
1

C H A P T E R

1
SAS/ACCESS for OLE DB

Introduction to the SAS/ACCESS Interface to OLE DB 1
LIBNAME Statement Specifics for OLE DB 2

Arguments 2

Connecting with OLE DB Services 6

Connecting Directly to a Data Provider 7

OLE DB LIBNAME Statement Examples 7
Data Set Options for OLE DB 8

Pass-Through Facility Specifics for OLE DB 9

Examples 10

Special OLE DB Queries 10

Examples of Special OLE DB Queries 13

Passing SAS Functions to OLE DB 14
Passing Joins to OLE DB 15

Temporary Table Support for OLE DB 16

Establishing a Temporary Table 16

Terminating a Temporary Table 16

Examples 16
OLE DB Bulk Loading 18

Locking in the OLE DB Interface 18

Accessing OLE DB for OLAP Data 19

Overview 19

Using the Pass-Through Facility with OLAP Data 20
Syntax 20

Examples 21

Naming Conventions for OLE DB 22

Data Types for OLE DB 22

OLE DB Null Values 23

Introduction to the SAS/ACCESS Interface to OLE DB
This document includes details only about the SAS/ACCESS interface to OLE DB. It

should be used as a supplement to the generic SAS/ACCESS documentation
SAS/ACCESS for Relational Databases: Reference.

Microsoft OLE DB is an API (application programming interface) that provides
access to data that can be in a database table, an e-mail file, a text file, or another type
of file. This SAS/ACCESS interface accesses data from these sources through OLE DB
data providers such as Microsoft Access, Microsoft SQL Server, and Oracle.

2 LIBNAME Statement Specifics for OLE DB � Chapter 1

LIBNAME Statement Specifics for OLE DB
This section describes the LIBNAME statement as supported in the SAS/ACCESS

interface to OLE DB. For a complete description of this feature, see the LIBNAME
statement section in SAS/ACCESS for Relational Databases: Reference. The OLE DB
specific syntax for the LIBNAME statement is as follows:

LIBNAME libref oledb <connection-options> <LIBNAME-options>;

Arguments
libref

is any SAS name that serves as an alias to associate SAS with a database,
schema, server, or group of tables and views.

oledb
is the SAS/ACCESS engine name for the interface to OLE DB.

connection-options
provide connection information and control how SAS manages the timing and
concurrence of the connection to the data source. You can connect to a data source
either by using OLE DB Services or by connecting directly to the provider. For
details about each of these methods, see “Connecting with OLE DB Services” on
page 6 and “Connecting Directly to a Data Provider” on page 7.

The following connection options are available with both connection methods:

USER=<’>user-name<’>
enables you to connect to an OLE DB data source with a user ID that is
different from the default ID. The default is your user ID.

PASSWORD=<’>password<’>
specifies the OLE DB password that is associated with your user ID.

Note: If you do not wish to enter your OLE DB password in uncoded text,
see PROC PWENCODE for a method to encode it. �

DATASOURCE=<’>data-source<’>
identifies the data source object (such as a relational database server or a
local file) to which you want to connect.

PROVIDER=<’>provider-name<’>
specifies which OLE DB provider to use to connect to the data source. This
option is required during batch processing.

There is no restriction on the length of the provider-name. If the
provider-name contains blank spaces or special characters, enclose it in
quotation marks.

If you do not specify a provider, an OLE DB Services dialog box prompts
you for connection information. In batch mode, if you do not specify a
provider the connection fails.

If you are using the Microsoft Jet OLE DB 4.0 provider, specify
PROVIDER=JET.

PROPERTIES=(<’>property-1<’>=<’>value-1<’> < . . .
<’>property-n<’>=<’>value-n<’>>)

specifies standard provider properties that enable you to connect to a data
source and to define connection attributes. If a property name or value
contains embedded spaces or special characters, enclose the name or value in
quotation marks. Use a blank space to separate multiple properties.

SAS/ACCESS for OLE DB � Arguments 3

Note: See your provider’s documentation for a list and description of all
the properties that your provider supports. �

No properties are specified by default.

PROVIDER_STRING=<’>extended-properties<’>
specifies provider-specific extended connection information, such as the file
type of the data source. If the string contains blank spaces or special
characters, enclose it in quotation marks. For example, the Microsoft Jet
provider accepts strings that indicate file type (such as ’Excel 8.0’).

