-protected SAS file

Miscellaneous “FILECLOSE= Data Set
Option” on page 20

Specifies how a tape is positioned when a SAS file on the
tape is closed

Observation Control “FIRSTOBS= Data Set
Option” on page 20

Specifies which observation SAS processes first

SAS Data Set Options ALTER= Data Set Option 9

Category SAS Data Set Option Description

“IN= Data Set Option” on
page 27

Creates a variable that indicates whether the data set
contributed data to the current observation

“OBS= Data Set Option”
on page 32

Specifies when to stop processing observations

“POINTOBS= Data Set
Option” on page 42

Controls whether a compressed data set can be processed
with random access (by observation number) rather than
with sequential access only

“WHERE= Data Set
Option” on page 61

Selects observations that meet the specified condition

“WHEREUP= Data Set
Option” on page 63

Specifies whether to evaluate added observations and
modified observations against a WHERE expression

User Control of SAS Index
Usage

“IDXNAME= Data Set
Option” on page 25

Directs SAS to use a specific index to satisfy the
conditions of a WHERE expression

“IDXWHERE= Data Set
Option” on page 26

Overrides the SAS decision about whether to use an
index to satisfy the conditions of a WHERE expression

Variable Control “DROP= Data Set Option”
on page 17

Excludes variables from processing or from output SAS
data sets

“KEEP= Data Set Option”
on page 30

Specifies variables for processing or for writing to output
SAS data sets

“RENAME= Data Set
Option” on page 45

Changes the name of a variable

Dictionary

ALTER= Data Set Option

Assigns an alter password to a SAS file and enables access to a password-protected SAS file

Valid in: DATA step and PROC steps
Category: Data Set Control
See: ALTER= Data Set Option in the documentation for your operating environment.

Syntax
ALTER=alter-password

10 BUFNO= Data Set Option Chapter 2

Syntax Description

alter-password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details
The ALTER= option applies to all types of SAS files except catalogs. You can use this
option to assign an alter-password to a SAS file or to access a read-protected,
write-protected, or alter-protected SAS file.

When replacing a SAS data set that is alter protected, the new data set inherits the
alter password. To change the alter password for the new data set, use the MODIFY
statement in the DATASETS procedure.

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

See Also

Data Set Options:
“ENCRYPT= Data Set Option” on page 18
“PW= Data Set Option” on page 43
“READ= Data Set Option” on page 44
“ Data Set Option” on page 65

“File Protection” in SAS Language Reference: Concepts
“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures

Guide

BUFNO= Data Set Option

Specifies the number of buffers to be allocated for processing a SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
BUFNO= n | nK | hexX | MIN | MAX

Syntax Description

n | nK

SAS Data Set Options BUFSIZE= Data Set Option 11

specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes). For
example, a value of 8 specifies 8 buffers, and a value of 1k specifies 1024 buffers.

hex
specifies the number of buffers as a hexadecimal value. You must specify the value
beginning with a number (0-9), followed by an X. For example, the value 2dx sets the
number of buffers to 45 buffers.

MIN
sets the minimum number of buffers to 0, which causes SAS to use the minimum
optimal value for the operating environment. This is the default.

MAX
sets the number of buffers to the maximum possible number in your operating
environment, up to the largest four-byte, signed integer, which is 231-1, or
approximately 2 billion.

Details
The buffer number is not a permanent attribute of the data set; it is valid only for the
current SAS session or job.

BUFNO= applies to SAS data sets that are opened for input, output, or update.
A larger number of buffers can speed up execution time by limiting the number of

input and output (I/O) operations that are required for a particular SAS data set.
However, the improvement in execution time comes at the expense of increased memory
consumption.

To reduce I/O operations on a small data set as well as speed execution time, allocate
one buffer for each page of data to be processed. This technique is most effective if you
read the same observations several times during processing.

Comparisons
� If the BUFNO= data set option is not specified, then the value of the BUFNO=

system option is used. If both are specified in the same SAS session, the value
specified for the BUFNO= data set option overrides the value specified for the
BUFNO= system option.

� To request that SAS allocate the number of buffers based on the number of data
set pages and index file pages, use the SASFILE global statement.

See Also

Data Set Options:
“BUFSIZE= Data Set Option” on page 11

System Options:
“BUFNO= System Option” on page 1494

Statements:
“SASFILE Statement” on page 1403

BUFSIZE= Data Set Option

Specifies the permanent buffer page size for an output SAS data set

12 BUFSIZE= Data Set Option Chapter 2

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.
See: BUFSIZE= Data Set Option in the documentation for your operating environment.

Syntax
BUFSIZE= n | nK | nM | nG | hexX | MAX

Syntax Description

n | nK | nM | nG
specifies the page size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). For example, a value of 8 specifies a page
size of 8 bytes, and a value of 4k specifies a page size of 4096 bytes.

The default is 0, which causes SAS to use the minimum optimal page size for the
operating environment.

hexX
specifies the page size as a hexadecimal value. You must specify the value beginning
with a number (0-9), followed by an X. For example, the value 2dx sets the page size
to 45 bytes.

MAX
sets the page size to the maximum possible number in your operating environment,
up to the largest four-byte, signed integer, which is 231-1, or approximately 2 billion
bytes.

Details
The page size is the amount of data that can be transferred for a single I/O operation to
one buffer. The page size is a permanent attribute of the data set and is used when the
data set is processed.

A larger page size can speed up execution time by reducing the number of times SAS
has to read from or write to the storage medium. However, the improvement in
execution time comes at the cost of increased memory consumption.

To change the page size, use a DATA step to copy the data set and either specify a
new page or use the SAS default. To reset the page size to the default value in your
operating environment, use BUFSIZE=0.

Note: If you use the COPY procedure to copy a data set to another library that is
allocated with a different engine, the specified page size of the data set is not retained. �

Operating Environment Information: The default value for BUFSIZE= is determined
by your operating environment and is set to optimize sequential access. To improve
performance for direct (random) access, you should change the value for BUFSIZE=.
For the default setting and possible settings for direct access, see the BUFSIZE= data
set option in the SAS documentation for your operating environment. �

Comparisons
If the BUFSIZE= data set option is not specified, then the value of the BUFSIZE=
system option is used. If both are specified in the same SAS session, the BUFSIZE=
data set option overrides the value specified for the BUFSIZE= system option.

SAS Data Set Options CNTLLEV= Data Set Option 13

See Also

Data Set Options:
“BUFNO= Data Set Option” on page 10

System Options:
“BUFSIZE= System Option” on page 1495

CNTLLEV= Data Set Option

Specifies the level of shared access to a SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Specify for input data sets only.

Syntax
CNTLLEV=LIB | MEM | REC

Syntax Description

LIB
specifies that concurrent access is controlled at the library level. Library-level control
restricts concurrent access to only one update process to the library.

MEM
specifies that concurrent access is controlled at the SAS data set (member) level.
Member-level control restricts concurrent access to only one update or output process
to the SAS data set. If the data set is open for an update or output process, then no
other operation can access the data set. If the data set is open for an input process,
then other concurrent input processes are allowed but no update or output process is
allowed.

REC
specifies that concurrent access is controlled at the observation (record) level.
Record-level control allows more than one update access to the same SAS data set,
but it denies concurrent update of the same observation.

Details
The CNTLLEV= option specifies the level at which shared update access to a SAS data
set is denied. A SAS data set can be opened concurrently by more than one SAS session
or by more than one statement, window, or procedure within a single session. By
default, SAS procedures permit the greatest degree of concurrent access possible while
they guarantee the integrity of the data and the data analysis. Therefore, you do not
normally use the CNTLLEV= data set option.

Use this option when

14 COMPRESS= Data Set Option Chapter 2

� your application controls the access to the data, such as in SAS Component
Language (SCL), SAS/IML software, or DATA step programming

� you access data through an interface engine that does not provide member-level
control of the data.

If you use CNTLLEV=REC and the SAS procedure needs member-level control for
integrity of the data analysis, SAS prints a warning to the SAS log that inaccurate or
unpredictable results can occur if the data are updated by another process during the
analysis.

Examples

Example 1: Changing the Shared Access Level In the following example, the first SET
statement includes the CNTLLEV= data set option in order to override the default level
of shared access from member-level control to record-level control. The second SET
statement opens the SAS data set with the default member-level control.

set datalib.fuel (cntllev=rec) point=obsnum;
.
.
.

set datalib.fuel;
by area;

COMPRESS= Data Set Option

Controls the compression of observations in an output SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.

Syntax
COMPRESS=NO | YES | CHAR | BINARY

Syntax Description

NO
specifies that the observations in a newly created SAS data set are uncompressed
(fixed-length records).

YES | CHAR
specifies that the observations in a newly created SAS data set are compressed
(variable-length records) by SAS using RLE (Run Length Encoding). RLE compresses
observations by reducing repeated consecutive characters (including blanks) to
two-byte or three-byte representations.
Alias: ON

SAS Data Set Options COMPRESS= Data Set Option 15

Tip: Use this compression algorithm for character data.

Note: COMPRESS=CHAR is accepted by Version 7 and later versions. �

BINARY
specifies that the observations in a newly created SAS data set are compressed
(variable-length records) by SAS using RDC (Ross Data Compression). RDC
combines run-length encoding and sliding-window compression to compress the file.

Tip: This method is highly effective for compressing medium to large (several
hundred bytes or larger) blocks of binary data (numeric variables). Because the
compression function operates on a single record at a time, the record length needs
to be several hundred bytes or larger for effective compression.

Details
Compressing a file is a process that reduces the number of bytes required to represent
each observation. Advantages of compressing a file include reduced storage
requirements for the file and fewer I/O operations necessary to read or write to the data
during processing. However, more CPU resources are required to read a compressed file
(because of the overhead of uncompressing each observation), and there are situations
where the resulting file size might increase rather than decrease.

Use the COMPRESS= data set option to compress an individual file. Specify the
option for output data sets only—that is, data sets named in the DATA statement of a
DATA step or in the OUT= option of a SAS procedure. Use the COMPRESS= data set
option only when you are creating a SAS data file (member type DATA). You cannot
compress SAS views, because they contain no data.

