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Introduction 

Standing between every manufacturing process and the observer is some form of 
measurement process. The observer never sees the actual manufacturing process clearly 
or separately—a measurement process or device always intervenes to provide the data 
necessary for interpreting process performance. Ideally the impact of the variation in the 
measurement device or process is negligible, but that might not be the case. A 
manufacturing process could be satisfying all Six Sigma requirements, but a 
measurement tool could be obscuring that truth. Equation 1.1 illustrates the relationship 
among perceived process variance, actual process variance, and the measurement tool 
contributions to the variance. 

2 2 2ˆ
perceived process actual process measurement tool

σ σ σ= +                                                    1.1 

Figure 1.1 provides a graphic illustration of this equation. Obviously, if the contribution 
due to variation in the measurement tool is extremely small, then the perceived process 
variation is approximately the same as the actual process variation. 

Therefore, establishing a figure-of-merit statistic that identifies sources of variation for a 
measurement tool or process helps the observer decide whether the contribution of 
measurement error materially affects any interpretation of the manufacturing process. 
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Figure 1.1  Contribution of Measurement Error to Perceived Process Error 

 

Figure-of-Merit Statistics 

The P/T Ratio 
The precision/tolerance ratio (P/T) is one convenient figure of merit used throughout this 
book for describing the capability of a measurement device. Equation 1.2 illustrates its 
calculation based on the inverse of the capability potential (Cp), where USL and LSL are 
the upper and lower specification limits, respectively, for the process in question—not the 
measurement process. 

6
/ 100 measurementP T

USL LSL

σ
=

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠                                                                                   1.2 

If the P/T ratio for a measurement tool is ≤ 30 (see “Capability Potential versus P/T and 
SNR” in this chapter), then its contribution to the perceived process variation is 
negligible.  
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The SNR 
In many cases, the specification limits for a process are arbitrary assignments, subject to 
change. An alternative figure of merit for a measurement tool is the signal-to-noise ratio 
(SNR). Equation 1.3 illustrates its calculation. 

ˆ

ˆ
process

measurement

SNR
σ

σ
=                                                                                                  1.3 

Because the perceived variation for the process probably contains a contribution from 
measurement error, a more elaborate calculation of SNR is applicable (Equation 1.4). 

2 2ˆ ˆ

ˆ
process measurement

measurement

SNR
σ σ

σ

−
=                                                                            1.4 

RR Percent 
When a measurement study involves only two factors, such as operator and part, JMP can 
prepare a report on the study that includes RR percent. This statistic compares the 
measurement variation to the total variation in the data and calculates a percent Gage 
R&R. Barrentine (1991) suggests guidelines for acceptable RR percent. This statistic is 
approximately 1/SNR (discussed in the previous section). See the JMP Statistics and 
Graphics Guide for more information. Such a simple metrology study occurs very 
seldom in the examples used here, so this book contains little additional discussion of this 
topic. 

Six Sigma Quality of Measurement 
Another approach to assessing the capability of a measurement process uses the 
capability analysis option associated with the display of distributions in JMP. A pop-up 
menu option on the distribution report generates a capability analysis of data collected 
from a measurement process (assuming the user has removed from that data all unusual 
values that are due to an assignable cause).  

Part of that capability report includes the parts per million (ppm) of observations beyond 
the specification limits (in this case one uses the specification limits for the process being 
monitored, not the specification limits associated with the measurement tool). This 
approach is analogous to the calculation of the P/T ratio illustrated earlier. Also reported 
is Sigma Quality (provided the user has specified specification limits). Values of Sigma 
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Quality ≥ 6 indicate that the measurement tool is capable of handling the measurement 
task being examined. A section in Chapter 2 illustrates this approach. 

Capability Potential versus P/T and SNR 
To refresh the reader’s memory, Equation 1.5 illustrates the calculation of capability 
potential (Cp). 