The following example uses the Jet 4.0 provider to access the spreadsheet
Y2KBUDGET.XLS. Specify the ’Excel 8.0’ provider string so that Jet
recognizes the file as an Excel 8.0 worksheet.

libname budget oledb provider=jet provider_string=’Excel 8.0’
datasource=’d:\excel80\Y2Kbudget.xls’;

OLEDB_SERVICES=YES | NO
determines whether SAS uses OLE DB Services to connect to the data source.
Specify YES to use OLE DB Services or specify NO to use the provider to
connect to the data source.

Specifying PROMPT=YES and OLEDB_SERVICES=YES enables you to
set more options than you would otherwise be able to set (by being prompted
by the provider’s dialog box). If OLEDB_SERVICES=NO, you must specify
PROVIDER= first in order for the provider’s prompt dialog boxes to be used.
If PROVIDER= is omitted, SAS uses OLE DB Services, even if you specify
OLEDB_SERVICES=NO.

YES is the default.
For Microsoft SQL Server data, if BULKLOAD=YES, then

OLEDB_SERVICES= is set to NO.
When OLEDB_SERVICES=YES and a successful connection is made, the

complete connection string is returned in the SYSDBMSG macro variable.

PROMPT =YES | NO
determines whether an interactive dialog box is displayed to guide you
through the connection process. The interactive dialog box is one of the
following:

� an OLE DB provider dialog box if OLEDB_SERVICES=NO and you
specify a provider.

� an OLE DB Services dialog box if OLEDB_SERVICES=YES or if you do
not specify a provider.

The OLE DB Services dialog box is generally preferred over the provider’s
dialog box because the OLE DB Services dialog box enables you to set options
more easily.

If you specify a provider and set OLEDB_SERVICES=NO, the default is
PROMPT=NO. Otherwise, the default is PROMPT=YES.

If OLEDB_SERVICES=YES or if you do not specify a provider, an OLE DB
Services dialog box displays even if you specify PROMPT=NO.

Specify no more than one of the following options on each LIBNAME
statement: COMPLETE=, REQUIRED=, PROMPT=.

Any properties that you specify in the PROPERTIES= option are displayed
in the prompting interface, and you can edit any field.

UDL_FILE=<’>path-and-file-name<’>
specifies the path and filename for a Microsoft universal data link (UDL). For
example, you could specify
UDL_FILE="C:\WinNT\profiles\me\desktop\MyDBLink.UDL"

4 Arguments � Chapter 1

This option does not support SAS filerefs. SYSDBMSG is not set on
successful completion. For more information, see Microsoft’s documentation
about the Data Link API.

This option overrides any values that are set with the INIT_STRING=,
PROVIDER=, and PROPERTIES= options.

The following connection option is only available when you use OLE DB
Services:

INIT_STRING=’property-1=value-1<...;property-n=value-n>’
specifies an initialization string, enabling you to bypass the interactive
prompting interface yet still use OLE DB Services. Use a semicolon to
separate properties.

After you connect to a data source, SAS returns the complete initialization
string to the macro variable SYSDBMSG, which stores the connection
information that you specify in the prompting window. You can reuse the
initialization string to make automated connections or to specify connection
information for batch jobs.

For example, if you specify the following initialization string:

init_string=’Provider=SQLOLEDB;Password=dbmgr1;Persist
Security Info=True;User ID=rachel;Initial Catalog=users;
Data Source=dwtsrv1’;

then the content of the SYSDBMSG macro variable is:

OLEDB: Provider=SQLOLEDB;Password=dbmgr1;
Persist Security Info=True;User ID=rachel;
Initial Catalog=users;Data Source=dwtsrv1;

If you store this string for later use, delete the OLEDB: prefix and any initial
spaces before the first listed option.

There is no default value. However, if you specify a null value for this
option, the OLE DB Provider for ODBC (MSDASQL) is used with your
default data source and its properties. See your OLE DB documentation for
more information about these default values.

This option overrides any values that are set with the PROVIDER= and
PROPERTIES= options.

To write the initialization string to the SAS log, submit the following code
immediately after connecting to the data source: %put %superq(SYSDBMSG);

This option is not available if OLEDB_SERVICES=NO.
The following connection options are only available when you connect directly to

a provider:

COMPLETE=YES | NO
specifies whether SAS attempts to connect to the data source without
prompting you for connection information.

If you specify COMPLETE=YES and the connection information that you
specify in your LIBNAME statement is sufficient, then SAS makes the
connection and does not prompt you for additional information.

