Chapter 1

Introduction to Indexes

The Index Concept 2

The Index as a SAS Performance Tool 2

Types of SAS Applications That May Benefit from Indexes 4
How SAS Indexes Are Structured 4

Types of SAS Indexes 9
Simple Indexes 9
Composite Indexes 9

When Indexes Are Used 11
Estimating the Size of an Index 12
Summary 15

2 The Complete Guide to SAS Indexes

The Index Concept

The concept of an index is hardly new to us. We use indexes in everyday life without
giving them a second thought. For example, if I were to ask you to find every page in
this book that contains the word “centiles,” what would you do? You would not read
through every page of this book, searching for the word “centiles.” Instead, you would
go directly to the index in the back of the book, search the index pages for the word
“centiles,” determine on which non-index pages it could be found from the index entry,
and then go directly to those pages. Using the index would have saved you a lot of time
and effort.

A similar example would be if I were to ask you to find the pages in this book that
contain the name of the first president of the United States. You would go to the index,
search through it, and find that no such index entry exists. You would tell me that there
is no entry for the name of the first president of the United States, and you would not
bother searching through all of the non-index pages of the book. Using the index would
have saved you the time and effort of searching through every page in the entire book for
an entry that does not exist.

Both examples illustrate how an index improves the efficiency of a search for data. If we
find an entry in the index of a book, we can streamline our search effort and go directly to
the pages that contain information about that entry. If we do not find an entry for a
particular topic, we can conclude that it is not in the book and move on to looking for
other entries, or to searching the indexes of other books. Thus, indexes save us time and
effort when we are searching for information on a particular topic in a particular venue.

The Index as a SAS Performance Tool

A SAS index is functionally similar to an index in a book. It is used to look up whether a
particular value of a key variable exists in the data pages of a SAS data set. If so, then
only those pages are accessed; if not, then no data set pages are accessed. In this way, an
index is a SAS data set performance tool, because it limits the amount of processing that
is done to a given SAS data set. But, it is a performance tool that you must specifically
build and overtly use.

When SAS reads a SAS data set without using an index, it reads the entire data set
sequentially. SAS data sets are actually segmented (behind-the-scenes) into pages on

Chapter 1: Introduction to Indexes 3

which observations are stored. SAS moves each data set page from disk to computer
memory, starting with the first data set page and ending with the very last data set page.
Once a page is in memory, SAS can read the observations stored on that particular page.
This process happens with every SAS program you execute that does not use an index.

The movement of SAS data set pages between disk and computer memory is done via
Input/Output (I/0) events. I/Os take time to execute and are the slowest events in the life
of your SAS program. The more I/Os your SAS program consumes, the longer it takes
for your program to run. Conversely, the fewer I/Os your SAS program consumes, the
quicker it runs. So you can see that it is advantageous to limit the number of I/Os your
SAS program uses, whenever possible.

The main goal of using a SAS index is to read only a small portion of a large SAS data
set, instead of reading the entire SAS data set. As with the book index example, above,
you want to use the SAS data set index to reduce the time and effort consumed reading
observations with a specific value. With SAS, it is a specific index key variable value
that you are looking for. When using an index, SAS first consumes I/Os by reading the
index pages, searching for the specified value of the key variable. Then, if the value is
found in the index, SAS consumes additional 1/Os by directly reading only those pages
that contain the specified value of the index key variable. If a large SAS data set is being
accessed and only a few pages contain the specified key variable value, then you have
saved many 1/Os by having avoided reading the entire SAS data set.

Using a SAS index to access observations in a SAS data set with a specific key variable
value can drastically reduce the I/Os and wall clock time of your SAS program. It can
also lower CPU time, because less processing is necessary on the fewer pages that are
returned to your SAS program. A decline in wall clock time can be good for SAS
programmers in all environments. Cutting I/Os and CPU time can be especially
beneficial for SAS programmers who work in organizations that have instituted computer
resource chargeback programs. Such organizations often charge for CPU time and for
I/0s. Using SAS indexes to decrease both of these resources helps you by lowering the
amount that you are charged for running your SAS application programs.

