
CHAPTER 1

Introduction to SAS Informats and
Formats

1.1 Chapter Overview...2

1.2 Using SAS Informats ..2
1.2.1 INPUT Statement ...3
1.2.2 INPUT Function ...7
1.2.3 INPUTN and INPUTC Functions...8
1.2.4 ATTRIB and INFORMAT Statements ...8

1.3 Using SAS Formats..9
1.3.1 FORMAT Statement in Procedures ...10
1.3.2 PUT Statement ...11
1.3.3 PUT Function...13
1.3.4 PUTN and PUTC Functions..14
1.3.5 BESTw. Format..14

1.4 Additional Comments ..17

2 The Power of PROC FORMAT

1.1 Chapter Overview
In this chapter we will review how to use SAS informats and formats. We will first
review a number of internal informats and formats that SAS provides, and discuss
how these are used to read data into SAS and format output. Some of the examples
will point out pitfalls to watch for when reading and formatting data.

1.2 Using SAS Informats
Informats are typically used to read or input data from external files called flat files
(text files, ASCII files, or sequential files). The informat instructs SAS on how to read
data into SAS variables SAS informats are typically grouped into three categories:
character, numeric, and date/time. Informats are named according to the following
syntax structure:

Character Informats: $INFORMATw.
Numeric Informats: INFORMATw.d
Date/Time Informats: INFORMATw.

The $ indicates a character informat. INFORMAT refers to the sometimes optional
SAS informat name. The w indicates the width (bytes or number of columns) of the
variable. The d is used for numeric data to specify the number of digits to the right of
the decimal place. All informats must contain a decimal point (.) so that SAS can
differentiate an informat from a SAS variable.

SAS 9 lists other informat categories besides the three mentioned. Some of these are
for reading Asian characters and Hebrew characters. The reader is left to explore
these other categories.

SAS provides a large number of informats. The complete list is available in SAS Help
and Documentation. In this text, we will review some of the more common informats
and how to use them. Check SAS documentation for specifics on reading unusual
data.

Chapter 1: Introduction to SAS Informats and Formats 3

1.2.1 INPUT Statement

One use of SAS informats is in DATA step code in conjunction with the INPUT
statement to read data into SAS variables. The first example we will look at will read
a hypothetical data file that contains credit card transaction data. Each record lists a
separate transaction with three variables: an ID (account identifier), a transaction
date, and a transaction amount. The file looks like this:

ID Transaction Date Transaction Amount

124325 08/10/2003 1250.03

 7 08/11/2003 12500.02

114565 08/11/2003 5.11

The following program is used to read the data into a SAS data set. Since variables
are in fixed starting columns, we can use the column-delimited INPUT statement.

Figure 1.1

filename transact 'C:\BBU FORMAT\DATA\TRANS1.DAT';

data transact;
 infile transact;
 input @1 id $6.
 @10 tran_date mmddyy10.
 @25 amount 8.2
 ;
run;

proc print data=transact;
run;

Starting Column INFORMAT VARIABLE

4 The Power of PROC FORMAT

The ID variable is read in as a character variable using the $6. informat in line .
The $w. informat tells SAS that the variable is character with a length w. The $w.
informat will also left-justify the variable (leading blanks eliminated). Later in this
section we will compare results using the $CHARw. informat, which retains leading
blanks.

Line instructs SAS to read in the transaction date (Tran_Date) using the date
informat MMDDYYw. Since each date field occupies 10 spaces, the w. qualifier is
set to 10.

Line uses the numeric informat 8.2. The w.d informat provides instruction to read
the numeric data having a total width of 8 (8 columns) with two digits to the right of
the decimal point. SAS will insert a decimal point only if it does not encounter a
decimal point in the specified w columns. Therefore, we could have coded the
informat as 8. or 8.2.

The PROC PRINT output is shown here. Note that the Tran_Date variable is now in
terms of SAS date values representing the number of days since the first day of the
year specified in the YEARCUTOFF option (for this run, yearcutoff=1920).

