Chapter 1

Accessing SAS Data without Using SAS Code

1.1 Abstract 2

1.2 Introduction 2

1.3 ODBC 2
1.3.1 Setting Up a SAS Server for the SAS ODBC Driver 3
1.3.2 Microsoft Access 2000 8
1.3.3 Microsoft Excel 2000 17
1.3.4 Visual Basic 6.0 22
1.3.5 Lotus Approach Version 9 26
1.3.6 OpenOffice.org2.1 27

1.4 Dynamic Data Exchange 43
1.4.1 Visual Basic 6.0 45

1.5 SAS Integration Technologies 45
1.5.1 Visual Basic 6.0 46
1.5.2 LotusScript Version 9 54
1.5.3 OpenOffice.org2.1 55

2 Saving Time and Money Using SAS

1.6 Conclusions 59
1.7 Recommended Reading 59

1.1 Abstract

Recent developments in SAS for Windows have provided users with routes to SAS data
and applications without having to write SAS code using SAS. This chapter describes
three examples of these interfaces: ODBC, DDE, and SAS Integration Technologies,
which could place SAS at the center of any application development for the Windows
platform.

1.2 Introduction

In the past, SAS has been used to read data from other Windows data sources,

e.g., Microsoft Access tables using SAS/ACCESS for ODBC, and to control other
external Windows applications using Dynamic Data Exchange (DDE). SAS is, of course,
available as a Windows application itself and can now be used as an external application
for those other Windows applications. This role reversal expands the range of uses for
SAS in the Windows environment in areas where SAS has not been traditionally the first-
choice application. The ability of SAS to read and maintain data from a wide range of
sources can now be used throughout the Windows arena.

Further discussion on SAS Enterprise Guide, a thin-client application for the Windows
client platform that uses SAS Integration Technologies to communicate with SAS
installations on remote servers, can be found in Chapter 6 “Developing SAS Applications
Using SAS Enterprise Guide.”

1.3 ODBC

The SAS ODBC driver has been supplied with Base SAS for Windows since SAS 6.10 to
provide an interface to SAS data libraries for other Windows applications. Each
application has its own particular uses and limitations for the ODBC interface. This
section describes the practicalities of using the SAS ODBC driver 9.1 with Microsoft

Chapter 1: Accessing SAS Data without Using SAS Code 3

Access 2000, Microsoft Excel 2000, Visual Basic 6.0, Lotus Approach Version 9, and
OpenOffice.org 2.1. It should be noted here that StarOffice 8 is functionally equivalent to
OpenOffice.org 2.1, and so all future references to OpenOffice.org 2.1 can be assumed to
include StarOffice 8.

Single ODBC access to SAS data on the same machine that the user accesses uses the
ODBCSERY procedure, which is supplied with Base SAS, running in a single SAS
region. Multiple ODBC access to SAS data, or ODBC access to a remote machine,
requires SAS/SHARE, and possibly SAS/SHARE*NET as well.

1.3.1 Setting Up a SAS Server for the SAS ODBC Driver

It is very important to plan, in advance, which SAS data libraries will be accessed via the
SAS ODBC driver, as the LIBNAME statements must be defined using the ODBC
Administrator application by selecting Start P Control Panel » Administrative Tools
P Data Sources (ODBC). In particular, for any ODBC data source, there can be only
one library reference that can be written to by an external application, i.e., USER, as
Microsoft Access and similar applications can write to data sets with a single-level data
set name only. This name, say XYZZY, would be assumed to be the data set
WORK.XYZZY, except that the USER library name will override the normal default
WORK library name, allowing permanent SAS data sets to be created whenever
single-level names are used.

Other features of the ODBC data source definitions include the following:

® The SAS ODBC server must be added to the SERVICES file (found in
CAWINDOWS or CA\WINNT\SYSTEM32\DRIVERS\ETC, depending on the
Windows platform used) prior to using the ODBC Administrator, as the SAS
ODBC driver uses a TCP/IP connection to communicate with the SAS ODBC
server. The additional lines should look like the following line, with a unique
number greater than 1024 and the columns separated by tab characters:

sasuser32 7001 /tcp #SAS OBDC Server

®* Command line options when invoking SAS (e.g., ~-AUTOEXEC, -NOLOGO,
etc.).

®= SAS data library names used for importing into external Windows applications.

= Changes to the library references in a running SAS ODBC server can be made
for subsequent ODBC connections.

= Library references within SAS 8 are limited to eight characters, which are not
case sensitive. The names cannot include blanks or punctuation, must start with
an alphabetic or underscore character, and the second and subsequent characters
may be numeric characters.

4 Saving Time and Money Using SAS

= It should be noted that the SAS ODBC driver is unable to read the supplied SAS
library references (i.e., MAPS, SASUSER, and SASHELP) using its own special
library references. If these library references need to be read, they should be

allocated to different library references in the ODBC Server Libraries panel,
e.g., SMAPS, SUSER, and SHELP.

= Finally, but probably the most important, if you are trying to use the SAS ODBC
driver on a Windows platform protected by a personal firewall, because the SAS
ODBC server is accessed via a TCP/IP port, you will only be able to access the
SAS ODBC server port if explicitly permitted by the personal firewall rules.

The setup procedure is as follows:
1. Select a user data sources (driver), e.g., SAS.
2. Click Finish.
3. Select a data source name, e.g., SASUSER32.

Create New Data Source

X

Select a driver for which you want bo zet up a data sounce.

Mame | W
Microsaft Parados Driver [*.db] 4
Microsoft Parados-Treiber [*.db | 4
Microsaft Test Dover [tut; * cav] 4
Microsaft Text-Treiber (7 tat; ".cav) 4
Microzaft Wisual FoxPro Driver A
Microzoft Visual FoxPro-Treiber G
MySOL ODBC 3.51 Driver 3

9
SOL Server 2 3
< | »

| Finizh | Cancel

® =N ok

Chapter 1: Accessing SAS Data without Using SAS Code 5

Select a description, e.g., SAS 9.1 ODBC Server.
Select a server, e.g., sasservl.
Click the Servers tab.

Select a server name, e.g., sasservl.

Click Configure.

SAS® ODBC Driver Configuration

General Servers | Libraries

Servers: Server Settings

Mame:

<< pdate << -
SAS Server Type:
>» Bemove >> Local [Single Llzer)
Clear

ok Cancel Help

6 Saving Time and Money Using SAS

9. Select a SAS path, e.g., C:\Program Files\SAS\SAS 9.1\sas.exe. Note that this
path can be used to determine which version of SAS is to be used. The SAS
ODBC driver 8.2 can support SAS servers of SAS 6, 7, or 8, and
the SAS ODBC driver 9.1 can support SAS servers of SAS 7, 8, or 9.

10. Select a SAS parameter, e.g., -initstmt %sasodbc(sasservl) -icon -nologo.

11. Click OK.

Local Options [‘5_(|

545 Settings

Path: |3m Filesh545454A5 9.14zaz exe

‘whorking Directony: |E:'\F'n:ugram Filest 5454545 9.1

Startup Parameters: |-initstmt %Zzazodbo(zazzerl] -ic

Tirneout: ||3|:|

ok | Cancel | Help

12. Click Update or Add.
13. Click the Libraries tab.

Chapter 1: Accessing SAS Data without Using SAS Code 7

14. Select a library name, e.g., user.

15. Select a host file name, e.g., c:\temp\sas9.
16. Select a description, e.g., USER folder.
17. Click Add or Update.

SAS® ODBC Driver Configuration

General Servers | Libraries
Libraries: Library Settings
Descriptior: [USER folder
<< pdate <<
8o | g [|

Clear

(1] Cancel Help

18. Repeat selections as required.

19. Click OK.
20. The SAS ODBC driver is now set up for use.

8 Saving Time and Money Using SAS

1.3.2 Microsoft Access 2000
Microsoft Access can use the SAS ODBC driver to read from SAS data libraries with the

Import menu option, or write to a specific SAS data library with the Export menu option.
The Import procedure is as follows:

1. Select File > Get External Data > Import.

Microsoft Access

JEiIe Edit Wiew Insert Tooks Mindow Help
ek
Chrl+C

ki3 table in Cesig
Create table by using wizard
Create table by entering data

Export. ..

Page Setup. ..
@. Print Prewiew
= Chrl+R

Send Ta
Database Properties

10DBC Modules
2 odbcread

Groups
3 MNorthwind Sample Database

¥ avarites
4 Contacts Sample Database £3) Favorite

Exit

Ready [o

Chapter 1: Accessing SAS Data without Using SAS Code 9

. Select an import data source, e.g., ODBC Databases().

