

C h a p t e r 1

Accessing SAS Data without Using SAS Code

1.1 Abstract 2
1.2 Introduction 2
1.3 ODBC 2

1.3.1 Setting Up a SAS Server for the SAS ODBC Driver 3
1.3.2 Microsoft Access 2000 8
1.3.3 Microsoft Excel 2000 17
1.3.4 Visual Basic 6.0 22
1.3.5 Lotus Approach Version 9 26
1.3.6 OpenOffice.org 2.1 27

1.4 Dynamic Data Exchange 43
1.4.1 Visual Basic 6.0 45

1.5 SAS Integration Technologies 45
1.5.1 Visual Basic 6.0 46
1.5.2 LotusScript Version 9 54
1.5.3 OpenOffice.org 2.1 55

2 Saving Time and Money Using SAS

1.6 Conclusions 59
1.7 Recommended Reading 59

1.1 Abstract

Recent developments in SAS for Windows have provided users with routes to SAS data
and applications without having to write SAS code using SAS. This chapter describes
three examples of these interfaces: ODBC, DDE, and SAS Integration Technologies,
which could place SAS at the center of any application development for the Windows
platform.

1.2 Introduction

In the past, SAS has been used to read data from other Windows data sources,
e.g., Microsoft Access tables using SAS/ACCESS for ODBC, and to control other
external Windows applications using Dynamic Data Exchange (DDE). SAS is, of course,
available as a Windows application itself and can now be used as an external application
for those other Windows applications. This role reversal expands the range of uses for
SAS in the Windows environment in areas where SAS has not been traditionally the first-
choice application. The ability of SAS to read and maintain data from a wide range of
sources can now be used throughout the Windows arena.

Further discussion on SAS Enterprise Guide, a thin-client application for the Windows
client platform that uses SAS Integration Technologies to communicate with SAS
installations on remote servers, can be found in Chapter 6 “Developing SAS Applications
Using SAS Enterprise Guide.”

1.3 ODBC

The SAS ODBC driver has been supplied with Base SAS for Windows since SAS 6.10 to
provide an interface to SAS data libraries for other Windows applications. Each
application has its own particular uses and limitations for the ODBC interface. This
section describes the practicalities of using the SAS ODBC driver 9.1 with Microsoft

Chapter 1: Accessing SAS Data without Using SAS Code 3

Access 2000, Microsoft Excel 2000, Visual Basic 6.0, Lotus Approach Version 9, and
OpenOffice.org 2.1. It should be noted here that StarOffice 8 is functionally equivalent to
OpenOffice.org 2.1, and so all future references to OpenOffice.org 2.1 can be assumed to
include StarOffice 8.

Single ODBC access to SAS data on the same machine that the user accesses uses the
ODBCSERV procedure, which is supplied with Base SAS, running in a single SAS
region. Multiple ODBC access to SAS data, or ODBC access to a remote machine,
requires SAS/SHARE, and possibly SAS/SHARE*NET as well.

1.3.1 Setting Up a SAS Server for the SAS ODBC Driver
It is very important to plan, in advance, which SAS data libraries will be accessed via the
SAS ODBC driver, as the LIBNAME statements must be defined using the ODBC
Administrator application by selecting Start Control Panel Administrative Tools

 Data Sources (ODBC). In particular, for any ODBC data source, there can be only
one library reference that can be written to by an external application, i.e., USER, as
Microsoft Access and similar applications can write to data sets with a single-level data
set name only. This name, say XYZZY, would be assumed to be the data set
WORK.XYZZY, except that the USER library name will override the normal default
WORK library name, allowing permanent SAS data sets to be created whenever
single-level names are used.

Other features of the ODBC data source definitions include the following:

 The SAS ODBC server must be added to the SERVICES file (found in
C:\WINDOWS or C:\WINNT\SYSTEM32\DRIVERS\ETC, depending on the
Windows platform used) prior to using the ODBC Administrator, as the SAS
ODBC driver uses a TCP/IP connection to communicate with the SAS ODBC
server. The additional lines should look like the following line, with a unique
number greater than 1024 and the columns separated by tab characters:

 sasuser32 7001/tcp #SAS OBDC Server

 Command line options when invoking SAS (e.g., -AUTOEXEC, -NOLOGO,
etc.).

 SAS data library names used for importing into external Windows applications.

 Changes to the library references in a running SAS ODBC server can be made
for subsequent ODBC connections.

 Library references within SAS 8 are limited to eight characters, which are not
case sensitive. The names cannot include blanks or punctuation, must start with
an alphabetic or underscore character, and the second and subsequent characters
may be numeric characters.

4 Saving Time and Money Using SAS

 It should be noted that the SAS ODBC driver is unable to read the supplied SAS
library references (i.e., MAPS, SASUSER, and SASHELP) using its own special
library references. If these library references need to be read, they should be
allocated to different library references in the ODBC Server Libraries panel,
e.g., SMAPS, SUSER, and SHELP.

 Finally, but probably the most important, if you are trying to use the SAS ODBC
driver on a Windows platform protected by a personal firewall, because the SAS
ODBC server is accessed via a TCP/IP port, you will only be able to access the
SAS ODBC server port if explicitly permitted by the personal firewall rules.

The setup procedure is as follows:

1. Select a user data sources (driver), e.g., SAS.

2. Click Finish.

3. Select a data source name, e.g., SASUSER32.

Chapter 1: Accessing SAS Data without Using SAS Code 5

4. Select a description, e.g., SAS 9.1 ODBC Server.

5. Select a server, e.g., sasserv1.

6. Click the Servers tab.

7. Select a server name, e.g., sasserv1.

8. Click Configure.

6 Saving Time and Money Using SAS

 9. Select a SAS path, e.g., C:\Program Files\SAS\SAS 9.1\sas.exe. Note that this
 path can be used to determine which version of SAS is to be used. The SAS
 ODBC driver 8.2 can support SAS servers of SAS 6, 7, or 8, and
 the SAS ODBC driver 9.1 can support SAS servers of SAS 7, 8, or 9.

10. Select a SAS parameter, e.g., -initstmt %sasodbc(sasserv1) -icon -nologo.

11. Click OK.

12. Click Update or Add.

13. Click the Libraries tab.

Chapter 1: Accessing SAS Data without Using SAS Code 7

14. Select a library name, e.g., user.

15. Select a host file name, e.g., c:\temp\sas9.

16. Select a description, e.g., USER folder.

17. Click Add or Update.

18. Repeat selections as required.

19. Click OK.

20. The SAS ODBC driver is now set up for use.

8 Saving Time and Money Using SAS

1.3.2 Microsoft Access 2000
Microsoft Access can use the SAS ODBC driver to read from SAS data libraries with the
Import menu option, or write to a specific SAS data library with the Export menu option.

The Import procedure is as follows:

1. Select File Get External Data Import.

Chapter 1: Accessing SAS Data without Using SAS Code 9

2. Select an import data source, e.g., ODBC Databases().

.