Besides reducing computer processing resources, using a SAS index returns the
observations in sorted order. They are sorted into ascending key variable(s) value order
in your output SAS data set. This eliminates the need to execute subsequent SORT
procedures and enhances BY statement processing.

4 The Complete Guide to SAS Indexes

Types of SAS Applications That May Benefit
from Indexes

Just about any type of SAS application can benefit from the use of SAS indexes because
of the decreased run time that they facilitate. SAS batch applications generally run faster
when indexes are used within them to extract small subsets of observations from large
SAS data sets. Using SAS indexes can be advantageous when you have a series of long-
running batch applications that must be run sequentially. Shrinking a batch window—the
time it takes for your SAS batch programs to run each day or night—would definitely be
a visible benefit of using SAS indexes.

SAS/IntrNet applications that access small subsets of large SAS data sets certainly profit
from the use of SAS indexes. Users of Web applications are sensitive to response time
issues. They do not expect to have to wait very long after pressing ENTER to receive
their results back in their Internet browsers. Using an index behind-the-scenes to subset a
SAS data set that is being queried by a SAS/IntrNet program results in better response
time for your users. This gives them greater confidence in the reliability of the
SAS/IntrNet Web applications and greater productivity in their use of those applications.

SAS stored procedures used by groups of programmers and non-programmers via SAS
Enterprise Guide benefit from the use of indexes. Like the SAS/IntrNet application
users, Enterprise Guide users expect good response times from the stored procedures that
have been written for them. When the stored procedures that they are invoking access
small subsets of observations stored in large SAS data sets, users get their result sets far
faster when SAS indexes are judiciously employed behind-the-scenes.

How SAS Indexes Are Structured

Indexes are separate SAS files with a member type of INDEX. Internally, they are
divided into pages the same way that SAS data sets are. Indexes are stored in the same
SAS data library that contains the data set they are associated with. SAS maintains the
relationship between the index and its data set. When observations are added, updated or
deleted from the data set, the index file is updated to reflect the changes. All indexes for
a given SAS data set are stored in the same index file.

The logical organization of an index is based on the data storage structure known as a B-
tree. This means that index entries are grouped into one of three node types: the root
node, branch nodes, and leaf nodes. Each node contains a number of individual index
entries and is stored on an index page. A particular index page may contain only entries
of a single node type. The various nodes are logically connected through a series of node

Chapter 1: Introduction to Indexes 5

pointers and through pointers within the entries. The function and structure of an entry
varies according to node type.

The following sections explain how the entries in each node are organized.

Root Node

The root node is the highest level node in an index. All accesses of the index begin with
the root node and then follow the pointers down to other nodes. There is one root node
entry for each child (or subordinate) branch node. Each root node entry contains the
highest key variable value stored in a child branch node and a pointer to the beginning of
that branch node. The root node is stored on a single index page.

Root node entries contain only two fields: a value field, and a node identifier (NID) field.
The value field is equal in length to the key variable (for a simple index), or key variables
(for a composite index), of the indexed SAS data set. The value field contains the highest
key variable value stored in the branch node the entry points to. The NID contains a
pointer to the subordinate branch node.

Branch Nodes

Branch nodes are the intermediate level nodes in an index. Accesses of the index proceed
from the root node to the branch nodes—via a binary search—and then follow pointers
down to the leaf nodes. Each branch node is stored on an index page that is filled with
only branch node entries. There is one branch node entry per leaf node. Branch node
entries contain the highest key variable value stored in a subordinate branch node or leaf
node and a pointer to the beginning of that subordinate branch node or leaf node.

The structure of branch node entries is identical to that of root node entries. The value
field entry in a branch node contains the highest key variable value stored in the leaf node
pointed to by the entry. The NID contains a pointer to the subordinate leaf node.

Leaf Nodes

Leaf nodes are the lowest level nodes in an index. An index search culminates when the
entries in a leaf node are examined for the requested key variable value. If the key
variable value is found, SAS follows leaf node pointers to specific observations in the
SAS data set. Like branch nodes, leaf nodes are stored on index pages that are populated
exclusively by leaf node entries. There is one leaf node entry per unique key variable
value in the SAS data set that the index is associated with.