Import

I[En Chapter_z j - |@ b + Toaols -

[008C.mdb
@odbcread.mdb

Look in:

File name: I j = Impork I

Files of Lype: IMicrosoft access (*.mdb;*, adpg* mdw* mda;*, mde; *.a{zl
Lotus 1-2-3/003 (* wi*) “
Lokus 1-2-3 * . wk*)
Qutlook()
Paradox (*.db)

i * .

Cancel |

,csv;,babn *, asc

10 Saving Time and Money Using SAS

3. Click the Machine Data Source tab.

4. Select a data source, e.g., SASUSER32.

5. Click OK.

Select Data Source

File Data Source Machine Data Source

[rata Source Mame Type D'ezcription A
M5 SOL Serverb-Approach Uzer
M5 Sphaze SOL Serverdpp . Uzer
myodbz3-test Uzer MuSOL ODBC 351 TEST DSH
Oracle? tables-Approach Uzer Qracle? Server
Uzer Oracled Server
: 2 Uzer 545 9.1 data zource
Wigual FouPro Databaze zer
Yizual FoxPro T ables IJzer 3
£ ¥
MHew...
& Machine Data Source iz specific to this maching, and cannat be shared.
"Uzer data zources are zpecific to a uzer on thiz machine. "Spstem' data
zources can be uzed by all users an thiz machine, ar by a system-wide service.
Ok | Cancel Help

Chapter 1: Accessing SAS Data without Using SAS Code 11

6. Select a data set, e.g., SHELP_CLASS.

7. Click OK.

e ODBC : Database

Farms

Reports

Modules

Groups

3| Favorites

Create table in Design view

Create table by using wizard

Create table by entering data
SHELP CLASS

@ (=)))

12 Saving Time and Money Using SAS

8. Data is copied into a new Microsoft Access table, e.g., SHELP_CLASS.

Record: 14 1 |1 |pk|oF 19

&| SHELP_CLASS : Table Mi=1[e3
Name Sex Age Height Weight -
b Il 14 (=] 112.5
Alice F 13 AB.5 a4
Barbara F 13 69.3 93
Caral F 14 52.5 102.5
Henry hl 14 53.5 102.5
James M 12 573 g3
Jane F 12 A5.5 84.5
Janet F 15 B2.5 112.5
Jeffrey I 13 B2.5 g4p
John hl 12 59 9495
Joyce F 11 51.3 50.5
Judy F 14 B4.3 a0
Louise F 12 56.3 7
Mlary F 15 BE.5 112
Fhilip hl 16 72 150
Robert hl 12 54.5 128
Ronald hl 15 67 133
Thomas M 11 57.4 (5] j

Chapter 1: Accessing SAS Data without Using SAS Code 13

The Export procedure is as follows:
1. Select File » Export.

!45 psoft Acce O

JE Edit Wiew Insert Format Records Tools Window Help
]/ e e fom o o @8R YR ek B @
[Z Open... Ctrl+0
et External Data 3 > ab |
Close Name Sex Age Height Weight | «
(= . > M 14) 12,5
—— Alice F 13 86.5 g4
" Barbara F 13 653 98
e —— Carol F 14 62.8 102.5
Page Setup... Henry I 14 R 102.5
[y Prirk Preview James M 12 573 a3
E prirt... Chl+P Jane F 12 598 84.5
| e — Janet F 14 62,5 11248
Send To b Jeffrey M 13 625 a4
Datsbase Properties John I 12 £9 0995
Joyee F 11 51.3 505
i::;c(:ead Jud)t F 14 643 an
=) Louise F 12 56.3 77
3 Morthwind Sample Database Mary F 15 GRS 112
4 Contacts Sample Database Philip [15 72 150
Exit Robert h 12 64.8 128
= Ronald M 15 B7 133
Thomas h 11 575 g5 j

Record:] < |—1 b P0[r] of 13
Datashest view T

14 Saving Time and Money Using SAS

2. Select an export data source, e.g., ODBC Databases().

Import

I[E) Chapker_2 j - | @ b - Tools =

(2] onec. mdb
@odbcread.mdb

Look in:

File name: I j = Import |

Files of type: IMicrosoFt fccess (*.mdb;*, adpy* . mdwe® mda;® mde; *.aE Carcel |

Lotus 1-2-3/D0S {* wit) -
Lotus 1-2-3 (* wk*)

QDEC Datal

3. Select a Microsoft Access object, e.g., SHELP_CLASS.
4. Click OK.

04 I
Cancel |

in ODBC Database

Chapter 1: Accessing SAS Data without Using SAS Code 15

5. Click the Machine Data Source tab.
6. Select a data source, e.g., SASUSER32.
7. Click OK.

Select Data Source

File Data Source Machine Data Source

Data Source Mame Type Description -~
M5 SOL Serverb-Approach Uzer

M5 Sphaze SOL Serverdpp . Uzer

myodbz3-test Uzer MuSOL ODBC 351 TEST DSH

Oracle? tables-Approach Uzer Qracle? Server

Oracled tables-dpproach Uzer Oracled Server

SASUSERSZ Uzer 545 9.1 data zource

Wigual FouPro Databaze zer

Yizual FoxPro T ables IJzer 3
< ¥

Mew...

& Machine Data Source iz specific to this maching, and cannat be shared.
"Uzer data zources are zpecific to a uzer on thiz machine. "Spstem' data
zources can be uzed by all users an thiz machine, ar by a system-wide service.

Ok | Cancel Help

8. Data is copied to a SAS data set, e.g., USER.SHELP_CLASS.

16 Saving Time and Money Using SAS

Problems
There are several problems when exporting Microsoft Access tables to SAS data
libraries:

Microsoft Access 2000 requires Jet 4.0 with Service Pack 6 applied to export
data to a SAS data set. Without the service pack applied, the final step of the
preceding export procedure gives the following error message:

ODBC—<call failed.
[SAS][SAS ODBC Driver][SAS Serve (#-1) [SAS][SAS ODBC Driver][SAS
ServerERROR 76-3 (#-1)

SAS data sets can only be defined from Microsoft Access as single-level names,
so a USER libname must be allocated in the ODBC setup to receive the exported
data set.

SAS data set names can be a maximum of only eight characters. The names
cannot include punctuation or blanks. They can include only alphabetic
characters (i.e., A—Z or a—z) or underscores as the first and subsequent
characters. Numeric characters (i.e., 0-9) can only be used as the second and
subsequent characters.

SAS column names have the same rules as SAS data set names. Microsoft
Access has a menu option (i.e., File » Imp/Exp Setup) to allow changes to be
made to the field information before exporting.

Chapter 1: Accessing SAS Data without Using SAS Code 17

1.3.3 Microsoft Excel 2000

Microsoft Excel can only use the SAS ODBC driver to read from SAS data libraries with
the Get External Data menu option.

The procedure is as follows:

1. Select Data P> Get External Data > New Database Query.

Ed Microsoft Excel - Book1
Eile Edit Wiew Insert Format Tools | Data Window Help

DS HESRY| 4 2R &t Al ST

A1 Filker 3

El

© Subtotals. .. H J =
Walidation... |—|

Text ko Columns...

PivotTable and PivotChart Report...

et External Data 3 % Run Sawved Query. ..

)‘@ MNew Web Query..

A B —

1] [
] :

2

3

4

5

G

7

g

]

«©

4 4 » MhSheetl / sheetz / sheeta / ||
Ready

18 Saving Time and Money Using SAS

2. Select a data source, e.g., SASUSER32%*.
3. Select the Use the Query Wizard to create/edit queries check box.
4. Click OK.

Choose Data Source

Databases l Queties] OLAP Cubes
M5 SOL Serverb-Approach® s

M5 Sybaze SOL Server-Approach® 0 Camee
rypodbc3-test®

Oracle? tables-bpproach® Browse...
Oracl=d tables-bpproach®

SASUSER 32 [not sharable Optiong. ..

Wizual Fu:u:-:F'n:u Databaze® D elete
Yizual FoxPro T ables* —

[F

@ [v Usze the Queny Wizard to creatededit quernies

5. Select a data set, e.g., CLASS.

6. Click the right arrow (>) to select all the columns in your query. To select a subset
of the columns, click the plus sign (+) next to the data set name first.

7. Click Next.

Query Wizard - Choose Columns

What columnz of data do you want to include in vour query?

Awailable tables and columns: LCalurmnz in yaur gquerny:
s ¥ Eame J
e
+ CLASST 3 Ao J
+ CLASS3 Height
+ CLMMSG ﬂ Weight
+ CMTAIMER
+ COLUMM
+ DATAT b7

Freviews of data in selected colurnn:

@ Dptionz... | Mext » | Cancel

Chapter 1: Accessing SAS Data without Using SAS Code 19

8. Select the columns to filter.

9. Click Next.

Query Wizard - Filter Data

Filter the data to specify which rows o include in your query,
If pow don't want ta filker the data, click Mest.

