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Overview: CLP Procedure

The CLP procedure is a finite-domain constraint programming solver for constraint satisfaction
problems (CSPs) with linear, logical, global, and scheduling constraints. In addition to having an
expressive syntax for representing CSPs, the solver features powerful built-in consistency routines
and constraint propagation algorithms, a choice of nondeterministic search strategies, and controls
for guiding the search mechanism that enable you to solve a diverse array of combinatorial prob-
lems.

For the most recent updates to the documentation for this experimental procedure, see the Statistics
and Operations Research Documentation page at http://support.sas.com/rnd/app/doc.html.

The Constraint Satisfaction Problem

Many important problems in areas such as artificial intelligence (AI) and operations research (OR)
can be formulated as constraint satisfaction problems. A CSP is defined by a finite set of variables
taking values from finite domains and a finite set of constraints restricting the values the variables
can simultaneously take.

More formally, a CSP can be defined as a triple hX; D; C i:

� X D fx1; : : : ; xng is a finite set of variables.

� D D fD1; : : : ; Dng is a finite set of domains, where Di is a finite set of possible values that
the variable xi can take. Di is known as the domain of variable xi .

� C D fc1; : : : ; cmg is a finite set of constraints restricting the values that the variables can
simultaneously take.

Note that the domains need not represent consecutive integers. For example, the domain of a vari-
able could be the set of all even numbers in the interval [0, 100]. A domain does not even need to
be totally numeric. In fact, in a scheduling problem with resources, the values are typically mul-
tidimensional. For example, an activity can be considered as a variable, and each element of the
domain would be an n-tuple that represents a start time for the activity as well as the resource(s)
that must be assigned to the activity corresponding to the start time.

A solution to a CSP is an assignment of values to the variables in order to satisfy all the constraints,
and the problem amounts to finding solution(s), or possibly determining that a solution does not
exist.

The CLP procedure can be used to find one or more (and in some instances, all) solutions to a CSP
with linear, logical, global, and scheduling constraints. The numeric components of all variable
domains are assumed to be integers.
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Techniques for Solving CSPs

Several techniques for solving CSPs are available. Kumar (1992) and Tsang (1993) present a good
overview of these techniques. It should be noted that the satisfiability problem (SAT) (Garey and
Johnson 1979) can be regarded as a CSP. Consequently, most problems in this class are NP-complete
problems, and a backtracking search mechanism is an important technique for solving them (Floyd
1967).

One of the most popular tree search mechanisms is chronological backtracking. However, a chrono-
logical backtracking approach is not very efficient due to the late detection of conflicts; that is, it
is oriented toward recovering from failures and not avoiding them to begin with. The search space
is reduced only after detection of a failure, and the performance of this technique is drastically
reduced with increasing problem size. Another drawback of using chronological backtracking is
encountering repeated failures due to the same reason, sometimes referred to as “thrashing.” The
presence of late detection and “thrashing” has led researchers to develop consistency techniques
that can achieve superior pruning of the search tree. This strategy employs an active use, rather than
a passive use, of constraints.

Constraint Propagation

A more efficient technique than backtracking is that of constraint propagation, which uses consis-
tency techniques to effectively prune the domains of variables. Consistency techniques are based
on the idea of a priori pruning, which uses the constraint to reduce the domains of the variables.
Consistency techniques are also known as relaxation algorithms (Tsang 1993), and the process is
also referred to as problem reduction, domain filtering, or pruning.

One of the earliest applications of consistency techniques was in the AI field in solving the scene
labeling problem, which required recognizing objects in three-dimensional space by interpreting
two-dimensional line drawings of the object. The Waltz filtering algorithm (Waltz 1975) analyzes
line drawings by systematically labeling the edges and junctions while maintaining consistency
between the labels.

An effective consistency technique for handling resource capacity constraints is edge finding
(Applegate and Cook 1991). Edge-finding techniques reason about the processing order of a set
of activities that require a given resource or set of resources. Some of the earliest work related to
edge finding can be attributed to Carlier and Pinson (1989), who successfully solved MT10, a well-
known 10x10 job shop problem that had remain unsolved for over 20 years (Muth and Thompson
1963).

Constraint propagation is characterized by the extent of propagation (also referred to as the level
of consistency) and the domain pruning scheme that is followed—domain propagation or interval
propagation. In practice, interval propagation is preferred over domain propagation because of
its lower computational costs. This mechanism is discussed in detail in Van Hentenryck (1989).
However, constraint propagation is not a complete solution technique and needs to be complemented
by a search technique in order to ensure success (Kumar 1992).
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Finite-Domain Constraint Programming

Finite-domain constraint programming is an effective and complete solution technique that embeds
incomplete constraint propagation techniques into a nondeterministic backtracking search mecha-
nism, implemented as follows. Whenever a node is visited, constraint propagation is carried out
to attain a desired level of consistency. If the domain of each variable reduces to a singleton set,
the node represents a solution to the CSP. If the domain of a variable becomes empty, the node is
pruned. Otherwise a variable is selected, its domain is distributed, and a new set of CSPs is gener-
ated, each of which is a child node of the current node. Several factors play a role in determining
the outcome of this mechanism, such as the extent of propagation (or level of consistency enforced),
the variable selection strategy, and the variable assignment or domain distribution strategy.

For example, the lack of any propagation reduces this technique to a simple generate-and-test,
whereas performing consistency on variables already selected reduces this to chronological back-
tracking, one of the systematic search techniques. These are also known as look-back schemas,
because they share the disadvantage of late conflict detection. Look-ahead schemas, on the other
hand, work to prevent future conflicts. Some popular examples of look-ahead strategies in increas-
ing degree of consistency level are forward checking (FC), partial look ahead (PLA), and full look
ahead (LA) (Kumar 1992). Forward checking enforces consistency between the current variable
and future variables; PLA and LA extend this even further to pairs of not yet instantiated variables.

Two important consequences of this technique are that inconsistencies are discovered early on and
that the current set of alternatives coherent with the existing partial solution is dynamically main-
tained. These consequences are powerful enough to prune large parts of the search tree, thereby
reducing the “combinatorial explosion” of the search process. However, although constraint prop-
agation at each node results in fewer nodes in the search tree, the processing at each node is more
expensive. The ideal scenario is to strike a balance between the extent of propagation and the
subsequent computation cost.

Variable selection is another strategy that can affect the solution process. The order in which vari-
ables are chosen for instantiation can have a substantial impact on the complexity of the backtrack
search. Several heuristics have been developed and analyzed for selecting variable ordering. One
of the more common ones is a dynamic heuristic based on the fail first principle (Haralick and El-
liot 1980), which selects the variable whose domain has minimal size. Subsequent analysis of this
heuristic by several researchers has validated this technique as providing substantial improvement
for a significant class of problems. Another popular technique is to instantiate the most constrained
variable first. Both these strategies are based on the principle of selecting the variable most likely
to fail and to detect such failures as early as possible.

The domain distribution strategy for a selected variable is yet another area that can influence the
performance of a backtracking search. However, good value-ordering heuristics are expected to be
very problem-specific (Kumar 1992).
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The CLP Procedure

The CLP procedure is a finite-domain constraint programming solver for CSPs. In the context of
the CLP procedure, CSPs can be classified into two types: standard CSPs and scheduling CSPs. A
standard CSP is characterized by integer variables, linear constraints, array-type constraints, global
constraints, and reified constraints. In other words, X is a finite set of integer variables, and C can
contain linear, array, global, or logical constraints. A scheduling CSP is characterized by activities,
temporal constraints, and resource requirement constraints. In other words, X is a finite set of
activities, and C is a set of temporal constraints and resource requirement constraints. The CSP
type is determined by the presence of either the OUT= option or the SCHEDDATA= option in the
PROC CLP statement.

Specifying the OUT= option in the PROC CLP statement indicates to the CLP procedure that the
CSP is a standard type. As such, the procedure will expect VAR, LINCON, REIFY, ALLDIFF,
ARRAY, and FOREACH statements. You can also specify a Constraint data set by using the
CONDATA= option in the PROC CLP statement in lieu of, or in combination with, VAR and
LINCON statements.

Specifying the SCHEDDATA= option in the PROC CLP statement indicates to the CLP procedure
that the CSP is a scheduling type. As such, the procedure will expect ACTIVITY, RESOURCE,
REQUIRES, and SCHEDULE statements. You can also specify an Activity data set by using the
ACTDATA= option in the PROC CLP statement in lieu of, or in combination with, the ACTIVITY
statement. Precedence relationships between activities must be defined using the ACTDATA= data
set. Resource requirements of activities must be defined using the RESOURCE and REQUIRES
statements.

The output data set contains any solutions determined by the CLP procedure. For more information
about the format and layout, see the section “Details: CLP Procedure” on page 24.

Consistency Techniques

The CLP procedure features a full look-ahead algorithm for standard CSPs that follows a strategy
of maintaining a version of generalized arc consistency that is based on the AC-3 consistency rou-
tine (Mackworth 1977). This strategy maintains consistency between the selected variables and the
unassigned variables and also maintains consistency between unassigned variables. For the schedul-
ing CSPs, the CLP procedure uses a forward checking algorithm, an arc-consistency routine for
maintaining consistency between unassigned activities, and energetic-based reasoning methods for
resource-constrained scheduling that feature the edge-finder algorithm (Applegate and Cook 1991).
You can elect to turn off some of these consistency techniques in the interest of performance.

Selection Strategy

A search algorithm for CSPs searches systematically through the possible assignments of values
to variables. The order in which a variable is selected can be based on a static ordering, which
is determined before the search begins, or on a dynamic ordering, in which the choice of the next
variable depends on the current state of the search. The VARSELECT= option in the PROC CLP
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statement defines the variable selection strategy for a standard CSP. The default strategy is the
dynamic MINR strategy, which selects the variable with the smallest range. The ACTSELECT=
option in the SCHEDULE statement defines the activity selection strategy for a scheduling CSP. The
default strategy is the RAND strategy, which selects an activity at random from the set of activities
that begin prior to the earliest early finish time. This strategy was proposed by Nuijten (1994).

Assignment Strategy

Once a variable or an activity has been selected, the assignment strategy dictates the value that is
assigned to it. For variables, the assignment strategy is specified with the VARASSIGN= option
in the PROC CLP statement. The default assignment strategy selects the minimum value from
the domain of the selected variable. For activities, the assignment strategy is specified with the
ACTASSIGN= option in the SCHEDULE statement. The default strategy of RAND assigns the
time to the earliest start time, and the resources are chosen randomly from the set of resource
assignments that support the selected start time.

