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Introduction

Standing between every manufacturing process and the observer is some form of
measurement process. The observer never sees the actual manufacturing process clearly
or separately—a measurement process or device always intervenes to provide the data
necessary for interpreting process performance. Ideally the impact of the variation in the
measurement device or process is negligible, but that might not be the case. A
manufacturing process could be satisfying all Six Sigma requirements, but a
measurement tool could be obscuring that truth. Equation 1.1 illustrates the relationship
among perceived process variance, actual process variance, and the measurement tool
contributions to the variance.

A2 2 2

perceived process actual process measurement tool 1.1

Figure 1.1 provides a graphic illustration of this equation. Obviously, if the contribution
due to variation in the measurement tool is extremely small, then the perceived process
variation is approximately the same as the actual process variation.

Therefore, establishing a figure-of-merit statistic that identifies sources of variation for a
measurement tool or process helps the observer decide whether the contribution of
measurement error materially affects any interpretation of the manufacturing process.
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Figure 1.1 Contribution of Measurement Error to Perceived Process Error
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Figure-of-Merit Statistics

The P/T Ratio

The precision/tolerance ratio (P/T) is one convenient figure of merit used throughout this
book for describing the capability of a measurement device. Equation 1.2 illustrates its
calculation based on the inverse of the capability potential (Cp), where USL and LSL are
the upper and lower specification limits, respectively, for the process in question—not the
measurement process.

60’measuremem
P/T =100 ——— 12

USL — LSL

If the P/T ratio for a measurement tool is < 30 (see “Capability Potential versus P/T and
SNR” in this chapter), then its contribution to the perceived process variation is
negligible.
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The SNR

In many cases, the specification limits for a process are arbitrary assignments, subject to
change. An alternative figure of merit for a measurement tool is the signal-to-noise ratio
(SNR). Equation 1.3 illustrates its calculation.

A

O-]JVOC‘(ZSS
SNR = —2% 1.3

measurement

Because the perceived variation for the process probably contains a contribution from
measurement error, a more elaborate calculation of SNR is applicable (Equation 1.4).

) )

SNR \/O-pVOCESS O-measurement

1.4

measurement

RR Percent

When a measurement study involves only two factors, such as operator and part, JMP can
prepare a report on the study that includes RR percent. This statistic compares the
measurement variation to the total variation in the data and calculates a percent Gage
R&R. Barrentine (1991) suggests guidelines for acceptable RR percent. This statistic is
approximately 1/SNR (discussed in the previous section). See the JMP Statistics and
Graphics Guide for more information. Such a simple metrology study occurs very
seldom in the examples used here, so this book contains little additional discussion of this
topic.

Six Sigma Quality of Measurement

Another approach to assessing the capability of a measurement process uses the
capability analysis option associated with the display of distributions in JMP. A pop-up
menu option on the distribution report generates a capability analysis of data collected
from a measurement process (assuming the user has removed from that data all unusual
values that are due to an assignable cause).

Part of that capability report includes the parts per million (ppm) of observations beyond
the specification limits (in this case one uses the specification limits for the process being
monitored, not the specification limits associated with the measurement tool). This
approach is analogous to the calculation of the P/T ratio illustrated earlier. Also reported
is Sigma Quality (provided the user has specified specification limits). Values of Sigma
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Quality > 6 indicate that the measurement tool is capable of handling the measurement
task being examined. A section in Chapter 2 illustrates this approach.

Capability Potential versus P/T and SNR

To refresh the reader’s memory, Equation 1.5 illustrates the calculation of capability
potential (Cp).

_ USL-LSL
60

Cp 1.5

where USL and LSL, respectively, are the upper and lower specification limits
for a process, and o'is the observed process standard deviation.

This statistic, discussed further in Chapter 6, estimates how much of the output of a
process fits between defined specification limits. A Cp value of 1 predicts that some
99.73% of observations will fit within the specifications (see Chapter 6 for calculations
supporting this statement). The JMP data tables referenced in the discussions in this and
in following sections are available on the companion Web site for this book at
http://support.sas.com/reece. Sample data tables are arranged by chapters in the
discussion. To open a table using the JMP Starter window, select the File category, and
then click Open Data Table (left panel in Figure 1.2). Alternatively, select File=»Open
in the menu bar at the top of the JMP window (right panel in Figure 1.2). Select the
Chapter 1 directory, then select the data table you want and open it (Figure 1.3).