 Obs id tran_date amount

 1 124325 15927 1250.03
 2 7 15928 12500.02
 3 114565 15928 5.11

Output 1.1

We can make this example a bit more complicated to illustrate some potential
problems that typically arise when reading from flat files. What if the Amount variable
contained embedded commas and dollar signs? How would we generate

Chapter 1: Introduction to SAS Informats and Formats 5

the code to read in these records? Here is the modified data with the code that reads
the file using the correct informat instruction:

124325 08/10/2003 $1,250.03

 7 08/11/2003 $12,500.02

114565 08/11/2003 5.11

filename transact 'C:\BBU FORMAT\DATA\TRANS1.DAT';

data transact;
 infile transact;
 input @1 id $6.
 @10 tran_date mmddyy10.
 @25 amount comma10.2
 ;
run;

proc print data=transact;
run;

Line uses the numeric informat named COMMAw.d to tell SAS to treat the
Amount variable as numeric and to strip out leading dollar signs and embedded
comma separators. The PROC PRINT output is shown here:

 Obs id tran_date amount

 1 124325 15927 1250.03
 2 7 15928 12500.02
 3 114565 15928 5.11

Output 1.2

Note that the output is identical to the previous run when the data was not embedded
with commas and dollar signs. Also note that the width of the informat in the code is
now larger (10 as opposed to 8 to account for the extra width taken up by commas
and the dollar sign). What seemed like a programming headache was solved simply

6 The Power of PROC FORMAT

by using the correct SAS informat. When you come across nonstandard data, always
check the documented informats that SAS provides.

Now compare what would happen if we changed the informat for the ID variable
from a $w. informat to a $CHARw. informat. Note that the $CHARw. informat will
store the variable with leading blanks.

filename transact 'C:\BBU FORMAT\DATA\TRANS1.DAT';

data transact;
 infile transact;
 input @1 id $CHAR6.
 @10 tran_date mmddyy10.
 @25 amount comma10.2
 ;
run;

proc print data=transact;
run;

 Obs id tran_date amount

 1 124325 15927 1250.03
 2 7 15928 12500.02
 3 114565 15928 5.11

Output 1.3

Note that the ID variable now retains leading blanks and is right-justified in the
output.

Chapter 1: Introduction to SAS Informats and Formats 7

1.2.2 INPUT Function

You can use informats in an INPUT function within a DATA step. As an example, we
can convert the ID variable used in the previous example from a character variable to
a numeric variable in a subsequent DATA step. The code is shown here:

data transact2;
 set transact;
 id_num = input(id,6.);

proc print data=transact2;
run;

The INPUT function in line returns the numeric variable Id_Num. The line states that
the ID variable is six columns wide and assigns the numeric variable, Id_Num, by
using the numeric w.d informat. Note that when using the INPUT function, we do not
have to specify the d component if the character variable contains embedded decimal
values. The output of PROC PRINT is shown here. Note that the Id_Num is right-
justified as numeric values should be.

 tran_
 Obs id date amount id_num

 1 124325 15927 1250.03 124325
 2 7 15928 12500.02 7
 3 114565 15928 5.11 114565

Output 1.4

Also note that the resulting informat for the variable assigned using the INPUT function
is set to the type of informat used in the argument. In the above example, since 6. is a
numeric informat, the Id_Num variable will be numeric.

8 The Power of PROC FORMAT

1.2.3 INPUTN and INPUTC Functions

The INPUTN and INPUTC functions allow you to specify numeric or character
informats at run time. A modified example from SAS 9 Help and Documentation
shows how to use the INPUTN function to switch informats that are dependent on
values of another variable.

options yearcutoff=1920;

data fixdates (drop=start readdate);
 length jobdesc $12 readdate $8;
 input source id lname $ jobdesc $ start $;
 if source=1 then readdate= 'date7. ';
 else readdate= 'mmddyy8.';
 newdate = inputn(start, readdate);
 datalines;
 1 1604 Ziminski writer 09aug90
 1 2010 Clavell editor 26jan95
 2 1833 Rivera writer 10/25/92
 2 2222 Barnes proofreader 3/26/98
 ;

Note that the INPUTC function works like the INPUTN function but uses character
informats. Also note that dates are numeric, even though we use special date
informats to read the values.

1.2.4 ATTRIB and INFORMAT Statements

The ATTRIB statement can assign the informat in a DATA step. Here is an example of
the DATA step in Section 1.2.1 rewritten using the ATTRIB statement:

data transact;
 infile transact;
 attrib id informat=$6.
 tran_date informat=mmddyy10.
 amount informat=comma10.2
 ;

Chapter 1: Introduction to SAS Informats and Formats 9

input @1 id
 @10 tran_date
 @25 amount
 ;
run;

This next example shows how we could also use the INFORMAT statement to read in
the data as well. With SAS there is always more than one way to get the job done.

data transact;
 infile transact;
 informat id $6.
 tran_date mmddyy10.
 amount comma10.2
 ;
 input @1 id
 @10 tran_date
 @25 amount
 ;
run;

1.3 Using SAS Formats
If informats are instructions for reading data, then you can view formats as instructions
for outputting data. Using the data provided above, we will review how to use some
formats that SAS provides.