6
USL LSL

Cp
σ
−

=                                                                                                        1.5 

where USL and LSL, respectively, are the upper and lower specification limits 
for a process, and σ is the observed process standard deviation. 

 
This statistic, discussed further in Chapter 6, estimates how much of the output of a 
process fits between defined specification limits. A Cp value of 1 predicts that some 
99.73% of observations will fit within the specifications (see Chapter 6 for calculations 
supporting this statement). The JMP data tables referenced in the discussions in this and 
in following sections are available on the companion Web site for this book at 
http://support.sas.com/reece. Sample data tables are arranged by chapters in the 
discussion. To open a table using the JMP Starter window, select the File category, and 
then click Open Data Table (left panel in Figure 1.2). Alternatively, select File Open 
in the menu bar at the top of the JMP window (right panel in Figure 1.2). Select the 
Chapter 1 directory, then select the data table you want and open it (Figure 1.3).  

Figure 1.2  Opening a Data Table in JMP 
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Figure 1.3  Selecting a Data Table 
 

 
 

 

 

 

Figure 1.4 contains the table Capability vs Measurement Error.jmp. Entries in this table 
are simulations of the contributions of measurement error to an observed theoretical 
capability potential (Cp). In the left panel of the display, the symbol to the left of the 
name of a column indicates that the contents of that column have numeric or continuous 
modeling properties. The symbol to the right of the last four column names indicates that 
each column has an associated formula to compute its contents. To see that formula, 
right-click that symbol to reveal a menu (left panel of Figure 1.5). On that menu, select 
Formula to reveal the embedded calculation (right panel of Figure 1.5). 

Figure 1.4  Capability vs Measurement Error.jmp 
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Figure 1.5  Revealing a Column Formula 

 

 

 

 

 
 
 
 
 

To explore how the observed capability potential (Cp) of a process varies with the 
measurement error encountered, generate overlay plots of observed capability (y) versus 
either the P/T ratio (x) or the SNR. Figure 1.6 illustrates setting up the graph for 
capability versus SNR using the menu bar at the top of the JMP window. Notice that the 
X axis has been converted to logarithmic scale during the setup. 

Figure 1.6  Setting Up an Overlay Plot for Observed Capability versus SNR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7 displays the overlay plot for observed capability versus P/T ratio; Figure 1.8 
displays the overlay plot for observed capability versus SNR. Each graph received 
considerable modification to improve the displays. 
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Figure 1.7  Observed Capability versus P/T Ratio 

 

Figure 1.7 suggests that so long as P/T < 30, the measurement process does not materially 
affect the perception of process performance. Similarly, in Figure 1.8, as long as SNR is 
>~3, the same is true. Obviously, having a measurement of P/T << 30 or SNR > 5 is 
highly desirable. 

Figure 1.8  Observed Capability versus SNR 
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Precision versus Accuracy in a Measurement 
Tool or Process 

To minimize the confusion that might exist between the terms “accuracy” and 
“precision,” consider the following definitions. Precision, as applied to a measurement 
tool or process, is a measure of the total amount of variation in that tool or process. 
Intuitively, the more precise a measurement tool or process, the more desirable it 
becomes. Accuracy is the difference between a standard or true value and the average of 
several repeated measurements using a particular tool or process. A measurement tool or 
process can be precise and accurate, or it can have any combination of those factors, 
including neither of them. Figure 1.9 illustrates these concepts using a marksmanship 
model. 

Figure 1.9  Precision versus Accuracy (Marksmanship Model) 

 

 
The target labeled “Tool 1” represents a measurement process that is both precise and 
accurate. That labeled “Tool 2” represents a measurement process that is not particularly 
precise, but does give accurate results on average—on average “we got ‘em.” The 
process or tool suffers from large variation, but no bias. 
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The image for “Tool 3” shows considerable precision, but the aim is off; the tool has 
considerable bias in its measurements and is not accurate. “Tool 4” is a disaster. Not only 
are the results not accurate, but they lack precision as well. 