Introductory Examples: CLP Procedure

The following examples illustrate the formulation and solution of two well-known logical puzzles
in the constraint programming community by using the CLP procedure.

Send More Money

The Send More Money problem consists of finding unique digits for the letters D, E, M, N, O, R,
S, and Y such that S and M are different from zero (no leading zeros) and the following equation is
satisfied:

S E N D

+ M O R E

M O N E Y

You can use the CLP procedure to formulate this problem as a CSP by representing each of the
letters in the expression with an integer variable. The domain of each variable is the set of digits 0
through 9. The VAR statement identifies the variables to the problem. The DOM= option defines the
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default domain for all the variables to be [0,9]. The OUT= option identifies the CSP as a standard
type. The LINCON statement is used to define the linear constraint SEND + MORE = MONEY,
as well as the restrictions that S and M cannot take the value zero. (Alternatively, you can simply
specify the domain for S and M as [1,9] in the VAR statement.) Finally, the ALLDIFF statement
is specified to enforce the condition that the assignment of digits should be unique. The complete
representation, using the CLP procedure, is as follows:

proc clp dom=[0,9] /* Define the default domain */
out=out; /* Name the output data set */

var S E N D M O R E M O N E Y; /* Declare the variables */
lincon /* Linear constraints */

/* SEND + MORE = MONEY */
1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R + E
=
10000*M + 1000*O + 100*N + 10*E + Y,
S<>0, /* No leading zeros */
M<>0;

alldiff(); /* All variables have pairwise distinct values*/
run;

The solution data set produced by the CLP procedure is shown in Figure 1.1.

Figure 1.1 Solution to SEND + MORE = MONEY

S E N D M O R Y

9 5 6 7 1 0 8 2

The unique solution to the problem determined by the CLP procedure is as follows:

9 5 6 7

+ 1 0 8 5

1 0 6 5 2

Eight Queens

The Eight Queens problem is a special instance of the N -Queens problem, where the objective is
to position N queens on an N � N chessboard such that no two queens attack each other. The
CLP procedure provides an expressive constraint for variable arrays that can be used for solving
this problem very efficiently.
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You can model this problem by using a variable array A of dimension N , where AŒi� is the row
number of the queen in column i . Since no two queens can be in the same row, it follows that all
the AŒi�’s must be pairwise distinct.

In order to ensure that no two queens can be on the same diagonal, you should have the following
for all i and j :

AŒj � � AŒi� <> j � i

and

AŒj � � AŒi� <> i � j

In other words, you should have

AŒi� � i <> AŒj � � j

and

AŒi� C i <> AŒj � C j

Hence, the .AŒi � C i/’s are pairwise distinct, and the .AŒi � � i/’s are pairwise distinct.

These two conditions, including the one that the AŒi�’s be pairwise distinct, can be formulated using
the FOREACH statement.

One possible such CLP formulation is presented as follows:

proc clp out=out
varselect=fifo; /* Variable Selection Strategy */

array A[8] (A1-A8); /* Define the array A */
var (A1-A8)=[1,8]; /* Define each of the variables in the array */

/* Initialize domains */
/* A[i] is the row number of the queen in column i*/
foreach(A, DIFF, 0); /* A[i] ’s are pairwise distinct */
foreach(A, DIFF, -1); /* A[i] - i ’s are pairwise distinct */
foreach(A, DIFF, 1); /* A[i] + i ’s are pairwise distinct */

run;

The ARRAY statement is required when you are using a FOREACH statement, and it defines the
array A in terms of the eight variables A1–A8. The domain of each of these variables is explicitly
specified in the VAR statement to be the digits 1 through 8 since they represent the row number on
an 8x8 board. FOREACH(A, DIFF, 0) represents the constraint that the AŒi�’s are different. FORE-
ACH(A, DIFF, -1) represents the constraint that the AŒi� � i ’s are different, and FOREACH(A,
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DIFF, 1) represents the constraint that the AŒi� C i ’s are different. The VARSELECT= option spec-
ifies the variable selection strategy to be first-in-first-out, the order in which they are encountered
by the CLP procedure.

The following statements display the solution data set shown in Figure 1.2:

proc print data=out noobs label;
label A1=a A2=b A3=c A4=d

A5=e A6=f A7=g A8=h;
run;
goptions reset=all;

Figure 1.2 A Solution to the Eight Queens Problem

a b c d e f g h

1 5 8 6 3 7 2 4

The corresponding solution to the Eight Queens problem is displayed in Figure 1.3.

Figure 1.3 A Solution to the Eight Queens Problem

a

a

1 1

b

b

2 2

c

c

3 3

d

d

4 4

e

e

5 5

f

f

6 6

g

g

7 7

h

h

8 8
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Syntax: CLP Procedure

The following statements are used in PROC CLP:

PROC CLP option(s) ;
ACTIVITY specification < . . . > ;
ALLDIFF (variables) < . . . > ;
ARRAY specification < . . . > ;
FOREACH (array, type, < offset >) ;
LINCON linear_constraint < , . . . > ;
REIFY variable : (linear_constraint) < . . . > ;
REQUIRES specification < . . . > ;
RESOURCE specification < . . . > ;
SCHEDULE option(s) ;
VAR specification < . . . > ;

Functional Summary

The statements and options available with PROC CLP are summarized by purpose in Table 1.1.

Table 1.1 Functional Summary

Description Statement Option

Assignment Strategy Options
variable assignment strategy PROC CLP VARASSIGN=
activity assignment strategy SCHEDULE ACTASSIGN=

Data Set Options
activity input data set PROC CLP ACTDATA=
constraint input data set PROC CLP CONDATA=
solution output data set PROC CLP OUT=
schedule output data set PROC CLP SCHEDDATA=

General Options
suppress preprocessing PROC CLP NOPREPROCESS
upper bound on CPU time (seconds) PROC CLP MAXTIME=

Output Control Options
find all possible solutions PROC CLP FINDALLSOLNS
indicate progress in log PROC CLP SHOWPROGRESS
number of solutions PROC CLP SOLNS=

Scheduling CSP-Related Statements
activity specifications ACTIVITY
resource requirement specifications REQUIRES



Functional Summary F 11

Table 1.1 continued

Description Statement Option

resource specifications RESOURCE
scheduling parameters SCHEDULE

Scheduling: Resource Constraints
edge-finder consistency routines SCHEDULE EDGEFINDER=
not first edge-finder extension SCHEDULE NOTFIRST=
not last edge-finder extension SCHEDULE NOTLAST=

Scheduling: Temporal Constraints
activity duration ACTIVITY DURATION=
activity finish lower bound ACTIVITY FGE=
activity finish upper bound ACTIVITY FLE=
activity start lower bound ACTIVITY SGE=
activity start upper bound ACTIVITY SLE=
schedule duration SCHEDULE DURATION=
schedule finish SCHEDULE FINISH=
schedule start SCHEDULE START=

Scheduling: Search Control Options
dead-end multiplier PROC CLP DM=
number of allowable dead ends per restart PROC CLP DPR=
number of search restarts PROC CLP RESTARTS=

Selection Strategy Options
variable selection strategy PROC CLP VARSELECT=
activity selection strategy SCHEDULE ACTSELECT=

Standard CSP Statements
all-different constraints ALLDIFF
array specifications ARRAY
for-each constraints FOREACH
linear constraints LINCON
reified constraints REIFY
variable specifications VAR
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PROC CLP Statement

PROC CLP option(s) ;

The following options can appear in the PROC CLP statement.

ACTDATA=SAS-data-set

ACTIVITY=SAS-data-set
identifies the input data set that defines the activities and temporal constraints. The temporal
constraints consist of time alignment-type constraints and precedence-type constraints. The
format of the ACTDATA= data set is similar to that of the Activity data set used by the CPM
procedure in SAS/OR software. The activities and time alignment constraints can also be
directly specified using the ACTIVITY statement without the need for a data set. The CLP
procedure enables you to define activities by using a combination of the two specifications.

CONDATA=SAS-data-set
identifies the input data set that defines the linear constraints, variable types, and variable
bounds. The format of the CONDATA= data set is similar to that of the DATA= data set used
by the LP procedure in SAS/OR software. The linear constraints can also be specified in-line
using the LINCON statement. The CLP procedure enables you to define linear constraints
by using a combination of the two specifications. When defining linear constraints, you must
define the structural variables by using a VAR statement. Note that variable bounds can
be defined using the VAR statement, and any such definitions override those defined in the
CONDATA= data set.

DM=m

DEM=m
specifies the dead-end multiplier for the CSP. The dead-end multiplier is used to determine
the number of dead ends that are permitted before triggering a complete restart of the search
technique in a scheduling environment. The number of dead ends is the product of the dead-
end multiplier and the number of unassigned activities. The default value is 0.15. This option
is valid only with the SCHEDDATA= option.

DOMAIN=[lb, ub]

DOM=[lb, ub]
specifies the global domain of all variables to be the closed interval [lb, ub]. You can override
the global domain for a variable with a VAR statement or the CONDATA= data set. The
default is [0,1].

DPR=n
specifies an upper bound on the number of dead ends that are permitted before PROC CLP
restarts or terminates the search, depending on whether or not a randomized search strategy
is used. In the case of a nonrandomized strategy, n is an upper bound on the number of
allowable dead ends before terminating. In the case of a randomized strategy, n is an upper
bound on the number of allowable dead ends before restarting the search. The DPR= option
has priority over the DM= option. The default value of the DPR= option is 1.
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FINDALLSOLNS
ALLSOLNS
FINDALL

attempts to find all possible solutions to the CSP. When a randomized search strategy is used,
it is possible to rediscover the same solution and end up with multiple instances of the same
solution. This is currently the case when you are solving scheduling-related problems. There-
fore, this option is ignored when you are solving a scheduling-related problem.

MAXTIME=m
specifies an upper bound on the number of CPU seconds allocated for solving the problem.
Note that the time specified by the MAXTIME= option is checked only once at the end of
each iteration. Therefore, the actual running time can be longer than that specified by the
MAXTIME= option. The difference depends on how long the last iteration takes. If you do
not specify this option, the procedure does not stop based on the amount of time elapsed.

NOPREPROCESS
suppresses any preprocessing that would typically be performed for the problem.

OUT=SAS-data-set
identifies the output data set that contains the solution(s) to the CSP, if any exist(s). Each ob-
servation in the OUT= data set corresponds to a solution of the CSP. The number of solutions
generated can be controlled using the SOLNS= option in the PROC CLP statement.