Since formats are primarily used to format output, we will look at how we can use
existing SAS internal formats using the FORMAT statement in PROCs.

10 The Power of PROC FORMAT

1.3.1 FORMAT Statement in Procedures

Return to the first example introduced in Section 1.2.1 and modify PROC PRINT to include a
FORMAT statement that would return dates in standard mm/dd/yyyy format and list
transaction amounts using dollar signs and commas. Here is the code:

options center;
filename transact 'C:\BBU FORMAT\DATA\TRANS1.DAT';

data transact;
 infile transact;
 input @1 id $6.
 @10 tran_date mmddyy10.
 @25 amount 8.2
 ;
run;

proc print data=transact;
 format tran_date mmddyy10.
 amount dollar10.2;
run;

 Obs id tran_date amount

 1 124325 08/10/2003 $1,250.03
 2 7 08/11/2003 $12,500.02
 3 114565 08/11/2003 $5.11

Output 1.5

Notice that we used a DOLLARw.d format to write out the Amount variable with a
dollar sign and comma separators. If we used a COMMAw.d format, the results
would be similar but without the dollar sign. We see that the COMMAw.d informat
used in Section 1.2.1 has a different function from the COMMAw.d format. The
informat ignores dollar signs and commas while the COMMAw.d format outputs
data with embedded commas without the dollar sign. Check SAS Help and
Documentation when using informats and formats since the same-named informat may
have a different functionality from the same-named format.

 FORMAT STATEMENT IN PROC

Chapter 1: Introduction to SAS Informats and Formats 11

1.3.2 PUT Statement

Informats combined with INPUT statements read in data from flat files. Conversely, we
can use formats with the PUT statement to write out flat files. Let’s see how to take the
Transact SAS data set and write out a new flat file using PUT statements. Recall that
the Transact data set was created using the following code:

options center;
filename transact 'C:\BBU FORMAT\DATA\TRANS1.DAT';

data transact;
 infile transact;
 input @1 id $6.
 @10 tran_date mmddyy10.
 @25 amount 8.2
 ;
run;

Run the following code to create a new flat file called transact_out.dat:

data _null_;
 set transact;
 file 'c:\transact_out.dat';
 put @1 id $char6.
 @10 tran_date mmddyy10.
 @25 amount 8.2
 ;
run;

Some comments about the above code:

 The data set name _NULL_ is a special keyword. The _NULL_ data set does not
get saved into the workspace. The keyword turns off all the default automatic
output that normally occurs at the end of the DATA step. It is used typically for
writing output to reports or files.

 Use the SET statement to read the transact data into the DATA step.

12 The Power of PROC FORMAT

 Specify the output flat file using the FILE statement. Review SAS documentation for
FILE statement options for specific considerations (i.e., specifying record lengths
for long files, file delimiters, and/or outputting to other platforms such as
spreadsheets).

 Specify the $CHARw. format, but since the ID variable is already left-justified
using the $w. informat, the output would be the same if a $w. format had been
used.

The data file created from the above code is shown here:

124325 08/10/2003 1250.03
7 08/11/2003 12500.02
114565 08/11/2003 5.11

Output 1.6

If the user of the file requires the ID variable to be right-justified, the following changes
to the code can accommodate that request. In this code, a new numeric variable
called Id_Num was created, which applies the INPUT function to the character ID
variable.

data _null_;
 set transact;
 file 'c:\transact_out.dat';
 id_num = input(id,6.);
 put @1 id_num 6.
 @10 tran_date mmddyy10.
 @25 amount 8.2
 ;
run;

124325 08/10/2003 1250.03

 7 08/11/2003 12500.02

114565 08/11/2003 5.11

Chapter 1: Introduction to SAS Informats and Formats 13

What if the user calls back requesting that the ID variable have leading zeros? This is
not a problem because SAS has a special numeric format to include leading zeros
called Zw.d. Here is the modified code and the output file:

data _null_;
 set transact;
 file 'c:\transact_out.dat';
 id_num = input(id,6.);
 put @1 id_num z6.
 @10 tran_date mmddyy10.
 @25 amount 8.2
 ;
run;

124325 08/10/2003 1250.03

000007 08/11/2003 12500.02

114565 08/11/2003 5.11

The above example is handy to have. Especially if you read zip code data as numeric
and then want to output results with leading zeros in flat files, reports, or PROCs.