After a file is compressed, the setting is a permanent attribute of the file, which
means that to change the setting, you must re-create the file. That is, to uncompress a
file, specify COMPRESS=NO for a DATA step that copies the compressed file.

Comparisons
The COMPRESS= data set option overrides the COMPRESS= option on the LIBNAME
statement and the COMPRESS= system option.

The data set option POINTOBS=YES, which is the default, determines that a
compressed data set can be processed with random access (by observation number)
rather than sequential access. With random access, you can specify an observation
number in the FSEDIT procedure and the POINT= option in the SET and MODIFY
statements.

When you create a compressed file, you can also specify REUSE=YES (as a data set
option or system option) in order to track and reuse space. With REUSE=YES, new
observations are inserted in space freed when other observations are updated or
deleted. When the default REUSE=NO is in effect, new observations are appended to
the existing file.

POINTOBS=YES and REUSE=YES are mutually exclusive—that is, they cannot be
used together. REUSE=YES takes precedence over POINTOBS=YES; that is, if you set
REUSE=YES, SAS automatically sets POINTOBS=NO. For example, the following
statement results in a compressed data file that cannot be processed with random
access:

The TAPE engine supports the COMPRESS= data set option, but the engine does not
support the COMPRESS= system option.

The XPORT engine does not support compression.

16 DLDMGACTION= Data Set Option Chapter 2

See Also

Data Set Options:
“POINTOBS= Data Set Option” on page 42
“REUSE= Data Set Option” on page 49

Statements:
“LIBNAME Statement” on page 1292

System Options:
“COMPRESS= System Option” on page 1512
“REUSE= System Option” on page 1603

“Compressing Data Files” in SAS Language Reference: Concepts

DLDMGACTION= Data Set Option

Specifies what type of action to take when a SAS data set in a SAS data library is detected as
damaged

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
DLDMGACTION=FAIL | ABORT | REPAIR | PROMPT

Syntax Description

FAIL
stops the step, issues an error message to the log immediately. This is the default for
batch mode.

ABORT
terminates the step, issues an error message to the log, and aborts the SAS session.

REPAIR
automatically repairs and rebuilds indexes and integrity constraints, unless the data
set is truncated. You use the REPAIR statement in PROC DATASETS to restore a
truncated data set. It issues a warning message to the log. This is the default for
interactive mode.

PROMPT
displays a requestor window that asks you to select the FAIL, ABORT, or REPAIR
action.

SAS Data Set Options DROP= Data Set Option 17

DROP= Data Set Option

Excludes variables from processing or from output SAS data sets

Valid in: DATA step and PROC steps
Category: Variable Control

Syntax
DROP=variable(s)

Syntax Description

variable(s)
lists one or more variable names. You can list the variables in any form that SAS
allows.

Details
If the option is associated with an input data set, the variables are not available for
processing. If the DROP= data set option is associated with an output data set, SAS
does not write the variables to the output data set, but they are available for processing.

Comparisons
� The DROP= data set option differs from the DROP statement in these ways:

� In DATA steps, the DROP= data set option can apply to both input and
output data sets. The DROP statement applies only to output data sets.

� In DATA steps, when you create multiple output data sets, use the DROP=
data set option to write different variables to different data sets. The DROP
statement applies to all output data sets.

� In PROC steps, you can use only the DROP= data set option, not the DROP
statement.

� The KEEP= data set option specifies a list of variables to be included in processing
or to be written to the output data set.

Examples

Example 1: Excluding Variables from Input In this example, the variables SALARY
and GENDER are not included in processing and they are not written to either output
data set:

data plan1 plan2;
set payroll(drop=salary gender);
if hired<’01jan98’d then output plan1;
else output plan2;

run;

18 ENCODING= Data Set Option Chapter 2

You cannot use SALARY or GENDER in any logic in the DATA step because DROP=
prevents the SET statement from reading them from PAYROLL.

Example 2: Processing Variables without Writing Them to a Data Set In this example,
SALARY and GENDER are not written to PLAN2, but they are written to PLAN1:

data plan1 plan2(drop=salary gender);
set payroll;
if hired<’01jan98’d then output plan1;
else output plan2;

run;

See Also

Data Set Options:
“KEEP= Data Set Option” on page 30

Statements:
“DROP Statement” on page 1156

ENCODING= Data Set Option

Overrides the encoding to use for reading or writing a SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control
See: The ENCODING data set option in SAS National Language Support (NLS): User’s
Guide

ENCRYPT= Data Set Option

Encrypts SAS data files

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.

Syntax
ENCRYPT=YES | NO

SAS Data Set Options ENCRYPT= Data Set Option 19

Syntax Description

YES
encrypts the file. The encryption method uses passwords. At a minimum, you must
specify the READ= or the PW= data set option at the same time that you specify
ENCRYPT=YES. Because the encryption method uses passwords, you cannot change
any password on an encrypted data set without re-creating the data set.

NO
does not encrypt the file.

CAUTION:
Record all passwords. If you forget the password, you cannot reset it without
assistance from SAS. The process is time-consuming and resource-intensive. �

Details
� You can use the ENCRYPT= option only when you are creating a SAS data file.

� In order to copy an encrypted SAS data file, the output engine must support
encryption. Otherwise, the data file is not copied.

� Encrypted files work only in Release 6.11 or in later releases of SAS.

� You cannot encrypt SAS data views or stored programs because they contain no
data.

� If the data file is encrypted, all associated indexes are also encrypted.

� Encryption requires roughly the same amount of CPU resources as compression.
� You cannot use PROC CPORT on encrypted SAS data files.

Example

This example creates an encrypted SAS data set:

data salary(encrypt=yes read=green);
input name $ yrsal bonuspct;
datalines;

Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

To use this data set, specify the read password:

proc contents data=salary(read=green);
run;

See Also

Data Set Options:

“ALTER= Data Set Option” on page 9

“PW= Data Set Option” on page 43

“READ= Data Set Option” on page 44

20 FILECLOSE= Data Set Option Chapter 2

“ Data Set Option” on page 65
“SAS Data File Encryption” in SAS Language Reference: Concepts

FILECLOSE= Data Set Option

Specifies how a tape is positioned when a SAS file on the tape is closed

Valid in: DATA step and PROC steps
Category: Miscellaneous

Syntax
FILECLOSE=DISP | LEAVE | REREAD | REWIND

Syntax Description

DISP
positions the tape volume according to the disposition specified in the operating
environment’s control language.

LEAVE
positions the tape at the end of the file that was just processed. Use
FILECLOSE=LEAVE if you are not repeatedly accessing the same files in a SAS
program but you are accessing one or more subsequent SAS files on the same tape.

REREAD
positions the tape volume at the beginning of the file that was just processed. Use
FILECLOSE=REREAD if you are accessing the same SAS data set on tape several
times in a SAS program.

REWIND
rewinds the tape volume to the beginning. Use FILECLOSE=REWIND if you are
accessing one or more previous SAS files on the same tape, but you are not
repeatedly accessing the same files in a SAS program.

Operating Environment Information: These values are not recognized by all operating
environments. Additional values are available on some operating environments. See
the appropriate sections of the SAS documentation for your operating environment for
more information on using SAS data libraries that are stored on tape. �

FIRSTOBS= Data Set Option

Specifies which observation SAS processes first

Valid in: DATA step and PROC steps
Category: Observation Control
Restriction: Valid for input (read) processing only.

SAS Data Set Options FIRSTOBS= Data Set Option 21

Restriction: Cannot use with PROC SQL views.

Syntax
FIRSTOBS= n| nK | nM | nG | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG
specifies the number of the first observation to process in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). For example, a value
of 8 specifies the 8th observation, and a value of 3k specifies 3,072.

hexX
specifies the number of the first observation to process as a hexadecimal value. You
must specify the value beginning with a number (0-9), followed by an X. For example,
the value 2dx sets the 45th observation as the first observation to process.

MIN
sets the number of the first observation to process to 1. This is the default.

MAX
sets the number of the first observation to process to the maximum number of
observations in the data set, up to the largest eight-byte, signed integer, which is
263-1, or approximately 9.2 quintillion observations.

Details
The FIRSTOBS= data set option affects a single, existing SAS data set. Use the
FIRSTOBS= system option to affect all steps for the duration of your current SAS
session.

FIRSTOBS= is valid for input (read) processing only. Specifying FIRSTOBS= is not
valid for output or update processing.

You can apply FIRSTOBS= processing to WHERE processing. For more information,
see “Processing a Segment of Data That Is Conditionally Selected” in SAS Language
Reference: Concepts.

Comparisons
� The FIRSTOBS= data set option overrides the FIRSTOBS= system option for the

individual data set.

� While the FIRSTOBS= data set option specifies a starting point for processing, the
OBS= data set option specifies an ending point. The two options are often used
together to define a range of observations to be processed.

� When external files are read, the FIRSTOBS= option in the INFILE statement
specifies which record to read first.

Examples

This PROC step prints the data set STUDY beginning with observation 20:

proc print data=study(firstobs=20);
run;

22 GENMAX= Data Set Option Chapter 2

This SET statement uses both FIRSTOBS= and OBS= to read only observations 5
through 10 from the data set STUDY. Data set NEW contains six observations.

data new;
set study(firstobs=5 obs=10);

run;

See Also

Data Set Options:
“OBS= Data Set Option” on page 32

Statements:
“INFILE Statement” on page 1229
“WHERE Statement” on page 1433

System Options:
“FIRSTOBS= System Option” on page 1541

GENMAX= Data Set Option

Requests generations for a data set and specifies the maximum number of versions

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.

Syntax
GENMAX=number-of-generations

Syntax Description

number-of-generations
requests generations for a data set and specifies the maximum number of versions to
maintain. The value can be from 0 to 1000. The default is GENMAX=0, which means
that no generation data sets are requested..

Details
You use GENMAX= to request generations for a new data set and to modify the number
of generations on an existing data set. The first time the data set is replaced, SAS
keeps the replaced version and appends a four-character version number to its member
name, which includes # and a three-digit number. For example, for a data set named A,
a historical version would be A#001.

Once generations of a data set is requested, its member name is limited to 28
characters (rather than 32), because the last four characters are reserved for the
appended version number. When the GENMAX= data set option is set to 0, the member
name can be up to 32 characters.