10 Saving Time and Money Using SAS

3. Click the Machine Data Source tab.

4. Select a data source, e.g., SASUSER32.

5. Click OK.

Chapter 1: Accessing SAS Data without Using SAS Code 11

6. Select a data set, e.g., SHELP_CLASS.

7. Click OK.

12 Saving Time and Money Using SAS

8. Data is copied into a new Microsoft Access table, e.g., SHELP_CLASS.

Chapter 1: Accessing SAS Data without Using SAS Code 13

The Export procedure is as follows:

1. Select File Export.

14 Saving Time and Money Using SAS

2. Select an export data source, e.g., ODBC Databases().

3. Select a Microsoft Access object, e.g., SHELP_CLASS.

4. Click OK.

Chapter 1: Accessing SAS Data without Using SAS Code 15

5. Click the Machine Data Source tab.

6. Select a data source, e.g., SASUSER32.

7. Click OK.

8. Data is copied to a SAS data set, e.g., USER.SHELP_CLASS.

16 Saving Time and Money Using SAS

Problems
There are several problems when exporting Microsoft Access tables to SAS data
libraries:

 Microsoft Access 2000 requires Jet 4.0 with Service Pack 6 applied to export
data to a SAS data set. Without the service pack applied, the final step of the
preceding export procedure gives the following error message:

ODBC—call failed.
[SAS][SAS ODBC Driver][SAS Serve (#-1) [SAS][SAS ODBC Driver][SAS
Server]ERROR 76-3 (#-1)

 SAS data sets can only be defined from Microsoft Access as single-level names,
so a USER libname must be allocated in the ODBC setup to receive the exported
data set.

 SAS data set names can be a maximum of only eight characters. The names
cannot include punctuation or blanks. They can include only alphabetic
characters (i.e., A–Z or a–z) or underscores as the first and subsequent
characters. Numeric characters (i.e., 0–9) can only be used as the second and
subsequent characters.

 SAS column names have the same rules as SAS data set names. Microsoft
Access has a menu option (i.e., File Imp/Exp Setup) to allow changes to be
made to the field information before exporting.

Chapter 1: Accessing SAS Data without Using SAS Code 17

1.3.3 Microsoft Excel 2000
Microsoft Excel can only use the SAS ODBC driver to read from SAS data libraries with
the Get External Data menu option.

The procedure is as follows:

1. Select Data Get External Data New Database Query.

18 Saving Time and Money Using SAS

2. Select a data source, e.g., SASUSER32*.

3. Select the Use the Query Wizard to create/edit queries check box.

4. Click OK.

5. Select a data set, e.g., CLASS.

6. Click the right arrow (>) to select all the columns in your query. To select a subset
 of the columns, click the plus sign (+) next to the data set name first.

7. Click Next.

Chapter 1: Accessing SAS Data without Using SAS Code 19

 8. Select the columns to filter.

 9. Click Next.

10. Select the sort order.

11. Click Next.

20 Saving Time and Money Using SAS

12. Select Return Data to Microsoft Excel.

13. Click Finish.

14. Select where you want to put the data.

15. Click OK.

Chapter 1: Accessing SAS Data without Using SAS Code 21

16. Data is inserted at the destination location.

22 Saving Time and Money Using SAS

1.3.4 Visual Basic 6.0
Visual Basic can use the SAS ODBC driver to read from SAS data libraries, with shared
read-only access. The following example code will copy all of the data from a SAS data
set into a dBase table, which can be read, or imported, into all the database and
spreadsheet applications discussed in this chapter.

In order to be able to copy the SAS data from the ODBC connection to the dBase table,
the target table has to be constructed to include exactly the same fields:

Public Function CopyStructDAO(daoRset1 As DAO.Recordset, _
 daoDB2 As DAO.Database, _
 DBTable As String) As Integer
 Dim i As Integer
 Dim daoTDef2 As DAO.TableDef
 Dim tmpTDef As DAO.TableDef
 Dim daoFld2 As DAO.Field
 Dim daoFld1 As DAO.Field
 Dim errorFlag As Boolean
 ' Search to see if table exists
 For i = 0 To daoDB2.TableDefs.Count – 1
 Set tmpTDef = daoDB2.TableDefs(i)
 If UCase(tmpTabDef.Name) = UCase(DBTable) Then
 daoDB2.TableDefs.Delete tmpTDef.Name
 Exit For
 End If
 Next
 Set daoTDef2 = daoDB2.CreateTableDef(DBTable)
 ' Strip off owner if present
 daoTDef2.Name = StripOwner(DBTable)
 ' Create fields
 For i = 0 To daoRset1.Fields.Count – 1
 Set daoFld1 = daoRset1.Fields(i)
 Set daoFld2 = Nothing
 errorFlag = True
 Select Case daoFld1.Type
 Case dbDouble
 Set daoFld2 = daoTDef2.CreateField(CVar(daoFld1.Name),_
 Cvar(daoFld1.Type))
 errorFlag = False
 Case dbText
 Set daoFld2 = daoTDef2.CreateField(CVar(daoFld1.Name),_
 Cvar(daoFld1.Type), _
 Cvar(daoFld1.FieldSize))
 errorFlag = False
 End Select

Chapter 1: Accessing SAS Data without Using SAS Code 23

 If Not errorFlag Then
 daoTDef2.Fields.Append daoFld2
 End If
 Next
 ' Append new table
 daoDB2.TableDefs.Append daoTDef2
 CopyStructDAO = True
End Function

Once the table structure has been copied and the two tables opened as recordsets, the data
itself can then be copied record by record, 1,000 records at a time, using transactions:

Public Function CopyDataDAO(defWSpace As Workspace, _
 daoRset1 As DAO.Recordset, _
 daoRset2 As DAO.Recordset) As Integer
 Dim i As Integer
 Dim j As Integer
 Dim numRecords As Integer
 Dim daoFld1 As DAO.Field
 Dim daoFld2 As DAO.Field
 ' Start workspace transactions
 defWSpace.BeginTrans
 While daoRset1.EOF = False
 daoRset2.AddNew
 ' Loop copies data from each field to new table
 For i = 0 To (daoRset1.Fields.Count – 1)
 Set daoFld1 = daoRset1.Fields(i)
 For j = 0 To (daoRset2.Fields.Count – 1)
 Set daoFld2 = daoRset2.Fields(j)
 If UCase(daoFld1.Name) = UCase(daoFld2.Name) Then
 daoRset2(daoFld2.Name).Value = daoFld1.Value
 Exit For
 End If
 Next
 Next
 daoRset2.Update
 daoRset1.MoveNext
 numRecords = numRecords + 1
 ' Commit transactions every 1000 records
 If numRecords = 1000 Then
 defWSpace.CommitTrans
 defWSpace.BeginTrans
 numRecords = 0
 End If

24 Saving Time and Money Using SAS

 Wend
 ' Commit changes now we have finished
 defWSpace.CommitTrans
 CopyDataDAO = True
End Function