Figure 1.2 Opening a Data Table in JMP
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Figure 1.3 Selecting a Data Table
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Figure 1.4 contains the table Capability vs Measurement Error.jmp. Entries in this table
are simulations of the contributions of measurement error to an observed theoretical
capability potential (Cp). In the left panel of the display, the symbol to the left of the
name of a column indicates that the contents of that column have numeric or continuous
modeling properties. The symbol to the right of the last four column names indicates that
each column has an associated formula to compute its contents. To see that formula,
right-click that symbol to reveal a menu (left panel of Figure 1.5). On that menu, select
Formula to reveal the embedded calculation (right panel of Figure 1.5).

Figure 1.4 Capability vs Measurement Error.jmp

ility vs Measwrment Error

=1 Capability vs Measurment Error ¢ e Tolerance | Process Measurement | Calculated | Observed Obsgerved
= (USL-LSL) StDey Sthev T StDey Capability SNR

1 B 1 0.0 1 1.00005 1.000 100.00

2 6 1 0.05 5| 1.00124922 0.999 20.00
= Calurnns 7/0) 3 5 1 0.1 10| 1.00435756 0.995 10.00
d Tolerance (USL-LSL) 4 G 1 0.15 15| 1.01115742 0.959 6.67
A Process StDev 5 5 1 0.2 20| 1.0198039 0.981 5.00
A Weasurement StDav 5 5 1 0.25 25| 1.03077641 0.970 4.00
A Calculated P/T 4 7 G 1 0.3 30 | 1.04403085 0.958 3.33
A Observed StDev o 8 5 1 0.5 50| 1.11803399 0.824 2.00
A Observed Capability 4 ] G 1 0.75 75 125 0.800 1.33
A SNR % 10 B 1 1 100 1.41421356 0.707 1.00
= Rows
All rows 10
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Figure 1.5 Revealing a Column Formula
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To explore how the observed capability potential (Cp) of a process varies with the
measurement error encountered, generate overlay plots of observed capability (y) versus

either the P/T ratio (x) or the SNR. Figure 1.6 illustrates setting up the graph for

capability versus SNR using the menu bar at the top of the JMP window. Notice that the
X axis has been converted to logarithmic scale during the setup.

Figure 1.6 Setting Up an Overlay Plot for Observed Capability versus SNR
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Figure 1.7 displays the overlay plot for observed capability versus P/T ratio; Figure 1.8
displays the overlay plot for observed capability versus SNR. Each graph received
considerable modification to improve the displays.
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Figure 1.7 Observed Capability versus P/T Ratio
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Figure 1.7 suggests that so long as P/T < 30, the measurement process does not materially
affect the perception of process performance. Similarly, in Figure 1.8, as long as SNR is
>~3, the same is true. Obviously, having a measurement of P/T << 30 or SNR > 5 is

highly desirable.

Figure 1.8 Observed Capability versus SNR
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Precision versus Accuracy in a Measurement
Tool or Process

To minimize the confusion that might exist between the terms “accuracy” and
“precision,” consider the following definitions. Precision, as applied to a measurement
tool or process, is a measure of the total amount of variation in that tool or process.
Intuitively, the more precise a measurement tool or process, the more desirable it
becomes. Accuracy is the difference between a standard or true value and the average of
several repeated measurements using a particular tool or process. A measurement tool or
process can be precise and accurate, or it can have any combination of those factors,
including neither of them. Figure 1.9 illustrates these concepts using a marksmanship
model.

Figure 1.9 Precision versus Accuracy (Marksmanship Model)
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The target labeled “Tool 1” represents a measurement process that is both precise and
accurate. That labeled “Tool 2” represents a measurement process that is not particularly
precise, but does give accurate results on average—on average “we got ‘em.” The
process or tool suffers from large variation, but no bias.
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The image for “Tool 3” shows considerable precision, but the aim is off; the tool has
considerable bias in its measurements and is not accurate. “Tool 4” is a disaster. Not only
are the results not accurate, but they lack precision as well.