SAS Data Set Options GENNUM= Data Set Option 23

If you reduce the number of generations on an existing data set, SAS deletes the
oldest version(s) above the new limit.

Examples

Example 1: Requesting Generations When You Create a Data Set This example shows
how to request generations for a new data set. The DATA step creates a data set named
WORK.A that can have as many as 10 generations (one current version and nine
historical versions):

data a(genmax=10);
x=1;
output;

run;

Example 2: Modifying the Number of Generations on an Existing Data Set This
example shows how to change the number of generations on the data set MYLIB.A to 4:

proc datasets lib=mylib;
modify a(genmax=4);

run;

See Also

Data Set Option:
“GENNUM= Data Set Option” on page 23

“Generation Data Sets” in “SAS Data Sets” in SAS Language Reference: Concepts

GENNUM= Data Set Option

References a specific generation of a data set

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with input data sets only.

Syntax
GENNUM=integer

Syntax Description

integer
is a number that references a specific version from a generation group. Specifying a
positive number is an absolute reference to a specific generation number that is
appended to a data set’s name. Specifying a negative number is a relative reference

24 GENNUM= Data Set Option Chapter 2

to a historical version in relation to the base version, from the youngest to the oldest.
Typically, a value of 0 refers to the current (base) version.

Note: The DATASETS procedure provides a variety of statements for which
specifying GENNUM= has additional functionality:

� For the DATASETS and DELETE statements, GENNUM= supports the
additional values ALL, HIST, and REVERT.

� For the CHANGE statement, GENNUM= supports the additional value ALL.
� For the CHANGE statement, specifying GENNUM=0 refers to all versions

rather than just the base version.

�

Details
After generations for a data set have been requested using the GENMAX= data set
option, use GENNUM= to request a specific version. For example, specifying
GENNUM=3 refers to the historical version #003, while specifying GENNUM=-1 refers
to the youngest historical version.

Note that after 999 replacements, the youngest version would be #999. After 1,000
replacements, SAS rolls over the youngest version number to #000. Therefore, if you
want the historical version #000, specify GENNUM=1000.

Both an absolute reference and a relative reference refer to a specific version. A
relative reference does not skip deleted versions. Therefore, when working with a
generation group that includes one or more deleted versions, using a relative reference
will result in an error if the version being referenced has been deleted. For example, if
you have the base version AIR and three historical versions (AIR#001, AIR#002, and
AIR#003) and you delete AIR#002, the following statements return an error, because
AIR#002 does not exist. SAS does not assume you mean AIR#003:

proc print data=air (gennum= -2);
run;

Examples

Example 1: Requesting a Version Using an Absolute Reference This example prints
the historical version #003 for data set A, using an absolute reference:

proc print data=a(gennum=3);
run;

Example 2: Requesting A Version Using a Relative Reference The following PRINT
procedure prints the data set three versions back from the base version:

proc print data=a(gennum=-3);
run;

See Also

Data Set Option:
“GENMAX= Data Set Option” on page 22

SAS Data Set Options IDXNAME= Data Set Option 25

“Understanding Generation Data Sets” in “SAS Data Files” in SAS Language
Reference: Concepts

“The DATASETS Procedure” in the Base SAS Procedures Guide

IDXNAME= Data Set Option
Directs SAS to use a specific index to satisfy the conditions of a WHERE expression

Valid in: DATA step and PROC steps
Category: User Control of SAS Index Usage
Restriction: Use with input data sets only
Restriction: Mutually exclusive with IDXWHERE= data set option

Syntax
IDXNAME=index-name

Syntax Description

index-name
specifies the name (up to 32 characters) of a simple or composite index for the SAS
data set. SAS does not attempt to determine if the specified index is the best one or
if a sequential search might be more resource efficient.
Interaction: The specification is not a permanent attribute of the data set and is

valid only for the current use of the data set.
Tip: To request that IDXNAME= usage be noted in the SAS log, specify the system

option MSGLEVEL=I.

Details
By default, to satisfy the conditions of a WHERE expression for an indexed SAS data
set, SAS identifies zero or more candidate indexes that could be used to optimize the
WHERE expression. From the list of candidate indexes, SAS selects the one that it
determines will provide the best performance, or rejects all of the indexes if a
sequential pass of the data is expected to be more efficient.

Because the index SAS selects might not always provide the best optimization, you
can direct SAS to use one of the candidate indexes by specifying the IDXNAME= data
set option. If you specify an index that SAS does not identify as a candidate index, then
IDXNAME= will not process the request; that is, IDXNAME= will not allow you to
specify an index that would produce incorrect results.

Comparisons
IDXWHERE= enables you to override the SAS decision about whether to use an index.

Example

This example uses the IDXNAME= data set option in order to direct SAS to use a
specific index to optimize the WHERE expression. SAS then disregards the possibility

26 IDXWHERE= Data Set Option Chapter 2

that a sequential search of the data set might be more resource efficient and does not
attempt to determine if the specified index is the best one. (Note that the EMPNUM
index was not created with the NOMISS option.)

data mydata.empnew;
set mydata.employee (idxname=empnum);
where empnum < 2000;

run;

See Also

Data Set Option:
“IDXWHERE= Data Set Option” on page 26

“Using an Index for WHERE Processing” in SAS Language Reference: Concepts.
“WHERE-Expression Processing” in SAS Language Reference: Concepts

IDXWHERE= Data Set Option

Overrides the SAS decision about whether to use an index to satisfy the conditions of a WHERE
expression

Valid in: DATA step and PROC steps
Category: User Control of SAS Index Usage
Restriction: Use with input data sets only.
Restriction: Mutually exclusive with IDXNAME= data set option

Syntax
IDXWHERE=YES|NO

Syntax Description

YES
tells SAS to choose the best index to optimize a WHERE expression, and to disregard
the possibility that a sequential search of the data set might be more
resource-efficient.

NO
tells SAS to ignore all indexes and satisfy the conditions of a WHERE expression
with a sequential search of the data set.

Note: You cannot use IDXWHERE= to override the use of an index to process a
BY statement. �

Details
By default, to satisfy the conditions of a WHERE expression for an indexed SAS data
set, SAS decides whether to use an index or to read the data set sequentially. The
software estimates the relative efficiency and chooses the method that is more efficient.

SAS Data Set Options IN= Data Set Option 27

You might need to override the software’s decision by specifying the IDXWHERE=
data set option because the decision is based on general rules that may occasionally not
produce the best results. That is, by specifying the IDXWHERE= data set option, you
are able to determine the processing method.

Note: The specification is not a permanent attribute of the data set and is valid only
for the current use of the data set. �

Note: If you issue the system option MSGLEVEL=I, you can request that
IDXWHERE= usage be noted in the SAS log if the setting affects index processing. �

Comparisons
IDXNAME= enables you to direct SAS to use a specific index.

Examples

Example 1: Specifying Index Usage This example uses the IDXWHERE= data set
option to tell SAS to decide which index is the best to optimize the WHERE expression.
SAS then disregards the possibility that a sequential search of the data set might be
more resource-efficient:

data mydata.empnew;
set mydata.employee (idxwhere=yes);
where empnum < 2000;

Example 2: Specifying No Index Usage This examples uses the IDXWHERE= data set
option to tell SAS to ignore any index and to satisfy the conditions of the WHERE
expression with a sequential search of the data set:

data mydata.empnew;
set mydata.employee (idxwhere=no);
where empnum < 2000;

See Also

Data Set Option:
“IDXNAME= Data Set Option” on page 25

“Understanding SAS Indexes” in the “SAS Data Files” section in SAS Language
Reference: Concepts

“WHERE-Expression Processing” in SAS Language Reference: Concepts

IN= Data Set Option

Creates a variable that indicates whether the data set contributed data to the current observation

Valid in: DATA step
Category: Observation Control
Restriction: Use with the SET, MERGE, MODIFY, and UPDATE statements only.

28 IN= Data Set Option Chapter 2

Syntax
IN=variable

Syntax Description

variable
names the new variable whose value indicates whether that input data set
contributed data to the current observation. Within the DATA step, the value of the
variable is 1 if the data set contributed to the current observation, and 0 otherwise.

Details
Specify the IN= data set option in parentheses after a SAS data set name in the SET,
MERGE, MODIFY and UPDATE statements only. Values of IN= variables are available
to program statements during the DATA step, but the variables are not included in the
SAS data set that is being created, unless they are explicitly assigned to a new variable.

When you use IN= with BY–group processing, and when a data set contributes an
observation for the current BY group, the IN= value is 1. The value remains as long as
that BY group is still being processed and the value is not reset by programming logic.

Examples

In this example, IN= creates a new variable, OVERSEAS, that denotes international
flights. The variable I has a value of 1 when the observation is read from the NONUSA
data set; otherwise, it has a value of 0. The IF-THEN statement checks the value of I to
determine if the data set NONUSA contributed data to the current observation. If I=1,
the variable OVERSEAS receives an asterisk (*) as a value.

data allflts;
set usa nonusa(in=i);
by fltnum;
if i then overseas=’*’;

run;

See Also

Statements:

“BY Statement” on page 1118

“MERGE Statement” on page 1315

“MODIFY Statement” on page 1319

“SET Statement” on page 1411

“UPDATE Statement” on page 1428

“BY-Group Processing” in SAS Language Reference: Concepts

SAS Data Set Options INDEX= Data Set Option 29

INDEX= Data Set Option

Defines indexes when a SAS data set is created

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Syntax
INDEX=(index-specification-1 ...< index-specification-n>)

Syntax Description

index-specification
names and describes a simple or a composite index to be built. Index-specification
has this form:

index <= (variable(s)) > </UNIQUE> </NOMISS>

index is the name of a variable that forms the index or the name you
choose for a composite index.

variable(s) is a list of variables to use in making a composite index.

UNIQUE specifies that the values of the key variables must be unique. If
you specify UNIQUE for a new data set and multiple observations
have the same values for the index variables, the index is not
created. A slash (/) must precede the UNIQUE option.

NOMISS excludes all observations with missing values from the index.
Observations with missing values are still read from the data set
but not through the index. A slash (/) must precede the NOMISS
option.