The following function is used to remove “owner” information from the ODBC table
names, e.g., SHELP.CLASS becomes CLASS:

Public Function StripOwner(TableName As String) As String
 If InStr(TableName, ".") > 0 Then
 TableName = Mid(TableName, _
 InStr(TableName, ".") + 1, _
 Len(TableName))
 End If
 StripOwner = TableName
End Function

The functions already described can be brought together to copy the structure and data
from the source table to the target table as follows:

Public Sub SaveDAOToDAO(defWSpace As Workspace, _
 daoRset1 As DAO.Recordset, _
 daoDB2 As DAO.Database, _
 DBTable As String)
 Dim daoRset2 As DAO.Recordset
 Dim i As Integer
 If CopyStructDAO(daoRset1, daoDB2, DBTable) Then
 Set daoRset2 = daoDB2.OpenRecordset(DBTable)
 If CopyDataDAO(defWSpace, daoRset1, daoRset2) Then
 daoRset2.Close

 Debug.Print "CopyData to perm completed..."
 End If
 End If
End Sub

All that is left to do is to specify the ODBC server name and the source and target tables:

Public Sub ODBCread()
 ' Create DAO objects
 Dim odbcDB As DAO.Database
 Dim odbcRset As DAO.Recordset
 Dim defWSpace As Workspace
 Dim daoDB As DAO.Database
 Dim odbcServer As String
 Dim DataSet As String
 Dim DBFilePath As String

Chapter 1: Accessing SAS Data without Using SAS Code 25

 Dim DBTable As String
 Dim defFileSystem As Object
 Dim DBFileObject As Object
 ' Set file and database folder values
 DataSet = "shelp.class"
 odbcServer = "sasuser32"
 DBTable = "class1"
 DBFilePath = "c:\temp"
 ' Verify path
 Set defFileSystem = CreateObject("Scripting.FileSystemObject")
 Set DBFileObject = defFileSystem.GetFolder(DBFilePath)
 ' Get default workspace.
 Set defWSpace = DBEngine.Workspaces(0)
 ' Make sure there isn't already a file with the same name
 ' in the folder.
 If Dir(Trim$(DBFileObject.Path) & _
 "\" & _
 Trim$(DBTable) & ".dbf") <> "" Then
 Kill Trim$(DBFileObject.Path) & "\" & Trim$(DBTable) & ".dbf"
 End If
 ' Open database
 Set daoDB = defWSpace.OpenDatabase(Trim$(DBFileObject.Path), _
 False, _
 False, _
 "dBase IV;")
 ' Set initialization properties
 Set odbcDB = defWSpace.OpenDatabase(odbcServer, _
 False, _
 True, _
 "ODBC;")
 ' Open recordset
 Set odbcRset = odbcDB.OpenRecordset(DataSet)
 Call SaveDAOToDAO(defWSpace, _
 odbcRset, _
 daoDB, _
 DBTable)
 ' Close connection
 odbcRset.Close
 odbcDB.Close
 daoDB.Close
 Set defWSpace = Nothing
End Sub

26 Saving Time and Money Using SAS

Visual Basic can also use the SAS ODBC driver to write to SAS data libraries, with
exclusive update access, using the following DatabaseName and Connect strings, e.g.:

Set DB = OpenDatabase("saswrite", True, False, "ODBC;")

The database, “DB”, can be manipulated in the same way as any Microsoft Access
database using standard Visual Basic Data Access functions and methods. The SAS data
sets within the ODBC data source can be accessed using the standard SAS
'libref.member' naming conventions, via Jet SQL supplied as part of Visual Basic and
Microsoft Access.

1.3.5 Lotus Approach Version 9

LotusScript Version 9
In the same way that Visual Basic can use the SAS ODBC driver to read from SAS data
libraries, LotusScript can be used to create a new Approach document to view a SAS
data set:

Sub ODBCread
 ' Create new connection
 Dim Con As New Connection()
 ' Create new query
 Dim Qry As New Query()
 ' Create new resultset
 Dim RS As New ResultSet()
 Dim MyDoc As Document
 Dim ServName As String
 Dim TName As String
 ' Specify ODBC server name
 ServName = "sasuser32"
 ' Specify source data set name
 TName = "shelp.class"
 ' Open ODBC connection to server
 ' (which must be prefixed with "!")
 If Con.ConnectTo("ODBC Data Sources", , , "!" & ServName) Then
 ' Associate query with connection
 Set Qry.Connection = Con
 ' Set table to open
 Qry.TableName = Tname
 ' Associate resultset with query
 Set RS.Query = Qry
 ' Populate resultset

Chapter 1: Accessing SAS Data without Using SAS Code 27

 If RS.Execute Then
 ' Create Approach document for resultset
 Set MyDoc = New Document(RS)
 End If
 ' Close connection
 Con.Disconnect
 End If
End Sub

1.3.6 OpenOffice.org 2.1
While, in theory, OpenOffice.org Base can use ODBC drivers compatible with ODBC 3
to access database tables, the SAS ODBC driver was compatible only with ODBC 2 prior
to SAS 9.1. Following the changes made to the SAS ODBC driver in SAS 9.1, it is now
possible to import SAS data into OpenOffice.org spreadsheets without any errors.

Data from a SAS data set can now be imported into OpenOffice.org documents, but it
must first be registered in an OpenOffice.org database as follows:

1. Open OpenOffice.org Base.

2. Select Connect to an existing database.

3. Select ODBC from the drop-down list.

4. Click Next.

28 Saving Time and Money Using SAS

5. Click Browse.

6. Select a data source, e.g., SASUSER32.

Chapter 1: Accessing SAS Data without Using SAS Code 29

7. Click OK.

8. Click Next.

30 Saving Time and Money Using SAS

 9. If a user name and password are required, fill in the details.

10. The connection to the SAS ODBC data source can be tested by clicking Test
 Connection. Otherwise, click Next.

Chapter 1: Accessing SAS Data without Using SAS Code 31

11. Select Yes, register the database for me.

12. Click Finish.

32 Saving Time and Money Using SAS

13. Enter the location of the new OpenOffice.org database.

14. Click Save.

Chapter 1: Accessing SAS Data without Using SAS Code 33

15. The database can now be accessed from an OpenOffice.org document, or reports
 can be created directly in OpenOffice.org Base.

34 Saving Time and Money Using SAS

The data from the registered OpenOffice.org database created from the SAS ODBC data
source can be added to an OpenOffice.org spreadsheet as follows:

1. Select Data DataPilot Start.

2. Select Data source registered in OpenOffice.org.

3. Click OK.

Chapter 1: Accessing SAS Data without Using SAS Code 35

4. Select a database from the drop-down list.

5. Select a data source from the drop-down list.

6. Select a type, e.g., Sheet.

7. Click OK.

8. Drag fields into the report template.

9. Select a data field, and then click Options to change the summary statistic.

36 Saving Time and Money Using SAS

10. Select a statistic from the list for the data field.

11. Click OK.

12. Select a column or row field, and then click Options to change the subtotals.

13. Select the Subtotal option.

14. Click OK.

15. Click OK.

Chapter 1: Accessing SAS Data without Using SAS Code 37

16. The report is generated at the currently selected cell.

38 Saving Time and Money Using SAS

1.3.6.1 Visual Basic 6.0
It is also very easy to use Visual Basic to access the SAS ODBC driver, and then write
directly into an OpenOffice.org Calc spreadsheet or into a table in an OpenOffice.org
Writer document.