The JMP data table Measurement Tools.jmp, found in the directory Chapter 1 on the 
companion Web site for this book at http://support.sas.com/reece and illustrated in Figure 
1.10, contains simulated data from the four measurement tools just described. This table 
makes extensive use of the formula capabilities in JMP to simulate data.  

Figure 1.10  Excerpt of Measurement Tools.jmp 

 

To create a table like this: 

1. Generate a new, blank table in JMP. 

2. To this table add 100 rows using any of several approaches. The approach in this 
example was to use the Add Rows option under the Rows menu on the menu bar 
and change the default number of rows from 20 to 100. 

3. Change the title of the first column to x by clicking in the column heading and typing 
the new heading. 

4. Figure 1.11 illustrates adding a formula for that column. Because the table currently 
contains only one column, all actions affect that column. To access the options in the 
upper left panel, right-click the column and select Formula. In the window that 
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appears (upper right panel) select Row Count. To start filling in the formula, 
select Change Sign in the formula editor window; enter 3 in the first highlighted 
box. Follow that entry with another 3 and 100 to complete the formula. Clicking OK 
in the editor window completes the process and writes the results to the table in the 
first column. 

Figure 1.11  Creating a Count of Entries in the First Column of Measurement  
                     Tools.jmp 

 

 

 

 

 

 

   

 

 

 

  5.  The next steps add additional columns to the table and label them as shown in Figure  
       1.10. The author chose to right-click in the empty space to the right of the first  
       column to produce the options in the left panel of Figure 1.12. Selecting Add  
       Multiple Columns brings up the window shown in the right panel of Figure 1.12.   
       Completing this window as shown adds four new columns to the original table. 



14   Measurement, Analysis, and Control Using JMP: Quality Techniques for Manufacturing 

Figure 1.12  Adding Multiple Columns to Measurement Tools.jmp 

 

 

 
 
 
 
 
 
 

  6.  Creating a formula for each of the four Tool columns using the Normal  
       Density function (left panel of Figure 1.13) provides the entries in those columns.   
       By default this function does not provide for entering the desired mean and standard  
       deviation of a normal density function. To add that capability, press the comma key  
       twice to bring up the right panel in Figure 1.13. Select the x column to fill in the first  
       box, and then enter the appropriate mean and standard deviation for the column  
       Tool 1. The means and standard deviations for each of the columns Tool 1 through  
       Tool 4 are as follows: 

Column Mean Standard Deviation 

Tool 1 0 0.25 

Tool 2  0 0.5 

Tool 3 4 0.25 

Tool 4 4 0.50 

  



Chapter 1:  Basic Concepts of Measurement Capability   15 

 

Figure 1.13  Generating Distribution Data for Measurement Tools.jmp 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.14 shows an overlay plot for the simulated distribution data in each column 
versus the values of x. This figure has undergone considerable modification to improve 
its appearance, including adding a reference line to the X axis as well as annotating the 
curves to identify the columns that produced them. 

Figure 1.14  Precision versus Accuracy in Measurement Tools 
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To Calibrate or Not 

When you have a measurement device, it is important to make sure it is actually 
measuring the object correctly. A calibration study is to determine how well a device 
carries out the measurement process. 

In some situations, traceable standards might be available to calibrate a measurement 
process. The National Institute of Science and Technology (NIST), formerly the National 
Bureau of Standards (NBS), certifies a variety of standards. Or a measurement tool might 
have some calibration procedure embedded in its software. The problem is how to decide 
whether or not to calibrate an instrument at some point in its use. Obviously, uncalibrated 
instruments could indicate that a manufacturing process is producing material off target 
when it really is not. 

Understanding Risk 
Any decision made regarding calibrating an instrument contains risk. Figure 1.15 shows a 
truth table to help define the situations one might encounter. Although the average 
engineer or researcher probably does not realize it, making a decision about whether or 
not to calibrate a measurement tool involves generating two hypotheses—one the exact 
opposite of the other.  