RESTARTS=n
specifies the number of restarts of the randomized search technique before terminating the
procedure. The default value is 3.

SCHEDDATA=SAS-data-set

SCHEDULE=SAS-data-set
identifies the output data set that contains the scheduling-related solution to the CSP, if one
exists. Each observation in the SCHEDDATA= data set corresponds to an activity. The
format of the schedule data set is similar to the schedule data set generated by the CPM and
PM procedures in SAS/OR software. The number of solutions generated can be controlled
using the SOLNS= option in the PROC CLP statement.

SHOWPROGRESS
prints a message to the log whenever a solution has been found. When a randomized strategy
is used, the number of restarts and dead ends that were required are also printed to the log.

SOLNS=n
specifies the number of solution attempts to be generated for the CSP. The default value is
1. It is important to note, especially in the context of randomized strategies, that an attempt
could result in no solution, given the current controls on the search mechanism, such as the
number of restarts and the number of dead ends permitted. As a result, the total number of
solutions found might not match the SOLNS= parameter.

VARASSIGN=keyword
specifies the value selection strategy. Currently there is only one value selection strategy. The
MIN strategy selects the minimum value from the domain of the selected variable. To assign
activities, use the ACTASSIGN= option in the SCHEDULE statement.
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VARSELECT=keyword
specifies the variable selection strategy. Both static and dynamic strategies are available.
Possible values follow.

Static strategies are as follows:

� FIFO, which uses the first-in-first-out ordering of the variables as encountered by the
procedure

� MAXCS, which selects the variable with the maximum number of constraints

Dynamic strategies are as follows:

� MINR, which selects the variable with the smallest range (that is, the minimum value
of upper bound minus lower bound)

� MAXC, which selects the variable with the largest number of active constraints

� MINRMAXC, which selects the variable with the smallest range, breaking ties by se-
lecting one with the largest number of active constraints

The dynamic strategies embody the “Fail First Principle” (FFP) of Haralick and Elliot (1980),
which suggests that “To succeed, try first where you are most likely to fail.” The default
strategy is MINR. To select activities, use the ACTSELECT= option in the SCHEDULE
statement.

ACTIVITY Statement

ACTIVITY specification < . . . > ;

An ACTIVITY specification can be one of the following types:

activity < = ( < DUR= > duration < type=date . . . >) >

(activity_list) < = ( < DUR= > duration < type=date . . . >) >

where duration is the activity duration and type is a keyword specifying an alignment-type constraint
on the activity (or activities) with respect to the date given by date.

The ACTIVITY statement defines one or more activities and the attributes of each activity, such as
the duration and any temporal constraints of the time alignment type. The default duration is 0.

Valid type keywords are as follows:

� SGE, start greater than or equal to date

� SLE, start less than or equal to date

� FGE, finish greater than or equal to date

� FLE, finish less than or equal to date
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You can specify any combination of the preceding keywords. For example, to define activities A1,
A2, A3, B1, and B3 with duration 3, and to set the start time of these activities equal to 10, you
would specify the following:

activity (A1-A3 B1 B3) = ( dur=3 sge=10 sle=10 );

You can alternatively use the ACTDATA= data set to define the activities, durations, and tempo-
ral constraints. In fact, you can specify both an ACTIVITY statement and an ACTDATA= data
set. You must use an ACTDATA= data set to define precedence-related temporal constraints. The
SCHEDDATA= option must be specified when the ACTIVITY statement is used.

ALLDIFF Statement

ALLDIFF (variables) < . . . > ;

ALLDIFFERENT (variables) < . . . > ;

The ALLDIFF statement can have multiple specifications. Each specification defines a unique
global constraint on a set of variables requiring all of them to be different from each other. A global
constraint is equivalent to a conjunction of elementary constraints.

For example, the statements

var (X1-X3) A B;
alldiff (X1-X3) (A B);

are equivalent to

X1 ¤ X2 AND
X2 ¤ X3 AND
X1 ¤ X3 AND

A ¤ B

If the variable list is empty, the ALLDIFF constraint applies to all the variables declared in the VAR
statement.

ARRAY Statement

ARRAY specification < . . . > ;

An ARRAY specification is in a form as follows:

name[dimension](variables)

The ARRAY statement is used to associate a name with a list of variables. Each of the variables in
the variable list must be defined using a VAR statement. The ARRAY statement is required when
you are specifying a constraint by FOREACH statement.
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FOREACH Statement

FOREACH (array, type, < offset >) ;

where array must be defined using an ARRAY statement, type is a keyword that determines the
type of the constraint, and offset is an integer. The default value is 0.

The FOREACH statement iteratively applies a constraint over an array of variables. The type of the
constraint is determined by type. The optional offset parameter is an integer and is interpreted in
the context of the constraint type.

Currently, the only valid type keyword is DIFF.

The FOREACH statement corresponding to the DIFF keyword iteratively applies the following
constraint to each pair of variables in the array:

variable_i C offset � i ¤ variable_j C offset � j 8 i ¤ j; i; j D 1; : : : ; array_dimension

For example, the constraint that all .AŒi � � i/’s are pairwise distinct for an array A is expressed as

foreach (A, diff, -1);

LINCON Statement

LINCON linear_constraint < , . . . > ;

LINEAR linear_constraint < , . . . > ;

A linear_constraint is specified in the following form:

linear_term_1 operator linear_term_2

where a linear_term is of the form

((<+|-> variable | number <* variable >). . . )

The keyword operator can be one of the following:

<, <=, =, >=, >, <>, LE, EQ, GE, LT, GT, NE

The LINCON statement allows for a very general specification of linear constraints. In particular,
it allows for specification of the following types of equality or inequality constraints:

nX
j D1

aij xj f� j < j D j � j > j ¤g bi for i D 1; : : : ; m
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For example, the constraint 4x1 � 3x2 D 5 is expressed as

var x1 x2;
lincon 4 * x1 - 3 * x2 = 5;

and the constraints

10x1 � x2 � 10

x1 C 5x2 ¤ 15

are expressed as

var x1 x2;
lincon 10 <= 10 * x1 - x2,

x1 + 5 * x2 <> 15;

Note that variables can be specified on either side of an equality or inequality in a LINCON state-
ment. Linear constraints can also be specified using the CONDATA= data set. Regardless of the
specification, you must define the variables by using a VAR statement.

REIFY Statement

REIFY variable : (linear_constraint) < . . . > ;

A linear_constraint is specified in the following form:

linear_term_1 operator linear_term_2

where a linear_term is of the form

((<+|-> variable | number <* variable >). . . )

The keyword operator can be one of the following:

<, <=, =, >=, >, <>, LE, EQ, GE, LT, GT, NE

The REIFY statement associates a binary variable with a linear constraint. The value of the binary
variable is 1 or 0 depending on whether the linear constraint is satisfied or not, respectively. The
linear constraint is said to be reified, and the binary variable is referred to as the control variable.
As with the other variables, the control variable must also be defined in a VAR statement or in the
CONDATA= data set.

The REIFY statement provides a convenient mechanism for expressing logical constraints, such as
disjunctive and implicative constraints. For example, the disjunctive constraint

.3x C 4y < 20/ _ .5x � 2y > 50/

can be expressed with the following statements:

var x y p q;
reify p: (3 * x + 4 * y < 20) q: (5 * x - 2 * y > 50);
lincon p + q >= 1;
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The binary variables p and q reify the linear constraints

3x C 4y < 20

and

5x C 2y > 50

respectively. The following linear constraint enforces the desired disjunction:

p C q � 1

The REIFY constraint can also be used to express a constraint involving the absolute value of a
variable. For example, the constraint

jX j D 5

can be expressed with the following statements:

var x p q;
reify p: (x = 5) q: (x = -5);
lincon p + q = 1;

REQUIRES Statement

REQUIRES specification < . . . > ;

REQ specification < . . . > ;

A REQUIRES specification is in the following form:

activity = (resource < , . . . >)

where activity represents a single activity or a list of activities. Likewise resource represents a
single resource or a list of resources.

The REQUIRES statement defines the potential activity assignments with respect to the pool of
resources. If an activity is not defined, the REQUIRES statement implicitly defines the activity.
The order of appearance of the ACTIVITY and REQUIRES statements and ACTIVITY dataset
affect the DET strategy. For example, to specify that activity A requires resource R, you would
need the following statements:

activity A;
resource R;
requires A = (R);

Sometimes, the assignment might not be established in advance and there might be a set of possible
alternates that can satisfy the requirements of an activity. This can be defined by multiple resource
specifications separated by commas. For example, to specify that the requirements of activity A
could be satisfied by either R1, R2, or R3, you would need the following statements:
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activity A;
resource R1 R2 R3;
requires A = (R1, R2, R3);

It is also possible that an activity might require more than one resource simultaneously. The speci-
fication is similar, the only difference being that the simultaneous requirement is specified without
any commas separating them.

For example, the following statements specify that activity A and B requires resources R1 and R2
simultaneously or resources R3 and R4 simultaneously:

activity A B;
resource (R1-R4);
requires (A B) = ((R1 R2), (R3 R4));

RESOURCE Statement

RESOURCE specification < . . . > ;

RES specification < . . . > ;

A RESOURCE specification is a single resource or a list of resources.

The RESOURCE statement specifies the names of all resources that are available to be allocated
to the activities. The REQUIRES statement is necessary to specify the resource requirements of an
activity. Currently all resources are assumed to be unary resources in that their capacity is equal to
one and they cannot be assigned to more than one activity at any given time.

SCHEDULE Statement

SCHEDULE options ;

SCHED options ;

The following options can appear in the SCHEDULE statement.

ACTASSIGN=keyword
specifies the activity assignment strategy subject to the setting of the ACTSELECT= option.
After an activity has been selected, the activity assignment strategy determines a start time
and a set of resources (empty if the activity has no resource requirements) for the selected
activity. The interpretation of the assignment strategy depends on whether the activity selec-
tion strategy has been specified as RJRAND or not.
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The activity is assigned its earliest possible start time unless the activity selection strategy
(ACTSELECT=) is RJRAND; otherwise the activity is assigned its latest possible start time.

Figure 1.4 illustrates possible start times for a single activity, which requires one of the re-
sources R1, R2, R3, R4, R5, or R6. The bars depict the possible start times supported by each
of the resources for the duration of the activity.

Figure 1.4 Potential Activity Start Times
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For example, if ACTSELECT=LJRAND, the activity is assigned a start time of 6 and one of
R1 or R2 is assigned. On the other hand, if ACTSELECT=RJRAND, the activity is assigned
a start time of 13 and one of R4, R5, or R6 is assigned.