The following code is common to both processes, and should be included before the
application-specific code:

Dim oServiceManager As Object
Dim oDesktop As Object
' Get the Service Manager object.
Set oServiceManager = _
 CreateObject("com.sun.star.ServiceManager")
' Get the Desktop object.
Set oDesktop = _
 oServiceManager.createInstance("com.sun.star.frame.Desktop")
' Create DAO objects
Dim odbcDB As DAO.Database
Dim odbcRecordset As DAO.Recordset
Dim defWSpace As Workspace
Dim odbcServer As String
Dim DataSet As String
Dim odbcField As Object
' Set file and database folder values
Dim row As Long
Dim column As Long
' Use this empty array when no arguments are needed.
Dim aNoArgs()
DataSet = "shelp.class"
odbcServer = "sasuser32"
' Get default workspace.
Set defWSpace = DBEngine.Workspaces(0)
' Set initialization properties
Set odbcDB = defWSpace.OpenDatabase(odbcServer, _
 False, _
 True, _
 "ODBC;")
' Open recordset
Set odbcRecordset = odbcDB.OpenRecordset(DataSet)

Chapter 1: Accessing SAS Data without Using SAS Code 39

The following code is common to both processes, and should be included after the
application-specific code:

' Close connection
odbcRecordset.Close
odbcDB.Close
Set defWSpace = Nothing

OpenOffice.org Calc
Dim oCalcDoc As Object
Dim oSheet As Object
' Create a new empty spreadsheet.
Set oCalcDoc = _
 oDesktop.loadComponentFromURL("private:factory/scalc", _
 "_blank", 0, aNoArgs())
' Get the first spreadsheet from the sheets in the document.
Set oSheet = oCalcDoc.getSheets().getByIndex(0)
' Write table to Calc sheet
'this loop copies each field name into the 1st row of the sheet
row = 0
For column = 0 To (odbcRecordset.Fields.Count - 1)
 Set odbcField = odbcRecordset.Fields(column)
 oSheet.getCellByPosition(column, 0).setFormula _
 CStr(odbcField.Name)
Next
While odbcRecordset.EOF = False
 row = row + 1
 'this loop copies the data from each field to the new table
 For column = 0 To (odbcRecordset.Fields.Count - 1)
 Set odbcField = odbcRecordset.Fields(column)
 If odbcField.Type = 4 or odbcField.Type = 7 Then
 oSheet.getCellByPosition(column, row).setValue _
 odbcField.Value
 Else
 oSheet.getCellByPosition(column, row).setFormula _
 CStr(odbcField.Value)
 End If
 Next
 odbcRecordset.MoveNext
Wend

40 Saving Time and Money Using SAS

OpenOffice.org Writer
Dim oText As Object
Dim oText2 As Object
Dim oTable As Object
Dim oCursor As Object
' Create a new blank text document.
Set oText = _
 oDesktop.loadComponentFromURL("private:factory/swriter", _
 "_blank", 0, aNoArgs())
' insert TextTable
Set oTable =
oText.createInstance("com.sun.star.text.TextTable")
' Create position cursor
Set oText2 = oText.GetText()
Set oCursor = oText2.createTextCursor()
' Write table to Text doc
' initialize the table with the correct number of columns + rows
oTable.Initialize 1, CLng(odbcRecordset.Fields.Count)
oTable.RepeatHeadline = True
' insert table now
oCursor.gotoStart False
oText2.insertTextContent oCursor, oTable, False
'this loop copies each field name into the 1st row of the table
row = 0
For column = 0 To (odbcRecordset.Fields.Count - 1)
 Set odbcField = odbcRecordset.Fields(column)
 oTable.getCellByPosition(column, 0).String = _
 CStr(odbcField.Name)
Next
odbcRecordset.MoveFirst
While odbcRecordset.EOF = False
 row = row + 1
 oTable.GetRows().insertByIndex row, 1
 'this loop copies the data from each field to the new table
 For column = 0 To (odbcRecordset.Fields.Count - 1)
 Set odbcField = odbcRecordset.Fields(column)
 oTable.getCellByPosition(column, row).String = _
 CStr(odbcField.Value)
 Next
 odbcRecordset.MoveNext
Wend

Chapter 1: Accessing SAS Data without Using SAS Code 41

1.3.6.2 OpenOffice.org Base 2.1
The Basic programming language within the different components of OpenOffice.org is
similar to Visual Basic for Applications. The following Base code, which should be run
as a macro within the corresponding component, is functionally the same as the
preceding code to access the SAS ODBC driver, and then to write directly into the
OpenOffice.org Calc spreadsheet in a sheet called “Class report,” or into a new table at
the end of the OpenOffice.org Writer document.

The following code is common to both processes, and should be included before the
application-specific code:

Dim DatabaseContext As Object
Dim DataSource As Object
Dim Connection As Object
Dim InteractionHandler as Object
Dim Statement As Object
Dim ResultSet As Object
Dim row As Long
Dim column As Long
DatabaseContext =
 createUnoService("com.sun.star.sdb.DatabaseContext")
DataSource = DatabaseContext.getByName("sasuser32")
If Not DataSource.IsPasswordRequired Then
 Connection = DataSource.GetConnection("","")
Else
 InteractionHandler =
 createUnoService("com.sun.star.sdb.InteractionHandler")
 Connection =
 DataSource.ConnectWithCompletion(InteractionHandler)
End If
Statement = Connection.createStatement()
ResultSet = Statement.executeQuery("SELECT * FROM shelp.class")

The following code is common to both processes, and should be included after the
application-specific code:

' Close connection
ResultSet.Close
Connection.Close

42 Saving Time and Money Using SAS

OpenOffice.org Calc
Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object
' Create a new empty spreadsheet.
Doc = ThisComponent 'StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
If Doc.Sheets.hasByName("Class Report") Then
 Sheet = Doc.Sheets.getByName("Class Report")
Else
 Sheet = Doc.createInstance("com.sun.star.sheet.Spreadsheet")
 Doc.Sheets.insertByName("Class Report", Sheet)
End If
' Write table to Calc sheet
'this loop copies each field name into the 1st row of the sheet
row = 0
For column = 0 To (ResultSet.Columns.Count - 1)
 Cell = Sheet.getCellByPosition(column, 0)
 Cell.Formula = ResultSet.Columns(column).Name
Next
While ResultSet.Next()
 row = row + 1
 'this loop copies the data from each field to the new table
 For column = 0 To (ResultSet.Columns.Count - 1)
 Cell = Sheet.getCellByPosition(column, row)
 If ResultSet.Columns(column).Type = 4 or
 ResultSet.Columns(column).Type = 7 Then
 Cell.Value = ResultSet.Columns(column).getValue()
 Else
 Cell.Formula = ResultSet.Columns(column).getString()
 End If
 Next
Wend