Figure 1.15  Truth Table 

 
 

The null hypothesis, usually abbreviated H0, states that “the measurement tool does not 
require calibration.” Its direct opposite, designated the alternate hypothesis or alternative 
hypothesis, states that “the measurement tool requires calibration.” An investigator 
gathers data and analyzes it to determine whether or not the facts support the alternate 
hypothesis. The result of that analysis dictates whether he or she rejects or fails to reject 
the null hypothesis. 
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Here are some trivial mnemonics (not necessarily statistically rigorous) that help keep the 
α and β risk straight: 

 ART:  αlpha – Reject the null hypothesis when it is True. 

 BAF:  βeta – Accept the null hypothesis when it is False. 

The power of a test is 1 – β. 

Another trivial method for helping to understand the types of risk is to liken α risk to 
seeing a ghost. Alternatively, β risk is akin to stepping off a curb in front of an oncoming 
truck. From Figure 1.15, if an engineer decides to calibrate a measurement tool when it 
does not require it (rejecting H0 when it is actually true), he or she commits an α error. 
On the other hand, deciding not to calibrate a measurement tool when it actually requires 
it produces a β error.  

Obviously, prudent investigators want to keep both risks small in their work, although 
some level of risk is always present. Calibrating a measurement tool unnecessarily might 
or might not be a serious problem, depending on the complexity and cost of the 
operation. If the combination of complexity and cost is large, then proceeding cautiously 
is good advice. If complexity and cost are trivial, then unnecessary calibrations will not 
necessarily produce a serious problem. 

The nature of the problem is that the observer must compare a computed average to a 
standard value within the bounds of α and β risks and in the presence of some variation 
in observations. That is, the sample size required to detect a difference between an 
observed average and a standard value is directly proportional to the α and β risks 
allowed and to the ratio of the inherent variation in the observations to the size of the 
difference to detect. Diamond (1989) provides an expression for estimating the sample 
size for this problem shown in Equation 1.6. 

2 2

2
2

N z z= +
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠βα

σ
δ                                                                                          1.6 

where  zα/2 and zβ are values from the unit normal distribution corresponding to 
the risks accepted, σ is the variation in the data, and δ is the chosen 
difference to detect. 

 
Rarely, if ever, will an investigator know precisely what the variation in the data will be 
before conducting any experiments; that value must be estimated from the experimental 
data after running the experiments. A very useful approach is to decide what difference 
relative to the inherent variation in the data is acceptable and solve the equation from that 
perspective. 
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JMP Sample Size Calculations and Power Curves 
JMP contains a very useful utility to help an experimenter make reasonable decisions 
about sample size requirements for a variety of scenarios. The situation described here is 
actually the simplest among many. As shown in Figure 1.16, select Sample Size and 
Power on the DOE menu. Then select the first option, One Sample Mean, on the 
window that appears, because the problem under consideration is to compare an observed 
average of several observations to a target value. 

Figure 1.16  Accessing Sample Size Calculations 

 

 

 
 

 

 

 

 

 

 

 

Selecting One Sample Mean displays the window shown in Figure 1.17. The system 
sets a default α risk at 0.05, but the user can specify any value by editing the table. To 
use this system most effectively, set Error Std Dev to 1, and then specify the 
Difference to detect as some fraction or multiple of the error. As the window indicates, 
supplying two values calculates the third, whereas entering only one value (for example, 
a fraction or multiple of the unknown error) produces a plot of the other two.  
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Figure 1.17  Opening Window of Sample Size Calculation 

 

Figure 1.18 shows Sample Size vs Risk and Delta.jmp (also found in the Chapter 1 
directory on the companion Web site for this book at http://support.sas.com/reece) 
created by exercising the option of filling in Difference to detect and Power for a 
number of scenarios, given a value of 1 for Error Std Dev. This approach to determining 
sample size can be very useful in exploring various levels of risk and differences to detect 
what effect each has on the number of samples required to satisfy the conditions. 