Leaf node entries contain a value field and one or more record identifier (RID) fields. The
value field is equal in length to the index key variable (for a simple index), or to the
combined length of the index key variables (for a composite index), of the indexed SAS
data set. The value field contains a unique key variable value that can be found in one or
more observations within the SAS data set. The RID contains a pointer to an observation
in the SAS data set that has the value field value in it. SAS uses the RID to directly

6 The Complete Guide to SAS Indexes

access the SAS data set and return the observation with the requested key variable value.
If key variable values are unique in a SAS data set and the UNIQUE option is specified,
then there is only one pair of value field and RID per leaf node entry. See Chapter 5,
“Index-Related Options,” for a complete explanation of the UNIQUE option. If the key
variable values are not unique, a value field can have any number of RIDs associated
with it. Thus, the size of leaf node entries can vary in indexes where the key variable
values are not unique.

When an index search finally arrives at a leaf node, the entries are examined in a binary
search. The value fields in leaf node entries are compared against the key variable value
the program is looking for. If SAS reaches the end of the leaf node binary search without
finding the specific key variable value, the value does not exist in the SAS data set.

Figure 1.1 depicts the composition of root node, branch node, and leaf node entries. For
any index, the size of the root and branch node entries is always the same. However,
indexes with non-unique key variable values can have leaf node entries of varying sizes.
Each entry contains one RID for every observation with a specific key value. For
example, if three observations have the same key variable value, the leaf node entry will
have three RIDs associated with the value field. Node identifiers are 4 bytes on a 32-bit
host and 8 bytes on a 64-bit host. Record identifiers are 8 bytes on a 32-bit host and 12
bytes on a 64-bit host.

Figure 1.1 The Structure of Root, Branch, and Leaf Nodes

_ » Root Node or
Value Fiel
alue Field Node Identifier Branch Node

Value Field Record Identifier | Leaf Node

Figure 1.2 illustrates the tree structure of a SAS data set index. In the figure, the root
node (RN) has pointers down to the branch nodes (BN). Each branch node has a pointer
to the next branch node and pointers down to the leaf nodes (LN). Index searches begin
with the root node and follow NIDs down to the lower levels of the index.

Chapter 1: Introduction to Indexes 7

Figure 1.2 The Index Tree Structure

RN | Root Node
|

v v v

BN1 |——» BN2 —»{ BN 3 [Branch Nodes

e N e S |

LN1 % LN2 » LN3 (» LN4 » LN5 [LNG6 |[Leaf Nodes

SAS keeps the structure of an index symmetric by balancing the index. It balances the
index by keeping each leaf node exactly the same number of levels in distance from the
root node. This means that accessing any particular leaf node consumes exactly the same
amount of computer resources as accessing any other. If observations are added or
deleted from the data set, index node entries are created or deleted at all appropriate
levels of the index, depending on the key variable values. If a preponderance of new key
variable values falls into a specific range, index nodes are added to expand the index
“horizontally,” to avoid adding new levels to the index. If a large number of observations
are deleted, the index may contract “horizontally.” This ensures that changes in the
population of a SAS data set do not have a negative impact on the performance of its
indexes. SAS performs index balancing tasks at the end of the DATA step in which the
index was updated.

Large SAS indexes, especially those with small index page sizes, tend to have more index
levels. The greater the number of levels an index has, the more I/Os are consumed during
an index search and the longer it takes to complete the search. Conversely, indexes with
fewer levels require fewer I/Os to traverse the index during an index search. So it is
advantageous to increase the index page size to try to keep the number of levels that an
index occupies as low as possible. This may be done with the IBUFSIZE option,
discussed in Chapter 5, “Index-Related Options.” Because SAS does not report the
number of levels an index occupies, you must specify a large index page size value on the
IBUFSIZE option and hope that it minimizes the number of index levels, thereby
promoting good index performance.

Figure 1.3 presents an example of an index search. In this example, the program is using
the index to return all observations with the key variable value of Barre.