Colurnn to filker: Only include rows where:

]

< Back | Mest » |

Mame E
e | 1 =
qe
Height e r
L"‘ {
| =l =l
i i

Cancel |

10. Select the sort order.

11. Click Next.

Query YWizard - Sort Order

Specify how you want pour data zorted.
If wou don't want to sort the data, click Mest.
Sort by
@ < Bac

k. | Mext » |

Cahcel |

K

20 Saving Time and Money Using SAS

12. Select Return Data to Microsoft Excel.
13. Click Finish.

Query Wizard - Finish

—%What would vou like to do nest?

& Hetum Data to Microsoft Excet

7 View data or edit query in Microsoft Quem
" Create an OLAP Cube from this quen

Save Query... |

@l < Back I Finizh I Cancel
14. Select where you want to put the data.
15. Click OK.

050 2 Boo]
J File Edit Wiew Insert Format Tools Data Window Help _Iﬁl 1'
DeHERY| RS |0 @ %8 @B 3w -0 -|B U?

A1 | =]

A s | ¢ | o | E [F [&6 W [U [J [T
1 4 =
2
EN
| 4|
5
B
| 7|
8
19_0 Returning External Data to Microsoft Excel |1||£|
E Where do vou want to put the data?
| 12 | & Existing workshest:
13 = Cancel
m [| —I
44 »[v\ Sheetl / Shest2 {Shee] " Hew workshest Propertes... |
Point " PivotTable report e—— |

Chapter 1: Accessing SAS Data without Using SAS Code 21

16. Data is inserted at the destination location.

E1 Microsoft Excel - Book1

B

Eile Edit Wiew Insert Format Tools Data ‘Window Help ;lilﬂ
Dl & B T A [l 2)7) A |Z
A1 | =
A B G] E F] H =

1 lsex Age Height Weight —
2 |Alfred M 14 B9 1125

3 |Alice |F 13| &BA B4

4 |Barbara F 13 B5.3 =]

5 Carol F | 14 E2G 1025
B Henry M 14) B3&| 1025 ' e

7 o |James M 12 573 83

g |Jane |F 12| 538 845

9 |Janet |F 15| B2A 1125

10 |Jefray M 13| B2A B4

11 John M 12 g9 995

12 |Joyce F 11, 513 &05

13 [Judy F 14 B4.3 a0

14 Louise |F 12| BB3 77

15 \Mary F 15| BB.A 112

16 |Philip M 15 72 150

17 \Robert M 12| B4.8 128

18 \Ronald M 15 57 133

19 ' Thomas M 11, B7A 85

20 [Williarm |1 15| BB.A 112

21
M| 4[» M} Sheetl / Shest2 /Sheeta /|4
Ready

22 Saving Time and Money Using SAS

1.3.4 Visual Basic 6.0

Visual Basic can use the SAS ODBC driver to read from SAS data libraries, with shared
read-only access. The following example code will copy all of the data from a SAS data
set into a dBase table, which can be read, or imported, into all the database and
spreadsheet applications discussed in this chapter.

In order to be able to copy the SAS data from the ODBC connection to the dBase table,
the target table has to be constructed to include exactly the same fields:

Public Function CopyStructDAO (daoRsetl As DAO.Recordset,

daoDB2 As DAO.Database, _
DBTable As String) As Integer

Dim i As Integer

Dim daoTDef2 As DAO.TableDef

Dim tmpTDef As DAO.TableDef

Dim daoFld2 As DAO.Field

Dim daoFldl As DAO.Field

Dim errorFlag As Boolean

' Search to see if table exists

For i = 0 To daoDB2.TableDefs.Count - 1

Set tmpTDef = daoDB2.TableDefs (i)

If UCase(tmpTabDef.Name) = UCase (DBTable) Then
daoDB2.TableDefs.Delete tmpTDef.Name
Exit For
End If
Next

Set daoTDef2 = daoDB2.CreateTableDef (DBTable)
' Strip off owner if present
daoTDef2.Name = StripOwner (DBTable)
' Create fields
For 1 = 0 To daoRsetl.Fields.Count - 1
Set daoFldl = daoRsetl.Fields (i)
Set daoFld2 = Nothing
errorFlag = True
Select Case daoFldl.Type
Case dbDouble
Set daoFld2 = daoTDef2.CreateField(CVar (daoFldl.Name) ,_
Cvar (daoF1ldl.Type))
errorFlag = False
Case dbText
Set daoF1ld2 = daoTDef2.CreateField(CVar (daoFldl.Name),_
Cvar (daoF1ldl.Type),
Cvar (daoFldl.FieldSize))
errorFlag = False
End Select

Chapter 1: Accessing SAS Data without Using SAS Code 23

If Not errorFlag Then
daoTDef2.Fields.Append daoF1ld2
End If
Next
' Append new table
daoDB2.TableDefs.Append daoTDef2
CopyStructDAO = True
End Function

Once the table structure has been copied and the two tables opened as recordsets, the data
itself can then be copied record by record, 1,000 records at a time, using transactions:

Public Function CopyDataDAO (defWSpace As Workspace,
daoRsetl As DAO.Recordset,
daoRset2 As DAO.Recordset) As Integer

Dim i As Integer
Dim j As Integer
Dim numRecords As Integer
Dim daoFldl As DAO.Field
Dim daoFld2 As DAO.Field
' Start workspace transactions
defWSpace.BeginTrans
While daoRsetl.EOF = False
daoRset?2.AddNew
' Loop copies data from each field to new table
For 1 = 0 To (daoRsetl.Fields.Count - 1)
Set daoFldl = daoRsetl.Fields (i)
For j = 0 To (daoRset2.Fields.Count - 1)
Set daoFld2 = daoRset2.Fields(3)

If UCase(daoFldl.Name) = UCase (daoFld2.Name) Then
daoRset2 (daoFld2.Name) .Value = daoFldl.Value
Exit For

End If

Next

Next

daoRset2 .Update

daoRsetl.MoveNext

numRecords = numRecords + 1

' Commit transactions every 1000 records

If numRecords = 1000 Then
defWSpace.CommitTrans
defWSpace.BeginTrans
numRecords = 0

End If

24 Saving Time and Money Using SAS

Wend
' Commit changes now we have finished
defWSpace.CommitTrans
CopyDataDAO = True
End Function

The following function is used to remove “owner” information from the ODBC table
names, e.g2., SHELP.CLASS becomes CLASS:

Public Function StripOwner (TableName As String) As String

If InStr(TableName, ".") > 0 Then
TableName = Mid(TableName,
InStr (TableName, ".") + 1,

Len (TableName))
End If
StripOwner = TableName
End Function

The functions already described can be brought together to copy the structure and data
from the source table to the target table as follows:

Public Sub SaveDAOToDAO (defWSpace As Workspace,
daoRsetl As DAO.Recordset,
daoDB2 As DAO.Database,
DBTable As String)

Dim daoRset2 As DAO.Recordset
Dim i As Integer
If CopyStructDAO (daoRsetl, daoDB2, DBTable) Then
Set daoRset2 = daoDB2.0OpenRecordset (DBTable)
If CopyDataDAO (defWSpace, daoRsetl, daoRset2) Then
daoRset2.Close

Debug.Print "CopyData to perm completed..."
End If
End If
End Sub

All that is left to do is to specify the ODBC server name and the source and target tables:

Public Sub ODBCread ()
' Create DAO objects
Dim odbcDB As DAO.Database
Dim odbcRset As DAO.Recordset
Dim defWSpace As Workspace
Dim daoDB As DAO.Database
Dim odbcServer As String
Dim DataSet As String
Dim DBFilePath As String

Chapter 1: Accessing SAS Data without Using SAS Code 25

Dim DBTable As String
Dim defFileSystem As Object
Dim DBFileObject As Object
' Set file and database folder values
DataSet = "shelp.class"
odbcServer = "sasuser32"
DBTable = "classl"
DBFilePath = "c:\temp"
' Verify path
Set defFileSystem = CreateObject ("Scripting.FileSystemObject")
Set DBFileObject = defFileSystem.GetFolder (DBFilePath)
' Get default workspace.
Set defWSpace = DBEngine.Workspaces (0)
' Make sure there isn't already a file with the same name
' in the folder.
If Dir(Trim$ (DBFileObject.Path) & _
"\ &
Trim$ (DBTable) & ".dbf") <> "" Then
Kill Trim$ (DBFileObject.Path) & "\" & Trim$ (DBTable) & ".dbf"
End If
' Open database
Set daoDB = defWSpace.OpenDatabase (Trim$ (DBFileObject.Path), _
False,
False,
"dBase IV;")
' Set initialization properties
Set odbcDB = defWSpace.OpenDatabase (odbcServer,
False,
True, _
"ODBC; ")
' Open recordset
Set odbcRset = odbcDB.OpenRecordset (DataSet)
Call SaveDAOToDAO (defWSpace,
odbcRset,
daoDB,
DBTable)
' Close connection
odbcRset.Close
odbcDB.Close
daoDB.Close
Set defWSpace = Nothing
End Sub

26 Saving Time and Money Using SAS

Visual Basic can also use the SAS ODBC driver to write to SAS data libraries, with
exclusive update access, using the following DatabaseName and Connect strings, e.g.:

Set DB = OpenDatabase("saswrite", True, False, "ODBC;")

The database, “DB”, can be manipulated in the same way as any Microsoft Access
database using standard Visual Basic Data Access functions and methods. The SAS data
sets within the ODBC data source can be accessed using the standard SAS

'libref. member' naming conventions, via Jet SQL supplied as part of Visual Basic and
Microsoft Access.