If the activity has any resource requirements, then the activity is assigned a set of resources
as follows:

RAND randomly selects a set of resources that support the selected start time
for the activity.

In Figure 1.4, if the activity start time is set to 6, the strategy randomly
selects between R1 and R2. Otherwise, the strategy randomly selects
among R4, R5, and R6.

MAXTW j MAXLS selects the set of resources that supports the assigned start time and
affords the maximum time window of availability for the activity. Ties
are broken randomly.

In Figure 1.4, if the activity start time is set to 6, the resources that
support the selected start time are R1 and R2. Since R1 has a smaller
time window, the strategy selects R2. On the other hand, if the activity
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start time is set to 13, the resources that support the selected start time
are R4, R5, and R6. Because R4 has a smaller time window than R5
or R6, the strategy randomly selects between R5 and R6.

The default strategy is RAND. For assigning variables, use the VARASSIGN= option in the
PROC CLP statement.

ACTSELECT=keyword
specifies the activity selection strategy. The activity selection strategy can be randomized or
deterministic.

The following are selection strategies that use a random heuristic to break ties.

LJRAND j RAND selects an activity at random from those that begin prior to the earliest
early finish time. This strategy was proposed by Nuijten (1994).

MAXD selects an activity at random from those that begin prior to the earliest
early finish time and that have maximum duration.

MINA selects an activity at random from those that begin prior to the earliest
early finish time and that have the minimum number of resource assign-
ments.

MINLS selects an activity at random from those that begin prior to the earliest
early finish time and that have a minimum late start date.

RJRAND selects an activity at random from those that finish after the latest late
start time.

The following are deterministic selection strategies:

DET selects the first activity that begins prior to the earliest activity finish date.

DMINLS selects the activity with the earliest late start time.

The first activity is defined according to the following order of precedence:

1. ACTIVITY statement

2. REQUIRES statement

3. ACTIVITY dataset

The default strategy is RAND. For selecting variables, use the VARSELECT= option in the
PROC CLP statement.

DURATION=dur

SCHEDDUR=dur

DUR=dur
specifies the duration of the schedule. The DURATION= option imposes a constraint that the
duration of the schedule does not exceed the specified value.
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EDGEFINDER< =eftype >

EDGE < =eftype >
activates the edge-finder consistency routines for scheduling problems. By default, the
EDGEFINDER= option is inactive. Specifying the EDGEFINDER= option determines
whether an activity must be the first or the last to be processed from a set of activities re-
quiring a given resource or set of resources and prunes the domain of activity as appropriate.

Valid values for the eftype keyword are FIRST, LAST, or BOTH. Note that eftype is an
optional argument, and that specifying EDGEFINDER by itself is equivalent to specifying
EDGEFINDER=LAST. The interpretation of each of these keywords is described as follows:

� FIRST: The edge-finder algorithm attempts to determine whether an activity must be
processed first from a set of activities requiring a given resource or set of resources and
prunes its domain as appropriate.

� LAST: The edge-finder algorithm attempts to determine whether an activity must be
processed last from a set of activities requiring a given resource or set of resources and
prunes its domain as appropriate.

� BOTH: This is equivalent to specifying both FIRST and LAST. The edge-finder algo-
rithm attempts to determine which activities must be first and which activities must be
last, and updates their domains as necessary.

There are several extensions to the edge-finder consistency routines. These extensions are
invoked by using the NOTFIRST= and NOTLAST= options in the SCHEDULE statement.
For more information about options related to edge-finder consistency routines, see “Details:
CLP Procedure” on page 24.

FINISH=finish

END=finish

FINISHBEFORE=finish
specifies the finish time for the schedule. The schedule finish time is an upper bound on the
finish time of each activity (subject to time, precedence, and resource constraints). If you
want to impose a tighter upper bound for an activity, you can do so either by using the FLE=
specification in an ACTIVITY statement or by using the _ALIGNDATE_ and _ALIGNTYPE_
variables in the ACTDATA= data set.

NOTFIRST=level

NF=level
activates an extension of the edge-finder consistency routines for scheduling problems. By
default, the NOTFIRST= option is inactive. Specifying the NOTFIRST= option determines
whether an activity cannot be the first to be processed from a set of activities requiring a given
resource or set of resources and prunes its domain as appropriate.

The argument level is numeric and indicates the level of propagation. Valid values are 1,
2, or 3, with a higher number reflecting more propagation. It should be noted that more
propagation usually comes at a higher cost—mainly that of performance. The challenge
is to strike the right balance. Specifying the NOTFIRST= option implicitly turns on the
EDGEFINDER=LAST option since the latter is a special case of the former.
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There is a corresponding option NOTLAST=, which determines whether an activity cannot be
the last to be processed from a set of activities requiring a given resource or set of resources.

For more information about options related to edge-finder consistency routines, see the sec-
tion “Details: CLP Procedure” on page 24.

NOTLAST=level

NL=level
activates an extension of the edge-finder consistency routines for scheduling problems. By
default, the NOTLAST= option is inactive. Specifying the NOTLAST= option determines
whether an activity cannot be the last to be processed from a set of activities requiring a given
resource or set of resources and prunes its domain as appropriate.

The argument level is numeric and indicates the level of propagation. Valid values are 1,
2, or 3, with a higher number reflecting more propagation. It should be noted that more
propagation usually comes at a higher cost—mainly that of performance. The challenge
is to strike the right balance. Specifying the NOTLAST= option implicitly turns on the
EDGEFINDER=FIRST option since the latter is a special case of the former.

There is a corresponding option NOTFIRST=, which determines whether an activity can-
not be the first to be processed from a set of activities requiring a given resource or set of
resources.

For more information about options related to edge-finder consistency routines, see the sec-
tion “Details: CLP Procedure” on page 24.

START=start

BEGIN=start

STARTAFTER=start
specifies the start time for the schedule. The schedule start time is a lower bound on the start
time of each activity (subject to time, precedence, and resource constraints). If you want
to impose a tighter lower bound for an activity, you can do so either by using the SGE=
specification in an ACTIVITY statement or by using the _ALIGNDATE_ and _ALIGNTYPE_
variables in the ACTDATA= data set.

VAR Statement

VAR specification < . . . > ;

A VAR specification can be one of the following types:

variable < =[lower-bound < , upper-bound >] >

(variables) < =[lower-bound < , upper-bound >] >

The VAR statement declares all the variables that are to be considered in the CSP and, option-
ally, defines their domains. Any variable domains defined in a VAR statement override the global
variable domains defined using the DOMAIN= option in the PROC CLP statement as well as any
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bounds defined using the CONDATA= data set. If lower-bound is specified and upper-bound is
omitted, the corresponding variables are considered as being assigned to lower-bound.

Details: CLP Procedure

This section provides a detailed outline of the use of the CLP procedure. The material is organized
in subsections that describe different aspects of the procedure.

Modes of Operation

The CLP procedure can be invoked in one of two modes: standard mode and scheduling mode. The
standard mode gives you access to linear constraints, reified constraints, all-different constraints,
and array constraints; the scheduling mode gives you access to more scheduling-specific constraints,
such as temporal constraints (precedence and time) and resource constraints. In standard mode, the
decision variables are one-dimensional; a variable is assigned an integer in a solution. In scheduling
mode, the variables are typically multidimensional; a variable is assigned a start time and possibly
a set of resources in a solution. In scheduling mode, the variables are referred to as activities, and
the solution is referred to as a schedule.

Selecting the Mode of Operation

The CLP procedure requires the specification of an output data set to store the solution(s) to the
CSP. There are two possible output data sets: the Solution data set (specified using the OUT=
option in the PROC CLP statement), which corresponds to the standard mode of operation, and the
Schedule data set (specified using the SCHEDDATA= option in the PROC CLP statement), which
corresponds to the scheduling mode of operation. The mode is determined by which output data
set has been specified. If an output data set is not specified, the procedure terminates with an error
message. If both output data sets have been specified, the Schedule data set is ignored.

Constraint Data Set

The Constraint data set defines linear constraints, variable types, and bounds on variable domains.
You can use a Constraint data set in lieu of, or in combination with, a LINCON and/or a VAR
statement in order to define linear constraints, variable types, and variable bounds. The Constraint
data set is similar to the problem data set input to the LP procedure in SAS/OR software and is
specified using the CONDATA= option in the PROC CLP statement.

The Constraint data set must be in dense input format. In this format, a model’s columns appear
as variables in the input data set and the data set must contain the _TYPE_ variable, the _RHS_
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variable, and at least one numeric variable. In the absence of this requirement, the CLP procedure
terminates. The _TYPE_ variable is a character variable that tells the CLP procedure how to interpret
each observation. The CLP procedure recognizes the following keywords as valid values for the
_TYPE_ variable: EQ, LE, GE, NE, LT, GT, LOWERBD, UPPERBD, BINARY, and FIXED. An
optional character variable, _ID_, can be used to name each row in the Constraint data set.

Linear Constraints

For the _TYPE_ values EQ, LE, GE, NE, LT, GT, the corresponding observation is interpreted as
a linear constraint. The _RHS_ variable is a numeric variable that contains the right-hand-side
coefficient of the linear constraint. Any numeric variable other than _RHS_ that appears in a VAR
statement is interpreted as a structural variable for the linear constraint.

EQ (=) defines a linear equality

nX
j D1

aij xj D bi

LE (<=) defines a linear inequality of the form

nX
j D1

aij xj � bi

GE (>=) defines a linear inequality of the form

nX
j D1

aij xj � bi

NE (<>) defines a linear disequation of the form

nX
j D1

aij xj ¤ bi

LT (<) defines a linear inequality of the form

nX
j D1

aij xj < bi

GT (>) defines a linear inequality of the form

nX
j D1

aij xj > bi
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Domain Bounds

The values LOWERBD and UPPERBD specify additional lower bounds and upper bounds on
the variable domains, respectively. In an observation where the _TYPE_ variable is equal to
LOWERBD, a nonmissing value for a decision variable is considered a lower bound for that vari-
able. Similarly, in an observation where the _TYPE_ variable is equal to UPPERBD, a nonmissing
value for a decision variable is considered an upper bound for that variable. Note that lower and
upper bounds as previously defined will be overridden by lower and upper bounds defined using a
VAR statement.