8 The Complete Guide to SAS Indexes

Figure 1.3 Example of an Index Search

Evan [NID Tull NID | Root Node
[|

v

Bunker | NID Evan NID[[Hammond |NID Tull NID | Branch

Nodes
L, L »

Anderson |RID Barre RID |RID | RID Bunker RID | Leaf Nodes

NID = Node Identifier
RID = Record Identifier

Here is the sequence of events that transpire during the index search:

1. The index search begins with a binary search of the entries in the root node. Each
root node entry value field contains the highest key variable value stored in the
branch node it points to. The first root node entry, Evan, is of a higher key variable
value than Barre. If Barre does exist in the index, it is in one of the subordinate
nodes pointed to by this root node entry. SAS follows the NID pointer down to the
branch node.

2. SAS starts a binary search of the branch node. The first branch node entry, Bunker,
is of a higher key variable value than Barre. So the index search continues by
following the NID pointer from the branch node entry to the beginning of its
associated leaf node.

3. When the index search arrives at the leaf node, another binary search is initiated.
The first entry in the binary search, Barre, is a direct match to the key variable
value being sought. There are three RIDs associated with the value field containing
Barre. Thus, there are three observations in the SAS data set containing the key
variable value of Barre. SAS follows each RID, one by one, to the SAS data set and
returns each of the three observations to the program. When the last observation has
been obtained, the SAS program is finished with the index search for Barre.

Chapter 1: Introduction to Indexes 9

Types of SAS Indexes

SAS gives you the ability to construct two different types of indexes. The difference
between the two index types is simply a matter of whether the index is built from a single
variable or from multiple variables. Because there are different considerations to keep in
mind when constructing either type, both are described separately.

Simple Indexes

A SAS index created from a single variable is known as a simple index. The variable that
is used to create the index is known as the index key variable. You can create a simple
index for any variable that exists in a SAS data set. Index key variables may be numeric
or they may be character. When you create a simple index, SAS gives the index the same
name as the index key variable. Consequently, you can find an index with the same name
as the index key variable in the “Alphabetic List of Index and Attributes” section of a
CONTENTS procedure listing for the indexed SAS data set.

Here is an example of a DATA step that creates a simple index:

data indexlib.prodindx(index=(state)) ;
set indexlib.prodsale;
run;

In the example, above, a new SAS data set named INDEXLIB.PRODINDX contains a
simple index named STATE after the DATA step executes. The STATE simple index
contains one entry for every value of the index key variable STATE found in the
INDEXLIB.PRODINDX SAS data set, along with pointers (RIDs) to each observation
that contains that value.

If you know that you are going to use a particular variable to obtain small subsets of a
large SAS data set on a frequent basis, then you should consider creating a simple index
from that variable. If there are other variables that are also often used to subset the SAS
data set, then you can make simple indexes for them, too. A SAS data set may have
multiple simple indexes associated with it. Chapter 3, “Index Variable Selection
Considerations,” provides a discussion on how you may determine which variables make
good index variable candidates.

Composite Indexes

A SAS index created from two or more variables is known as a composite index.
Composite index key variables may be numeric, character, or any combination of the
two. You may choose to construct a composite index key from variables that occur in
any order within an observation—composite index key variables do not need to be

10 The Complete Guide to SAS Indexes

adjacent fields. (SAS actually concatenates the variable values together in the value
fields of the index entries that are created for the index.)

Because a composite index is created from two or more variables, SAS cannot pick a
name for a composite index. You are responsible for providing a name. You may choose
any valid SAS variable name for the name of a composite index. After a composite index
is created, you can find the composite index name in the “Alphabetic List of Index and
Attributes” section of a CONTENTS procedure listing for the indexed SAS data set. (To
see other places that you may get index information, refer to Chapter 6, “Identifying
Index Characteristics.”)

This is an example of a DATA step that creates a composite index:

data indexlib.prodcomp (index=(country_ state=(country state)));
set indexlib.prodsale;
run;

In this example, the newly created SAS data set INDEXLIB.PRODCOMP contains a
composite index named COUNTRY_STATE after execution of the DATA step. That
composite index contains every distinct combination of the values of COUNTRY and
STATE found in the INDEXLIB.PRODCOMP SAS data set and pointers to each
observation containing that distinct value.

SAS often uses composite indexes to surface observations when only the first variable in
a composite index is used in a WHERE expression or BY statement. You should keep
this in mind when determining the order of variables to specify in a composite index.