1.3.5 Lotus Approach Version 9

LotusScript Version 9

In the same way that Visual Basic can use the SAS ODBC driver to read from SAS data
libraries, LotusScript can be used to create a new Approach document to view a SAS
data set:

Sub ODBCread
' Create new connection
Dim Con As New Connection()
' Create new query
Dim Qry As New Query ()
' Create new resultset
Dim RS As New ResultSet()
Dim MyDoc As Document
Dim ServName As String
Dim TName As String
' Specify ODBC server name

ServName = "sasuser32"
' Specify source data set name
TName = "shelp.class"

' Open ODBC connection to server
' (which must be prefixed with "!")
If Con.ConnectTo ("ODBC Data Sources", , , "!" & ServName) Then
' Associate query with connection
Set Qry.Connection = Con
' Set table to open
Qry.TableName = Tname
' Associate resultset with query
Set RS.Query = Qry
' Populate resultset

Chapter 1: Accessing SAS Data without Using SAS Code 27

If RS.Execute Then
' Create Approach document for resultset
Set MyDoc = New Document (RS)
End If
' Close connection
Con.Disconnect
End If
End Sub

1.3.6 OpenOffice.org 2.1

While, in theory, OpenOffice.org Base can use ODBC drivers compatible with ODBC 3
to access database tables, the SAS ODBC driver was compatible only with ODBC 2 prior
to SAS 9.1. Following the changes made to the SAS ODBC driver in SAS 9.1, it is now
possible to import SAS data into OpenOffice.org spreadsheets without any errors.

Data from a SAS data set can now be imported into OpenOffice.org documents, but it
must first be registered in an OpenOffice.org database as follows:

1. Open OpenOffice.org Base.

2. Select Connect to an existing database.
3. Select ODBC from the drop-down list.
4. Click Next.

28 Saving Time and Money Using SAS

== Database Wizard

Steps Welcome to the OpenDffice.org Database Wizard

Use the Database Wizard to create a new database, open an existing database file,
or conneck ko a database stored on a server,

2, Set up ODBC connection

‘What do vou want to do?
() Create a ngw database

() Cpen an existing database File

|sasuser32

(%) Connect to an existing database

5. Click Browse.

™= Database Wizard

Steps Set up a connection to an ODBC database
1. Select database Enter the name of the ODEBC database you want to conneck ko,
Click 'Browse. .." to select an ODBC database that is already registered in
et up ODBC connection Openoffice.arg,
Please contact your system administrakar if vou are unsure about the Follawing
settings.

Mame of the ODEC data source on your system

| [Browse

6. Select a data source, e.g., SASUSER32.

Chapter 1: Accessing SAS Data without Using SAS Code 29

7. Click OK.

[Yata Source

(X]

Choose a data source: oK

M5 Access Database
M5 SCL Server6-Approach

M5 Sybase SQL Server-Approach
myodbe3-test Help
Oracle? tables-Approach
Cwacled tables-Approach

| >

| tht

Cancel

SASUSERS_32
‘Wisual FoxPro Database
‘Wisual FoxPro Tables

|

Qrganize. ..

8. Click Next.

==\ Database Wizard

Steps Set up a connection to an ODBC database
1. Select database Enter the name of the ODBC database you want bo connect ko,
Click 'Browse.,." to select an ODEC database that is already registered in
2. Setup OO onneckion OpenOffice.arg.
3. Seb up user authentication ;I:t?isneg;ontact wour system administrator if vou are unsure about the Following

4, Save and procesd

Mame of the ODEC data source on your system

SASLISERZ | &

<= Back] ’ Mext ==] [Einish] [Cancel

30 Saving Time and Money Using SAS

9. If a user name and password are required, fill in the details.

10. The connection to the SAS ODBC data source can be tested by clicking Test
Connection. Otherwise, click Next.

[=]

~, Database Wizard

Steps Set up the user authentication

1. Select database Some databases require you to enter a user name.,

2, Set up ODBC connection

authentication
User name |

4, Save and proceed

[] Password required

<< Back] [Mext == l [Einish] [Cancel]

Chapter 1: Accessing SAS Data without Using SAS Code 31

11. Select Yes, register the database for me.

12. Click Finish.

== Database Wizard

Steps Decide how to proceed after saving the database

1. Select database Do you want the wizard to register the database in OpenOffice.org?
2. 3et up CDBC connection (%) Yes, register the database For me

3. Sek up user authentication () Mo, do not register the database

After the database file has been saved, what do you want to do?

Cpen the database For editing
[] Create tables using the kable wizard

Click 'Finish' ko save the database.

32 Saving Time and Money Using SAS

13. Enter the location of the new OpenOffice.org database.

14. Click Save.

Ci\Documents and Settingsiphilliky Docurments

Title |Tvpe |5ize |Date modifie
[Turba Lister Folder 20f10f200 A
[Turbo Lister Backup Folder 1711120
[Wisual Studio 2005 Folder 20/11/z0
[visual studio Projects Folder 1710420
EET, Invoicess.odb OpenDacurient Database 2387 Bytes 31)05/200

OpenDocument Data

File name: |sasuser32.odh o | I Jave l

File type: |OpenDcu:ument Datahase hd |

Aukomatic file name extension

Chapter 1: Accessing SAS Data without Using SAS Code 33

15. The database can now be accessed from an OpenOffice.org document, or reports
can be created directly in OpenOffice.org Base.

5 sasusen3a - OpenOffice.org Base

File Edit Vew Insert Tools Window Help

A=A RS- RO R i =Y 4= -

EF Create Table in Design View. .. Description
Use Wizard to Create Table...

ﬂl

Tables
F
E
Queries
-
|
-
Forms
B [sHee ~| Mone
€§ ADSMSG =]
AFMSG
Reports BSSCMGR.
5
CLNMSG
CNTAINER.
COLUMN
DFTDICT
DPLOG

B ramiaTTn L

| oDBC || sasUsERzz [/[
—

34 Saving Time and Money Using SAS

The data from the registered OpenOffice.org database created from the SAS ODBC data
source can be added to an OpenOffice.org spreadsheet as follows:

1. Select Data P> DataPilot P> Start.

8 Untitled] - Opendffice.org Calc

Fle Edit Wiew Insert Format Tools BEEEN Window Help x
Do = Define Range... - Al I &
E-z Ea 28 - " B-e GHH v e
- Select Range. .. »
Tl zamE OEE I%ERE]
Sotk...
Al v| fg B = Filker b
Subtotals., .,
a [B [Hbetals E [F [a [H 2

1 L Walidity... —
E:|
| Consolidate. ..

5 Qutline v

3 Datapilat a
L 7|
| & |
| 9 |

10

11

1z

13 v

Sheet1 {Sheet? [Sheet3 < B

Sheet 13 Default 100%: 5TD Sum=0

2. Select Data source registered in OpenOffice.org.

3. Click OK.

Select Source

Seleckion
() Current selection

(%) Data source registered in Openorrice, org

Chapter 1: Accessing SAS Data without Using SAS Code 35

4. Select a database from the drop-down list.

5. Select a data source from the drop-down list.
6. Select a type, e.g., Sheet.

7. Click OK.

Select Data Source

Selection

Ok
Database sasuser3z2_tesk |

Cancel
Daka source

Type SHELP. CLMMSG Help

SHELP. CMNTAINER. .
SHELP. COLLIMMN

SHELP.DFTCICT

SHELP.DPLOG

SHELP.DYNATTR

SHELF.EISMERP b’

8. Drag fields into the report template.

9. Select a data field, and then click Options to change the summary statistic.

Layout
e |
ol Flds Age
Height
‘Weight
Row .
Finlds Diata Fields

Drag the fields From the right into the desired position.

More ¥

36 Saving Time and Money Using SAS

10. Select a statistic from the list for the data field.

11. Click OK.

Data Field

Function

K
Suri

Court Cancel

|2

) bt

Max
Min w Help

Product
Count {Mumbers only)

I1E:4

MNarme: Weight More ¥

12. Select a column or row field, and then click Options to change the subtotals.
13. Select the Subtotal option.
14. Click OK.