The JMP data table Measurement Tools.jmp, found in the directory Chapter 1 on the
companion Web site for this book at http://support.sas.com/reece and illustrated in Figure
1.10, contains simulated data from the four measurement tools just described. This table
makes extensive use of the formula capabilities in JMP to simulate data.

Figure 1.10 Excerpt of Measurement Tools.jmp

BB Measurement Tools

v
= ¥ Taal 1 Taonl 2 Taal 3 Toal 4
1 3| 85855032 | 12151808 911e-171| 2.1932e-43
2| 29393939 | 1529e-30| 249632eG| 7.047e168| 1.1882e-42
3| 28787879 | 25676e-29| 5053348 | 6.3736165| 5.3429e-42
 Columns (5/0) 4| 28151816| 4.0655e-28| 1.00604e-7 | 4.881e-162| 3.3367e-d1
A | 27575758 B.07e-27| 1.9816e7| 3525e159| 1729740
ATool 14 B| 26969697 | G54550-26| 3.63624e7| 2.4e-156| B.8358e-40
:Igg:gi 7| 263639636 | 1.1344e-24| 73253567 | 1541e-153| 4.4477e-39
FRere 8| 25757576 | 1.4199e-23| 13780466 | 9.328e151| 22062638
9| 25151515 | 16750e-22| 25642166 | 5.325e-148| 10784637
10| -2.4545455 | 18651621 | 4E6521e6| 28666 145| 51942637
11| 23939394 | 19572020 5396616 | 14556-142| 24854636
12| -23333333 | 1.9366e-19| 148921e5| 6.961e-140| 1.1531e-35
= Rows 13| 22727273 | 1506818 26027265 3141e137| 53147635
All rows 100 14| 22121212 | 15896617 | 44824765 | 1.337e-134| 2413334
Selected 0 16| 21515162 | 1.3186e-16| 7607235 | 5.363e-132| 1.0303e33
Excluded o 16| -2.0909091| 1.0314e-15| 0.00012722 | 2.029e-129| 4.7644e-33
Hidden g 17| 2030303 | 7.6072e-15| 0.00020965 | 7.237e-127 | 2.0706e-32
Lebelles L 18| -1960B97 | 52904e-14 | 0.00034045 | 2434e-124| B.6673e-32

To create a table like this:

1. Generate a new, blank table in JMP.

2. To this table add 100 rows using any of several approaches. The approach in this
example was to use the Add Rows option under the Rows menu on the menu bar
and change the default number of rows from 20 to 100.

3. Change the title of the first column to X by clicking in the column heading and typing
the new heading.

4. Figure 1.11 illustrates adding a formula for that column. Because the table currently
contains only one column, all actions affect that column. To access the options in the
upper left panel, right-click the column and select Formula. In the window that
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appears (upper right panel) select Row=>Count. To start filling in the formula,
select Change Sign in the formula editor window; enter 3 in the first highlighted
box. Follow that entry with another 3 and 100 to complete the formula. Clicking OK
in the editor window completes the process and writes the results to the table in the
first column.

Figure 1.11 Creating a Count of Entries in the First Column of Measurement

Tools.jmp
|
Column Info.. | Table Columns v ok |
! i ] Row [,
Modeling Type 3 S
Preselect Role k Transcendental
F— rigonometric
Validation k
Delete Columns Count[— 3.3,100, repeat each=1 ]
Trigonarnetric
ik Character
Comparison
Conditional
Probability
Statistical ha

Count[, tol, n steps), repeat each=1 ]

5. The next steps add additional columns to the table and label them as shown in Figure
1.10. The author chose to right-click in the empty space to the right of the first
column to produce the options in the left panel of Figure 1.12. Selecting Add
Multiple Columns brings up the window shown in the right panel of Figure 1.12.
Completing this window as shown adds four new columns to the original table.
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Figure 1.12 Adding Multiple Columns to Measurement Tools.jmp
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6. Creating a formula for each of the four Tool columns using the Normal
Density function (left panel of Figure 1.13) provides the entries in those columns.
By default this function does not provide for entering the desired mean and standard
deviation of a normal density function. To add that capability, press the comma key
twice to bring up the right panel in Figure 1.13. Select the X column to fill in the first
box, and then enter the appropriate mean and standard deviation for the column
Tool 1. The means and standard deviations for each of the columns Tool 1 through
Tool 4 are as follows:

Column Mean Standard Deviation

Tool 1 0 0.25
Tool 2 0 0.5

Tool 3 4 0.25
Tool 4 4 0.50




Figure 1.13 Generating Distribution Data for Measurement Tools.jmp

e

Row
Numeric
Transcendental
Trigonometric
Character
Comparison
Condticnal
robabilty
Statistical

no formula)

Chapter 1: Basic Concepts of Measurement Capability 15

oK
Beta Density
Beta Distribution
Beta Quantile
ChiSquare Density
ChiSquare Distribution
Chisquare Quantile
F Density
F Distribution
F Quantile
Gamma Density
Gamma Distribution
Gamma Quantile
Normal Density
Hormal Distribution
Hormal Quantile
I Densiby

Functions (qrnupedi hd

Rowr

=
MNumeric
Transcendental
Trigonometric

Character
Comparison
Conditianal
Frabability

Statistical =l

MNormal DiStribution[Q. mear, std dev]

L]

,
Lt

Figure 1.14 shows an overlay plot for the simulated distribution data in each column
versus the values of x. This figure has undergone considerable modification to improve
its appearance, including adding a reference line to the X axis as well as annotating the

curves to identify the columns that produced them.

Figure 1.14 Precision versus Accuracy in Measurement Tools
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To Calibrate or Not

When you have a measurement device, it is important to make sure it is actually
measuring the object correctly. A calibration study is to determine how well a device
carries out the measurement process.

In some situations, traceable standards might be available to calibrate a measurement
process. The National Institute of Science and Technology (NIST), formerly the National
Bureau of Standards (NBS), certifies a variety of standards. Or a measurement tool might
have some calibration procedure embedded in its software. The problem is how to decide
whether or not to calibrate an instrument at some point in its use. Obviously, uncalibrated
instruments could indicate that a manufacturing process is producing material off target
when it really is not.

Understanding Risk

Any decision made regarding calibrating an instrument contains risk. Figure 1.15 shows a
truth table to help define the situations one might encounter. Although the average
engineer or researcher probably does not realize it, making a decision about whether or
not to calibrate a measurement tool involves generating two hypotheses—one the exact
opposite of the other.

Figure 1.15 Truth Table

TRUTH

Does not Requires
require calibration__ calibration

CORRECT !
pECISION | P ERROR

Do not
calibrate

DECISION

« ERROR | CORRECT
i DECISION

Calibrate

The null hypothesis, usually abbreviated H,, states that “the measurement tool does not
require calibration.” Its direct opposite, designated the alternate hypothesis or alternative
hypothesis, states that “the measurement tool requires calibration.” An investigator
gathers data and analyzes it to determine whether or not the facts support the alternate
hypothesis. The result of that analysis dictates whether he or she rejects or fails to reject
the null hypothesis.



Chapter 1: Basic Concepts of Measurement Capability 17

Here are some trivial mnemonics (not necessarily statistically rigorous) that help keep the
o and 3 risk straight:

= ART: alpha — Reject the null hypothesis when it is True.
=  BAF: Beta— Accept the null hypothesis when it is False.

The power of a testis 1 — f3.

Another trivial method for helping to understand the types of risk is to liken o risk to
seeing a ghost. Alternatively, B risk is akin to stepping off a curb in front of an oncoming
truck. From Figure 1.15, if an engineer decides to calibrate a measurement tool when it
does not require it (rejecting H, when it is actually true), he or she commits an o error.
On the other hand, deciding not to calibrate a measurement tool when it actually requires
it produces a [ error.

Obviously, prudent investigators want to keep both risks small in their work, although
some level of risk is always present. Calibrating a measurement tool unnecessarily might
or might not be a serious problem, depending on the complexity and cost of the
operation. If the combination of complexity and cost is large, then proceeding cautiously
is good advice. If complexity and cost are trivial, then unnecessary calibrations will not
necessarily produce a serious problem.