If you specify COMPLETE=YES and the connection information that you
specify in your LIBNAME statement is not sufficient, the provider’s dialog
box prompts you for additional information. You can enter optional
information as well as required information in the dialog box.

NO is the default value.
COMPLETE= is available only when you set OLEDB_SERVICES=NO and

you specify a provider. It is not available in the Pass-Through Facility.
Specify no more than one of the following options on each LIBNAME

statement: COMPLETE=, REQUIRED=, PROMPT=.

SAS/ACCESS for OLE DB � Arguments 5

REQUIRED=YES | NO
specifies whether SAS attempts to connect to the data source without
prompting you for connection information and whether you can interactively
specify optional connection information.

If you specify REQUIRED=YES and the connection information that you
specify in your LIBNAME statement is sufficient, SAS makes the connection
and you are not prompted for additional information.

If you specify REQUIRED=YES and the connection information that you
specify in your LIBNAME statement is not sufficient, the provider’s dialog
box prompts you for the required connection information. You cannot enter
optional connection information in the dialog box.

NO is the default value.
REQUIRED= is available only when you set OLEDB_SERVICES=NO and

you specify a provider in the PROVIDER= option. It is not available in the
Pass-Through Facility

Specify no more than one of the following options on each LIBNAME
statement: COMPLETE=, REQUIRED=, PROMPT=.

LIBNAME-options
define how DBMS objects are processed by SAS. Some LIBNAME options can
enhance performance; others determine locking or naming behavior. The following
table describes the LIBNAME options that are suupported for OLE DB, and
presents default values where applicable. See the section about the SAS/ACCESS
LIBNAME statement in SAS/ACCESS for Relational Databases: Reference for
detailed information about these options.

Table 1.1 SAS/ACCESS LIBNAME Options for OLE DB

Option Default Value

ACCESS= none

AUTOCOMMIT= data source specific

BL_KEEPIDENTITY= NO

BL_KEEPNULLS= YES

BL_OPTIONS= not specified

BULKLOAD= NO

CELLPROP= VALUE

COMMAND_TIMEOUT= 0 (no timeout)

CONNECTION= SHAREDREAD

CONNECTION_GROUP= none

CURSOR_TYPE= none

DBCOMMIT= 1000 (inserting) or 0 (updating)

DBCONINIT= none

DBCONTERM= none

DBCREATE_TABLE_OPTS= none

DBGEN_NAME= DBMS

DBINDEX= NO

DBLIBINIT= none

6 Connecting with OLE DB Services � Chapter 1

Option Default Value

DBLIBTERM= none

DBMAX_TEXT= 1024

DBNULLKEYS= YES

DEFER= NO

DELETE_MULT_ROWS= NO

DIRECT_EXE= none

DIRECT_SQL= YES

IGNORE_ READ_ONLY_COLUMNS= NO

INSERT_SQL= data source specific

INSERTBUFF= 1

MULTI_DATASRC_OPT= NONE

PRESERVE_COL_NAMES= see “Naming Conventions for OLE DB” on page 22

PRESERVE_TAB_NAMES= see “Naming Conventions for OLE DB” on page 22

QUALIFIER= none

QUALIFY_ROWS= NO

QUOTE_CHAR= not set

READBUFF= 1

READ_LOCK_TYPE= see “Locking in the OLE DB Interface” on page 18

READ_ISOLATION_LEVEL= not set (see “Locking in the OLE DB Interface” on
page 18)

REREAD_EXPOSURE= NO

SCHEMA= none

SPOOL= YES

SQL_FUNCTIONS= NONE

STRINGDATES= NO

UPDATE_ISOLATION_LEVEL= not set (see “Locking in the OLE DB Interface” on
page 18)

UPDATE_LOCK TYPE= ROW

UPDATE_MULT_ROWS= NO

UTILCONN_TRANSIENT= NO

Connecting with OLE DB Services
By default, the SAS/ACCESS interface to OLE DB uses OLE DB Services because

this is often the fastest and easiest way to connect to a data provider.
OLE DB Services provides performance optimizations and scaling features, including

resource pooling. It also provides interactive prompting for the provider name and
connection information.

When you submit a simple LIBNAME statement such as

libname mydblib oledb;

SAS/ACCESS for OLE DB � OLE DB LIBNAME Statement Examples 7

SAS directs OLE DB Services to display a dialog box that contains tabs where you can
enter the provider name and connection information.