Examples

Example 1: Defining a Simple Index The following INDEX= data set option defines a
simple index for the SSN variable:

data new(index=(ssn));

Example 2: Defining a Composite Index The following INDEX= data set option defines
a composite index named CITYST that uses the CITY and STATE variables:

data new(index=(cityst=(city state)));

Example 3: Defining a Simple and a Composite Index The following INDEX= data set
option defines a simple index for SSN and a composite index for CITY and STATE:

data new(index=(ssn cityst=(city state)));

30 KEEP= Data Set Option Chapter 2

See Also

INDEX CREATE statement in “The DATASETS Procedure” in Base SAS Procedures
Guide

CREATE INDEX statement in “The SQL Procedure” in Base SAS Procedures Guide

“Understanding SAS Indexes” in the “SAS Data Files” section of SAS Language
Reference: Concepts

KEEP= Data Set Option

Specifies variables for processing or for writing to output SAS data sets

Valid in: DATA step and PROC steps
Category: Variable Control

Syntax
KEEP=variable(s)

Syntax Description

variable(s)
lists one or more variable names. You can list the variables in any form that SAS
allows.

Details
If the KEEP= data set option is associated with an input data set, only those variables
that are listed after the KEEP= data set option are available for processing. If the
KEEP= data set option is associated with an output data set, only the variables listed
after the option are written to the output data set, but all variables are available for
processing.

Comparisons
� The KEEP= data set option differs from the KEEP statement in the following ways:

� In DATA steps, the KEEP= data set option can apply to both input and
output data sets. The KEEP statement applies only to output data sets.

� In DATA steps, when you create multiple output data sets, use the KEEP=
data set option to write different variables to different data sets. The KEEP
statement applies to all output data sets.

� In PROC steps, you can use only the KEEP= data set option, not the KEEP
statement.

� The DROP= data set option specifies variables to omit during processing or to omit
from the output data set.

SAS Data Set Options LABEL= Data Set Option 31

Example

In this example, only IDNUM and SALARY are read from PAYROLL, and they are
the only variables in PAYROLL that are available for processing:

data bonus;
set payroll(keep=idnum salary);
bonus=salary*1.1;

run;

See Also

Data Set Options:
“DROP= Data Set Option” on page 17

Statements:
“KEEP Statement” on page 1284

LABEL= Data Set Option

Specifies a label for the SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
LABEL=’label’

Syntax Description

’label’
is a text string of up to 256 characters. If the label text contains single quotation
marks, use double quotation marks around the label, or use two single quotation
marks in the label text and surround the string with single quotation marks. To
remove a label from a data set, assign a label that is equal to a blank that is enclosed
in quotation marks.

Details
You can use the LABEL= option on both input and output data sets. When you use
LABEL= on input data sets, it assigns a label for the file for the duration of that DATA
or PROC step. When it is specified for an output data set, the label becomes a
permanent part of that file and can be printed using the CONTENTS or DATASETS
procedure, and modified using PROC DATASETS.

A label assigned to a data set remains associated with that data set when you update
a data set in place, such as when you use the APPEND procedure or the MODIFY

32 OBS= Data Set Option Chapter 2

statement. However, a label is lost if you use a data set with a previously assigned label
to create a new data set in the DATA step. For example, a label previously assigned to
data set ONE is lost when you create the new output data set ONE in this DATA step:

data one;
set one;

run;

Comparisons
� The LABEL= data set option enables you to specify labels only for data sets. You

can specify labels for the variables in a data set using the LABEL statement.
� The LABEL= option in the ATTRIB statement also enables you to assign labels to

variables.

Examples

These examples assign labels to data sets:

data w2(label=’1976 W2 Info, Hourly’);

data new(label=’Peter’’s List’);

data new(label="Hillside’s Daily Account");

data sales(label=’Sales For May(NE)’);

See Also

Statements:
“ATTRIB Statement” on page 1115
“LABEL Statement” on page 1286
“MODIFY Statement” on page 1319

“The CONTENTS Procedure” in Base SAS Procedures Guide
“The DATASETS Procedure” in Base SAS Procedures Guide

OBS= Data Set Option

Specifies when to stop processing observations

Valid in: DATA step and PROC steps
Category: Observation Control
Restriction: Use with input data sets only
Restriction: Cannot use with PROC SQL views
Default MAX

SAS Data Set Options OBS= Data Set Option 33

Syntax
OBS= n | nK | nM | nG | nT | hexX | MIN | MAX

Syntax Description

n | nK | nM | nG | nT
specifies a number to indicate when to stop processing observations, with n being an
integer. Using one of the letter notations results in multiplying the integer by a
specific value. That is, specifying K (kilo) multiplies the integer by 1,024, M (mega)
multiplies by 1,048,576, G (giga) multiplies by 1,073,741,824, or T (tera) multiplies
by 1,099,511,627,776. For example, a value of 20 specifies 20 observations, while a
value of 3m specifies 3,145,728 observations.

hexX
specifies a number to indicate when to stop processing as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by an X. For
example, the hexadecimal value F8 must be specified as 0F8x in order to specify the
decimal equivalent of 248. The value 2dx specifies the decimal equivalent of 45.

MIN
sets the number to indicate when to stop processing to 0. Use OBS=0 in order to
create an empty data set that has the structure, but not the observations, of another
data set.

Interaction: If OBS=0 and the NOREPLACE option is in effect, then SAS can still
take certain actions because it actually executes each DATA and PROC step in the
program, using no observations. For example, SAS executes procedures, such as
CONTENTS and DATASETS, that process libraries or SAS data sets.

MAX
sets the number to indicate when to stop processing to the maximum number of
observations in the data set, up to the largest 8-byte, signed integer, which is 263-1, or
approximately 9.2 quintillion. This is the default.

Details
OBS= tells SAS when to stop processing observations. To determine when to stop
processing, SAS uses the value for OBS= in a formula that includes the value for OBS=
and the value for FIRSTOBS=. The formula is

(obs - firstobs) + 1 = results
For example, if OBS=10 and FIRSTOBS=1 (which is the default for FIRSTOBS=),

the result is ten observations, that is, (10 - 1) + 1 = 10. If OBS=10 and
FIRSTOBS=2, the result is nine observations, that is, (10 - 2) + 1 = 9. OBS= is
valid only when an existing SAS data set is read.

Comparisons
� The OBS= data set option overrides the OBS= system option for the individual

data set.

34 OBS= Data Set Option Chapter 2

� While the OBS= data set option specifies an ending point for processing, the
FIRSTOBS= data set option specifies a starting point. The two options are often
used together to define a range of observations to be processed.

� The OBS= data set option enables you to select observations from SAS data sets.
You can select observations to be read from external data files by using the OBS=
option in the INFILE statement.

Examples

Example 1: Using OBS= to Specify When to Stop Processing Observations This
example illustrates the result of using OBS= to tell SAS when to stop processing
observations. This example creates a SAS data set, then executes the PRINT procedure
with FIRSTOBS=2 and OBS=12. The result is 11 observations, that is, (12 - 2) + 1
= 11. The result of OBS= in this situation appears to be the observation number that
SAS processes last, because the output starts with observation 2, and ends with
observation 12, but this is only a coincidence.

data Ages;
input Name $ Age;
datalines;

Miguel 53
Brad 27
Willie 69
Marc 50
Sylvia 40
Arun 25
Gary 40
Becky 51
Alma 39
Tom 62
Kris 66
Paul 60
Randy 43
Barbara 52
Virginia 72
;
proc print data=Ages (firstobs=2 obs=12);
run;

SAS Data Set Options OBS= Data Set Option 35

Output 2.1 PROC PRINT Output Using OBS= and FIRSTOBS=

The SAS System 1

Obs Name Age

2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60

Example 2: Using OBS= with WHERE Processing This example illustrates the result of
using OBS= along with WHERE processing. The example uses the data set that was
created in Example 1, which contains 15 observations.

First, here is the PRINT procedure with a WHERE statement. The subset of the
data results in 12 observations:

proc print data=Ages;
where Age LT 65;

run;

Output 2.2 PROC PRINT Output Using a WHERE Statement

The SAS System 1

Obs Name Age

1 Miguel 53
2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
12 Paul 60
13 Randy 43
14 Barbara 52

Executing the PRINT procedure with the WHERE statement and OBS=10 results in
10 observations, that is, (10 - 1) + 1 = 10. Note that with WHERE processing, SAS
first subsets the data, then applies OBS= to the subset.

proc print data=Ages (obs=10);
where Age LT 65;

run;

36 OBS= Data Set Option Chapter 2

Output 2.3 PROC PRINT Output Using a WHERE Statement and OBS=

The SAS System 2

Obs Name Age

1 Miguel 53
2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
12 Paul 60

The result of OBS= appears to be how many observations to process, because the
output consists of 10 observations, ending with the observation number 12. However,
the result is only a coincidence. If you apply FIRSTOBS=2 and OBS=10 to the subset,
then the result is nine observations, that is, (10 - 2) + 1 = 9. OBS= in this situation
is neither the observation number to end with nor how many observations to process;
the value is used in the formula to determine when to stop processing.

proc print data=Ages (firstobs=2 obs=10);
where Age LT 65;

run;

Output 2.4 PROC PRINT Output Using WHERE Statement, OBS=, and FIRSTOBS=

The SAS System 3

Obs Name Age

2 Brad 27
4 Marc 50
5 Sylvia 40
6 Arun 25
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
12 Paul 60

Example 3: Using OBS= When Observations Are Deleted This example illustrates the
result of using OBS= for a data set that has deleted observations. The example uses the
data set that was created in Example 1, with observation 6 deleted.