Figure 1.18  Sample Size vs Risk and Delta.jmp 
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An alternative approach for exploring sample size requirements specifies only the 
Difference to detect in Figure 1.19 in order to produce a plot showing how the other 
two parameters (Sample Size and Power) vary under set conditions of Alpha risk and 
Difference to detect, given an expected Error Std Dev. 

Figure 1.19  Plots of Power versus Sample Size, Given Alpha and a  
                     Difference to Detect Relative to Error 
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Uncertainty in Estimating Means and Standard 
Deviations 

Anyone who has had a basic course in statistical process control (SPC) or perhaps in 
some level of measurement capability instruction might have been struck by the large 
numbers of observations usually recommended. In SPC one must estimate the grand 
average of process output as well as an estimate of variation in that process. Similarly, in 
characterizing the capability of a measurement tool or process, one must estimate several 
possible sources of variation. Figure 1.20 shows MN, STDEV CI.jmp (also found in the 
Chapter 1 directory on the companion Web site for this book at 
http://support.sas.com/reece). Throughout the table, the observed mean is 10 and the 
observed standard deviation is 1, but the sample sizes used to determine these 
observations vary from 2 to 100. The lower and upper 95% confidence interval (CI) 
boundaries are simulations based on established statistical concepts.  

Figure 1.20  MN, STDEV CI.jmp 
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Confidence Interval for the Mean 
Equation 1.7 supplies the entries for the lower and upper 95% CI bounds for the mean 
(third and fourth columns of data in Figure 1.20). 

c

s
y t

n
± ⎛ ⎞

⎜ ⎟
⎝ ⎠                                                                                                             1.7 

where y is the observed average; tc is a critical value of the Student’s t based 
on n – 1 degrees of freedom (supported as t quantile in JMP); s is the 
observed standard deviation; and n is the sample size. The reader can 
display the formulas associated with data columns three and four to see 
the actual JMP implementation of this equation in each case.  

 

Here are the major steps in creating the formula for the lower 95% CI bound for the 
mean. 

1.  After selecting the appropriate table column and choosing to generate a formula, select  
     the Observed Mean column and add an element to it (Figure 1.21). 

Figure 1.21  Adding an Element to the Observed Mean Column 
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2.  Under the Probability option, select t Quantile (Figure 1.22). Figure 1.23 shows the 
     resulting formula.  

Figure 1.22  Selecting t Quantile 

 

Figure 1.23  The Formula after Step 2 

 
 

3.  Select the multiplication operator from the choices provided in the formula window. 

4.  With the new box highlighted, select the division operator. The numerator in this  
      expression is the Observed Std Dev, while the denominator is the square root of  
      Sample Size (Figure 1.24). 

Figure 1.24  The Formula after Step 4 

 
 

5.  The DF in the formula is Sample Size – 1; the p value is a number representing the  
     fraction of a student’s t distribution remaining in the left tail of that distribution as the  
     lower bound of the 95% confidence interval—0.025. Figure 1.25 shows the completed 
     formula. 
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Figure 1.25  The Completed Formula 

 
 

The formula for the upper 95% CI boundary for the mean is identical to that just 
described except for the value entered for p. The value for this expression is 0.975, which 
reflects the area under the student’s t distribution left of that upper boundary. Therefore, 
the area under the curve between the two limits is 0.975 – 0.025 = 0.95. 

Confidence Interval for the Standard Deviation 
In Figure 1.20, data columns six and seven, respectively, provide the upper and lower 
95% CI bounds for the standard deviation.  Equation 1.8 provides these values based on 
the varying sample sizes. 

2 2
2

2 2

,1 ,2 2

s s

α αν ν

ν ν
σ

χ χ
−

≤ ≤
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                           1.8   

 
where ν represents the degrees of freedom in the sample (n – 1); s2 is the 

square of the observed standard deviation; σ 2  is the true population 
variance; and χ2 is a value from the chi-square distribution such that  
1 – α/2 or α/2 of the distribution remains to the left of that value  
(α = 0.05 for a 95% confidence interval). The reader can display the 
formulas associated with data columns six and seven to see the actual 
JMP implementation.   
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The formulas embedded in these columns compute the lower and upper 95% confidence 
boundaries of the standard deviation (given as 1 in the table) based on the number of 
observations used to estimate it. Here are the steps used to create these formulas. 