[ata Field

Subtotals o
{:) Mane

Cancel

X

i

Help

Surm

Count

Average

Max

Min

Produck

Count {Mumbers anly)

[] Show items without: data

Mame: Sex Options. ..

15. Click OK.

Chapter 1: Accessing SAS Data without Using SAS Code 37

DataPilot

Layaouk

Iarme
Sex
Column Fields Age
Height
Age Mean - Height
Weight
Mean - Weight ﬁ

Page Fields

Raow "
Fields Data Fields

Drag the fields From the right into the desired position,

o]

Cancel

Help

Remove

Cpkions...

Mare ¥

16. The report is generated at the currently selected cell.

£l Untitled1 - OpenOffice.org Calc

File Edit Wew Insert Format Tools Data Window Help x
B-SH2 2 ESR VinihB-& 6 SUNH Bv
by [aria vlw ~| BT U ===-= = E R B %8 T
Al v fm B = |
A B C [D [E F [g L&
1 Sex | ;
2 |Age ata F il Total Result
3 M Average - Height 513 a7 h 54.4
4 Average - Weight 50.5 g5 67.75
5 2 Average - Height 558.05 B0.37 59.44
fi Average - Yyeight B0.75 103.5 944
73 Average - Height B0.9 B2.5 61.43
g Average - Weight 9 84 88.67
9 |14 Average - Height 53.55 66.25 64.9
10 Average - Weight 95.25 107.5 101.88 N
11 |15 Average - Height B4.5 B6.75 65.63
12 Average - Weight 11225 1225 117.38
13 |16 Average - Height 72 72
14 Average - Weight 150 150
15 [Total Average - Height 60.59 63.91 62.34
16 [Total Average - Weight 90.11 108.95 100.03
17
15
19
20 3
Sheett < o
Sheet 1 /3 Default 100% 51D || * Sum=0

38 Saving Time and Money Using SAS

1.3.6.1 Visual Basic 6.0

It is also very easy to use Visual Basic to access the SAS ODBC driver, and then write
directly into an OpenOffice.org Calc spreadsheet or into a table in an OpenOffice.org
Writer document.

The following code is common to both processes, and should be included before the
application-specific code:

Dim oServiceManager As Object

Dim oDesktop As Object

' Get the Service Manager object.

Set oServiceManager = _

CreateObject ("com.sun.star.ServiceManager")
' Get the Desktop object.
Set oDesktop = _
oServiceManager.createInstance ("com.sun.star.frame.Desktop")

' Create DAO objects

Dim odbcDB As DAO.Database

Dim odbcRecordset As DAO.Recordset

Dim defWSpace As Workspace

Dim odbcServer As String

Dim DataSet As String

Dim odbcField As Object

' Set file and database folder values

Dim row As Long

Dim column As Long

' Use this empty array when no arguments are needed.

Dim aNoArgs ()

DataSet = "shelp.class"

odbcServer = "sasuser32"

' Get default workspace.

Set defWSpace = DBEngine.Workspaces (0)

' Set initialization properties

Set odbcDB = defWSpace.OpenDatabase (odbcServer,
False,
True, _
"ODBC; ")

' Open recordset

Set odbcRecordset = odbcDB.OpenRecordset (DataSet)

Chapter 1: Accessing SAS Data without Using SAS Code 39

The following code is common to both processes, and should be included after the
application-specific code:

' Close connection
odbcRecordset.Close
odbcDB.Close

Set defWSpace = Nothing

OpenOffice.org Calc
Dim oCalcDoc As Object
Dim oSheet As Object
' Create a new empty spreadsheet.
Set oCalcDhoc = _
oDesktop.loadComponentFromURL ("private: factory/scalc",
"_blank", 0, aNoArgs())
' Get the first spreadsheet from the sheets in the document.
Set oSheet = oCalcDoc.getSheets () .getByIndex(0)
' Write table to Calc sheet
"this loop copies each field name into the 1lst row of the sheet
row = 0
For column = 0 To (odbcRecordset.Fields.Count - 1)
Set odbcField = odbcRecordset.Fields (column)
oSheet.getCellByPosition(column, 0).setFormula _
CStr (odbcField.Name)
Next
While odbcRecordset.EOF = False
row = row + 1
'this loop copies the data from each field to the new table
For column = 0 To (odbcRecordset.Fields.Count - 1)
Set odbcField = odbcRecordset.Fields (column)
If odbcField.Type = 4 or odbcField.Type = 7 Then
oSheet.getCellByPosition(column, row) .setValue _
odbcField.Value
Else
oSheet.getCellByPosition(column, row) .setFormula _
CStr (odbcField.Value)
End If
Next
odbcRecordset .MoveNext
Wend

40 Saving Time and Money Using SAS

OpenOffice.org Writer
Dim oText As Object
Dim oText2 As Object
Dim oTable As Object
Dim oCursor As Object
' Create a new blank text document.
Set oText = _
oDesktop.loadComponentFromURL ("private: factory/swriter",
"_blank", 0, aNoArgs())
' insert TextTable
Set oTable =
oText.createInstance("com.sun.star.text.TextTable")
' Create position cursor
Set oText2 = oText.GetText ()
Set oCursor = oText2.createTextCursor ()
' Write table to Text doc
' initialize the table with the correct number of columns + rows
oTable.Initialize 1, CLng(odbcRecordset.Fields.Count)
oTable.RepeatHeadline = True
' insert table now
oCursor.gotoStart False
oText2.insertTextContent oCursor, oTable, False
'"this loop copies each field name into the 1lst row of the table
row = 0
For column = 0 To (odbcRecordset.Fields.Count - 1)
Set odbcField = odbcRecordset.Fields (column)
oTable.getCellByPosition(column, 0).String = _
CStr (odbcField.Name)
Next
odbcRecordset.MoveFirst
While odbcRecordset.EOF = False
row = row + 1
oTable.GetRows () .insertByIndex row, 1
'this loop copies the data from each field to the new table
For column = 0 To (odbcRecordset.Fields.Count - 1)
Set odbcField = odbcRecordset.Fields (column)
oTable.getCellByPosition(column, row) .String = _
CStr (odbcField.Value)
Next
odbcRecordset .MoveNext
Wend

Chapter 1: Accessing SAS Data without Using SAS Code 41

1.3.6.2 OpenOffice.org Base 2.1

The Basic programming language within the different components of OpenOffice.org is
similar to Visual Basic for Applications. The following Base code, which should be run
as a macro within the corresponding component, is functionally the same as the
preceding code to access the SAS ODBC driver, and then to write directly into the
OpenOffice.org Calc spreadsheet in a sheet called “Class report,” or into a new table at
the end of the OpenOffice.org Writer document.

The following code is common to both processes, and should be included before the
application-specific code:

Dim DatabaseContext As Object
Dim DataSource As Object
Dim Connection As Object
Dim InteractionHandler as Object
Dim Statement As Object
Dim ResultSet As Object
Dim row As Long
Dim column As Long
DatabaseContext =
createUnoService ("com.sun.star.sdb.DatabaseContext™")

DataSource = DatabaseContext.getByName ("sasuser32")
If Not DataSource.IsPasswordRegquired Then

Connection = DataSource.GetConnection("","")
Else

InteractionHandler =

createUnoService ("com.sun.star.sdb.InteractionHandler")
Connection =
DataSource.ConnectWithCompletion (InteractionHandler)

End If
Statement = Connection.createStatement ()
ResultSet = Statement.executeQuery ("SELECT * FROM shelp.class")

The following code is common to both processes, and should be included after the
application-specific code:

' Close connection
ResultSet.Close
Connection.Close

42 Saving Time and Money Using SAS

OpenOffice.org Calc
Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object
' Create a new empty spreadsheet.
Doc = ThisComponent 'StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
If Doc.Sheets.hasByName ("Class Report") Then
Sheet = Doc.Sheets.getByName ("Class Report")
Else
Sheet = Doc.createInstance("com.sun.star.sheet.Spreadsheet")
Doc.Sheets.insertByName ("Class Report", Sheet)
End If
' Write table to Calc sheet
'"this loop copies each field name into the 1lst row of the sheet
row = 0
For column = 0 To (ResultSet.Columns.Count - 1)
Cell = Sheet.getCellByPosition(column, O0)
Cell.Formula = ResultSet.Columns (column) .Name

Next

While ResultSet.Next ()
row = row + 1
'this loop copies the data from each field to the new table
For column = 0 To (ResultSet.Columns.Count - 1)

Cell = Sheet.getCellByPosition(column, row)

If ResultSet.Columns (column) .Type = 4 or
ResultSet.Columns (column) .Type = 7 Then
Cell.Value = ResultSet.Columns (column) .getValue ()

Else
Cell.Formula = ResultSet.Columns (column) .getString()

End If

Next
Wend

Chapter 1: Accessing SAS Data without Using SAS Code 43

OpenOffice.org Writer

Dim Doc As Object

Dim Table As Object

Dim Cursor As Object

' Allocate this text document.