First, here is PROC PRINT output of the modified file:

proc print data=Ages;
run;

SAS Data Set Options OBS= Data Set Option 37

Output 2.5 PROC PRINT Output Showing Observation 6 Deleted

The SAS System 1

Obs Name Age

1 Miguel 53
2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43
14 Barbara 52
15 Virginia 72

Executing the PRINT procedure with OBS=12 results in 12 observations, that is, (12
- 1) + 1 = 12:

proc print data=Ages (obs=12);
run;

Output 2.6 PROC PRINT Output Using OBS=

The SAS System 2

Obs Name Age

1 Miguel 53
2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43

The result of OBS= appears to be how many observations to process, because the
output consists of 12 observations, ending with the observation number 13. However, if
you apply FIRSTOBS=2 and OBS=12, the result is 11 observations, that is, (12 - 2) +
1 = 11. OBS= in this situation is neither the observation number to end with nor how
many observations to process; the value is used in the formula to determine when to
stop processing.

proc print data=Ages (firstobs=2 obs=12);
run;

38 OBSBUF= Data Set Option Chapter 2

Output 2.7 PROC PRINT Output Using OBS= and FIRSTOBS=

The SAS System 3

Obs Name Age

2 Brad 27
3 Willie 69
4 Marc 50
5 Sylvia 40
7 Gary 40
8 Becky 51
9 Alma 39

10 Tom 62
11 Kris 66
12 Paul 60
13 Randy 43

See Also

Data Set Options:

“FIRSTOBS= Data Set Option” on page 20

Statements:

“INFILE Statement” on page 1229

“WHERE Statement” on page 1433

System Options:

“OBS= System Option” on page 1584

For more information about using OBS= with WHERE processing, see “Processing a
Segment of Data That Is Conditionally Selected” in SAS Language Reference:
Concepts.

OBSBUF= Data Set Option

Determines the size of the view buffer for processing a DATA step view

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Valid only for a DATA step view

Syntax
OBSBUF=n

Syntax Description

n
specifies the number of observations that are read into the view buffer at a time.

SAS Data Set Options OBSBUF= Data Set Option 39

Default: 32K bytes of memory are allocated for the default view buffer, which
means that the default number of observations that can be read into the view
buffer at one time depends on the observation length. Therefore, the default is the
number of observations that can fit into 32K bytes. If the observation length is
larger than 32K, then only one observation can be read into the buffer at a time.

Tip: To determine the observation length, which is its size in bytes, use PROC
CONTENTS for the DATA step view.

Details

The OBSBUF= data set option specifies the number of observations that can be read
into the view buffer at a time. The view buffer is a segment of memory that is allocated
to hold output observations that are generated from a DATA step view. The size of the
buffer determines how much data can be held in memory at one time. OBSBUF=
enables you to tune the performance of reading data from a DATA step view.

The view buffer is shared between the request that opens the DATA step view, for
example, a SAS procedure, and the DATA step view itself. Two computer tasks
coordinate between requesting data and generating and returning the data as follows:

1 When a request task, such as a PRINT procedure, requests data, task switching
occurs from the request task to the view task in order to execute the DATA step
view and generate the observations. The DATA step view fills the view buffer with
as many observations as will fit.

2 When the view buffer is full, task switching occurs from the view task back to the
request task in order to return the requested data. The observations are cleared
from the view buffer.

The size of the view buffer determines how many generated observations can be held.
The number of generated observations then determines how many times the computer
must switch between the request task and the view task. For example, OBSBUF=1
results in task switching for each observation, while OBSBUF=10 results in 10
observations being read into the view buffer at a time. The larger the view buffer is,
the less task switching is needed to process a DATA step view, which can speed up
execution time.

To improve efficiency, first determine how many observations will fit into the default
buffer size, then set the view buffer so that it can hold more generated observations.

Note: Using OBSBUF= can improve processing efficiency by reducing task
switching. However, the larger the view buffer size, the more time it takes to fill. This
delays the task switching from the view task back to the request task in order to return
the requested data. The delay is more apparent in interactive applications. For
example, when you use the Viewtable window, the larger the view buffer, the longer it
takes to display the requested observations, because the view buffer must be filled
before even one observation is returned to the Viewtable. Therefore, before you set a
very large view buffer size, consider the type of application that you are using to process
the DATA step view as well as the amount of memory that you have available. �

Example

For this example, the observation length is 10K, which means that the default view
buffer size, which is 32K, would result in three observations at a time to be read into the
view buffer. The default view buffer size causes the execution time to be slower, because
the computer must do task switching for every three observations that are generated.

40 OUTREP= Data Set Option Chapter 2

To improve performance, the OBSBUF= data set option is set to 100, which causes
one hundred observations at a time to be read into the view buffer and reduces task
switching in order to process the DATA step view with the PRINT procedure:

data testview / view=testview;
... more SAS statements ...

run;

proc print data=testview (obsbuf=100);
run;

See Also

Data Set Options:
“SPILL= Data Set Option” on page 52

OUTREP= Data Set Option

Specifies the data representation for the output SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
OUTREP=format

Syntax Description

format
specifies the data representation for the output SAS data set. Data representation is
the format in which data is represented in a computer architecture or in an operating
environment. For example, on an IBM PC, character data is represented by its
ASCII encoding and byte-swapped integers. Native data representation refers to an
environment for which the data representation is comparable to the CPU that is
accessing the file. For example, a file that is in Windows data representation is
native to the Windows operating environment.

Specifying this option enables you to create a SAS data set within the native
environment by using a foreign environment data representation. For example, in a
UNIX environment, you can create a SAS data set in Windows data representation.

Values for OUTREP= are listed in the following table:

SAS Data Set Options OUTREP= Data Set Option 41

Table 2.2 Data Representation Values for OUTREP= Option

OUTREP= Value Alias* Environment

ALPHA_TRU64 ALPHA_OSF Compaq Tru64 UNIX

ALPHA_VMS_32 ALPHA_VMS OpenVMS Alpha on 32-bit platform

ALPHA_VMS_64 OpenVMS Alpha on 64-bit platform

HP_IA64 HP_ITANIUM HP-UX on Itanium 64-bit platform

HP_UX_32 HP_UX HP-UX on 32-bit platform

HP_UX_64 HP-UX on 64-bit platform

INTEL_ABI ABI UNIX on Intel 32-bit platform

LINUX_32 LINUX Linux for Intel Architecture on 32-bit
platform

MIPS_ABI ABI UNIX on 32-bit platform

MVS_32 MVS z/OS on 32-bit platform

OS2 OS/2 on Intel 32-bit platform

RS_6000_AIX_32 RS_6000_AIX AIX UNIX on 32-bit RS/6000

RS_6000_AIX_64 AIX UNIX on 64-bit RS/6000

SOLARIS_32 SOLARIS Sun Solaris on 32-bit platform

SOLARIS_64 Sun Solaris on 64-bit platform

VAX_VMS VAX VMS

WINDOWS_32 WINDOWS Microsoft Windows on 32-bit platform

WINDOWS_64 Microsoft Windows 64-bit Edition

* It is recommended that you use the current values. The aliases are available for compatibility
only.

Details
By default, SAS creates a new SAS data set by using the native data representation of
the CPU that is running SAS. For example, when using a PC, SAS creates a SAS data
set that has ASCII characters and byte-swapped integers.

You can specify the OUTREP= data set option to create a new data set in a foreign
data representation. This option enables you to create a SAS data set within the native
environment by using a foreign data representation. For example, in a UNIX
environment, you can create a SAS data set in Windows data representation.

See Also

Statements:
OUTREP= option in “LIBNAME Statement” on page 1292

“Processing Data Using Cross-Environment Data Access (CEDA)” in SAS Language
Reference: Concepts

42 POINTOBS= Data Set Option Chapter 2

POINTOBS= Data Set Option

Controls whether a compressed data set can be processed with random access (by observation
number) rather than with sequential access only

Valid in: DATA step and PROC steps

Category: Observation Control

Restriction: POINTOBS= is effective only when creating a compressed data set;
otherwise it is ignored.

Syntax
POINTOBS= YES | NO

Syntax Description

YES
causes SAS software to produce a compressed data set that may be randomly
accessed by observation number. This is the default.

Examples of accessing data directly by observation number are:

� the POINT= option of the MODIFY and SET statements in the DATA step

� going directly to a specific observation number with PROC FSEDIT.

Tip: Specifying POINTOBS=YES does not affect the efficiency of retrieving
information from a data set, but it does increase CPU usage by roughly 10% when
creating a compressed data set and when updating or adding information to it.

NO
suppresses the ability to randomly access observations in a compressed data set by
observation number.

Tip: Specifying POINTOBS=NO is desirable for applications where the ability to
point directly to an observation by number within a compressed data set is not
important.

If you do not need to access data by observation number, then you can improve
performance by roughly 10% when creating a compressed data set and when
updating or adding observations to it by specifying POINTOBS=NO.

Details
Note that REUSE=YES takes precedence over POINTOBS=YES. For example:

data test(compress=yes pointobs=yes reuse=yes);

results in a data set that has POINTOBS=NO. Because POINTOBS=YES is the default
when you use compression, REUSE=YES causes POINTOBS= to change to NO.

See Also

Data Set Options:

SAS Data Set Options PW= Data Set Option 43

“COMPRESS= Data Set Option” on page 14
“REUSE= Data Set Option” on page 49

System Options:
“COMPRESS= System Option” on page 1512
“REUSE= System Option” on page 1603

PW= Data Set Option

Assigns a read, write, or alter password to a SAS file and enables access to a password-protected
SAS file

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
PW=password

Syntax Description

password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details
The PW= option applies to all types of SAS files except catalogs. You can use this option
to assign a password to a SAS file or to access a password-protected SAS file.

When replacing a SAS data set that is alter protected, the new data set inherits the
alter password. To change the alter password for the new data set, use the MODIFY
statement in the DATASETS procedure.

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

See Also

Data Set Options:
“ALTER= Data Set Option” on page 9
“ENCRYPT= Data Set Option” on page 18
“READ= Data Set Option” on page 44
“ Data Set Option” on page 65

44 PWREQ= Data Set Option Chapter 2

“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures
Guide

“File Protection” in SAS Language Reference: Concepts

PWREQ= Data Set Option

Controls the pop up of a requestor window for a data set password

Valid in: DATA and PROC steps
Category: Data Set Control

Syntax
PWREQ=YES|NO

Syntax Description

YES
specifies that a requestor window appear.

NO
prevents a requestor window from appearing. If a missing or invalid password is
entered, the data set is not opened and an error message is written to the SAS log.

Details
In an interactive SAS session, the PWREQ= option controls whether a requestor
window appears after a user enters an incorrect or a missing password for a SAS data
set that is password protected. PWREQ= applies to data sets with read, write, or alter
passwords. PWREQ= is most useful in SCL applications.