Chapter 1: Accessing SAS Data without Using SAS Code 43

OpenOffice.org Writer
Dim Doc As Object
Dim Table As Object
Dim Cursor As Object
' Allocate this text document.
Doc = ThisComponent
' Create position cursor
Cursor = Doc.Text.createTextCursor()
' insert table at the end of the document
Cursor.gotoEnd(false)
' insert TextTable
Table = Doc.createInstance("com.sun.star.text.TextTable")
' initialize the table with the correct number of columns + rows
Table.initialize(1, ResultSet.Columns.Count)
' Write table to Text doc
Table.RepeatHeadline = True
Doc.Text.insertTextContent(Cursor, Table, False)
'this loop copies each field name into the 1st row of the table
row = 0
For column = 0 To (ResultSet.Columns.Count - 1)
 Table.getCellByPosition(column, 0)
 .setString(ResultSet.Columns(column).Name)
Next
Table.getRows(0)
While ResultSet.Next()
 row = row + 1
 Table.getRows().insertByIndex(row, 1)
 'this loop copies the data from each field to the new table
 For column = 0 To (ResultSet.Columns.Count - 1)
 Table.getCellByPosition(column, row)
 .setString(ResultSet.Columns(column).getString())
 Next
Wend

1.4 Dynamic Data Exchange

In the same way that SAS can be used to start and access Windows applications, SAS
can be accessed by other Windows applications using Dynamic Data Exchange (DDE)
operations. The DDE interface allows data to be sent to SAS via code (e.g., %LET
statements, DATA step code with instream data, etc.). It is possible for SAS Display
Manager commands to be executed, menu items to be clicked, SAS code to be written
into the Program Editor—in fact any SAS operations that can be performed using the

44 Saving Time and Money Using SAS

keyboard—using SendKeys instructions that include special string values for special
keys, e.g., ALT, CTRL, ESC, ENTER, F1, etc.

Data cannot easily be passed back to the calling program via DDE, but data can be
written to a file that can be read by the calling application using SAS code, e.g., as a
Microsoft Access table using SAS/ACCESS for ODBC, as comma-separated text to a
text file, or as a computer graphics metafile (e.g., *.CGM, *.WMF) using SAS/GRAPH,
etc.

Figure 1.1 An Example of a SAS DDE Server at the Center of a
 Reporting System

VB or Access
(DDE Client)

Text file

Microsoft Access
Database

Graphics
metafile

Comma-
separated

text

DDE
(commands)

Microsoft Jet SAS/ACCESS
for ODBC

Microsoft
Excel

SAS Data Library

Base SAS

Open

Microsoft
Word

Final report

Insert File

Insert Picture

Final report

SAS
(DDE Compute

Server)

Base SAS

SAS/GRAPHBase SAS

Chapter 1: Accessing SAS Data without Using SAS Code 45

1.4.1 Visual Basic 6.0
Visual Basic 6.0 allows any Visual Basic application to start SAS using a Windows Shell
function. When the SAS session has been initialized, commands can be sent to SAS
using the SendKeys function, e.g.:

'start SAS in maximized window
rc = Shell("d:\sas.exe",vbMaximizedFocus)
'wait for SAS to initialize
For i = 1 To 1000
 DoEvents()
Next
'Globals, Program Editor
SendKeys "%GP",True
'set SAS macro variable
SendKeys "{%}let macrovar = 1234;~",True
'run AF application
SendKeys "dm 'af c=lib.cat.prog.frame' af;~",True
'Locals, Submit
SendKeys "%LS"
'Globals, Program Editor
SendKeys "%GP",True
'Exit SAS
SendKeys "endsas;~",True
'Locals, Submit
SendKeys "%LS"

Additional processing by the Visual Basic application would be required if the SAS part
of the application allows user input. The Visual Basic application must be hidden from
view while the SAS part is executing. One way of performing this is to have a regularly
executed function that initially creates a temporary “lock” file, and then hides the Visual
Basic window while this file exists. The SAS part can then be seen and run as required.
When the SAS processing has been completed, SAS can delete the lock file to tell Visual
Basic to restore the visibility of the calling window.

1.5 SAS Integration Technologies

SAS Integration Technologies provides a number of useful external interfaces to SAS
data, including an OLE DB driver, which can be accessed using ActiveX Data Objects
(ADO), and a SAS Workspace Manager, which provides facilities to execute SAS code.
It should be noted that, while access to SAS data via a remote SAS system requires that

46 Saving Time and Money Using SAS

the SAS Integration Technologies component be licensed on that remote system, access
to a local SAS system only requires the installation and licensing of Base SAS.

1.5.1 Visual Basic 6.0
Although the two types of libraries required to access the facilities within SAS
Integration Technologies, SAS Integrated Object Model (IOM) and SAS Workspace
Manager, are installed at the same time as the client software, they must still be added to
the references within your Visual Basic project using the References menu item.

Access to SAS data sets via the OLE DB driver using ADO is very similar to accessing
them via the SAS ODBC driver using Data Access Objects (DAO). However, ADO and
DAO are not completely interchangeable, e.g., the field attributes are not the same for
corresponding data types, which means that the code below has a number of significant
differences from that used to access the SAS data sets via ODBC and DAO.

OLE DB and ADO
Allowing for the fact that the data type codes for ADO and DAO are different, and the
field attributes also have different names, in order to be able to copy the SAS data from
the ADO connection to the dBase table, the target table has to be constructed to include
the same fields:

Public Function CopyStructADO(adoRset As ADODB.Recordset, _
 daoDB As DAO.Database, _
 DBTable As String) As Integer
 Dim i As Integer
 Dim daoTDef As DAO.TableDef
 Dim tmpTDef As DAO.TableDef
 Dim daoFld As DAO.Field
 Dim adoFld As ADODB.Field
 Dim errorFlag As Boolean
 ' Search to see if table exists
 For i = 0 To daoDB.TableDefs.Count – 1
 Set tmpTDef = daoDB.TableDefs(i)
 If UCase(tmpTDef.Name) = UCase(DBTable) Then
 daoDB.TableDefs.Delete tmpTDef.Name
 Exit For
 End If
 Next
 Set daoTDef = daoDB.CreateTableDef(DBTable)
 ' Create fields
 For i = 0 To adoRset.Fields.Count – 1
 Set adoFld = adoRset.Fields(i)
 Set daoFld = Nothing
 errorFlag = True
 ' Convert ADO field types to DAO equivalents