The nature of the problem is that the observer must compare a computed average to a
standard value within the bounds of o and B risks and in the presence of some variation
in observations. That is, the sample size required to detect a difference between an
observed average and a standard value is directly proportional to the o and B risks
allowed and to the ratio of the inherent variation in the observations to the size of the
difference to detect. Diamond (1989) provides an expression for estimating the sample
size for this problem shown in Equation 1.6.

N=[z%+zﬂj2(%j) 1.6

where Zos2 and zg are values from the unit normal distribution corresponding to
the risks accepted, ois the variation in the data, and Jis the chosen
difference to detect.

Rarely, if ever, will an investigator know precisely what the variation in the data will be
before conducting any experiments; that value must be estimated from the experimental
data after running the experiments. A very useful approach is to decide what difference
relative to the inherent variation in the data is acceptable and solve the equation from that
perspective.
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JMP Sample Size Calculations and Power Curves

JMP contains a very useful utility to help an experimenter make reasonable decisions
about sample size requirements for a variety of scenarios. The situation described here is
actually the simplest among many. As shown in Figure 1.16, select Sample Size and
Power on the DOE menu. Then select the first option, One Sample Mean, on the
window that appears, because the problem under consideration is to compare an observed
average of several observations to a target value.

Figure 1.16 Accessing Sample Size Calculations
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A & runs gxizti |
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[ Sample Size and Powegy Plat ang.t'.‘.'-: .Cf the pc:'.‘l.'ertc detect ¢
(GG effect zize given the third. Or compu

Selecting One Sample Mean displays the window shown in Figure 1.17. The system
sets a default o risk at 0.05, but the user can specify any value by editing the table. To
use this system most effectively, set Error Std Dev to 1, and then specify the
Difference to detect as some fraction or multiple of the error. As the window indicates,
supplying two values calculates the third, whereas entering only one value (for example,
a fraction or multiple of the unknown error) produces a plot of the other two.



Chapter 1: Basic Concepts of Measurement Capability 19

Figure 1.17 Opening Window of Sample Size Calculation
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Figure 1.18 shows Sample Size vs Risk and Delta.jmp (also found in the Chapter 1
directory on the companion Web site for this book at http://support.sas.com/reece)
created by exercising the option of filling in Difference to detect and Power for a
number of scenarios, given a value of 1 for Error Std Dev. This approach to determining
sample size can be very useful in exploring various levels of risk and differences to detect
what effect each has on the number of samples required to satisfy the conditions.

Figure 1.18 Sample Size vs Risk and Delta.jmp

m!iampleﬁzevslliskamlnelta M=
¥ Sample Size vs Risk a 4 ] Power (1-

= Alpha Error Std Dev Difference Beta) Sample Size
1 0.05 1 1 0.595 15
2 0.05 1 05 0.595 Sz
1 Columns (S/0) 3 0.05 1 0.1 0.95 1301
A ipha 2 0.1 1 1 0.95 12
ll Error Std Dev 5 0.1 1 0.5 0.95 45
 Difference 5 0.1 1 0.1 0.5 tes
Al Power (1 -Beta) 7 008 1 1 0e 12
A sample Sizs g 0.05 1 0 0.3 44
9 0.05 1 01 0.8 1053
12 10 0.1 1 1 0.5 10
0 11 0.1 1 0.5 0.5 36
0 12 01 1 01 0.9 858
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An alternative approach for exploring sample size requirements specifies only the
Difference to detect in Figure 1.19 in order to produce a plot showing how the other
two parameters (Sample Size and Power) vary under set conditions of Alpha risk and
Difference to detect, given an expected Error Std Dev.

Figure 1.19 Plots of Power versus Sample Size, Given Alpha and a
Difference to Detect Relative to Error
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Uncertainty in Estimating Means and Standard
Deviations

Anyone who has had a basic course in statistical process control (SPC) or perhaps in
some level of measurement capability instruction might have been struck by the large
numbers of observations usually recommended. In SPC one must estimate the grand
average of process output as well as an estimate of variation in that process. Similarly, in
characterizing the capability of a measurement tool or process, one must estimate several
possible sources of variation. Figure 1.20 shows MN, STDEV Cl.jmp (also found in the
Chapter 1 directory on the companion Web site for this book at
http://support.sas.com/reece). Throughout the table, the observed mean is 10 and the
observed standard deviation is 1, but the sample sizes used to determine these
observations vary from 2 to 100. The lower and upper 95% confidence interval (CI)
boundaries are simulations based on established statistical concepts.