See Also

Data Set Options:
“ALTER= Data Set Option” on page 9
“ENCRYPT= Data Set Option” on page 18
“PW= Data Set Option” on page 43
“READ= Data Set Option” on page 44
“ Data Set Option” on page 65

READ= Data Set Option

Assigns a read password to a SAS file and enables access to a read-protected SAS file

SAS Data Set Options RENAME= Data Set Option 45

Valid in: DATA step and PROC steps

Category: Data Set Control

Syntax
READ=read-password

Syntax Description

read-password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details
The READ= option applies to all types of SAS files except catalogs. You can use this
option to assign a read-password to a SAS file or to access a read-protected SAS file.

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

See Also

Data Set Options:

“ALTER= Data Set Option” on page 9

“ENCRYPT= Data Set Option” on page 18

“PW= Data Set Option” on page 43

“ Data Set Option” on page 65

“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures
Guide

“File Protection” in SAS Language Reference: Concepts

RENAME= Data Set Option

Changes the name of a variable

Valid in: DATA step and PROC steps

Category: Variable Control

Syntax
RENAME=(old-name-1=new-name-1 < ...old-name-n=new-name-n>)

46 RENAME= Data Set Option Chapter 2

Syntax Description

old-name
the variable you want to rename.

new-name
the new name of the variable. It must be a valid SAS name.

Details
If you use the RENAME= data set option when you create a data set, the new variable
name is included in the output data set. If you use RENAME= on an input data set, the
new name is used in DATA step programming statements.

If you use RENAME= on an input data set that is used in a SAS procedure, SAS
changes the name of the variable in that procedure. The list of variables to rename
must be enclosed in parentheses:

proc print data=test(rename=(score1=score2));

If you use RENAME= in the same DATA step with either the DROP= or the KEEP=
data set option, the DROP= and the KEEP= data set options are applied before
RENAME=. Thus, use old-name in the DROP= and KEEP= data set options. You
cannot drop and rename the same variable in the same statement.

Comparisons
� The RENAME= data set option differs from the RENAME statement in the

following ways:
� The RENAME= data set option can be used in PROC steps and the RENAME

statement cannot.
� The RENAME statement applies to all output data sets. If you want to

rename different variables in different data sets, you must use the
RENAME= data set option.

� To rename variables before processing begins, you must use a RENAME=
data set option on the input data set or data sets.

� Use the RENAME statement or the RENAME= data set option when program
logic requires that you rename variables, for example, if two input data sets have
variables with the same name. To rename variables as a file management task,
use the DATASETS procedure.

Examples

Example 1: Renaming a Variable at Time of Output This example uses RENAME= in
the DATA statement to show that the variable is renamed at the time it is written to
the output data set. The variable keeps its original name, X, during the DATA step
processing:

data two(rename=(x=keys));
set one;
z=x+y;

run;

Example 2: Renaming a Variable at Time of Input This example renames variable X to
a variable named KEYS in the SET statement, which is a rename before DATA step
processing. KEYS, not X, is the name to use for the variable for DATA step processing.

SAS Data Set Options REPEMPTY= Data Set Option 47

data three;
set one(rename=(x=keys));
z=keys+y;

run;

See Also

Data Set Options:

“DROP= Data Set Option” on page 17

“KEEP= Data Set Option” on page 30

Statements:

“RENAME Statement” on page 1391

“The DATASETS Procedure” in Base SAS Procedures Guide

REPEMPTY= Data Set Option

Controls replacement of like-named temporary or permanent SAS data sets when the new one is
empty

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Syntax
REPEMPTY=YES | NO

Syntax Description

YES
specifies that a new empty data set with a given name replaces an existing data set
with the same name. This is the default.

Interaction: When REPEMPTY=YES and REPLACE=NO, then the data set is not
replaced.

NO
specifies that a new empty data set with a given name does not replace an existing
data set with the same name.

Tip: Use REPEMPTY=NO to prevent the following syntax error from replacing the
existing data set B with the new empty data set B that is created by mistake:

data mylib.a set b;

Tip: For both the convenience of replacing existing data sets with new ones that
contain data and the protection of not overwriting existing data sets with new

48 REPLACE= Data Set Option Chapter 2

empty ones that are created by accident, set REPLACE=YES and
REPEMPTY=NO.

Comparisons
� For an individual data set, the REPEMPTY= data set option overrides the

REPEMPTY= option in the LIBNAME statement.
� The REPEMPTY= and REPLACE= data set options apply to both permanent and

temporary SAS data sets. The REPLACE system option, however, only applies to
permanent SAS data sets.

See Also

Data Set Options:
“REPLACE= Data Set Option” on page 48

Statement Options:
REPEMPTY= in the LIBNAME statement on page 1295

System Options:
“REPLACE System Option” on page 1602

REPLACE= Data Set Option

Controls replacement of like-named temporary or permanent SAS data sets

Valid in: DATA step and PROC steps
Category: Data Set Control
Restriction: Use with output data sets only.
Restriction: This option is valid only when creating a SAS data set.

Syntax
REPLACE=NO | YES

Syntax Description

NO
specifies that a new data set with a given name does not replace an existing data set
with the same name.

YES
specifies that a new data set with a given name replaces an existing data set with
the same name.

Comparisons
� The REPLACE= data set option overrides the REPLACE system option for the

individual data set.

SAS Data Set Options REUSE= Data Set Option 49

� The REPLACE system option only applies to permanent SAS data sets.

Example

Using the REPLACE= data set option in this DATA statement prevents SAS from
replacing a permanent SAS data set named ONE in a library referenced by MYLIB:

data mylib.one(replace=no);

SAS writes a message in the log that tells you that the file has not been replaced.

See Also

System Options:

“REPLACE System Option” on page 1602

REUSE= Data Set Option

Specifies whether new observations are written to free space in compressed SAS data sets

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Use with output data sets only.

Syntax
REUSE=NO | YES

Syntax Description

NO
does not track and reuse space in compressed data sets. New observations are
appended to the existing data set. Specifying the NO argument results in less
efficient data storage if you delete or update many observations in the SAS data set.

YES
tracks and reuses space in compressed SAS data sets. New observations are inserted
in the space that is freed when other observations are updated or deleted.

If you plan to use procedures that add observations to the end of SAS data sets
(for example, the APPEND and FSEDIT procedures) with compressed data sets, use
the REUSE=NO argument. REUSE=YES causes new observations to be added
wherever there is space in the file, not necessarily at the end of the file.

Details
By default, new observations are appended to existing compressed data sets. If you
want to track and reuse free space by deleting or updating other observations, use the
REUSE= data set option when you create a compressed SAS data set.

50 SORTEDBY= Data Set Option Chapter 2

REUSE= has meaning only when you are creating new data sets with the
COMPRESS=YES data set option or system option. Using the REUSE= data set option
when you are accessing an existing SAS data set has no effect.

Comparisons
The REUSE= data set option overrides the REUSE= system option.

REUSE=YES takes precedence over POINTOBS=YES. For example, the following
statement results in a data set that has POINTOBS=NO:

data test(compress=yes pointobs=yes reuse=yes);

Because POINTOBS=YES is the default when you use compression, REUSE=YES
causes POINTOBS= to change to NO.

See Also

Data Set Options:
“COMPRESS= Data Set Option” on page 14

System Options:
“REUSE= System Option” on page 1603

SORTEDBY= Data Set Option

Specifies how the data set is currently sorted

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
SORTEDBY=by-clause </ collate-name> | _NULL_

Syntax Description

by-clause < / collate-name>
indicates how the data are currently sorted.

by-clause names the variables and options that you use in a BY statement
in a PROC SORT step.

collate-name names the collating sequence that is used for the sort. By default,
the collating sequence is that of your operating environment. A
slash (/) must precede the collating sequence.

Operating Environment Information: For details on collating
sequences, see the SAS documentation for your operating
environment. �

NULL
removes any existing sort information.

SAS Data Set Options SORTEDBY= Data Set Option 51

Details

SAS uses the sort information in these ways:

� For BY-group processing, if the data are already sorted by the BY variable, SAS
does not use the index, even if the data set is indexed on the BY variable.

� If an index is selected for WHERE expression processing, the sort information for
that data set is changed to reflect the order that is specified by the index.

� At the time you create an index, the sort information can make sorting of key
variables unnecessary.

� PROC SQL uses the sort information to process queries more efficiently and to
determine whether an internal sort is necessary before performing a join.

� PROC SORT checks for the sort information before it sorts a data set so that data
are not resorted unnecessarily.

� PROC SORT sets the sort information whenever it does a sort.

If you update a SAS file in a way that affects the validity of the sort, the sort
information is removed. That is, if you change or add any values of the variables by
which the data set is sorted, the sort information is removed.

Comparisons

� Use the CONTENTS statement in the DATASETS procedure to see how a data set
is sorted.

� The SORTEDBY= option does not cause a data set to be sorted.

Examples

This example uses the SORTEDBY= data set option to specify how the data are
currently sorted. The data set ORDERS is sorted by PRIORITY and by the descending
values of INDATE. Once the data set is created, the sort information is stored with it.
These statements create the data set ORDERS and record the sort information:

libname mylib ’SAS-data-library’;
options yearcutoff=1920;

data mylib.orders(sortedby=priority
descending indate);

input priority 1. +1 indate date7.
+1 office $ code $;

format indate date7.;
datalines;

1 03may01 CH J8U
1 21mar01 LA M91
1 01dec00 FW L6R
1 27feb99 FW Q2A
2 15jan00 FW I9U
2 09jul99 CH P3Q
3 08apr99 CH H5T
3 31jan99 FW D2W
;

52 SORTSEQ= Data Set Option Chapter 2

See Also

The CONTENTS statement in “The DATASETS Procedure” in Base SAS Procedures
Guide

“The SORT Procedure” in Base SAS Procedures Guide

“The SQL Procedure” in Base SAS Procedures Guide

SORTSEQ= Data Set Option

Specifies a language-specific collation sequence for the SORT procedure to use for the specified
SAS data set

Valid in: DATA step and PROC steps

Category: Data Set Control

See: The SORTSEQ data set option in SAS National Language Support (NLS): User’s
Guide

SPILL= Data Set Option

Specifies whether to create a spill file for non-sequential processing of a DATA step view

Valid in: DATA step and PROC steps

Category: Data Set Control

Restriction: Valid only for a DATA step view

Default: YES

Syntax
SPILL= YES|NO

Syntax Description

YES
creates a spill file for non-sequential processing of a DATA step view. This is the
default.