Chapter 1: Accessing SAS Data without Using SAS Code 47

 Select Case adoFld.Type
 Case adDouble
 Set daoFld = daoTDef.CreateField(CVar(adoFld.Name), _
 Cvar(dbDouble))
 errorFlag = False
 Case adChar
 Set daoFld = daoTDef.CreateField(CVar(adoFld.Name), _
 Cvar(dbText), _
 Cvar(adoFld.DefinedSize))
 errorFlag = False
 End Select
 If Not errorFlag Then
 daoTDef.Fields.Append daoFld
 End If
 Next
 ' Append new table
 daoDB.TableDefs.Append daoTDef
 CopyStructADO = True
End Function

Once the table structure has been copied and the two tables opened as recordsets, the data
itself can then be copied record by record, 1,000 records at a time, using transactions:

Public Function CopyDataADO(defWSpace As Workspace, _
 adoRset As ADODB.Recordset, _
 daoRset As DAO.Recordset) As Integer
 Dim i As Integer
 Dim j As Integer
 Dim numRecords As Integer
 Dim adoFld As ADODB.Field
 Dim daoFld As DAO.Field
 ' Start workspace transactions
 defWSpace.BeginTrans
 While adoRset.EOF = False
 daoRset.AddNew
 ' Loop copies data from each field to new table
 For i = 0 To (adoRset.Fields.Count – 1)
 Set adoFld = adoRset.Fields(i)
 For j = 0 To (daoRset.Fields.Count – 1)
 Set daoFld = daoRset.Fields(j)
 If UCase(adoFld.Name) = UCase(daoFld.Name) Then
 daoRset(daoFld.Name).Value = adoFld.Value
 Exit For
 End If
 Next
 Next
 daoRset.Update

48 Saving Time and Money Using SAS

 adoRset.MoveNext
 numRecords = numRecords + 1
 ' Commit transactions every 1000 records
 If numRecords = 1000 Then
 defWSpace.CommitTrans
 defWSpace.BeginTrans
 numRecords = 0
 End If
 Wend
 ' Commit changes now we have finished
 defWSpace.CommitTrans
 CopyDataADO = True
End Function

The functions already described can be brought together to copy the structure and data
from the source table to the target table as follows:

Public Sub SaveADOToDAO(defWSpace As Workspace, _
 adoRset As ADODB.Recordset, _
 daoDB As DAO.Database, _
 DBTable As String)
 Dim daoRset As DAO.Recordset
 Dim i As Integer
 If CopyStructADO(adoRset, daoDB, DBTable) Then
 Set daoRset = daoDB.OpenRecordset(DBTable)
 If CopyDataADO(defWSpace, adoRset, daoRset) Then
 daoRset.Close
 End If
 End If
End Sub

All that is left to do is to specify the location of the SAS data library and the source and
target tables:

Public Sub ADOread()
 ' Create ADO and DAO objects
 Dim adoConnection As New ADODB.Connection
 Dim adoRset As New ADODB.Recordset
 Dim defWSpace As Workspace
 Dim daoDB As DAO.Database
 Dim FilePath As String
 Dim DataSet As String
 Dim DBFilePath As String
 Dim DBTable As String
 Dim defFileSystem As Object
 Dim adoFileObject As Object
 Dim DBFileObject As Object

Chapter 1: Accessing SAS Data without Using SAS Code 49

 ' Set file and database folder values
 DataSet = "hello"
 FilePath = "c:\temp"
 DBTable = "hello1"
 DBFilePath = "c:\temp"
 ' Verify path
 Set defFileSystem = CreateObject("Scripting.FileSystemObject")
 Set adoFileObject = defFileSystem.GetFolder(FilePath)
 Set DBFileObject = defFileSystem.GetFolder(DBFilePath)
 ' Get default workspace.
 Set defWSpace = DBEngine.Workspaces(0)
 ' Make sure there isn't already a file with the same name
 ' in the folder.
 If Dir(Trim$(DBFileObject.Path) & _
 "\" & _
 Trim$(DBTable) & ".dbf") <> "" Then
 Kill Trim$(DBFileObject.Path) & "\" & Trim$(DBTable) & ".dbf"
 End If
 ' Open database
 Set daoDB = defWSpace.OpenDatabase(Trim$(DBFileObject.Path), _
 False, _
 False, _
 "dBase IV;")
 ' Set initialization properties
 adoConnection.Provider = "SAS.LocalProvider.1"
 adoConnection.Properties("Data Source") = adoFileObject.Path
 ' Open connection
 adoConnection.Open
 ' Open recordset
 adoRset.Open DataSet, _
 adoConnection, _
 adOpenForwardOnly, _
 adLockReadOnly, _
 adCmdTableDirect
 Call SaveADOToDAO(defWSpace, _
 adoRset, _
 daoDB, _
 DBTable)
 ' Close connection
 adoConnection.Close
 Set adoConnection = Nothing
 daoDB.Close
 Set defWSpace = Nothing
End Sub

50 Saving Time and Money Using SAS

SAS Workspace Manager
The SAS Workspace Manager provides a number of objects that can be used to access
the processing power of SAS. In the following examples, SAS will be installed on the
same system as the Visual Basic application, thereby not requiring any additional SAS
component licensing.

The first example demonstrates how to run a simple SAS program in a local SAS session
by submitting code stored in a string array. The SAS.LanguageService object is used to
submit the code. The SAS output from the execution of these code lines is written to a
text file located in the same folder as the Visual Basic application:

Public Sub Wsrun()
 ' Create workspace on local machine using Workspace Manager
 Dim sasWSMgr As New SASWorkspaceManager.WorkspaceManager
 Dim sasWSpace As SAS.Workspace
 Dim errorString As String
 Set sasWSpace = sasWSMgr.Workspaces.CreateWorkspaceByServer _
 ("My workspace", _
 VisibilityNone, _
 Nothing, _
 "", _
 "", _
 errorString)
 Dim sasLangService As SAS.LanguageService
 ' Declare fixed size array of strings to hold input statements
 Dim arraySource(2) As String
 ' Declare dynamic array of strings to hold list output
 Dim arrayList() As String
 ' These arrays will return line types and carriage control
 Dim arrayCC() As LanguageServiceCarriageControl
 Dim arrayLT() As LanguageServiceLineType
 Dim vOutLine As Variant
 arraySource(0) = _
 "data loop; do x=1 to 10; y=2-x; output; end; run;"
 arraySource(1) = "proc print; title 'Loop code';"
 arraySource(2) = "run;"
 Set sasLangService = sasWSpace.LanguageService
 sasLangService.SubmitLines arraySource
 ' Get up to 1000 lines of output
 sasLangService.FlushListLines 1000, arrayCC, arrayLT, arrayList
 ' Print each name in returned array
 Open ".\loop.txt" For Output As #1
 For Each vOutLine In arrayList
 Print #1, vOutLine

Chapter 1: Accessing SAS Data without Using SAS Code 51

 Next
 Close #1
 sasWSpace.Close
End Sub

The second example demonstrates how to use the SAS.DataService object to query the
environment of the SAS session to find information about which SAS library references
exist. The SAS output from the investigation is written to a text file located in the same
folder as the Visual Basic application:

Public Sub WSlibname()
 ' Create workspace on local machine using Workspace Manager
 Dim sasWSMgr As New SASWorkspaceManager.WorkspaceManager
 Dim sasWSpace As SAS.Workspace
 Dim errorString As String
 Dim vName As Variant
 ' Declare dynamic array of strings to hold libnames
 Dim arrayLibnames() As String
 Set sasWSpace = sasWSMgr.Workspaces.CreateWorkspaceByServer _
 ("My workspace", _
 VisibilityNone, _
 Nothing, _
 "", _
 "", _
 errorString)
 ' Get reference to workspace's DataService.
 Dim sasDService As SAS.DataService
 Set sasDService = sasWSpace.DataService
 ' Assign libref named "saslib2" within new workspace
 Dim sasLibref As SAS.Libref
 Set sasLibref = sasDService.AssignLibref _
 ("saslib2", _
 "", _
 ".\", _
 "")
 ' Should print "saslib2"
 Open ".\libref.log" For Output As #2
 Print #2, "Newest libname = " & sasLibref.Name
 Print #2, " "
 ' Pass dynamic array variable to "ListLibrefs".
 ' Upon return, array variable will be filled in with array
 ' of strings one element for each libref in workspace
 sasDService.ListLibrefs arrayLibnames
 ' Print each name in returned array
 For Each vName In arrayLibnames
 Print #2, vName
 Next

52 Saving Time and Money Using SAS

 ' Print size of array
 Print #2, " "
 Print #2, "Number of librefs was: " & UBound(arrayLibnames) + 1
 Close #2
 ' Deassign libref.
 sasDService.DeassignLibref sasLibref.Name
 ' Close workspace.
 sasWSpace.Close
End Sub

SAS Workspace Manager, IOM, and ADO
The SAS Workspace Manager also provides an interface suitable for accessing SAS data
sets via ADO. As was seen in the preceding example for the SAS Workspace Manager,
the SAS.LanguageService object is used to submit some SAS code to create a temporary
SAS data set. The ADO interface then uses the local SAS IOM data provider,
SAS.IOMProvider.1, to access the temporary SAS data set. The code then calls the
SaveADOToDAO subroutine, described earlier in the section about OLE DB and ADO,
to copy its structure and contents to a dBase file:

Public Sub WSADOread()
 ' Create workspace on local machine using Workspace Manager
 Dim sasWSpace As SAS.Workspace
 Dim sasWSMgr As New SASWorkspaceManager.WorkspaceManager
 Dim errorString As String
 ' Create ADO and DAO objects
 Dim adoConnection As New ADODB.Connection
 Dim adoRset As New ADODB.Recordset
 Dim defWSpace As Workspace
 Dim daoDB As DAO.Database
 Dim daoRset As DAO.Recordset
 Dim DBFilePath As String
 Dim DBTable As String
 Dim defFileSystem As Object
 Dim DBFileObject As Object
 ' Set file and database folder values
 DBTable = "looping"
 DBFilePath = "c:\temp"
 ' Verify path
 Set defFileSystem = CreateObject("Scripting.FileSystemObject")
 Set DBFileObject = defFileSystem.GetFolder(DBFilePath)
 ' Get default workspace.
 Set defWSpace = DBEngine.Workspaces(0)
 ' Make sure there isn't already a file with the same name
 ' in the folder.
 If Dir(Trim$(DBFileObject.Path) & _
 "\" & _
 Trim$(DBTable) & ".dbf") <> "" Then

Chapter 1: Accessing SAS Data without Using SAS Code 53

 Kill Trim$(DBFileObject.Path) & "\" & Trim$(DBTable) & ".dbf"
 End If
 ' Open database
 Set daoDB = defWSpace.OpenDatabase(Trim$(DBFileObject.Path), _
 True, _
 False, _
 "dBase IV;")
 Set sasWSpace = sasWSMgr.Workspaces.CreateWorkspaceByServer _
 ("MyWorkspaceName", _
 VisibilityProcess, _
 Nothing, _
 "", _
 "", _
 errorString)
 ' Submit SAS code
 sasWSpace.LanguageService.Submit _
 "data looping; do x=1 to 50; y=100; z=x*x; output; run;"
 ' Connect to local SAS IOM data provider
 adoConnection.Open _
 "Provider=SAS.IOMProvider.1; SAS Workspace ID=" + _
 sasWSpace.UniqueIdentifier
 ' Read temporary SAS data set
 adoRset.Open "work.looping", _
 adoConnection, _
 adOpenStatic, _
 adLockReadOnly, _
 adCmdTableDirect
 ' Copy the data to dBase file
 Call SaveADOToDAO(defWSpace, _
 adoRset, _
 daoDB, _
 DBTable)
 ' Close connections
 adoConnection.Close
 Set adoConnection = Nothing
 daoDB.Close
 Set defWSpace = Nothing
 ' If we don't close SAS, the SAS process may stay around
 ' forever
 If Not (sasWSpace Is Nothing) Then
 sasWSMgr.Workspaces.RemoveWorkspace sasWSpace
 sasWSpace.Close
 End If
End Sub

54 Saving Time and Money Using SAS

1.5.2 LotusScript Version 9

Lotus Word Pro 9 with SAS Workspace Manager, IOM, and ADO
The SAS Workspace Manager also provides an interface suitable for accessing SAS data
sets via ADO, which can also be used within the applications that form Lotus
SmartSuite. The following code extracts the data from a SAS data set called CLASS,
which is located in the folder 'c:\temp\sas' (note that the file separators need to be
changed in the code to UNIX-style separators!), and then writes it record by record to the
end of a Lotus Word Pro document.

Sub ADORead_WP()
 Dim vConn As Variant
 ' create connect and recordset options
 Set vConn = CreateObject("ADODB.Connection")
 Set rs = CreateObject("ADODB.recordset")
 ' open the connection to the mdb
 vConn.Provider = "SAS.LocalProvider.1"
 vConn.Open "c:/temp/sas"
 rs.Open "class", vConn, 0, 1, 512
 ' Write the data to the end of the current document.
 .Type "[ctrlEnd]"
 iNumField = rs.Fields.Count
 .Type "[ENTER]Num Fields is " & Str(iNumField) & "[ENTER]"
 rs.MoveFirst
 Do While Not rs.EOF
 .Type "[ENTER]" & rs.Fields("Name").Value
 .Type "[TAB]" & rs.Fields("Age").Value
 .Type "[TAB]" & rs.Fields("Sex").value
 .Type "[TAB]" & rs.Fields("Height").Value
 .Type "[TAB]" & rs.Fields("Weight").Value
 rs.MoveNext
 Loop
 rs.close
 vConn.Close
 Set rs = Nothing
 Set vConn = Nothing
End Sub

Lotus 1-2-3 9 with SAS Workspace Manager, IOM, and ADO
The following code performs the same actions as above, but writes the data to cells
starting at the top left cell of the first sheet in a Lotus 1-2-3 spreadsheet file. Again, the
location of the input SAS data set must be specified in the code with file separators
changed to be UNIX-style.