Variable Types

The keywords BINARY and FIXED are interpreted as specifying numeric types. If the value of
_TYPE_ is BINARY for an observation, then any decision variable with a nonmissing entry for the
observation is interpreted as being a binary variable with domain {0,1}. If the value of _TYPE_ is
FIXED for an observation, then any decision variable with a nonmissing entry for the observation
is interpreted as being assigned to that nonmissing value. In other words, if the value of the variable
X is c in an observation for which _TYPE_ is FIXED, then the domain of X is considered to be the
singleton {c}. It is important to note that the value c should belong to the domain of X, or the
problem is deemed infeasible.

Variables in the CONDATA= Data Set

Table 1.2 lists all the variables associated with the Constraint data set and their interpretations by
the CLP procedure. The table also lists for each variable its type (C for character, N for numeric),
the possible values it can assume, and its default value.

Table 1.2 Constraint Data Set Variables

Name Type Description Allowed Values Default

_TYPE_ C observation type EQ, LE, GE, NE,
LT, GT, LOWERBD,
UPPERBD, BINARY,
FIXED

_RHS_ N right-hand-side
coefficient

0

_ID_ C observation name
(optional)

Any numeric
variable other
than _RHS_

N structural variable
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Solution Data Set

In order to solve a standard (nonscheduling) type CSP, you need to specify a solution data set by
using the OUT= option in the PROC CLP statement. The solution data set contains all the solutions
that have been determined by the CLP procedure. You can specify an upper bound on the number
of solutions by using the SOLNS= option in the PROC CLP statement. If you prefer that CLP
determine all possible solutions instead, you can specify the FINDALLSOLNS option in the PROC
CLP statement.

The solution data set contains as many decision variables as have been defined in the call to PROC
CLP. Every observation in the solution data set corresponds to a solution to the CSP. If a constraint
data set has been specified, then any variable formats and variable labels from the constraint data
set carry over to the solution data set.

Activity Data Set

You can use an activity data set in lieu of, or in combination with, an ACTIVITY statement to define
activities and constraints relating to the activities. The activity data set is similar to the activity data
set input to the CPM procedure in SAS/OR software and is specified using the ACTDATA= option
in the PROC CLP statement.

The activity data set enables you to define an activity, its domain, and any temporal constraints.
The temporal constraints could be either time-alignment-type or precedence-type constraints. The
activity data set requires, at the minimum, two variables: one to determine the activity, and another
to determine its duration. The procedure terminates if it cannot find the required variables. The
activity is determined with the _ACTIVITY_ variable, and the duration is determined with the _DU-
RATION_ variable. In addition to the mandatory variables, you can also specify temporal constraints
related to the activities.

Time Alignment Constraints

The _ALIGNDATE_ and _ALIGNTYPE_ variables enable you to define time-alignment-type con-
straints. The _ALIGNTYPE_ variable defines the type of the alignment constraint for the activity
named in the _ACTIVITY_ variable with respect to the _ALIGNDATE_ variable. If the _ALIGNDATE_
variable is not present in the activity data set, the _ALIGNTYPE_ variable is ignored. If the _ALIGN-
DATE_ is present but the _ALIGNTYPE_ variable is missing, the alignment type is assumed to be
SGE. The _ALIGNTYPE_ variable can take the values shown in Table 1.3.
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Table 1.3 Valid Values for the _ALIGNTYPE_ Variable

Value Type of Alignment

SEQ Start equal to
SGE Start greater than or equal to
SLE Start less than or equal to
FEQ Finish equal to
FGE Finish greater than or equal to
FLE Finish less than or equal to

Precedence Constraints

The _SUCCESSOR_ variable enables you to define precedence-type relationships between activities
using AON (activity-on-node) format. The _SUCCESSOR_ variable must have the same type as that
of the _ACTIVITY_ variable. The _LAG_ variable defines the lag type of the relationship. By default,
all precedence relationships are considered to be finish-to-start (FS). An FS type of precedence
relationship is also referred to as a standard precedence constraint. All other types of precedence
relationships are considered to be nonstandard precedence constraints. The _LAGDUR_ variable
specifies the lag duration. By default, the lag duration is zero.

For each (activity, successor) pair, you can define a lag type and a lag duration. Consider a pair of
activities (A, B) with a lag duration given by lagdur. The interpretation of each of the different lag
types is given in Table 1.4.

Table 1.4 Valid Values for the _LAG_ Variable

Lag Type Interpretation

FS Finish A + lagdur � Start B
SS Start A + lagdur � Start B
FF Finish A + lagdur � Finish B
SF Start A + lagdur � Finish B
FSE Finish A + lagdur = Start B
SSE Start A + lagdur = Start B
FFE Finish A + lagdur = Finish B
SFE Start A + lagdur = Finish B

The first four lag types (FS, SS, FF, and SF) are also referred to as finish-to-start, start-to-start,
finish-to-finish, and start-to-finish, respectively. The next four types (FSE, SSE, FFE, and SFE) are
stricter versions of FS, SS, FF, and SF, respectively. The first four types impose a lower bound on
the start/finish times of B, while the last four types force the start/finish times to be set equal to the
lower bound of the domain. This enables you to force an activity to begin when its predecessor
is finished. It is relatively easy to generate infeasible scenarios with the stricter versions, so you
should use the stricter versions only if the weaker versions are not adequate for your problem.
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Resource Constraints

The activity data set cannot be used to define resource-requirement-type constraints. To define these
constraints, you must specify RESOURCE and REQUIRES statements.

Variables in the ACTDATA= data set

Table 1.5 lists all the variables associated with the activity data set and their interpretations by the
CLP procedure. The table also lists for each variable its type (C for character, N for numeric), the
possible values it can assume, and its default value.

Table 1.5 Activity Data Set Variables

Name Type Description Allowed Values Default

_ACTIVITY_ C/N activity name
_DURATION_ N duration 0
_SUCCESSOR_ C/N successor name same type as

_ACTIVITY_
_ALIGNDATE_ N alignment date 0
_ALIGNTYPE_ C alignment type SGE, SLE, SEQ,

FGE, FLE, FEQ
SGE

_LAG_ C lag type FS, SS, FF, SF,
FSE, SSE, FFE, SFE

FS

_LAGDUR_ N lag duration 0

Schedule Data Set

In order to solve a scheduling-type CSP, you need to specify a schedule data set by using the
SCHEDDATA= option in the PROC CLP statement. The Schedule data set contains all the so-
lutions that have been determined by the CLP procedure.

The schedule data set always contains the following five variables: SOLUTION, ACTIVITY, DUR,
START, and FINISH. If any resources have been specified, the data set also contains a variable cor-
responding to each resource specified in the RESOURCE statement having the same name as the
resource. The SOLUTION variable gives the solution number that each observation corresponds to.
The ACTIVITY variable identifies the activity. The DUR variable gives the duration of the activity.
The START and FINISH variables give the scheduled start and finish times for the activity. If there are
resources presented, then the corresponding resource variable indicates whether or not the resource
is being used for the activity.

For every solution found and for each activity, the schedule data set contains an observation that
lists the assignment information for that activity.
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If an activity data set has been specified, then the formats and labels for the ACTIVITY and DUR
variables carry over to the schedule data set.

Edge Finding

Edge-finding (EF) techniques are effective propagation techniques for resource capacity constraints
that reason about the processing order of a set of activities requiring a given resource or set of
resources. Some of the typical ordering relationships that EF techniques can determine are whether
an activity can, cannot, or must execute before (or after) a set of activities requiring the same
resource or set of resources. This in turn determines new time bounds on the start and finish times.
Carlier and Pinson (1989) were responsible for some of the earliest work in this area that resulted
in solving MT10, a 10×10 job shop problem that had remained unsolved for over 20 years (Muth
and Thompson 1963). Since then, there have been several variations and extensions of this work
(Carlier and Pinson 1990; Applegate and Cook 1991; Nuijten 1994; Baptiste and Le Pape 1996).

The edge-finding consistency routines are invoked by specifying the EDGEFINDER= or EDGE=
option in the SCHEDULE statement. Specifying EDGEFINDER=FIRST computes an upper bound
on the activity finish time by detecting whether a given activity must be processed first from a set
of activities requiring the same resource or set of resources. Specifying EDGEFINDER=LAST
computes a lower bound on the activity start time by detecting whether a given activity must
be processed last from a set of activities requiring the same resource or set of resources.
Specifying EDGEFINDER=BOTH is equivalent to specifying both EDGEFINDER=FIRST and
EDGEFINDER=LAST.

An extension of the edge-finding consistency routines is in determining whether an activity cannot
be the first to be processed or whether an activity cannot be the last to be processed from a given
set of activities requiring the same resource (set of resources). The NOTFIRST= or NF= option
in the SCHEDULE statement determines whether an activity is “not first.” In similar fashion, the
NOTLAST= or NL= option in the SCHEDULE statement determines whether an activity is “not
last.”

Macro Variable _ORCLP_

The CLP procedure defines a macro variable named _ORCLP_. This variable contains a character
string that indicates the status of the procedure. It is set at procedure termination.

If the CLP procedure terminates successfully, the _ORCLP_ character string has one of the follow-
ing formats:

� STATUS=SUCCESSFUL SOLUTION=INFEASIBLE
PROC CLP successfully detected that the problem is infeasible.

� STATUS=SUCCESSFUL SOLUTIONS_FOUND=n
PROC CLP found n solutions, where n can be zero.
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� STATUS=SUCCESSFUL SOLUTION=TIMEOUT SOLUTIONS_FOUND=n
PROC CLP successfully terminated due to the MAXTIME= parameter and found n solutions,
where n can be zero.

If the CLP procedure terminates unsuccessfully, the form of the _ORCLP_ character string is STA-
TUS=ERROR_EXIT REASON=message, where message can be one of the following:

� BADDATA_ERROR

� MEMORY_ERROR

� IO_ERROR

� SEMANTIC_ERROR

� SYNTAX_ERROR

� CLP_BUG

� UNKNOWN_ERROR

This information can be used when PROC CLP is one step in a larger program that needs to deter-
mine whether the procedure terminates successfully or not. Because _ORCLP_ is a standard SAS
macro variable, it can be used in the ways that all macro variables can be used.

Examples: CLP Procedure

Example 1.1: Resource-Constrained Scheduling with Nonstandard
Temporal Constraints

This example illustrates a real-life scheduling problem and is used as a benchmark problem in
the CP community. The problem is to schedule the construction of a five-segment bridge (see
Figure 1.1.1). It comes from a Ph.D. dissertation on scheduling problems (Bartusch 1983).