Figure 1.20 MN, STDEV Cl.jmp

—
= MN, STDEY CI ¢ = Sample | Observed | Lower 95% Cl | Upper95% Cl | Observed |Lower 95% CI | Upper 85% CI
MOTE Data for Cl graphs| @ Size Mean |Bound for mean| Bound for mean | Std Dev | Bound for S0 | Bound for 50
1 2 10 1.0154 18.9346 1 0.4451 31.9102
2 3 10 7.5153 12.4841 1 0.5207 £.2647
3 4 10 8.4056 116912 1 0.5665 3.7285
< Calumns (7/0) 1 5 10 8.7553 11.2417 1 0.5991 28736
A Sample Size 5 6 10 5.9505 11.0494 1 0.6242 24526
4 Obsenved Mean 3 7 10 9.0752 10.9243 1 0.6444 22021
4 Lower 95% ¢ Bound for mean 7 g 10 9.1640 10.8360 1 0.6612 20353
A Upper 95% C| Bound for mean g 9 10 9.2313 10.76587 1 0.6755 19158
A Dbseried Std Dev 9 10 10 9.2846 107154 1 0.6878 1.8256
A Lower 95% CI Bound for SO =H 10 15 10 94462 105538 1 0.7321 15771
4 Upper 35% CI Bound for 5D 4 11 20 10 9.5320 10,4680 1 0.7605 1 AB0E
12 25 10 9.5372 104128 1 0.7808 13912
13 30 10 9.6266 10.3734 1 0.7964 1.3443
14 35 10 9.6565 103435 1 0.8089 13102
el 15 40 10 9.6802 10.3198 1 0.5192 1.2640
Saous i 18] 25 10 9,699 10,3004 1 0.8279 1263
Selected u]
e = 17 &0 10 9.7158 102842 1 0.8353 1 2451
Hidden o 18 &0 10 9.7417 102683 1 0.8476 12197
Labelled 0 19| 100 10 9.8016 10.1984 1 0.8760 11617
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Confidence Interval for the Mean

Equation 1.7 supplies the entries for the lower and upper 95% CI bounds for the mean
(third and fourth columns of data in Figure 1.20).

_ S
y i, NA 17

where y is the observed average; 7, is a critical value of the Student’s ¢ based
on n — 1 degrees of freedom (supported as ¢ quantile in JMP); s is the
observed standard deviation; and » is the sample size. The reader can
display the formulas associated with data columns three and four to see
the actual JMP implementation of this equation in each case.

Here are the major steps in creating the formula for the lower 95% CI bound for the
mean.

1. After selecting the appropriate table column and choosing to generate a formula, select
the Observed Mean column and add an element to it (Figure 1.21).

Figure 1.21 Adding an Element to the Observed Mean Column
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2. Under the Probability option, select t Quantile (Figure 1.22). Figure 1.23 shows the
resulting formula.

Figure 1.22 Selecting t Quantile
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Figure 1.23 The Formula after Step 2

Observed Mear+t Quantile[@, DFA]

3. Select the multiplication operator from the choices provided in the formula window.

4. With the new box highlighted, select the division operator. The numerator in this
expression is the Observed Std Dev, while the denominator is the square root of
Sample Size (Figure 1.24).

Figure 1.24 The Formula after Step 4

Ohsarved Std Dev
[ Chzerved Mean+1t Quaﬂtwle[ m, DFA]] *

", Sample Size

5. The DF in the formula is Sample Size — 1; the p value is a number representing the
fraction of a student’s t distribution remaining in the left tail of that distribution as the
lower bound of the 95% confidence interval—0.025. Figure 1.25 shows the completed
formula.
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Figure 1.25 The Completed Formula

Obsarved Mean
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The formula for the upper 95% CI boundary for the mean is identical to that just
described except for the value entered for p. The value for this expression is 0.975, which
reflects the area under the student’s t distribution left of that upper boundary. Therefore,
the area under the curve between the two limits is 0.975 — 0.025 = 0.95.