1.  To create a formula with the creation of a division as the initial entry, select the ÷  
     symbol in the formula window. Convert that fraction to its square root using the √  
     symbol in the formula window (Figure 1.26). 

Figure 1.26  Beginning the Formula  
 

 

2.  Add Sample Size –1 to the numerator to compute the degrees of freedom in the  
     estimate. Multiply this entry by the square of observed standard deviation. Use the xy  

          option in the formula window (Figure 1.27). 

Figure 1.27  The Formula after Step 2 
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3.  From the Probability menu, select ChiSquare Quantile (Figure 1.28). 

Figure 1.28  Selecting ChiSquare Quantile 

 
 

4.  Fill in the appropriate value for p and DF in the expression. As shown in Equation 1.8 
     and as implemented in JMP, p refers to a value on the horizontal axis of the  
     distribution such that a fraction of the area under the χ2 curve lies to the left of that  
    value. For a 95% confidence interval, α = 0.05, so 1 – α/2 = 0.975. The DF for the  
     estimate is one less than the sample size. For the upper boundary of the confidence  
     interval, the p value is 0.025. 

Figure 1.29  The Completed Formula 

 
 

Figures 1.30 and 1.31 are overlay plots created in JMP that illustrate how the confidence 
intervals for the mean and standard deviation, respectively, respond to changes in the 
sample size used to estimate them. 
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Figure 1.30  Mean CI versus Sample Size 

 

Figure 1.31  StDev CI versus Sample Size 

 
 

Notice in both figures that the horizontal axes are logarithmic and that the vertical axis in 
Figure 1.31 is logarithmic. In Figure 1.30 the uncertainty in estimating a mean 
(confidence interval) begins to stabilize between sample sizes of 10 to 20. However, 
Figure 1.31 shows that considerable uncertainty exists in the estimate of a standard 
deviation until the sample size is 30 or more. This does not mean that an investigator 
cannot estimate these parameters with fewer samples. It means that the uncertainty in 
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estimates of either means or standard deviations based on small samples might be 
unacceptable, particularly in the case of standard deviations. 

A measurement capability study primarily estimates variation in the measurement 
process; therefore, the investigator should try to accumulate at least 30 independent or 
replicate samples for each source of variation in that measurement process in order to 
have more sound estimates of the contributions of each.  

Components of Measurement Error 

The observed error in a process is the sum of the actual process variation and a 
measurement error, as shown in Equation 1.1 previously. Measurement error itself has 
two identifiable and measurable components as well: repeatability and reproducibility, as 
shown in Equation 1.9. 

2 2 2

measurement repeatability reproducibilityσ σ σ= +                                                              1.9 

Repeatability Error 
Repeatability error is the simplest measurement error to estimate, because it represents 
the ability of the measurement process to repeat values in a short period of time. In the 
semiconductor industry, for example, an investigator using an automated tool could 
generate data for this estimation in a matter of minutes. All one has to do is place the 
object to be measured in the tool and press the Measure button a number of times. Since 
this error is a variance, the experimenter should collect at least 30 readings in short order 
(Figure 1.31) in order to obtain a reliable estimate. In other cases involving operators 
measuring individual parts, this error represents the ability of operators to repeat their 
measurements on those parts, perhaps over a period of time. 