32 F Chapter 1: The CLP Procedure (Experimental)

Output 1.1.1 The Bridge Problem

The project consists of 44 tasks and a set of constraints relating these tasks. Table 1.6 displays the
activity information, standard precedence constraints, and resource constraints. The sharing of a
unary resource by multiple activities results in the resource constraints being disjunctive in nature.

Table 1.6 Data for Bridge Construction

Activity Description Duration Predecessors Resource

pa beginning of project 0
a1 excavation (abutment 1) 4 pa excavator
a2 excavation (pillar 1) 2 pa excavator
a3 excavation (pillar 2) 2 pa excavator
a4 excavation (pillar 3) 2 pa excavator
a5 excavation (pillar 4) 2 pa excavator
a6 excavation (abutment 2) 5 pa excavator
p1 foundation piles 2 20 a3 pile driver
p2 foundation piles 3 13 a4 pile driver
ue erection of temporary housing 10 pa
s1 formwork (abutment 1) 8 a1 carpentry
s2 formwork (pillar 1) 4 a2 carpentry
s3 formwork (pillar 2) 4 p1 carpentry
s4 formwork (pillar 3) 4 p2 carpentry
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Table 1.6 continued

Activity Description Duration Predecessors Resource

s5 formwork (pillar 4) 4 a5 carpentry
s6 formwork (abutment 2) 10 a6 carpentry
b1 concrete foundation (abutment 1) 1 s1 concrete mixer
b2 concrete foundation (pillar 1) 1 s2 concrete mixer
b3 concrete foundation (pillar 2) 1 s3 concrete mixer
b4 concrete foundation (pillar 3) 1 s4 concrete mixer
b5 concrete foundation (pillar 4) 1 s5 concrete mixer
b6 concrete foundation (abutment 2) 1 s6 concrete mixer
ab1 concrete setting time (abutment 1) 1 b1
ab2 concrete setting time (pillar 1) 1 b2
ab3 concrete setting time (pillar 2) 1 b3
ab4 concrete setting time (pillar 3) 1 b4
ab5 concrete setting time (pillar 4) 1 b5
ab6 concrete setting time (abutment 2) 1 b6
m1 masonry work (abutment 1) 16 ab1 bricklaying
m2 masonry work (pillar 1) 8 ab2 bricklaying
m3 masonry work (pillar 2) 8 ab3 bricklaying
m4 masonry work (pillar 3) 8 ab4 bricklaying
m5 masonry work (pillar 4) 8 ab5 bricklaying
m6 masonry work (abutment 2) 20 ab6 bricklaying
l delivery of the preformed bearers 2 crane
t1 positioning (preformed bearer 1) 12 m1, m2, l crane
t2 positioning (preformed bearer 2) 12 m2, m3, l crane
t3 positioning (preformed bearer 3) 12 m3, m4, l crane
t4 positioning (preformed bearer 4) 12 m4, m5, l crane
t5 positioning (preformed bearer 5) 12 m5, m6, l crane
ua removal of the temporary housing 10
v1 filling 1 15 t1 caterpillar
v2 filling 2 10 t5 caterpillar
pe end of project 0 t2, t3, t4, v1, v2, ua

A network diagram illustrating the precedence constraints in this problem is shown in Output 1.1.2.
Each node represents an activity and gives the activity code, truncated description, duration, and
the required resource if any. The network diagram is generated using the NETDRAW procedure in
SAS/OR software.
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Output 1.1.2 Network Diagram for the Bridge Construction Project
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In addition to the standard precedence constraints, there are the following constraints:

1. The time between the completion of a particular formwork and the completion of its corre-
sponding concrete foundation is at most four days.

f .si/ � f .bi/ � 4; i D 1; � � � ; 6

2. There are at most three days between the end of a particular excavation (or foundation piles)
and the beginning of the corresponding formwork.

f .ai/ � s.si/ � 3; i D 1; 2; 5; 6

and

f .p1/ � s.s3/ � 3

f .p2/ � s.s4/ � 3

3. The formworks must start at least six days after the beginning of the erection of the temporary
housing.

s.si/ � s.ue/ C 6; i D 1; � � � ; 6

4. The removal of the temporary housing can start at most two days before the end of the last
masonry work.

s.ua/ � f .mi/ � 2; i D 1; � � � ; 6

5. The delivery of the preformed bearers occurs exactly 30 days after the beginning of the
project.

s.l/ D s.pa/ C 30

The data set bridge defined by the SAS data set specification that follows, encapsulates all of the
precedence constraints and also indicates the resources required by each activity. Note the use of
the reserved variables _ACTIVITY_, _SUCCESSOR_, _LAG_, and _LAGDUR_ to define the activity
and precedence relationships. The list of reserved variables can be found in Table 1.5. The _RE-
SOURCE_ variable is not used by the CLP procedure directly but used separately in a preprocessing
step to generate the RESOURCE statement for the CLP procedure.

data bridge;
format _ACTIVITY_ $32. _DESC_ $34. _RESOURCE_ $14.

_SUCCESSOR_ $3. _LAG_ $3. ;
input _ACTIVITY_ & _DESC_ & _DURATION_ _RESOURCE_ &

_SUCCESSOR_ & _LAG_ & _LAGDUR_;
datalines;

a1 excavation (abutment 1) 4 excavator s1 . .
a2 excavation (pillar 1) 2 excavator s2 . .
a3 excavation (pillar 2) 2 excavator p1 . .
a4 excavation (pillar 3) 2 excavator p2 . .
a5 excavation (pillar 4) 2 excavator s5 . .
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a6 excavation (abutment 2) 5 excavator s6 . .
ab1 concrete setting time (abutment 1) 1 . m1 . .
ab2 concrete setting time (pillar 1) 1 . m2 . .
ab3 concrete setting time (pillar 2) 1 . m3 . .
ab4 concrete setting time (pillar 3) 1 . m4 . .
ab5 concrete setting time (pillar 4) 1 . m5 . .
ab6 concrete setting time (abutment 2) 1 . m6 . .
b1 concrete foundation (abutment 1) 1 concrete_mixer ab1 . .
b1 concrete foundation (abutment 1) 1 concrete_mixer s1 ff -4
b2 concrete foundation (pillar 1) 1 concrete_mixer ab2 . .
b2 concrete foundation (pillar 1) 1 concrete_mixer s2 ff -4
b3 concrete foundation (pillar 2) 1 concrete_mixer ab3 . .
b3 concrete foundation (pillar 2) 1 concrete_mixer s3 ff -4
b4 concrete foundation (pillar 3) 1 concrete_mixer ab4 . .
b4 concrete foundation (pillar 3) 1 concrete_mixer s4 ff -4
b5 concrete foundation (pillar 4) 1 concrete_mixer ab5 . .
b5 concrete foundation (pillar 4) 1 concrete_mixer s5 ff -4
b6 concrete foundation (abutment 2) 1 concrete_mixer ab6 . .
b6 concrete foundation (abutment 2) 1 concrete_mixer s6 ff -4
l delivery of the preformed bearers 2 crane t1 . .
l delivery of the preformed bearers 2 crane t2 . .
l delivery of the preformed bearers 2 crane t3 . .
l delivery of the preformed bearers 2 crane t4 . .
l delivery of the preformed bearers 2 crane t5 . .
m1 masonry work (abutment 1) 16 bricklaying t1 . .
m1 masonry work (abutment 1) 16 bricklaying ua fs -2
m2 masonry work (pillar 1) 8 bricklaying t1 . .
m2 masonry work (pillar 1) 8 bricklaying t2 . .
m2 masonry work (pillar 1) 8 bricklaying ua fs -2
m3 masonry work (pillar 2) 8 bricklaying t2 . .
m3 masonry work (pillar 2) 8 bricklaying t3 . .
m3 masonry work (pillar 2) 8 bricklaying ua fs -2
m4 masonry work (pillar 3) 8 bricklaying t3 . .
m4 masonry work (pillar 3) 8 bricklaying t4 . .
m4 masonry work (pillar 3) 8 bricklaying ua fs -2
m5 masonry work (pillar 4) 8 bricklaying t4 . .
m5 masonry work (pillar 4) 8 bricklaying t5 . .
m5 masonry work (pillar 4) 8 bricklaying ua fs -2
m6 masonry work (abutment 2) 20 bricklaying t5 . .
m6 masonry work (abutment 2) 20 bricklaying ua fs -2
p1 foundation piles 2 20 pile_driver s3 . .
p2 foundation piles 3 13 pile_driver s4 . .
pa beginning of project 0 . a1 . .
pa beginning of project 0 . a2 . .
pa beginning of project 0 . a3 . .
pa beginning of project 0 . a4 . .
pa beginning of project 0 . a5 . .
pa beginning of project 0 . a6 . .
pa beginning of project 0 . l fse 30
pa beginning of project 0 . ue . .
pe end of project 0 . . . .
s1 formwork (abutment 1) 8 carpentry b1 . .
s1 formwork (abutment 1) 8 carpentry a1 sf -3
s2 formwork (pillar 1) 4 carpentry b2 . .
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s2 formwork (pillar 1) 4 carpentry a2 sf -3
s3 formwork (pillar 2) 4 carpentry b3 . .
s3 formwork (pillar 2) 4 carpentry p1 sf -3
s4 formwork (pillar 3) 4 carpentry b4 . .
s4 formwork (pillar 3) 4 carpentry p2 sf -3
s5 formwork (pillar 4) 4 carpentry b5 . .
s5 formwork (pillar 4) 4 carpentry a5 sf -3
s6 formwork (abutment 2) 10 carpentry b6 . .
s6 formwork (abutment 2) 10 carpentry a6 sf -3
t1 positioning (preformed bearer 1) 12 crane v1 . .
t2 positioning (preformed bearer 2) 12 crane pe . .
t3 positioning (preformed bearer 3) 12 crane pe . .
t4 positioning (preformed bearer 4) 12 crane pe . .
t5 positioning (preformed bearer 5) 12 crane v2 . .
ua removal of the temporary housing 10 . pe . .
ue erection of temporary housing 10 . . . .
ue erection of temporary housing 10 . s1 ss 6
ue erection of temporary housing 10 . s2 ss 6
ue erection of temporary housing 10 . s3 ss 6
ue erection of temporary housing 10 . s4 ss 6
ue erection of temporary housing 10 . s5 ss 6
ue erection of temporary housing 10 . s6 ss 6
v1 filling 1 15 caterpillar pe . .
v2 filling 2 10 caterpillar pe . .
;

The CLP procedure is then invoked by using the following statements with the SCHEDDATA=
option, which is required for scheduling problems.