Note: After you make a successful connection using OLE DB Services, you can
retrieve the connection information and reuse it in batch jobs and automated
connections. For more information, see the connection options INIT_STRING= and
OLEDB_SERVICES=. �

Connecting Directly to a Data Provider
To connect to a data source, the SAS/ACCESS interface to OLE DB requires a

provider name and provider-specific connection information such as the user ID,
password, schema, or server name. If you know all of this information, you can connect
directly to a provider, without using OLE DB Services.

Note: If you are connecting to Microsoft SQL Server and specifying the SAS/ACCESS
option BULKLOAD=YES, then you must connect directly to the provider. �

To connect directly to a provider, you must specify the following:
� the name of the provider (PROVIDER=)
� that you do not want to use OLE DB Services (OLEDB_SERVICES=NO)
� any required connection information.

After you connect to your provider, you can use a special OLE DB query called
PROVIDER_INFO to make subsequent non-prompted connections easier. You can
submit this special query as part of a PROC SQL query in order to display all of the
available provider names and properties. For an example, see “Examples of Special
OLE DB Queries” on page 13.

If you know only the provider name and you are running an interactive SAS session,
you can be prompted for the provider’s properties. Specify PROMPT=YES to direct the
provider to prompt you for properties and other connection information. Each provider
displays its own prompting interface.

If you run SAS in a batch environment, specify only USER=, PASSWORD=,
DATASOURCE=, PROVIDER=, PROPERTIES=, and OLEDB_SERVICES=NO.

OLE DB LIBNAME Statement Examples
In the following example, the libref MYDBLIB uses the SAS/ACCESS OLE DB

engine to connect to a Microsoft SQL Server database.

libname mydblib oledb user=username password=password datasource=dept203
provider=sqloledb properties=(’initial catalog’=mgronly);

proc print data=mydblib.customers;
where state=’CA’;

run;

In the following example, the libref MYDBLIB uses the SAS/ACCESS engine for
OLE DB to connect to an Oracle database. Because prompting is enabled, you can
review and edit the user, password, and data source information in a dialog box.

libname mydblib oledb user=username password=password datasource=v2o7223.world
provider=msdaora prompt=yes;

8 Data Set Options for OLE DB � Chapter 1

proc print data=mydblib.customers;
where state=’CA’;

run;

In the following example, you submit a basic LIBNAME statement, so an OLE DB
Services dialog box prompts you for the provider name and properties’ values.

libname mydblib oledb;

The advantage of being prompted is that you do not need to know any special syntax to
set the values for the properties. Prompting also enables you to set more options than
you might when you connect directly to the provider (and do not use OLE DB Services).

Data Set Options for OLE DB
The following table describes the data set options that are supported for OLE DB,

and provides default values where applicable. See the section about data set options in
SAS/ACCESS for Relational Databases: Reference for detailed information about these
options.

Table 1.2 SAS/ACCESS Data Set Options for OLE DB

Option Default Value

BL_KEEPIDENTITY= LIBNAME option setting

BL_KEEPNULLS= LIBNAME option setting

BL_OPTIONS= LIBNAME option setting

COMMAND_TIMEOUT= LIBNAME option setting

CURSOR_TYPE= LIBNAME option setting

DBCOMMIT= LIBNAME option setting

DBCONDITION= none

DBCREATE_TABLE_OPTS= LIBNAME option setting

DBFORCE= NO

DBGEN_NAME= DBMS

DBINDEX= LIBNAME option setting

DBKEY= none

DBLABEL= NO

DBMASTER= none

DBMAX_TEXT= 1024

DBNULL= _ALL_=YES

DBNULLKEYS= LIBNAME option setting

DBSASTYPE= see “Data Types for OLE DB” on page 22

DBTYPE= see “Data Types for OLE DB” on page 22

ERRLIMIT= 1

IGNORE_ READ_ONLY_COLUMNS= NO

INSERT_SQL= LIBNAME option setting

SAS/ACCESS for OLE DB � Pass-Through Facility Specifics for OLE DB 9

Option Default Value

INSERTBUFF= LIBNAME option setting

NULLCHAR= SAS

NULLCHARVAL= a blank character

PRESERVE_COL_NAMES= LIBNAME option setting

QUALIFIER= LIBNAME option setting

READBUFF= LIBNAME option setting

READ_ISOLATION_LEVEL= LIBNAME option setting

SASDATEFMT= not set

SCHEMA= LIBNAME option setting

UPDATE_ISOLATION_LEVEL= LIBNAME option setting

UPDATE_LOCK_TYPE= LIBNAME option setting

UTILCONN_TRANSIENT= YES

Pass-Through Facility Specifics for OLE DB

See the section about the Pass-Through Facility in SAS/ACCESS for Relational
Databases: Reference for general information about this feature.