Doc = ThisComponent

' Create position cursor

Cursor = Doc.Text.createTextCursor ()

' insert table at the end of the document

Cursor.gotoEnd(false)

' insert TextTable

Table = Doc.createlInstance("com.sun.star.text.TextTable")

' initialize the table with the correct number of columns + rows

Table.initialize(l, ResultSet.Columns.Count)

' Write table to Text doc

Table.RepeatHeadline = True

Doc.Text.insertTextContent (Cursor, Table, False)

'this loop copies each field name into the 1lst row of the table

row = 0

For column = 0 To (ResultSet.Columns.Count - 1)
Table.getCellByPosition (column, O0)

.setString(ResultSet.Columns (column) .Name)

Next

Table.getRows (0)

While ResultSet.Next ()
row = row + 1
Table.getRows () .insertByIndex (row, 1)
'this loop copies the data from each field to the new table
For column = 0 To (ResultSet.Columns.Count - 1)

Table.getCellByPosition (column, row)
.setString(ResultSet.Columns (column) .getString())

Next

Wend

1.4 Dynamic Data Exchange

In the same way that SAS can be used to start and access Windows applications, SAS
can be accessed by other Windows applications using Dynamic Data Exchange (DDE)
operations. The DDE interface allows data to be sent to SAS via code (e.g., %LET
statements, DATA step code with instream data, etc.). It is possible for SAS Display
Manager commands to be executed, menu items to be clicked, SAS code to be written
into the Program Editor—in fact any SAS operations that can be performed using the

44 Saving Time and Money Using SAS

keyboard—using SendKeys instructions that include special string values for special
keys, e.g., ALT, CTRL, ESC, ENTER, F1, etc.

Data cannot easily be passed back to the calling program via DDE, but data can be
written to a file that can be read by the calling application using SAS code, e.g., as a
Microsoft Access table using SAS/ACCESS for ODBC, as comma-separated text to a
text file, or as a computer graphics metafile (e.g., *.CGM, *.WMF) using SAS/GRAPH,
etc.

Figure 1.1 An Example of a SAS DDE Server at the Center of a

Reporting System

S

Microsoft Acces
Database

) SAS/ACCESS
Microsoft Jet for ODBC Base SAS

VB or Acces
(DDE Client)

Base SAS

Graphics
m etafile

N

Text file

Open Insert Picture
Insert File
Microsoft Micros oft
. Excel Word .
Final report Final report

Chapter 1: Accessing SAS Data without Using SAS Code 45

1.4.1 Visual Basic 6.0

Visual Basic 6.0 allows any Visual Basic application to start SAS using a Windows Shell
function. When the SAS session has been initialized, commands can be sent to SAS
using the SendKeys function, e.g.:

'start SAS in maximized window
rc = Shell("d:\sas.exe",vbMaximizedFocus)
'wait for SAS to initialize
For 1 = 1 To 1000
DoEvents ()
Next
'Globals, Program Editor
SendKeys "$GP", True
'set SAS macro variable

SendKeys "{%$}let macrovar = 1234;~",True
'run AF application
SendKeys "dm 'af c=lib.cat.prog.frame' af;~",True

'Locals, Submit

SendKeys "$LS"

'Globals, Program Editor
SendKeys "$GP", True
'Exit SAS

SendKeys "endsas;~",True
'Locals, Submit

SendKeys "$LS"

Additional processing by the Visual Basic application would be required if the SAS part
of the application allows user input. The Visual Basic application must be hidden from
view while the SAS part is executing. One way of performing this is to have a regularly
executed function that initially creates a temporary “lock” file, and then hides the Visual
Basic window while this file exists. The SAS part can then be seen and run as required.
When the SAS processing has been completed, SAS can delete the lock file to tell Visual
Basic to restore the visibility of the calling window.

1.5 SAS Integration Technologies

SAS Integration Technologies provides a number of useful external interfaces to SAS
data, including an OLE DB driver, which can be accessed using ActiveX Data Objects
(ADO), and a SAS Workspace Manager, which provides facilities to execute SAS code.
It should be noted that, while access to SAS data via a remote SAS system requires that

46 Saving Time and Money Using SAS

the SAS Integration Technologies component be licensed on that remote system, access
to a local SAS system only requires the installation and licensing of Base SAS.

1.5.1 Visual Basic 6.0

Although the two types of libraries required to access the facilities within SAS
Integration Technologies, SAS Integrated Object Model IOM) and SAS Workspace
Manager, are installed at the same time as the client software, they must still be added to
the references within your Visual Basic project using the References menu item.

Access to SAS data sets via the OLE DB driver using ADO is very similar to accessing
them via the SAS ODBC driver using Data Access Objects (DAO). However, ADO and
DAO are not completely interchangeable, e.g., the field attributes are not the same for
corresponding data types, which means that the code below has a number of significant
differences from that used to access the SAS data sets via ODBC and DAO.

OLE DB and ADO

Allowing for the fact that the data type codes for ADO and DAO are different, and the
field attributes also have different names, in order to be able to copy the SAS data from
the ADO connection to the dBase table, the target table has to be constructed to include
the same fields:

Public Function CopyStructADO (adoRset As ADODB.Recordset,
daoDB As DAO.Database,
DBTable As String) As Integer

Dim i As Integer

Dim daoTDef As DAO.TableDef

Dim tmpTDef As DAO.TableDef

Dim daoFld As DAO.Field

Dim adoFld As ADODB.Field

Dim errorFlag As Boolean

' Search to see if table exists

For 1 = 0 To daoDB.TableDefs.Count - 1
Set tmpTDef = daoDB.TableDefs (1)

If UCase(tmpTDef.Name) = UCase (DBTable) Then
daoDB.TableDefs.Delete tmpTDef.Name
Exit For
End If
Next

Set daoTDef = daoDB.CreateTableDef (DBTable)
' Create fields
For i = 0 To adoRset.Fields.Count - 1
Set adoFld = adoRset.Fields (i)
Set daoFld = Nothing
errorFlag = True
' Convert ADO field types to DAO equivalents

Chapter 1: Accessing SAS Data without Using SAS Code 47

Select Case adoFld.Type
Case adDouble
Set daoFld = daoTDef.CreateField(CVar (adoFld.Name) ,
Cvar (dbDouble))
errorFlag = False
Case adChar
Set daoFld = daoTDef.CreateField(CVar (adoFld.Name) ,
Cvar (dbText) ,
Cvar (adoFld.DefinedSize))
errorFlag = False
End Select
If Not errorFlag Then
daoTDef .Fields.Append daoFld
End If
Next
' Append new table
daoDB.TableDefs.Append daoTDef
CopyStructADO = True
End Function

Once the table structure has been copied and the two tables opened as recordsets, the data
itself can then be copied record by record, 1,000 records at a time, using transactions:

Public Function CopyDataADO (defWSpace As Workspace,
adoRset As ADODB.Recordset,
daoRset As DAO.Recordset) As Integer

Dim i As Integer
Dim j As Integer
Dim numRecords As Integer
Dim adoFld As ADODB.Field
Dim daoFld As DAO.Field
' Start workspace transactions
defWSpace.BeginTrans
While adoRset.EOF = False
daoRset .AddNew
' Loop copies data from each field to new table
For i = 0 To (adoRset.Fields.Count - 1)
Set adoFld = adoRset.Fields (i)
For j = 0 To (daoRset.Fields.Count - 1)
Set daoFld = daoRset.Fields(3j)

If UCase(adoFld.Name) = UCase(daoFld.Name) Then
daoRset (daoFld.Name) .Value = adoFld.Value
Exit For

End If

Next

Next
daoRset.Update

48 Saving Time and Money Using SAS

adoRset .MoveNext
numRecords = numRecords + 1
' Commit transactions every 1000 records
If numRecords = 1000 Then
defWSpace.CommitTrans
defWSpace.BeginTrans
numRecords = 0
End If
Wend
' Commit changes now we have finished
defWSpace.CommitTrans
CopyDataADO = True
End Function

The functions already described can be brought together to copy the structure and data
from the source table to the target table as follows:

Public Sub SaveADOToDAO (defWSpace As Workspace,
adoRset As ADODB.Recordset,
daoDB As DAO.Database,
DBTable As String)