SAS compares the WHERE or BY variables, one by one, from left to right, with the
variables in an existing composite index. SAS stops when it reaches the end of the
shortest list of matching variables. If one or more of the WHERE or BY variables match
one or more of the variables in the composite index, then that composite index may be
used.

For example, if you are creating a composite index based on variables COUNTRY and
STATE, your first instinct might be to list COUNTRY first in the composite index so that
it is COUNTRY/STATE. However, if many of your SAS programs subset the SAS data
set with WHERE expressions based on STATE, you would consider creating a
STATE/COUNTRY composite index. This increases the likelihood that the composite
index will be used in the aforementioned types of queries and can save you the trouble of
building a simple index based on STATE.

Chapter 1: Introduction to Indexes 11

When Indexes Are Used

SAS does not automatically use an index to access data in a SAS data set just because
you have created one. There are four specific constructs that allow SAS to use an
existing index:

= a WHERE expression in a DATA or PROC step (see Chapter 10, “Using
Indexes with a WHERE Expression”)

= aBY statement in a DATA or PROC step (see Chapter 11, “Using Indexes with
a BY Statement™)

= the KEY option on a MODIFY statement (see Chapter 12, “Using Indexes with
the KEY Option on a MODIFY Statement”)

= the KEY option on a SET statement (see Chapter 13, “Using Indexes with the
KEY Option on a SET Statement”)

SAS does not necessarily use an existing index even when you do use a WHERE
expression or a BY statement. SAS first calculates if using an index would be more
efficient than reading the entire data set sequentially. The internal algorithms take a lot
of factors into consideration, including data set size, the index or indexes that are
available, and centile information. (For more information on centiles, see Chapter 4,
“Index Centiles.”) Here is the three-step algorithm that SAS uses (Clifford 2005):

1. Compute estimated number of observations qualified by the index. SAS uses
the index’s centiles to estimate the total number of observations that would be
qualified to be returned by the index. This estimate is accurate to within 5% as long
as the centiles are up-to-date.

2. Calculate the I/O cost per RID. SAS examines the RIDs (record identifiers) on
the first qualifying leaf node index page and calculates the number of different data
pages that those RIDs point to. SAS computes an I/O cost per RID by dividing this
number into the number of RIDs on an index page. This results in a decimal
number that is less than or equal to one.

12 The Complete Guide to SAS Indexes

3. Calculate the number of data pages that would be read by the index. SAS
multiplies the estimated number of qualified observations (#1 above) by the
I/0O cost per RID (#2 above) to get the number of SAS data set pages that would be
read if the index was used. This number should be much smaller than the total
number of pages in the entire SAS data set.

If SAS predicts that it would be more efficient to use a specific index to return
observations than to read the entire data set, then it uses that index. If not, then it reads
the entire data set sequentially to return the observations. However, SAS does not
consider using an index if you do not use a WHERE expression or a BY statement.

SAS automatically uses an index when you specify the KEY option on either a MODIFY
statement or a SET statement. It does so because the KEY option specifies exactly which
index should be used. You do not have to be concerned with whether or not an existing
index is used with the KEY option in a MODIFY or SET statement.

Most of the time, SAS makes good decisions regarding whether or not to use an index.
But its internal calculations are not infallible, and sometimes the resources consumed
when reading a large subset of data via an index are greater than reading the entire SAS
data set. You can use the IDXNAME and IDXWHERE options to override SAS default
index usage. Both of these options are discussed in Chapter 5, “Index-Related Options.”

Estimating the Size of an Index

SAS stores index entries in a separate index file. These index entries take up space, so it
is natural to ask just how much space a prospective index will occupy. SAS Technical
Support has created a program that enables you to get a fair estimate of the size of your
SAS index. You can find a copy of that program in Appendix D, “Estimating the
Number of Pages for a SAS 9 Index.” It is also included in the example code for this
book, found on its companion Web site at support.sas.com/companionsites.

Chapter 1: Introduction to Indexes 13

The index estimation program requires that you provide five values for the computation:

PSIZE This refers to the page size of the index file. Set PSIZE equal to the
current value of IBUFSIZE. See the section titled “The IBUFSIZE System
Option” in Chapter 5, “Index-Related Options,” for a thorough discussion of this
index option.