/* extract project descriptions */
proc sql;

create table desc as
select distinct _ACTIVITY_ as ACTIVITY,

_DESC_ as DESCRIPTION,
_RESOURCE_ as RESOURCE from bridge;

quit;

/* generate the REQUIRES statement */
data _null_;

length reqspec $8192.;
retain reqspec "";
set desc end=final;
if (RESOURCE ~= " ") then

reqspec=
trim(reqspec)||" "||trim(ACTIVITY)||"="||"("||trim(RESOURCE)||")";

if final then
call symput (’reqstmt’, "REQUIRES"||reqspec);

run;

/* invoke PROC CLP */
proc clp actdata=bridge

scheddata=sched_ex1
dm=4
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solns=1
restarts = 10
showprogress;

schedule edgefinder actselect=rand finish=104;
resource excavator pile_driver carpentry concrete_mixer

bricklaying crane caterpillar;
&reqstmt;

run;

The edge-finder consistency algorithms are activated using the EDGEFINDER option in the
SCHEDULE statement. The REQUIRES statement listing all the resources is generated via the
macro variable reqstmt. The FINISH= option is specified to find a solution in 104 days, which also
happens to be optimal.

The sched_ex1 data set contains the complete schedule as computed by the CLP procedure, includ-
ing the activity start and finish times and the assignment of resources. Since there is a variable for
each resource in this data set and an activity gets assigned to at most one resource, it is possible to
represent this information more concisely by merging the sched_ex1 data set with the desc data set
by using the following statements. The resulting merged data set is shown in Output 1.1.3.

/* merge descriptions, prepare to output the schedule data set */
proc sort data=sched_ex1;

by ACTIVITY;
run;
data sched_ex1;

merge desc sched_ex1;
by ACTIVITY;

run;
proc sort data=sched_ex1;

by START FINISH;
run;

/* display the schedule */
proc print data=sched_ex1 noobs width=min;

var ACTIVITY DESCRIPTION START FINISH RESOURCE;
title ’Bridge Construction Schedule’;

run;
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Output 1.1.3 Bridge Construction Schedule

Bridge Construction Schedule

ACTIVITY DESCRIPTION START FINISH RESOURCE

pa beginning of project 0 0
a4 excavation (pillar 3) 0 2 excavator
ue erection of temporary housing 0 10
a5 excavation (pillar 4) 2 4 excavator
p2 foundation piles 3 2 15 pile_driver
a1 excavation (abutment 1) 4 8 excavator
s5 formwork (pillar 4) 6 10 carpentry
a3 excavation (pillar 2) 8 10 excavator
b5 concrete foundation (pillar 4) 10 11 concrete_mixer
s1 formwork (abutment 1) 10 18 carpentry
ab5 concrete setting time (pillar 4) 11 12
m5 masonry work (pillar 4) 12 20 bricklaying
p1 foundation piles 2 15 35 pile_driver
a2 excavation (pillar 1) 17 19 excavator
b1 concrete foundation (abutment 1) 18 19 concrete_mixer
s4 formwork (pillar 3) 18 22 carpentry
ab1 concrete setting time (abutment 1) 19 20
a6 excavation (abutment 2) 19 24 excavator
m1 masonry work (abutment 1) 20 36 bricklaying
b4 concrete foundation (pillar 3) 22 23 concrete_mixer
s2 formwork (pillar 1) 22 26 carpentry
ab4 concrete setting time (pillar 3) 23 24
b2 concrete foundation (pillar 1) 26 27 concrete_mixer
s6 formwork (abutment 2) 26 36 carpentry
ab2 concrete setting time (pillar 1) 27 28
l delivery of the preformed bearers 30 32 crane
b6 concrete foundation (abutment 2) 36 37 concrete_mixer
s3 formwork (pillar 2) 36 40 carpentry
m2 masonry work (pillar 1) 36 44 bricklaying
ab6 concrete setting time (abutment 2) 37 38
b3 concrete foundation (pillar 2) 40 41 concrete_mixer
ab3 concrete setting time (pillar 2) 41 42
m4 masonry work (pillar 3) 44 52 bricklaying
t1 positioning (preformed bearer 1) 44 56 crane
m3 masonry work (pillar 2) 52 60 bricklaying
t4 positioning (preformed bearer 4) 56 68 crane
v1 filling 1 56 71 caterpillar
m6 masonry work (abutment 2) 60 80 bricklaying
t2 positioning (preformed bearer 2) 68 80 crane
ua removal of the temporary housing 78 88
t5 positioning (preformed bearer 5) 80 92 crane
v2 filling 2 92 102 caterpillar
t3 positioning (preformed bearer 3) 92 104 crane
pe end of project 104 104

A Gantt chart of the schedule in Output 1.1.3, produced using the GANTT procedure in SAS/OR
software, is displayed in Output 1.1.4. Each activity bar is also color coded according to the resource
associated with it. The legend identifies the name of the resource associated with each color.
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Output 1.1.4 Gantt Chart for the Bridge Construction Project
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Example 1.2: Scheduling with Alternate Resources

This example shows an interesting job shop scheduling problem illustrating the use of alternative
resources. There are 90 jobs (J1–J90) that need to be processed on one of 10 machines (M0–M9).
Not every machine can process every job. In addition, certain jobs might also require one of 7
operators (OP0–OP6). As with the machines, not every operator can be assigned to every job.
There are no explicit precedence relationships in this example.

The machine and operator requirements for each job are specified within the data set proj by using
the following statements.

/* project specification */
data proj;

array v{11} $8. j1-j3 m1-m3 o1-o4 dur;
input v{*};
datalines;

1 . . 0 1 . 0 1 2 . 1
2 . . 0 1 2 0 1 2 . 1
3 . . 1 2 3 0 1 2 . 1
4 5 6 3 4 5 2 3 4 5 1
7 . . 6 7 8 5 6 . . 1
8 9 . 6 7 8 . . . . 1
10 . . 7 8 9 . . . . 1
11 . . 1 2 . 0 1 2 3 1
12 13 14 7 8 9 0 1 2 3 1
15 16 . 5 6 . 4 5 6 . 1
17 . . 3 4 . 4 5 6 . 1
18 . . 3 4 . . . . . 1
19 . . 0 1 2 . . . . 1
20 . . 0 1 . . . . . 1
21 22 . 0 1 . 0 1 2 . 2
23 . . 2 . . 0 1 2 . 2
24 25 36 8 9 . . . . . 1
26 35 75 6 7 . . . . . 1
27 34 74 6 7 . 5 6 . . 1
28 . . 4 5 . 5 6 . . 1
29 . . 4 5 . 3 4 . . 1
30 . . 3 . . 3 4 . . 1
31 . . 3 . . 3 4 . . 2
32 . . 4 5 . 3 4 . . 2
33 . . 4 5 . 5 6 . . 2
37 76 77 8 9 . . . . . 1
38 39 . 0 1 . 0 1 . . 1
40 . . 2 . . 2 . . . 1
41 . . 6 7 . 6 . . . 2
42 62 82 6 7 . . . . . 2
43 44 63 8 9 . . . . . 2
45 46 65 0 1 . 4 5 . . 2
47 67 . 2 3 . 2 3 . . 2
48 68 . 2 3 . 2 3 . . 1
49 50 69 4 5 . 0 1 . . 1
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51 52 . 3 4 . 1 2 . . 2
53 . . 5 6 . 0 . . . 2
54 . . 5 6 . 6 . . . 1
55 56 57 7 8 9 . . . . 1
58 59 78 0 1 2 3 4 . . 1
60 80 . 0 1 2 5 6 . . 1
61 81 . 6 7 . 5 6 . . 2
64 83 84 8 9 . . . . . 2
66 . . 0 1 . 4 5 . . 2
70 . . 5 . . 0 1 . . 1
71 . . 5 . . 0 1 2 . 2
72 73 . 3 4 . 0 1 2 . 2
79 . . 0 1 2 3 4 . . 1
85 . . 0 . . 3 . . . 1
86 . . 1 . . 4 . . . 1
87 . . 2 . . 5 . . . 1
88 . . 3 . . 0 . . . 1
89 . . 4 . . 1 . . . 1
90 . . 5 . . 2 . . . 1
;

Each row in the datalines section defines a resource requirement for up to three jobs that are iden-
tified in the variables j1–j3. The resource requirement associated with each of these jobs is a set of
alternates and is defined using the variables m1–m3 and o1–o4.

The variables m1–m3 represent a machine or workstation ID that the job needs to be processed
on, and the variables o1–o4 represent an operator ID. The duration of each of the jobs identified
in j1–j3 is assumed to be identical and defined using the dur variable. Each of the jobs in a row
can be processed on any one of the machines in m1–m3 and requires the assistance of one of the
operators in o1–o4 while being processed. In other words, the resource requirement for each job
is a conjunction of disjunctive requirements (or alternates). A job requires one of m1–m3 and one
of o1–o4 in order to be processed. For example, observation 5 specifies that job number 7 can be
processed on either machine 6, 7, or 8 and additionally requires either operator 5 or operator 6 in
order to be processed. The next observation indicates that jobs 8 and 9 can also be processed on the
same set of machines. However, they do not require any operator assistance.



Example 1.2: Scheduling with Alternate Resources F 43

The ACTIVITY and REQUIRES statements for the CLP procedure are next generated from the
data set proj by the following program:

/* generate the ACTIVITY and REQUIRES statements */
data _null_;

set proj end=finish;
format jobs $32. resources $char128.;
format acts reqs $char4096.;
retain acts reqs;
array v{11} j1-j3 m1-m3 o1-o4 dur;
jobs=catx(’ J’,of j1-j3);
acts=catx(’ ’,acts,cats(’(J’,jobs,’)=’,’(’,dur,’)’));
do i=4 to 6;

if v{i}=’ ’ then leave;
if v{7}=’ ’ then resources=catx(’,’,resources,’M’||v{i});
else do j=7 to 10;

if v{j}=’ ’ then leave;
resources=catx(’,’,resources,catx(’ ’,’M’||v{i},’OP’||v{j}));
end;

end;
reqs=catx(’ ’,reqs,cats(’(J’,jobs,’)=’,’(’,resources,’)’));
if finish then do;
call symput(’activities’,strip(acts));
call symput(’requirements’,strip(reqs));
end;

run;

The CLP procedure is invoked by using the following statements with DUR=12 to obtain a 12-day
solution that is also known to be optimal.