Dim daoRset As DAO.Recordset
Dim i As Integer
If CopyStructADO (adoRset, daoDB, DBTable) Then
Set daoRset = daoDB.OpenRecordset (DBTable)
If CopyDataADO (defWSpace, adoRset, daoRset) Then
daoRset.Close
End If
End If
End Sub

All that is left to do is to specify the location of the SAS data library and the source and
target tables:

Public Sub ADOread()
' Create ADO and DAO objects
Dim adoConnection As New ADODB.Connection
Dim adoRset As New ADODB.Recordset
Dim defWSpace As Workspace
Dim daoDB As DAO.Database
Dim FilePath As String
Dim DataSet As String
Dim DBFilePath As String
Dim DBTable As String
Dim defFileSystem As Object
Dim adoFileObject As Object
Dim DBFileObject As Object

Chapter 1: Accessing SAS Data without Using SAS Code 49

' Set file and database folder values

DataSet = "hello"
FilePath = "c:\temp"
DBTable = "hellol"
DBFilePath = "c:\temp"

' Verify path
Set defFileSystem = CreateObject ("Scripting.FileSystemObject")
Set adoFileObject = defFileSystem.GetFolder (FilePath)
Set DBFileObject = defFileSystem.GetFolder (DBFilePath)
' Get default workspace.
Set defWSpace = DBEngine.Workspaces (0)
' Make sure there isn't already a file with the same name
' in the folder.
If Dir(Trim$ (DBFileObject.Path) & _
"\" & _
Trim$ (DBTable) & ".dbf") <> "" Then
Kill Trim$ (DBFileObject.Path) & "\" & Trim$ (DBTable) & ".dbf"
End If
' Open database
Set daoDB = defWSpace.OpenDatabase (Trim$ (DBFileObject.Path),

False,

False,

"dBase IV;")
' Set initialization properties
adoConnection.Provider = "SAS.LocalProvider.1l"
adoConnection.Properties ("Data Source") = adoFileObject.Path

' Open connection
adoConnection.Open
' Open recordset
adoRset.Open DataSet,
adoConnection, _
adOpenForwardOnly,
adLockReadOnly,
adCmdTableDirect
Call SaveADOToDAO (defWSpace,
adoRset,
daoDB, _
DBTable)
' Close connection
adoConnection.Close
Set adoConnection = Nothing
daoDB.Close
Set defWSpace = Nothing
End Sub

50 Saving Time and Money Using SAS

SAS Workspace Manager

The SAS Workspace Manager provides a number of objects that can be used to access
the processing power of SAS. In the following examples, SAS will be installed on the
same system as the Visual Basic application, thereby not requiring any additional SAS
component licensing.

The first example demonstrates how to run a simple SAS program in a local SAS session
by submitting code stored in a string array. The SAS.LanguageService object is used to
submit the code. The SAS output from the execution of these code lines is written to a
text file located in the same folder as the Visual Basic application:

Public Sub Wsrun ()

' Create workspace on local machine using Workspace Manager

Dim sasWSMgr As New SASWorkspaceManager.WorkspaceManager

Dim sasWSpace As SAS.Workspace

Dim errorString As String

Set sasWSpace = sasWSMgr.Workspaces.CreateWorkspaceByServer _
("My workspace",
VisibilityNone,
Nothing,

[

errorString)

Dim sasLangService As SAS.LanguageService
' Declare fixed size array of strings to hold input statements
Dim arraySource(2) As String
' Declare dynamic array of strings to hold list output
Dim arrayList() As String
' These arrays will return line types and carriage control
Dim arrayCC() As LanguageServiceCarriageControl
Dim arrayLT() As LanguageServiceLineType
Dim vOutLine As Variant
arraySource(0) = _

"data loop; do x=1 to 10; y=2-x; output; end; run;"

arraySource(l) = "proc print; title 'Loop code';"
arraySource(2) = "run;"
Set sasLangService = sasWSpace.LanguageService

sasLangService.SubmitLines arraySource
' Get up to 1000 lines of output
sasLangService.FlushListLines 1000, arrayCC, arrayLT, arrayList
' Print each name in returned array
Open ".\loop.txt" For Output As #1
For Each vOutLine In arrayList

Print #1, vOutLine

Chapter 1: Accessing SAS Data without Using SAS Code 51

Next

Close #1

sasWSpace.Close
End Sub

The second example demonstrates how to use the SAS.DataService object to query the

environment of the SAS session to find information about which SAS library references
exist. The SAS output from the investigation is written to a text file located in the same
folder as the Visual Basic application:

Public Sub WSlibname ()
' Create workspace on local machine using Workspace Manager
Dim sasWSMgr As New SASWorkspaceManager .WorkspaceManager
Dim sasWSpace As SAS.Workspace
Dim errorString As String
Dim vName As Variant
' Declare dynamic array of strings to hold libnames
Dim arrayLibnames() As String
Set sasWSpace = sasWSMgr.Workspaces.CreateWorkspaceByServer
("My workspace",
VisibilityNone,
Nothing,

"o

"o

errorString)

' Get reference to workspace's DataService.

Dim sasDService As SAS.DataService

Set sasDService = sasWSpace.DataService

' Assign libref named "saslib2" within new workspace

Dim sasLibref As SAS.Libref

Set sasLibref = sasDService.AssignLibref _
("saslib2",
"\,
")

' Should print "saslib2"

Open ".\libref.log" For Output As #2

Print #2, "Newest libname = " & sasLibref.Name

Print #2, " "

' Pass dynamic array variable to "ListLibrefs".

' Upon return, array variable will be filled in with array

' of strings one element for each libref in workspace

sasDService.ListLibrefs arrayLibnames

' Print each name in returned array

For Each vName In arrayLibnames

Print #2, vName
Next

52 Saving Time and Money Using SAS

' Print size of array
Print #2, " "
Print #2, "Number of librefs was: " & UBound(arrayLibnames) + 1
Close #2
' Deassign libref.
sasDService.DeassignLibref sasLibref.Name
' Close workspace.
sasWSpace.Close
End Sub

SAS Workspace Manager, IOM, and ADO

The SAS Workspace Manager also provides an interface suitable for accessing SAS data
sets via ADO. As was seen in the preceding example for the SAS Workspace Manager,
the SAS.LanguageService object is used to submit some SAS code to create a temporary
SAS data set. The ADO interface then uses the local SAS IOM data provider,
SAS.IOMProvider.1, to access the temporary SAS data set. The code then calls the

Save ADOToDAO subroutine, described earlier in the section about OLE DB and ADO,
to copy its structure and contents to a dBase file:

Public Sub WSADOread()
' Create workspace on local machine using Workspace Manager
Dim sasWSpace As SAS.Workspace
Dim sasWSMgr As New SASWorkspaceManager .WorkspaceManager
Dim errorString As String
' Create ADO and DAO objects
Dim adoConnection As New ADODB.Connection
Dim adoRset As New ADODB.Recordset
Dim defWSpace As Workspace
Dim daoDB As DAO.Database
Dim daoRset As DAO.Recordset
Dim DBFilePath As String
Dim DBTable As String
Dim defFileSystem As Object
Dim DBFileObject As Object
' Set file and database folder values
DBTable = "looping"
DBFilePath = "c:\temp"
' Verify path
Set defFileSystem = CreateObject ("Scripting.FileSystemObject")
Set DBFileObject = defFileSystem.GetFolder (DBFilePath)
' Get default workspace.
Set defWSpace = DBEngine.Workspaces (0)
' Make sure there isn't already a file with the same name
' in the folder.
If Dir(Trim$ (DBFileObject.Path) & _
"\" & _

Trim$ (DBTable) & ".dbf") <> "" Then

Chapter 1: Accessing SAS Data without Using SAS Code

Kill Trim$ (DBFileObject.Path) & "\" & Trim$ (DBTable) & ".dbf"
End If
' Open database
Set daoDB = defWSpace.OpenDatabase (Trim$ (DBFileObject.Path),
True,
False,
"dBase IV;")
Set sasWSpace = sasWSMgr.Workspaces.CreateWorkspaceByServer _
("MyWorkspaceName",
VisibilityProcess,
Nothing,

nou

"o
’

errorString)
' Submit SAS code
sasWSpace.LanguageService.Submit _
"data looping; do x=1 to 50; y=100; z=x*x; output; run;"
' Connect to local SAS IOM data provider
adoConnection.Open _
"Provider=SAS.IOMProvider.1l; SAS Workspace ID=" + _
sasWSpace.UniqueIdentifier
' Read temporary SAS data set
adoRset .Open "work.looping",
adoConnection,
adOpenStatic, _
adLockReadOnly,
adCmdTableDirect
' Copy the data to dBase file
Call SaveADOToDAO (defWSpace,
adoRset,
daoDB,
DBTable)
' Close connections
adoConnection.Close
Set adoConnection = Nothing
daoDB.Close
Set defWSpace = Nothing
' If we don't close SAS, the SAS process may stay around
' forever
If Not (sasWSpace Is Nothing) Then
sasWSMgr .Workspaces .RemoveWorkspace sasWSpace
sasWSpace.Close
End If

End Sub

53

54 Saving Time and Money Using SAS

1.5.2 LotusScript Version 9

Lotus Word Pro 9 with SAS Workspace Manager, IOM, and ADO

The SAS Workspace Manager also provides an interface suitable for accessing SAS data
sets via ADO, which can also be used within the applications that form Lotus
SmartSuite. The following code extracts the data from a SAS data set called CLASS,
which is located in the folder 'c:\temp\sas' (note that the file separators need to be
changed in the code to UNIX-style separators!), and then writes it record by record to the
end of a Lotus Word Pro document.