Confidence Interval for the Standard Deviation

In Figure 1.20, data columns six and seven, respectively, provide the upper and lower
95% CI bounds for the standard deviation. Equation 1.8 provides these values based on
the varying sample sizes.

<o’ <

where v represents the degrees of freedom in the sample (n — 1); s° is the
square of the observed standard deviation; o’ is the true population
variance; and " is a value from the chi-square distribution such that
1 — o/2 or o/2 of the distribution remains to the left of that value
(0. =0.05 for a 95% confidence interval). The reader can display the
formulas associated with data columns six and seven to see the actual
JMP implementation.
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The formulas embedded in these columns compute the lower and upper 95% confidence
boundaries of the standard deviation (given as 1 in the table) based on the number of
observations used to estimate it. Here are the steps used to create these formulas.

1. To create a formula with the creation of a division as the initial entry, select the +
symbol in the formula window. Convert that fraction to its square root using the V
symbol in the formula window (Figure 1.26).

Figure 1.26 Beginning the Formula
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2. Add Sample Size —1 to the numerator to compute the degrees of freedom in the
estimate. Multiply this entry by the square of observed standard deviation. Use the x”
option in the formula window (Figure 1.27).

Figure 1.27 The Formula after Step 2

Power[ Ohbserved Std Dev, 2 ]|

[ Sampls Siza-1 ] *
—
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3. From the Probability menu, select ChiSquare Quantile (Figure 1.28).

Figure 1.28 Selecting ChiSquare Quantile
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4. Fill in the appropriate value for p and DF in the expression. As shown in Equation 1.8
and as implemented in JMP, p refers to a value on the horizontal axis of the
distribution such that a fraction of the area under the y curve lies to the left of that

value. For a 95% confidence interval, oo = 0.05, so 1 — o/2 = 0.975. The DF for the
estimate is one less than the sample size. For the upper boundary of the confidence
interval, the p value is 0.025.

Figure 1.29 The Completed Formula

[ Sample 5ize- 1 ] * Power[ Observed Sid Dav, 2]

ChiSquare Quantile 0.975, Sample Size-[1]

Figures 1.30 and 1.31 are overlay plots created in JMP that illustrate how the confidence
intervals for the mean and standard deviation, respectively, respond to changes in the
sample size used to estimate them.
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Figure 1.30 Mean Cl versus Sample Size
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Figure 1.31 StDev Cl versus Sample Size
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Notice in both figures that the horizontal axes are logarithmic and that the vertical axis in
Figure 1.31 is logarithmic. In Figure 1.30 the uncertainty in estimating a mean
(confidence interval) begins to stabilize between sample sizes of 10 to 20. However,
Figure 1.31 shows that considerable uncertainty exists in the estimate of a standard
deviation until the sample size is 30 or more. This does not mean that an investigator
cannot estimate these parameters with fewer samples. It means that the uncertainty in
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estimates of either means or standard deviations based on small samples might be
unacceptable, particularly in the case of standard deviations.

A measurement capability study primarily estimates variation in the measurement
process; therefore, the investigator should try to accumulate at least 30 independent or
replicate samples for each source of variation in that measurement process in order to
have more sound estimates of the contributions of each.

Components of Measurement Error

The observed error in a process is the sum of the actual process variation and a
measurement error, as shown in Equation 1.1 previously. Measurement error itself has
two identifiable and measurable components as well: repeatability and reproducibility, as
shown in Equation 1.9.

2 2 2

measurement O-repeatability + O-reproducibility 1.9

Repeatability Error

Repeatability error is the simplest measurement error to estimate, because it represents
the ability of the measurement process to repeat values in a short period of time. In the
semiconductor industry, for example, an investigator using an automated tool could
generate data for this estimation in a matter of minutes. All one has to do is place the
object to be measured in the tool and press the Measure button a number of times. Since
this error is a variance, the experimenter should collect at least 30 readings in short order
(Figure 1.31) in order to obtain a reliable estimate. In other cases involving operators
measuring individual parts, this error represents the ability of operators to repeat their
measurements on those parts, perhaps over a period of time.