Interaction: A spill file is never created for sequential processing of a DATA step
view.

Tip: A DATA step view that generates large amounts of observations can result in a
very large spill file. You must have enough disk space to accommodate the spill file.

NO
does not create a spill file or reduces the size of a spill file.

SAS Data Set Options SPILL= Data Set Option 53

Interaction: For direct (random) access, a spill file is always created even if you
specify SPILL=NO.

Tip: If you do not have enough disk space to accommodate a resulting spill file from
a DATA step view that generates a large amount of data, then specify SPILL=NO.

Tip: For SAS procedures that process BY-group data, consider specifying
SPILL=NO in order to write only the current BY group to the spill file.

Details
When a DATA step view is opened for non-sequential processing, a spill file is created
by default. The spill file contains the observations that are generated by a DATA step
view. Subsequent requests for data will read observations from the spill file rather than
execute the DATA step view again. The spill file is a temporary file in the WORK library.

Non-sequential processing includes the following access methods, which are
supported by several SAS statements and procedures. How the SPILL= data set option
operates with each of the access methods is described below:

random access retrieves observations directly either by an observation number or by
the value of one or more variables through an index without reading
all observations sequentially. Whether SPILL=YES or SPILL=NO, a
spill file is always created, because the processing time to restart a
DATA step view for each observation would be costly.

BY-group access uses a BY statement to process observations that are ordered,
grouped, or indexed according to the values of one or more variables.
SPILL=YES creates a spill file the size of all the data that is
requested from the DATA step view. SPILL=NO writes only the
current BY group to the spill file. The largest size of the spill file
will be the size to store the largest BY group.

two-pass access performs multiple sequential passes through the data. With
SPILL=NO, no spill file is created. Instead, after the first pass
through the data, the DATA step view is restarted for each
subsequent pass through the data. If small amounts of data are
returned by the DATA step view for each restart, then the
processing time to restart the view might become significant.

Note: With SPILL=NO, subsequent passes through the data
could result in generating different data. Some processing might
require using a spill file; for example, results from using random
functions and computing values that are based on the current time
of day could affect the data. �

54 SPILL= Data Set Option Chapter 2

Examples

Example 1: Using a Spill File for a Small Number of Large BY Groups This example
creates a DATA step view that generates a large amount of random data, then uses the
UNIVARIATE procedure with a BY statement. The example illustrates the effects of
SPILL= with a small number of large BY groups.

With SPILL=YES, all observations that are requested from the DATA step view are
written to the spill file. With SPILL=NO, only the observations that are in the current
BY group are written to the spill file. The information messages that are produced by
this example show that the size of the spill file is reduced with SPILL=NO. However,
the time to truncate the spill file for each BY group might add to the overall processing
time for the DATA step view.

options msglevel=i;

data vw_few_large / view=vw_few_large;
drop i;

do byval = ’Group A’, ’Group B’, ’Group C’;
do i = 1 to 500000;

r = ranuni(4);
output;

end;
end;

run;

proc univariate data=vw_few_large (spill=yes) noprint;
var r;
by byval;

run;

proc univariate data=vw_few_large (spill=no) noprint;
var r;
by byval;

run;

SAS Data Set Options SPILL= Data Set Option 55

Output 2.8 SAS Log Output

1 options msglevel=i;
2 data vw_few_large / view=vw_few_large;
3 drop i;
4
5 do byval = ’Group A’, ’Group B’, ’Group C’;
6 do i = 1 to 500000;
7 r = ranuni(4);
8 output;
9 end;
10 end;
11 run;

NOTE: DATA STEP view saved on file WORK.VW_FEW_LARGE.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used (Total process time):

real time 21.57 seconds
cpu time 1.31 seconds

12 proc univariate data=vw_few_large (spill=yes) noprint;
INFO: View WORK.VW_FEW_LARGE open mode: BY-group rewind.
13 var r;
14 by byval;
15 run;

INFO: View WORK.VW_FEW_LARGE opening spill file for output observations.
INFO: View WORK.VW_FEW_LARGE deleting spill file. File size was 22506120 bytes.
NOTE: View WORK.VW_FEW_LARGE.VIEW used (Total process time):

real time 40.68 seconds
cpu time 12.71 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 57.63 seconds
cpu time 13.12 seconds

16
17 proc univariate data=vw_few_large (spill=no) noprint;
INFO: View WORK.VW_FEW_LARGE open mode: BY-group rewind.
18 var r;
19 by byval;
20 run;

INFO: View WORK.VW_FEW_LARGE opening spill file for output observations.
INFO: View WORK.VW_FEW_LARGE truncating spill file. File size was 7502040 bytes.
NOTE: The above message was for the following by-group:

byval=Group A
INFO: View WORK.VW_FEW_LARGE truncating spill file. File size was 7534800 bytes.
NOTE: The above message was for the following by-group:

byval=Group B
INFO: View WORK.VW_FEW_LARGE truncating spill file. File size was 7534800 bytes.
NOTE: The above message was for the following by-group:

byval=Group C
INFO: View WORK.VW_FEW_LARGE deleting spill file. File size was 32760 bytes.
NOTE: View WORK.VW_FEW_LARGE.VIEW used (Total process time):

real time 11.03 seconds
cpu time 10.95 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 11.04 seconds
cpu time 10.96 seconds

56 SPILL= Data Set Option Chapter 2

Example 2: Using a Spill File for a Large Number of Small BY Groups This example
creates a DATA step view that generates a large amount of random data, then uses the
UNIVARIATE procedure with a BY statement. This example illustrates the effects of
SPILL= with a large number of small BY groups.

With SPILL=YES, all observations that are requested from the DATA step view are
written to the spill file. With SPILL=NO, only the observations that are in the current
BY group are written to the spill file. The information messages that are produced by
this example show that the size of the spill file is reduced with SPILL=NO, and with
small BY groups, this results in a large disk space savings.

options msglevel=i;
data vw_many_small / view=vw_many_small;

drop i;

do byval = 1 to 100000;
do i = 1 to 5;

r = ranuni(4);
output;

end;
end;

run;

proc univariate data=vw_many_small (spill=yes) noprint;
var r;
by byval;

run;

proc univariate data=vw_many_small (spill=no) noprint;
var r;
by byval;

run;

SAS Data Set Options SPILL= Data Set Option 57

Output 2.9 SAS Log Output

1 options msglevel=i;
2 data vw_many_small / view=vw_many_small;
3 drop i;
4
5 do byval = 1 to 100000;
6 do i = 1 to 5;
7 r = ranuni(4);
8 output;
9 end;
10 end;
11 run;

NOTE: DATA STEP view saved on file WORK.VW_MANY_SMALL.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used (Total process time):

real time 0.56 seconds
cpu time 0.03 seconds

12 proc univariate data=vw_many_small (spill=yes) noprint;
INFO: View WORK.VW_MANY_SMALL open mode: BY-group rewind.
13 var r;
14 by byval;
15 run;

INFO: View WORK.VW_MANY_SMALL opening spill file for output observations.
INFO: View WORK.VW_MANY_SMALL deleting spill file. File size was 8024240 bytes.
NOTE: View WORK.VW_MANY_SMALL.VIEW used (Total process time):

real time 30.73 seconds
cpu time 29.59 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 30.96 seconds
cpu time 29.68 seconds

16
17 proc univariate data=vw_many_small (spill=no) noprint;
INFO: View WORK.VW_MANY_SMALL open mode: BY-group rewind.
18 var r;
19 by byval;
20 run;

INFO: View WORK.VW_MANY_SMALL opening spill file for output observations.
INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=410
INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=819
INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=1229
.
. Deleted many INFO and NOTE messages for BY groups
.

INFO: View WORK.VW_MANY_SMALL truncating spill file. File size was 65504 bytes.
NOTE: The above message was for the following by-group:

byval=99894
INFO: View WORK.VW_MANY_SMALL deleting spill file. File size was 32752 bytes.
NOTE: View WORK.VW_MANY_SMALL.VIEW used (Total process time):

real time 29.43 seconds
cpu time 28.81 seconds

NOTE: PROCEDURE UNIVARIATE used (Total process time):
real time 29.43 seconds
cpu time 28.81 seconds

58 SPILL= Data Set Option Chapter 2

Example 3: Using a Spill File with Two-Pass Access This examples creates a DATA
step view that generates a large amount of random data, then uses the TRANSPOSE
procedure. The example illustrates the effects of SPILL= with a procedure that requires
two-pass access processing.

When PROC TRANSPOSE processes a DATA step view, the procedure must make
two passes through the observations that the view generates. The first pass counts the
number of observations, then the second pass performs the transposition. With
SPILL=YES, a spill file is created during the first pass, and the second pass reads the
observations from the spill file. With SPILL=NO, a spill file is not created—after the
first pass, the DATA step view is restarted.