Sub ADORead_WP ()

Dim vConn As Variant

' create connect and recordset options

Set vConn = CreateObject ("ADODB.Connection")

Set rs = CreateObject ("ADODB.recordset")

' open the connection to the mdb

vConn.Provider = "SAS.LocalProvider.1l"

vConn.Open "c:/temp/sas"

rs.Open "class", vConn, 0, 1, 512

' Write the data to the end of the current document.

.Type "[ctrlEnd]"

iNumField = rs.Fields.Count

.Type "[ENTER]Num Fields is " & Str(iNumField) & "[ENTER]"

rs.MoveFirst

Do While Not rs.EOF
.Type "[ENTER]" & rs.Fields("Name") .Value
.Type "[TAB]" & rs.Fields("Age") .Value
.Type "[TAB]" & rs.Fields("Sex") .value
.Type "[TAB]" & rs.Fields("Height") .Value
.Type "[TAB]" & rs.Fields("Weight") .Value
rs.MoveNext

Loop

rs.close

vConn.Close

Set rs = Nothing

Set vConn = Nothing

End Sub

Lotus 1-2-3 9 with SAS Workspace Manager, IOM, and ADO

The following code performs the same actions as above, but writes the data to cells
starting at the top left cell of the first sheet in a Lotus 1-2-3 spreadsheet file. Again, the
location of the input SAS data set must be specified in the code with file separators
changed to be UNIX-style.

Chapter 1: Accessing SAS Data without Using SAS Code

Sub ADORead_123 ()
Dim vConn As Variant
Dim row As Long
Dim report As Range
Set report = [A:A3..A:E65535]
' create connect and recordset options
Set vConn = CreateObject ("ADODB.Connection")
Set rs = CreateObject ("ADODB.recordset")
' open the connection to the mdb
vConn.Provider = "SAS.LocalProvider.1l"
vConn.Open "c:/temp/sas"
rs.Open "class", vConn, 0, 1, 512
iNumField = rs.Fields.Count

[A:Al] .Contents = "Num Fields is " & Str (iNumField)
[A:A2] .Contents = "Name"

[A:B2] .Contents = "Age"

[A:C2] .Contents = "Sex"

[A:D2] .Contents = "Height"

[A:E2] .Contents = "Weight"

rs.MoveFirst

row = 0

Do While Not rs.EOF
report.Cell (row,0) .Contents = rs.Fields("Name") .Value
report.Cell (row, 1) .Contents rs.Fields ("Age") .Value
report.Cell (row, 2) .Contents rs.Fields("Sex") .Value
() (
() (

report.Cell (row, 3) .Contents = rs.Fields("Height") .Value
report.Cell (row, 4) .Contents = rs.Fields("Weight") .Value
rs.MoveNext
row = row + 1

Loop

rs.close

vConn.Close

Set rs = Nothing

Set vConn = Nothing

End Sub

55

1.5.3 OpenOffice.org 2.1

It is easier to use Visual Basic to access the SAS Integration Technologies services, and

then write directly into an OpenOffice.org Calc spreadsheet or into a table in an
OpenOffice.org Writer document.

56 Saving Time and Money Using SAS

The following code is common to both processes, and should be included before the
application-specific code:

Dim oServiceManager As Object
Dim oDesktop As Object
' Get the Service Manager object.
Set oServiceManager = _
CreateObject ("com.sun.star.ServiceManager")
' Get the Desktop object.
Set oDesktop = _
oServiceManager.createInstance ("com.sun.star. frame.Desktop")
Dim adoConnection As New ADODB.Connection
Dim adoRecordset As New ADODB.Recordset
Dim FilePath As String
Dim DataSet As String
Dim defFileSystem As Object
Dim adoFileObject As Object
Dim adoField As Object
Dim row As Long
Dim column As Long
' Use this empty array when no arguments are needed.
Dim aNoArgs ()
' Set file values
FilePath = "c:\temp\sas"
DataSet = "class"
' Verify path
Set defFileSystem = CreateObject ("Scripting.FileSystemObject")
Set adoFileObject = defFileSystem.GetFolder (FilePath)
' Set initialization properties
adoConnection.Provider = "SAS.LocalProvider.1l"
adoConnection.Properties ("Data Source") = adoFileObject.Path
' Open the Connection and display its properties
adoConnection.Open
' Open the Recordset
adoRecordset .Open DataSet, _
adoConnection,
adOpenForwardOnly,
adLockReadOnly,
ADODB.adCmdTableDirect

Chapter 1: Accessing SAS Data without Using SAS Code 57

The following code is common to both processes, and should be included after the
application-specific code:

' Close the Connection
adoConnection.Close
Set adoConnection = Nothing

OpenOffice.org Calc
Dim oCalcDoc As Object
Dim oSheet As Object
' Create a new empty spreadsheet.
Set oCalcDhoc = _
oDesktop.loadComponentFromURL ("private: factory/scalc",
"_blank", 0, aNoArgs())
' Get the first spreadsheet from the sheets in the document.
Set oSheet = oCalcDoc.getSheets () .getByIndex(0)
' Write table to Calc sheet
'this loop copies each field name into the 1lst row of the sheet
row = 0
For column = 0 To (adoRecordset.Fields.Count - 1)
Set adoField = adoRecordset.Fields (column)
oSheet.getCellByPosition(column, 0).setFormula _
CStr (adoField.Name)
Next
While adoRecordset.EOF = False
row = row + 1
"this loop copies the data from each field to the new table
For column = 0 To (adoRecordset.Fields.Count - 1)
Set adoField = adoRecordset.Fields (column)
If adoField.Type = 200 Then
oSheet.getCellByPosition (column, row) .setFormula _
CStr (adoField.Value)
Else
oSheet.getCellByPosition(column, row).setValue _
adoField.vValue
End If
Next
adoRecordset .MoveNext
Wend

58 Saving Time and Money Using SAS

OpenOffice.org Writer
Dim oText As Object
Dim oText2 As Object
Dim oTable As Object
Dim oCursor As Object
' Create a new blank text document.
Set oText = _
oDesktop. loadComponentFromURL ("private: factory/swriter", _
"_blank", 0, aNoArgs())

' insert TextTable
Set oTable = oText.createInstance ("com.sun.star.text.TextTable")
' Create position cursor
Set oText2 = oText.GetText ()
Set oCursor = oText2.createTextCursor ()
' Write table to Text doc
' initialize the table with the correct number of columns + rows
oTable.Initialize 1, CLng(adoRecordset.Fields.Count)
oTable.RepeatHeadline = True
' insert table now
oCursor.gotoStart False
oText?2.insertTextContent oCursor, oTable, False
'this loop copies each field name into the 1lst row of the table
row = 0
For column = 0 To (adoRecordset.Fields.Count - 1)

Set adoField = adoRecordset.Fields (column)

oTable.getCellByPosition(column, 0).String = _

CStr (adoField.Name)

Next
adoRecordset .MoveFirst
While adoRecordset.EQOF = False

row = row + 1

oTable.GetRows () .insertByIndex row, 1
"this loop copies the data from each field to the new table
For column = 0 To (adoRecordset.Fields.Count - 1)

Set adoField = adoRecordset.Fields (column)
oTable.getCellByPosition(column, row) .String = _
CStr (adoField.Value)
Next
adoRecordset .MoveNext
Wend

Chapter 1: Accessing SAS Data without Using SAS Code 59

1.6 Conclusions

This chapter has only scraped the surface of what is possible using SAS as a file server or
compute server for other Windows-based applications. It should now be clear that a large
number of different PC users could benefit from using SAS effectively as a “black box”
processor with their own applications, reducing the need to fully train them in SAS
coding techniques. The SAS data libraries and SAS application development can be done
for them by SAS specialists, providing the users with a well-documented and stable
interface that they can use without any requirement for prior knowledge of SAS.

1.7 Recommended Reading

For more information, go to

www.hollandnumerics.com/books/Saving Time and Money using SAS.htm. This
page includes a chapter-by-chapter list of recommended reading.

60