The important point is that this error is an estimate of the variation of the measurement
system under conditions of minimum perturbation. A guideline for the level of allowable
repeatability error is for the P/T ratio to be £5. Many measurement experiments allow
estimation of repeatability error along with estimation of reproducibility error and total
measurement error. Conducting a simple preliminary experiment to estimate repeatability
alone can pay dividends in that such a study might detect an inherent weakness or
problem with the measurement system and do it relatively inexpensively. The sections
“An Oxide Thickness Measuring Tool” and “Repeatability of an FTIR Measurement
Tool” in Chapter 2 illustrate case studies where this was indeed the case.
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Reproducibility Error

Reproducibility error includes all other variables chargeable to the measurement system,
such as day-to-day variation or operator-to-operator variation. Again this type of study
estimates standard deviations or variances, so an investigator planning this investigation
must pay particular attention to generating enough data such that each measurement
factor has enough degrees of freedom (replicates) associated with it to produce a reliable
estimate. Therefore, a complete and robust measurement study to estimate total
measurement error and to separate repeatability and reproducibility errors can require
weeks to complete. This is not to say that the measurement study should dominate the
work of individuals running a process. Rather, over a significant period of time, the study
should include enough measurement episodes to enable reliable estimation of variances.

Generating a matrix of trials before starting the study and analyzing the result of filling in
the measurement data with random numbers will provide information about the degrees
of freedom associated with each factor of interest.

In the semiconductor industry, an investigator usually measures several points on a wafer.
These points will yield different values because coating thicknesses, for example, will
vary depending on location on the wafer surface. The variations among these points is not
normally charged to the measurement process, because they are an artifact of the object
being measured and not part of the measurement process itself. But repeated
measurements of those same locations do contribute to measurement variability.

Linearity of Measurement Tools

As it applies to measurement processes, linearity is a measure of how stable measurement
error and bias are over some range of values being measured. For example, a particular
process might measure items of widely varying dimensions. The question to answer is
whether or not the measurement error and bias is constant over that range. If it is not,

then this type of study will make users aware of any additional limitations of their
measurement process. Graphical representations can generate the required information.
The section “Repeatability and Linearity of a Resistance Measurement Tool” in Chapter
2 provides an example that illustrates some of these principles.
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Random versus Fixed Effects

As applied to measurement systems, random effects are sources of variation that might
include repeated measurements, variation over time, variation due to operators, variation
due to different measurement tools, or even variation due to supposedly identical objects.
Classical statistical methods consider observations of such events as examples from a
large population of possible events—such as an infinite number of repetitions of an event,
an infinite number of days for a study, or an infinite number of operators doing a
particular task. Realistically, a measurement study samples replications, time, and
operators and assumes they constitute a sample from a larger population. Particularly in
the case of operators, usually no more than a few are available or trained for a particular
task. Therefore, even though the entire population of operators might be involved in a
study, logic requires treating any contribution from them as a source of nuisance variation
or random noise initially. If, for example, one or more operators demonstrably produce
results different from the group, then further study of each operator becomes warranted to
establish a cause and a possible correction. A later section illustrates this point.

In a measurement system, a factor is a fixed effect when that factor that is not normally
considered a source of noise in the measurement system. In the semiconductor industry,
examples of fixed effects would be the differences in individual measurement locations
on a wafer, or differences between wafers with distinctly different properties such as film
thicknesses. Ironically, factors designated fixed in one case (such as locations on a wafer
surface) can become random in another, depending on the context of their analysis. For
example, an experimental study of a manufacturing process might seek to minimize the
variation of measurements found across a wafer surface. Although the investigation could
continue to consider each wafer location a fixed effect, the objective of such a study
generally is to minimize the contribution of those differences. Therefore, a logical
approach considers the measurement sites sources of random error or nuisance variation
in a process.

In the author’s experience, whether to consider a particular effect random or fixed
depends on the context of its effect on a process, whether a measurement process or a
manufacturing process. JMP has excellent utilities for handling both types of effects, and
later sections will make every effort to explain how and why to assign particular effects
to a specific designation of random or fixed.