The Pass-Through Facility specifics for OLE DB are as follows:

� The dbms-name is OLEDB.

� The CONNECT statement is required.

� PROC SQL supports multiple connections to OLE DB. If you use multiple
simultaneous connections, you must use an alias to identify the different
connections. If you do not specify an alias, the default alias, OLEDB, is used. The
functionality of multiple connections to the same OLE DB provider might be
limited by a particular provider.

� The CONNECT statement database-connection-arguments are identical to the
LIBNAME connection options. For some data sources, the connection options have
default values and are therefore not required.

Note: Not all of the connection options are supported by all OLE DB providers.
Refer to your provider documentation for more information. �

� The following LIBNAME options are available with the CONNECT statement:

AUTOCOMMIT=

CELLPROP=

COMMAND_TIMEOUT=

CURSOR_TYPE=

DBMAX_TEXT=

QUALIFY_ROWS=

READ_ISOLATION_LEVEL=

READ_LOCK_TYPE=

READBUFF=

STRINGDATES=.

10 Examples � Chapter 1

Examples
The following example uses an alias to connect to a Microsoft SQL Server database

and select a subset of data from the PAYROLL table. The SAS/ACCESS engine uses
OLE DB Services to connect to OLE DB because this is the default action when the
OLEDB_SERVICES= option is omitted.

proc sql;
connect to oledb as finance

(user=username password=password datasource=dwtsrv1
provider=sqloledb);

select * from connection to finance (select * from payroll
where jobcode=’FA3’);

quit;

In the following example, the CONNECT statement omits the provider name and
properties. An OLE DB Services dialog box will prompt you for the connection
information.

proc sql;
connect to oledb;
quit;

The following example uses OLE DB Services to connect to a provider that is
configured under the data source name User’s Data with the alias USER1. Note that
the data source name can contain quotation marks and spaces.

proc sql;
connect to oledb as user1
(provider=JET datasource=’c:\db1.mdb’);;

Special OLE DB Queries
The following special queries are supported by the SAS/ACCESS interface to OLE

DB. Many databases provide or use system tables that enable queries to return the list
of available tables, columns, procedures, and other useful information. In OLE DB,
much of this functionality is provided through special APIs (application programming
interfaces) in order to accommodate databases that do not follow the SQL table
structure. You can use these special queries on non-SQL and on SQL databases.

Note: Not all of the queries are supported by all OLE DB providers. Refer to your
provider documentation for more information. �

The general format of the special queries is as follows:

OLEDB::schema-rowset("parameter 1","parameter n")

where

OLEDB::
is required to distinguish special queries from regular queries.

schema-rowset
is the specific schema rowset that is being called. All valid schema rowsets are
listed under the IDBSchemaRowset Interface in the Microsoft OLE DB
Programmer’s Reference. Both OLEDB:: and schema-rowset are case-sensitive.

SAS/ACCESS for OLE DB � Special OLE DB Queries 11

"parameter n"
is a quoted string that is enclosed by commas. The values for the special query
arguments are specific to each data source. For example, you supply the fully
qualified table name for a "Qualifier" argument. In dBase, the value of "Qualifier"
might be c:\dbase\tst.dbf, and in SQL Server, the value might be
test.customer. In addition, depending on the data source that you use, values
for an "Owner" argument might be a user ID, a database name, or a library. All
arguments are optional. If you specify some but not all the arguments within a
parameter, use commas to indicate the omitted arguments. If you do not specify
any parameters, commas are not necessary. Note that these special queries might
not be available for all OLE DB providers.

The following special queries are supported:

OLEDB::ASSERTIONS(<"Catalog", "Schema", "Constraint-Name">)
returns assertions defined in the catalog that are owned by a given user.

OLEDB::CATALOGS(<"Catalog">)
returns physical attributes associated with catalogs that are accessible from the
DBMS.

OLEDB::CHARACTER_SETS(<"Catalog", "Schema","Character-Set-Name">)
returns the character sets defined in the catalog that are accessible to a given user.