1.3.3 PUT Function

Like the INPUT function, SAS also has the PUT function to use with SAS variables and
formats to return character variables. The format applied to the source variable must
be the same type as the source variable—numeric or character.

For example, what if we have a data set with a 13-digit numeric variable called
Accn_Id and we want to generate a character variable called Char_Accn_Id from the
numeric variable with leading zeros? The following PUT function can be applied in a
DATA step:

 char_accn_id = put(accn_id,z13.);

14 The Power of PROC FORMAT

Note that the PUT function always returns a character variable while the INPUT
function returns a type (numeric or character) dependent on the informat used in the
argument.

1.3.4 PUTN and PUTC Functions

These functions work like the INPUTN and INPUTC functions reviewed in Section
1.2.2. The functions allow you to name a format during run time. A detailed example
is shown in Chapter 5, Section 5.3.

1.3.5 BESTw. Format

When outputting numeric data without a format specification, SAS uses the default
BESTw. format. You can increase the width of the numeric display by overriding the
default BESTw. format by explicitly declaring a BESTw. format in a format
specification.

To make the concept clear, we’ll look at the problem of converting character to
numeric data that was introduced in Section 1.2.2. The INPUT function can be used
to convert character data to numeric. Here is another example and code:

Chapter 1: Introduction to SAS Informats and Formats 15

Figure 1.2

When we look at the output of the run we get the following results, which at first look
strange:

 Obs x num_x y num_y

 1 117.7 117.70 1.746 1.75
 2 06.61 6.61 97239 97239.00
 3 97123 97123.00 0.126 0.13

Output 1.7

data test;
 input @1 x $5. @7 y $5. @13 z
1.;
datalines;
117.7 1.746 1
06.61 97239 2
97123 0.126 3
;;
run;

data test2;
 set test;
 num_x = input(x,5.);
 num_y = input(y,5.);

proc print data=test2;
 var x num_x y num_y;
run;

The x and y are characters
in Test.

Num_x and num_y are numeric
transformations of x and y in
Test2.

16 The Power of PROC FORMAT

It looks like the X variable translated correctly, but when we look at the Y variable we
notice that digits got rounded off in the Num_y variable. Before blaming the INPUT
function in creation of data set Test2, try to increase the width of the numeric display
using a BESTw. format. Here are the code and output:

proc print data=test2;
 var x num_x y num_y;
 format num_y best10.;
run;

 Obs x num_x y num_y

 1 117.7 117.70 1.746 1.746
 2 06.61 6.61 97239 97239
 3 97123 97123.00 0.126 0.126

Output 1.8

With the BESTw. format applied, we see that the character-to-numeric translation
was done correctly.

We can apply the BESTw. format to all numeric variables as shown in the following
change of PROC PRINT, which formats all numeric data in the data set with the
best10. format:

proc print data=test2;
 var x num_x y num_y;
 format _numeric_ best10.;
run;

Chapter 1: Introduction to SAS Informats and Formats 17

 Obs x num_x y num_y

 1 117.7 117.7 1.746 1.746
 2 06.61 6.61 97239 97239
 3 97123 97123 0.126 0.126

Output 1.9

1.4 Additional Comments
There are a large number of informats and formats supplied by SAS. Be clear about
your data and the format of your data. Don’t assume anything. Always check your
SAS logs for warnings and errors. Be on the lookout for incorrect w or d
specifications. If you don’t specify large enough widths, character variables will be
truncated and numeric data might be reformatted.

As a review of this chapter, the following table shows the function and usage of
informats and formats:

CONCEPT FUNCTION USAGE IN A DATA STEP USAGE IN A PROC

INFORMAT Input data.

Use with the INPUT, ATTRIB, or
INFORMAT statement. Use
with the INPUT, INPUTN, or
INPUTC function.

INFORMAT statements are
rarely used in PROCs.
Exceptions are PROCs that are
used to input data such
as PROC FSEDIT.

FORMAT

Output data
or format data
in reports.

Use with the PUT, ATTRIB, or FORMAT
statement. Use with the
PUT, PUTC, or PUTN function.

Use the ATTRIB or FORMAT
statement.

More Information
More information about SAS informats and formats can be found in SAS Help and
Documentation.

18 The Power of PROC FORMAT