Chapter 1: Accessing SAS Data without Using SAS Code 55

Sub ADORead_123()
 Dim vConn As Variant
 Dim row As Long
 Dim report As Range
 Set report = [A:A3..A:E65535]
 ' create connect and recordset options
 Set vConn = CreateObject("ADODB.Connection")
 Set rs = CreateObject("ADODB.recordset")
 ' open the connection to the mdb
 vConn.Provider = "SAS.LocalProvider.1"
 vConn.Open "c:/temp/sas"
 rs.Open "class", vConn, 0, 1, 512
 iNumField = rs.Fields.Count
 [A:A1].Contents = "Num Fields is " & Str(iNumField)
 [A:A2].Contents = "Name"
 [A:B2].Contents = "Age"
 [A:C2].Contents = "Sex"
 [A:D2].Contents = "Height"
 [A:E2].Contents = "Weight"
 rs.MoveFirst
 row = 0
 Do While Not rs.EOF
 report.Cell(row,0).Contents = rs.Fields("Name").Value
 report.Cell(row,1).Contents = rs.Fields("Age").Value
 report.Cell(row,2).Contents = rs.Fields("Sex").Value
 report.Cell(row,3).Contents = rs.Fields("Height").Value
 report.Cell(row,4).Contents = rs.Fields("Weight").Value
 rs.MoveNext
 row = row + 1
 Loop
 rs.close
 vConn.Close
 Set rs = Nothing
 Set vConn = Nothing
End Sub

1.5.3 OpenOffice.org 2.1
It is easier to use Visual Basic to access the SAS Integration Technologies services, and
then write directly into an OpenOffice.org Calc spreadsheet or into a table in an
OpenOffice.org Writer document.

56 Saving Time and Money Using SAS

The following code is common to both processes, and should be included before the
application-specific code:

Dim oServiceManager As Object
Dim oDesktop As Object
' Get the Service Manager object.
Set oServiceManager = _
 CreateObject("com.sun.star.ServiceManager")
' Get the Desktop object.
Set oDesktop = _
 oServiceManager.createInstance("com.sun.star.frame.Desktop")
Dim adoConnection As New ADODB.Connection
Dim adoRecordset As New ADODB.Recordset
Dim FilePath As String
Dim DataSet As String
Dim defFileSystem As Object
Dim adoFileObject As Object
Dim adoField As Object
Dim row As Long
Dim column As Long
' Use this empty array when no arguments are needed.
Dim aNoArgs()
' Set file values
FilePath = "c:\temp\sas"
DataSet = "class"
' Verify path
Set defFileSystem = CreateObject("Scripting.FileSystemObject")
Set adoFileObject = defFileSystem.GetFolder(FilePath)
' Set initialization properties
adoConnection.Provider = "SAS.LocalProvider.1"
adoConnection.Properties("Data Source") = adoFileObject.Path
' Open the Connection and display its properties
adoConnection.Open
' Open the Recordset
adoRecordset.Open DataSet, _
 adoConnection, _
 adOpenForwardOnly, _
 adLockReadOnly, _
 ADODB.adCmdTableDirect

Chapter 1: Accessing SAS Data without Using SAS Code 57

The following code is common to both processes, and should be included after the
application-specific code:

' Close the Connection
adoConnection.Close
Set adoConnection = Nothing

OpenOffice.org Calc
Dim oCalcDoc As Object
Dim oSheet As Object
' Create a new empty spreadsheet.
Set oCalcDoc = _
 oDesktop.loadComponentFromURL("private:factory/scalc", _
 "_blank", 0, aNoArgs())
' Get the first spreadsheet from the sheets in the document.
Set oSheet = oCalcDoc.getSheets().getByIndex(0)
' Write table to Calc sheet
'this loop copies each field name into the 1st row of the sheet
row = 0
For column = 0 To (adoRecordset.Fields.Count - 1)
 Set adoField = adoRecordset.Fields(column)
 oSheet.getCellByPosition(column, 0).setFormula _
 CStr(adoField.Name)
Next
While adoRecordset.EOF = False
 row = row + 1
 'this loop copies the data from each field to the new table
 For column = 0 To (adoRecordset.Fields.Count - 1)
 Set adoField = adoRecordset.Fields(column)
 If adoField.Type = 200 Then
 oSheet.getCellByPosition(column, row).setFormula _
 CStr(adoField.Value)
 Else
 oSheet.getCellByPosition(column, row).setValue _
 adoField.Value
 End If
 Next
 adoRecordset.MoveNext
Wend

58 Saving Time and Money Using SAS

OpenOffice.org Writer
Dim oText As Object
Dim oText2 As Object
Dim oTable As Object
Dim oCursor As Object
' Create a new blank text document.
Set oText = _
 oDesktop.loadComponentFromURL("private:factory/swriter", _
 "_blank", 0, aNoArgs())
' insert TextTable
Set oTable = oText.createInstance("com.sun.star.text.TextTable")
' Create position cursor
Set oText2 = oText.GetText()
Set oCursor = oText2.createTextCursor()
' Write table to Text doc
' initialize the table with the correct number of columns + rows
oTable.Initialize 1, CLng(adoRecordset.Fields.Count)
oTable.RepeatHeadline = True
' insert table now
oCursor.gotoStart False
oText2.insertTextContent oCursor, oTable, False
'this loop copies each field name into the 1st row of the table
row = 0
For column = 0 To (adoRecordset.Fields.Count - 1)
 Set adoField = adoRecordset.Fields(column)
 oTable.getCellByPosition(column, 0).String = _
 CStr(adoField.Name)
Next
adoRecordset.MoveFirst
While adoRecordset.EOF = False
 row = row + 1
 oTable.GetRows().insertByIndex row, 1
 'this loop copies the data from each field to the new table
 For column = 0 To (adoRecordset.Fields.Count - 1)
 Set adoField = adoRecordset.Fields(column)
 oTable.getCellByPosition(column, row).String = _
 CStr(adoField.Value)
 Next
 adoRecordset.MoveNext
Wend

Chapter 1: Accessing SAS Data without Using SAS Code 59

1.6 Conclusions

This chapter has only scraped the surface of what is possible using SAS as a file server or
compute server for other Windows-based applications. It should now be clear that a large
number of different PC users could benefit from using SAS effectively as a “black box”
processor with their own applications, reducing the need to fully train them in SAS
coding techniques. The SAS data libraries and SAS application development can be done
for them by SAS specialists, providing the users with a well-documented and stable
interface that they can use without any requirement for prior knowledge of SAS.

1.7 Recommended Reading

For more information, go to
www.hollandnumerics.com/books/Saving_Time_and_Money_using_SAS.htm. This
page includes a chapter-by-chapter list of recommended reading.

60