The important point is that this error is an estimate of the variation of the measurement 
system under conditions of minimum perturbation. A guideline for the level of allowable 
repeatability error is for the P/T ratio to be ≤5. Many measurement experiments allow 
estimation of repeatability error along with estimation of reproducibility error and total 
measurement error. Conducting a simple preliminary experiment to estimate repeatability 
alone can pay dividends in that such a study might detect an inherent weakness or 
problem with the measurement system and do it relatively inexpensively. The sections  
“An Oxide Thickness Measuring Tool” and “Repeatability of an FTIR Measurement 
Tool” in Chapter 2 illustrate case studies where this was indeed the case. 
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Reproducibility Error 
Reproducibility error includes all other variables chargeable to the measurement system, 
such as day-to-day variation or operator-to-operator variation. Again this type of study 
estimates standard deviations or variances, so an investigator planning this investigation 
must pay particular attention to generating enough data such that each measurement 
factor has enough degrees of freedom (replicates) associated with it to produce a reliable 
estimate. Therefore, a complete and robust measurement study to estimate total 
measurement error and to separate repeatability and reproducibility errors can require 
weeks to complete. This is not to say that the measurement study should dominate the 
work of individuals running a process. Rather, over a significant period of time, the study 
should include enough measurement episodes to enable reliable estimation of variances.  

Generating a matrix of trials before starting the study and analyzing the result of filling in 
the measurement data with random numbers will provide information about the degrees 
of freedom associated with each factor of interest. 

In the semiconductor industry, an investigator usually measures several points on a wafer. 
These points will yield different values because coating thicknesses, for example, will 
vary depending on location on the wafer surface. The variations among these points is not 
normally charged to the measurement process, because they are an artifact of the object 
being measured and not part of the measurement process itself. But repeated 
measurements of those same locations do contribute to measurement variability. 

Linearity of Measurement Tools 

As it applies to measurement processes, linearity is a measure of how stable measurement 
error and bias are over some range of values being measured. For example, a particular 
process might measure items of widely varying dimensions. The question to answer is 
whether or not the measurement error and bias is constant over that range. If it is not, 
then this type of study will make users aware of any additional limitations of their 
measurement process. Graphical representations can generate the required information. 
The section “Repeatability and Linearity of a Resistance Measurement Tool” in Chapter 
2 provides an example that illustrates some of these principles. 
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Random versus Fixed Effects 

As applied to measurement systems, random effects are sources of variation that might 
include repeated measurements, variation over time, variation due to operators, variation 
due to different measurement tools, or even variation due to supposedly identical objects. 
Classical statistical methods consider observations of such events as examples from a 
large population of possible events—such as an infinite number of repetitions of an event, 
an infinite number of days for a study, or an infinite number of operators doing a 
particular task. Realistically, a measurement study samples replications, time, and 
operators and assumes they constitute a sample from a larger population. Particularly in 
the case of operators, usually no more than a few are available or trained for a particular 
task. Therefore, even though the entire population of operators might be involved in a 
study, logic requires treating any contribution from them as a source of nuisance variation 
or random noise initially. If, for example, one or more operators demonstrably produce 
results different from the group, then further study of each operator becomes warranted to 
establish a cause and a possible correction. A later section illustrates this point.  

In a measurement system, a factor is a fixed effect when that factor that is not normally 
considered a source of noise in the measurement system. In the semiconductor industry, 
examples of fixed effects would be the differences in individual measurement locations 
on a wafer, or differences between wafers with distinctly different properties such as film 
thicknesses. Ironically, factors designated fixed in one case (such as locations on a wafer 
surface) can become random in another, depending on the context of their analysis. For 
example, an experimental study of a manufacturing process might seek to minimize the 
variation of measurements found across a wafer surface. Although the investigation could 
continue to consider each wafer location a fixed effect, the objective of such a study 
generally is to minimize the contribution of those differences. Therefore, a logical 
approach considers the measurement sites sources of random error or nuisance variation 
in a process. 

In the author’s experience, whether to consider a particular effect random or fixed 
depends on the context of its effect on a process, whether a measurement process or a 
manufacturing process. JMP has excellent utilities for handling both types of effects, and 
later sections will make every effort to explain how and why to assign particular effects 
to a specific designation of random or fixed. 

 