/* invoke PROC CLP to find a schedule */
proc clp dom=[0,12] scheddata=sched_ex2 restarts=500 dpr=25;

schedule start=0 dur=12 actselect=MAXD actassign=MAXTW EDGEFINDER;
activity &activities;
resource (M0-M9) (OP0-OP6);
requires &requirements;

run;

The activity selection strategy is one that selects a maximum duration activity at random from the
subset of activities that begin prior to the earliest early finish time. This strategy is specified using
the ACTSELECT=MAXD option on the SCHEDULE statement.

The resulting schedule is shown in a series of Gantt charts that are displayed in Output 1.2.1 and
Output 1.2.2. In each of these Gantt charts, the vertical axis lists the different jobs, the horizontal
bar represents the start and finish times for each of the jobs, and the text above each bar identifies
the machine that the job is being processed on. Output 1.2.1 displays the schedule for the operator-
assisted tasks—one for each operator. Output 1.2.2 shows the schedule for automated tasks—that
is, those tasks not requiring operator intervention.
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Output 1.2.1 Operator-Assisted Jobs Schedule

Schedule for Operator OP0
 !"#$%&'()&%*$+$&)',-./&'0!1

2 3 4 5 6 7 8 9 : ; 32 33 34<=0

<45
<75
<43
<4'
<3'
<::
<5;
<8;
<5:

 4
 7

 3
 3

 2
 5

 3
 6

 2

Schedule for Operator OP1
 !"#$%&'()&%*$+$&)',-./&'0!1

2 3 4 5 6 7 8 9 : ; 32 33 34<=0

<93
<44
<74
<92
<5'
<36
<72
<6;
<:;

 7
 3

 6
 7

 4
 9

 7
 7

 6
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Output 1.2.1 continued

Schedule for Operator OP2
 !"#$%&'()&%*$+$&)',-./&'0!1

2 3 4 5 6 7 8 9 : ; 32 33 34<=0

<94
<69
<95
<73
<6:
<8:
<62
<;2

 5
 5

 5
 6

 4
 4

 4
 7

Schedule for Operator OP3
 !"#$%&'()&%*$+$&)',-./&'0!1

2 3 4 5 6 7 8 9 : ; 32 33 34<=0

<54
<89
<6'
<33
<35
<8'
<4;
<:7
<34
<7;

 6
 4

 7
 4

 ;
 7

 6
 2

 9
 4
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Output 1.2.1 continued

Schedule for Operator OP4
 !"#$%&'()&%*$+$&)',-./&'0!1

2 3 4 5 6 7 8 9 : ; 32 33 34<=0

<88
<67
<7:
<7'
<53
<9;
<52
<9:
<:8

 2
 2

 4
 7

 5
 2

 5
 2

 3

Schedule for Operator OP5
 !"#$%&'()&%*$+$&)',-./&'0!1

2 3 4 5 6 7 8 9 : ; 32 33 34<=0

<68
<55
<87
<:9
<96
<37
<49
<82
<9'

 3
 6

 2
 4

 9
 8

 9
 3

 :
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Output 1.2.1 continued

Schedule for Operator OP6
 !"#$%&'()&%*$+$&)',-./&'0!1

2 3 4 5 6 7 8 9 : ; 32 33 34<=0

<63
<83
<:3
<:2
<56
<38
<4:
<76
<39

 9
 8

 8
 2

 8
 7

 6
 8

 5
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Output 1.2.2 Automated Jobs Schedule

Schedule for Automated Tasks

 ! " # $ % & ' ( ) ! !! !"*+,

*&"
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*&$
*("
*(#
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*$"
*$#
*$$
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*" 
*#'
*%%
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*! 
*#%
*''
*)-
*!(
*"%
*#&
*'%
*%&
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.'

.(

.)

.'

.)

.(

.'

.&

.(

.!

.(

.)

.!

.)

.(

.(

.&

.)

.(

.#

.)

.)

.&

.'

A more interesting Gantt chart is that of the resource schedule by machine, as shown in Output 1.2.3.
This chart displays the schedule for each machine. Every row corresponds to a machine. Every bar
on each row consists of multiple segments, and every segment represents a job that is processed on
the machine. Each segment is also coded according to the operator assigned to it. The mapping
of the coding is indicated in the legend. It is evident that the schedule is optimal since none of the
machines or operators are idle at any time during the schedule.
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Output 1.2.3 Another Gantt Chart: Proof of Optimality

Scheduling With Alternate Resouces
 !"#$%&#'()'*+!",-#

 N/A  OP0  OP1  OP2 

 OP3  OP4  OP5  OP6 

Operator Required

. / 0 1 2 3 4 5 6 7 /. // /0*89:;<=

*.'''''
*/'''''
*0'''''

*1'''''
*2'''''
*3'''''
*4'''''
*5'''''

*6'''''
*7'''''

>44 >23 >43 >6. >/ >57 >63 >56 >16

>24 >00 >0/ >0 >0. >/7 >17 >4. >64

>01 >45 >36 >// >65 >1 >26 >46 >2. >37

>50 >25 >51 >1/ >66 >1. >/6 >/5

>10 >11 >30 >3/ >07 >06 >47 >67

>5/ >31 >2 >3 >5. >4 >/4 >3. >27 >7.

>40 >4/ >6/ >04 >12 >/3 >13 >32 >53

>2/ >60 >20 >6 >52 >/2 >05 >/0 >34

>42 >61 >22 >54 >15 >35 >/. >7 >5

>41 >62 >21 >/1 >33 >02 >55 >03 >14

Example 1.3: 10×10 Job Shop Scheduling Problem

This example is a job shop scheduling problem from Lawrence (1984). This test is also known as
LA19 in the literature, and its optimal solution is known to be 842 (Applegate and Cook 1991).
There are 10 jobs (Job 1 – 10) and 10 machines (M0 – M9). Every job must be processed on each
of the 10 machines in a predefined sequence. The objective is to minimize the makespan. The jobs
are described in the data set raw by using the following statements.
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/* jobs specification */
data raw (drop=i mid);

do i=1 to 10;
input mid _DURATION_ @;
MACHINE=compress(’M’||mid);
output;

end;
datalines;

2 44 3 5 5 58 4 97 0 9 7 84 8 77 9 96 1 58 6 89
4 15 7 31 1 87 8 57 0 77 3 85 2 81 5 39 9 73 6 21
9 82 6 22 4 10 3 70 1 49 0 40 8 34 2 48 7 80 5 71
1 91 2 17 7 62 5 75 8 47 4 11 3 7 6 72 9 35 0 55
6 71 1 90 3 75 0 64 2 94 8 15 4 12 7 67 9 20 5 50
7 70 5 93 8 77 2 29 4 58 6 93 3 68 1 57 9 7 0 52
6 87 1 63 4 26 5 6 2 82 3 27 7 56 8 48 9 36 0 95
0 36 5 15 8 41 9 78 3 76 6 84 4 30 7 76 2 36 1 8
5 88 2 81 3 13 6 82 4 54 7 13 8 29 9 40 1 78 0 75
9 88 4 54 6 64 7 32 0 52 2 6 8 54 5 82 3 6 1 26
;

Each row in the datalines section specifies a job by 10 pairs of consecutive numbers. Each pair
of numbers defines one task of the job, which represents the processing of a job on a machine.
For each pair, the first number identifies the machine it executes on and the second number is the
duration. The order of the 10 pairs defines the sequence of the tasks for a job.

The following statements create the activity data set actdata.

/* create the activity data set */
data actdata (drop= i j);

format _ACTIVITY_ $8. _SUCCESSOR_ $8.;
set raw;
i=mod(_n_-1,10)+1;
j=int((_n_-1)/10)+1;
_ACTIVITY_ = compress(’J’||j||’P’||i);
JOB=j;
TASK=i;
if i LT 10 then

_SUCCESSOR_ = compress(’J’||j||’P’||(i+1));
else

_SUCCESSOR_ = ’ ’;
output;

run;

Had there been sufficient machine capacity, the jobs could have been processed according to a
schedule as shown in Output 1.3.1. The minimum makespan would be 617—the times it takes to
complete Job 1.
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Output 1.3.1 Gantt Chart: Schedule for the Unconstrained Problem

10X10 Job Shop Scheduling Problem
 !"#!$%&'(!)*+,"-)*./)

 M0            M1            M2            M3            M4           

 M5            M6            M7            M8            M9           

Machine Required

0 10 230 240 350 600 610 530 540 750 100 11089:

2
3
6
5
7
1
;
4
<
20

30 12;

This schedule will be infeasible when there is only a single instance of each machine. For example,
at time period 20, the schedule requires two instances of each of the machines M6, M7, and M9.

In order to solve the resource-constrained schedule, the CLP procedure is invoked by using the
following statements.
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/* generate the REQUIRES statement */
data _null_;

length reqspec $1100.;
retain reqspec ’’;
set actdata end=finish;
reqspec=catx(’ ’, reqspec, cats(_ACTIVITY_,’=(’,MACHINE,’)’));
if finish then

call symput(’reqstmt’, catx(’ ’, ’REQUIRES ’, reqspec));
run;

/* invoke PROC CLP to find a resource-constrained schedule */
proc clp domain=[0,842]

actdata=actdata
scheddata=sched_ex3
dpr=50
restarts=500
showprogress;

schedule dur=842 edgefinder NF=1 NL=1;
resource (M0-M9);
&reqstmt;

run;

The edge-finder algorithm is activated with the EDGEFINDER option in the SCHEDULE state-
ment. In addition, the edge-finding extensions for detecting whether a job cannot be the first or
cannot be the last to be processed from a subset of jobs to be processed on a particular machine
are invoked with the NF= and NL= options, respectively, in the SCHEDULE statement. The de-
fault activity selection and activity assignment strategies are used. A restart heuristic is used as
the look-back method to handle recovery from failures. The DPR= option specifies that a total
restart be performed after encountering 50 failures, and the RESTARTS= option limits the number
of restarts to 500. The REQUIRES statement for the CLP procedure is generated via the macro
variable reqstmt.

The resulting 842-time-period schedule is displayed in Output 1.3.2. Each row represents a job.
Each segment represents a task (the processing of a job on a machine), which is also coded according
to the executing machine. The mapping of the coding is indicated in the legend. Note that no
machine is used by more than one job at any point in time.
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Output 1.3.2 Gantt Chart: Optimal Resource-Constrained Schedule

10X10 Job Shop Scheduling Problem
 !"#$%&'"()*+,-()./(

 M0            M1            M2            M3            M4           

 M5            M6            M7            M8            M9           

Machine Required

0 10 230 240 350 600 610 530 540 750 100 110 830 840 450 900:;<

2
3
6
5
7
1
8
4
9
20
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