VSIZE This is the total length, in bytes of the variable that you intend to use to
create a simple index. If you are going to create a composite index, add the
lengths of all variables that will make up the composite key. You can find
variable lengths in a CONTENTS procedure listing of the data set you are going
to index.

UVAL This parameter is the number of unique values that you expect in your
SAS data set for the particular index key. If all values are unique for a simple
index, then UV AL should be equal the total number of observations in the SAS
data set. If not, or if you are going to create a composite index, you need to run
the FREQ procedure to get an idea of the number of unique values. Because this
program is computing an estimate, do not worry if you are in the position of
estimating the number of unique values.

NREC This value is the total number of observations in the SAS data set. If
you are building an index for an existing SAS data set, find this value from a

PROC CONTENTS listing. Otherwise, you can estimate this value from how
many observations you expect to have in a SAS data set that you are creating.

Host This identifies the operating system hosting the SAS data set and where
the index is built. There are ten possible host values:

MYVS 08S/390 and z/OS

WIN Windows NT, 2000, and XP

LNX RedHat Linux on Intel servers

ALP OpenVMS Alpha

ALX Compaq Digital UNIX

HP64 HP 64 UNIX

Se64 Solaris 64 UNIX

R64 AIX 64

H6I HP/UX for Itanium Platform Family, 64-bit
w64 Windows for IPF, 64-bit

Once you supply the five main values and execute the program, it computes the index
size and creates a formatted report in the SAS log.

14 The Complete Guide to SAS Indexes

Here is an example of the output from the index size estimation program. In this
example, the size of an index created from variable SEQNUM for
INDEXLIB.PRODINDX was computed.

Index characteristics:

Host Platform = WIN
Page Size (bytes) = 32256
Index Value Size (bytes) = 8
Unique Values = 2304000
Total Number of Values = 2304000
Number of Index Levels =2

Estimated storage requirements for a V9 index:

Number of Upper Level Pages = 1
Number of Leaf Pages = 1145
Total Number of Index Pages = 1146 or 36,965,376 bytes

Note: the above estimate does not include storage for the index
directory (usually one page) or the host header page.

Estimation of index size complete.

The program first reiterates the five values that were supplied in a section labeled “Index
characteristics.” Then it displays the number of “Upper Level Pages” (which are used to
store the root node and branch nodes), the number of “Leaf Pages,” and the “Total
Number of Index Pages.” In this example, you can see that one index page would be
enough to contain the root node and the branch nodes. It would take 1,145 pages to store
all of the leaf nodes for the SEQNUM simple index. The total number of index pages
would be 1,146. SAS multiplies this by the page size (you entered this value in as
PSIZE=) to get the total number of bytes, which is 36,965,376—or about 35 megabytes.

If you are going to create multiple indexes for a SAS data set, then you need to calculate
each index separately. When you’re done, add the number of pages for each index
together to get the total index pages used by all indexes for the SAS data set. You can
stop there, or multiply fotal index pages by the index page size to get the total number of
bytes for the entire index file.

The index size estimate program is a great tool for getting a reasonable estimate of the
amount of space needed for your SAS indexes. It is probably most useful for people in
organizations where disk space is at a premium, or where people are charged for the disk
space that their data sets occupy.

Chapter 1: Introduction to Indexes 15

Summary

This chapter introduced the concept of SAS indexes, discussed how SAS indexes are
actually performance tools, and described how indexes can benefit various types of SAS
applications. Next, the structure of an index was described, including the root, branch,
and leaf nodes and the entries that reside within them. An example was provided to
illustrate how SAS traverses an index during an index search.

The chapter presented the two types of SAS indexes: a simple index made from a single
variable and a composite index made from two or more variables. It discussed the four
SAS programming structures that use SAS indexes: the WHERE expression, the BY
statement, the KEY option in a MODIFY statement, and the KEY option in a DATA
statement. Then, the three-step algorithm that SAS uses to determine whether or not to
use an index for WHERE or BY statement processing was discussed. The chapter
concluded by presenting how to estimate the size of an index.

16 The Complete Guide to SAS Indexes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