Note that for the first TRANSPOSE procedure, which does not include the SPILL=
data set option, even though a spill file is used by default, the informative message
about the open mode is not displayed. This occurs to reduce the amount of messages in
the SAS log for users who are not using the SPILL= data set option.

options msglevel=i;
data vw_transpose/view=vw_transpose;

drop i j;
array x[10000];
do i = 1 to 10;

do j = 1 to dim(x);
x[j] = ranuni(4);

end;
output;

end;
run;
proc transpose data=vw_transpose out=transposed;
run;
proc transpose data=vw_transpose(spill=yes) out=transposed;
run;
proc transpose data=vw_transpose(spill=no) out=transposed;
run;

SAS Data Set Options SPILL= Data Set Option 59

Output 2.10 SAS Log Output

1 options msglevel=i;
2 data vw_transpose/view=vw_transpose;
3 drop i j;
4 array x[10000];
5 do i = 1 to 10;
6 do j = 1 to dim(x);
7 x[j] = ranuni(4);
8 end;
9 output;
10 end;
11 run;

NOTE: DATA STEP view saved on file WORK.VW_TRANSPOSE.
NOTE: A stored DATA STEP view cannot run under a different operating system.
NOTE: DATA statement used (Total process time):

real time 0.68 seconds
cpu time 0.18 seconds

12 proc transpose data=vw_transpose out=transposed;
13 run;

INFO: View WORK.VW_TRANSPOSE opening spill file for output observations.
INFO: View WORK.VW_TRANSPOSE deleting spill file. File size was 880000 bytes.
NOTE: View WORK.VW_TRANSPOSE.VIEW used (Total process time):

real time 2.37 seconds
cpu time 1.17 seconds

NOTE: There were 10 observations read from the data set WORK.VW_TRANSPOSE.
NOTE: The data set WORK.TRANSPOSED has 10000 observations and 11 variables.
NOTE: PROCEDURE TRANSPOSE used (Total process time):

real time 4.17 seconds
cpu time 1.51 seconds

14 proc transpose data=vw_transpose (spill=yes) out=transposed;
INFO: View WORK.VW_TRANSPOSE open mode: sequential.
15 run;

INFO: View WORK.VW_TRANSPOSE reopen mode: two-pass.
INFO: View WORK.VW_TRANSPOSE opening spill file for output observations.
INFO: View WORK.VW_TRANSPOSE deleting spill file. File size was 880000 bytes.
NOTE: View WORK.VW_TRANSPOSE.VIEW used (Total process time):

real time 0.95 seconds
cpu time 0.92 seconds

NOTE: There were 10 observations read from the data set WORK.VW_TRANSPOSE.
NOTE: The data set WORK.TRANSPOSED has 10000 observations and 11 variables.
NOTE: PROCEDURE TRANSPOSE used (Total process time):

real time 1.01 seconds
cpu time 0.98 seconds

16 proc transpose data=vw_transpose (spill=no) out=transposed;
INFO: View WORK.VW_TRANSPOSE open mode: sequential.
17 run;

INFO: View WORK.VW_TRANSPOSE reopen mode: two-pass.
INFO: View WORK.VW_TRANSPOSE restarting for another pass through the data.
NOTE: View WORK.VW_TRANSPOSE.VIEW used (Total process time):

real time 1.34 seconds
cpu time 1.32 seconds

NOTE: The View WORK.VW_TRANSPOSE was restarted 1 times. The following view statistics
only apply to the last view restart.

NOTE: There were 10 observations read from the data set WORK.VW_TRANSPOSE.
NOTE: The data set WORK.TRANSPOSED has 10000 observations and 11 variables.
NOTE: PROCEDURE TRANSPOSE used (Total process time):

real time 1.42 seconds
cpu time 1.40 seconds

60 TOBSNO= Data Set Option Chapter 2

See Also

Data Set Options:

“OBSBUF= Data Set Option” on page 38

TOBSNO= Data Set Option

Specifies the number of observations to be transmitted in each multi-observation exchange with a
SAS server

Valid in: DATA step and PROC steps

Category: Data Set Control
Restriction: The TOBSNO= option is valid only for data sets that are accessed through a
SAS server via the REMOTE engine.

Syntax
TOBSNO=n

Syntax Description

n
specifies the number of observations to be transmitted.

Details
If the TOBSNO= option is not specified, its value is calculated based on the observation
length and the size of the server’s transmission buffers, as specified by the PROC
SERVER statement TBUFSIZE= option.

The TOBSNO= option is valid only for data sets that are accessed through a SAS
server via the REMOTE engine. If this option is specified for a data set opened for
update or accessed via another engine, it is ignored.

See Also
“FOPEN Function” in SAS Component Language: Reference.

TYPE= Data Set Option

Specifies the data set type for a specially structured SAS data set

Valid in: DATA step and PROC steps
Category: Data Set Control

SAS Data Set Options WHERE= Data Set Option 61

Syntax

TYPE=data-set-type

Syntax Description

data-set-type
specifies the special type of the data set.

Details

Use the TYPE= data set option in a DATA step to create a special SAS data set in the
proper format, or to identify the special type of the SAS data set in a procedure
statement.

You can use the CONTENTS procedure to determine the type of a data set.
Most SAS data sets do not have a specified type. However, there are several specially

structured SAS data sets that are used by some SAS/STAT procedures. These SAS data
sets contain special variables and observations, and they are usually created by SAS
statistical procedures. Because most of the special SAS data sets are used with
SAS/STAT software, they are described in the SAS/STAT User’s Guide.

Other values are available in other SAS software products and are described in the
appropriate documentation.

Note: If you use a DATA step with a SET statement to modify a special SAS data
set, you must specify the TYPE= option in the DATA statement. The data-set-type is not
automatically copied to the data set that is created. �

See Also

“Special SAS Data Sets” in SAS/STAT User’s Guide

“The CONTENTS Procedure” in Base SAS Procedures Guide

WHERE= Data Set Option

Selects observations that meet the specified condition

Valid in: DATA step and PROC steps

Category: Observation Control

Restriction: Cannot be used with the POINT= option in the SET and MODIFY
statements.

Syntax

WHERE=(where-expression-1<logical-operator where-expression-n>)

62 WHERE= Data Set Option Chapter 2

Syntax Description

where-expression
is an arithmetic or logical expression that consists of a sequence of operators,
operands, and SAS functions. An operand is a variable, a SAS function, or a
constant. An operator is a symbol that requests a comparison, logical operation, or
arithmetic calculation. The expression must be enclosed in parentheses.

logical-operator
can be AND, AND NOT, OR, or OR NOT.

Details
� Use the WHERE= data set option with an input data set to select observations

that meet the condition specified in the WHERE expression before SAS brings
them into the DATA or PROC step for processing. Selecting observations that
meet the conditions of the WHERE expression is the first operation SAS performs
in each iteration of the DATA step.

You can also select observations that are written to an output data set. In
general, selecting observations at the point of input is more efficient than selecting
them at the point of output; however, there are some cases when selecting
observations at the point of input is not practical or not possible.

� You can apply OBS= and FIRSTOBS= processing to WHERE processing. For more
information see “Processing a Segment of Data That is Conditionally Selected” in
SAS Language Reference: Concepts.

� You cannot use the WHERE= data set option with the POINT= option in the SET
and MODIFY statements.

� If you use both the WHERE= data set option and the WHERE statement in the
same DATA step, SAS ignores the WHERE statement for data sets with the
WHERE= data set option. However, you can use the WHERE= data set option
with the WHERE command in SAS/FSP software.

Note: Using indexed SAS data sets can improve performance significantly when you
are using WHERE expressions to access a subset of the observations in a SAS data set.
See “Understanding SAS Indexes” in SAS Language Reference: Concepts for a complete
discussion of WHERE expression processing with indexed data sets and a list of
guidelines to consider before indexing your SAS data sets. �

Comparisons
� The WHERE statement applies to all input data sets, whereas the WHERE= data

set option selects observations only from the data set for which it is specified.
� Do not confuse the purpose of the WHERE= data set option. The DROP= and

KEEP= data set options select variables for processing, while the WHERE= data
set option selects observations.

SAS Data Set Options WHEREUP= Data Set Option 63

Examples

Example 1: Selecting Observations from an Input Data Set This example uses the
WHERE= data set option to subset the SALES data set as it is read into another data
set:

data whizmo;
set sales(where=(product=’whizmo’));

run;

Example 2: Selecting Observations from an Output Data Set This example uses the
WHERE= data set option to subset the SALES output data set:

data whizmo(where=(product=’whizmo’));
set sales;

run;

See Also

Statements:
“WHERE Statement” on page 1433

“WHERE-Expression Processing” in SAS Language Reference: Concepts

WHEREUP= Data Set Option

Specifies whether to evaluate added observations and modified observations against a WHERE
expression

Valid in: DATA step and PROC steps
Category: Observation Control

Syntax
WHEREUP= NO | YES

Syntax Description

NO
does not evaluate added observations and modified observations against a WHERE
expression.

64 WHEREUP= Data Set Option Chapter 2

YES
evaluates added observations and modified observations against a WHERE
expression.

Details
Specify WHEREUP=YES when you want any added observations or modified
observations to match a specified WHERE expression.

Examples

Example 1: Accepting Updates That Do Not Match the WHERE Expression This
example shows how WHEREUP= permits observations to be updated and added even
though the modified observation does not match the WHERE expression:

data a;
x=1;
output;
x=2;
output;

run;

data a;
modify a(where=(x=1) whereup=no);
x=3;
replace; /* Update does not match WHERE expression */
output; /* Add does not match WHERE expression */

run;

In this example, SAS updates the observation and adds the new observation to the data
set.

Example 2: Rejecting Updates That Do Not Match the WHERE Expression In this
example, WHEREUP= does not permit observations to be updated or added when the
update and the add do not match the WHERE expression:

data a;
x=1;
output;
x=2;
output;

run;

data a;
modify a(where=(x=1) whereup=yes);
x=3;
replace; /* Update does not match WHERE expression */
output; /* Add does not match WHERE expression */

run;

In this example, SAS does not update the observation nor does it add the new
observation to the data set.

SAS Data Set Options Data Set Option 65

See Also

Data Set Option:
“WHERE= Data Set Option” on page 61

Data Set Option

Assigns a write password to a SAS file and enables access to a write-protected SAS file

Valid in: DATA step and PROC steps
Category: Data Set Control

Syntax
WRITE=write-password

Syntax Description

write-password
must be a valid SAS name. See “Rules for Words and Names in the SAS Language”
in SAS Language Reference: Concepts.

Details
The WRITE= option applies to all types of SAS files except catalogs. You can use this
option to assign a write-password to a SAS file or to access a write-protected SAS file.

Note: A SAS password does not control access to a SAS file beyond the SAS system.
You should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS. �

See Also

Data Set Options:
“ALTER= Data Set Option” on page 9
“ENCRYPT= Data Set Option” on page 18
“PW= Data Set Option” on page 43
“READ= Data Set Option” on page 44

“Manipulating Passwords” in “The DATASETS Procedure” in Base SAS Procedures
Guide

66