OLEDB::CHECK_CONSTRAINTS(<"Catalog", "Schema", "Constraint-Name">)
returns check constraints defined in the catalog that are owned by a given user.

OLEDB::COLLATIONS(<"Catalog", "Schema", "Collation-Name">)
returns the character collations defined in the catalog that are accessible to a
given user.

OLEDB::COLUMN_DOMAIN_USAGE(<"Catalog", "Schema", "Domain-Name",
"Column-Name">)

returns the columns defined in the catalog that are dependent on a domain defined
in the catalog and owned by a given user.

OLEDB::COLUMN_PRIVILEGES(<"Catalog", "Schema", "Table-Name",
"Column-Name", "Grantor", "Grantee">)

returns the privileges on columns of tables defined in the catalog that are
available to or granted by a given user.

OLEDB::COLUMNS(<"Catalog", "Schema", "Table-Name", "Column-Name">)
returns the columns of tables defined in the catalogs that are accessible to a given
user.

OLEDB::CONSTRAINT_COLUMN_USAGE(<"Catalog", "Schema", "Table-Name",
"Column-Name">)

returns the columns used by referential constraints, unique constraints, check
constraints, and assertions that are defined in the catalog and owned by a given
user.

OLEDB::CONSTRAINT_TABLE_USAGE(<"Catalog", "Schema", "Table-Name">)
returns the tables used by referential constraints, unique constraints, check
constraints, and assertions that are defined in the catalog and owned by a given
user.

OLEDB::FOREIGN_KEYS(<"Primary-Key-Catalog", "Primary-Key-Schema",
"Primary-Key-Table-Name", "Foreign-Key-Catalog", "Foreign-Key-Schema",
"Foreign-Key-Table-Name">)

returns the foreign key columns defined in the catalog by a given user.

12 Special OLE DB Queries � Chapter 1

OLEDB::INDEXES(<"Catalog", "Schema", "Index-Name", "Type", "Table-Name">)
returns the indexes defined in the catalog that are owned by a given user.

OLEDB::KEY_COLUMN_USAGE(<"Constraint-Catalog", "Constraint-Schema",
"Constraint-Name", "Table-Catalog", "Table-Schema", "Table-Name",
"Column-Name">)

returns the columns defined in the catalog that are constrained as keys by a given
user.

OLEDB::PRIMARY_KEYS(<"Catalog", "Schema", "Table-Name">)
returns the primary key columns defined in the catalog by a given user.

OLEDB::PROCEDURE_COLUMNS(<"Catalog", "Schema", "Procedure-Name",
"Column-Name">)

returns information about the columns of rowsets returned by procedures.

OLEDB::PROCEDURE_PARAMETERS(<"Catalog", "Schema", "Procedure-Name",
"Parameter-Name">)

returns information about the parameters and return codes of the procedures.

OLEDB::PROCEDURES(<"Catalog", "Schema", "Procedure-Name",
"Procedure-Type">)

returns procedures defined in the catalog that are owned by a given user.

OLEDB::PROVIDER_INFO()
returns output that contains the following columns: PROVIDER_NAME,
PROVIDER_DESCRIPTION, and PROVIDER_PROPERTIES. The
PROVIDER_PROPERTIES column contains a list of all the properties that the
provider supports. The properties are separated by a semicolon(;). See the
“Examples of Special OLE DB Queries” on page 13.

OLEDB::PROVIDER_TYPES(<"Data Type", "Best-Match">)
returns information about the base data types supported by the data provider.

OLEDB::REFERENTIAL_CONSTRAINTS(<"Catalog", "Schema",
"Constraint-Name">)

returns the referential constraints defined in the catalog that are owned by a given
user.

OLEDB::SCHEMATA(<"Catalog", "Schema", "Owner">)
returns the schemas that are owned by a given user.

OLEDB::SQL_LANGUAGES()
returns the conformance levels, options and dialects supported by the SQL
implementation processing data that is defined in the catalog.

OLEDB::STATISTICS(<"Catalog", "Schema", "Table-Name">)
returns the statistics defined in the catalog that are owned by a given user.

OLEDB::TABLE_CONSTRAINTS(<"Constraint-Catalog", "Constraint-Schema",
"Constraint-Name", "Table-Catalog", "Table-Schema", "Table-Name",
"Constraint-Type">)

returns the table constraints defined in the catalog that are owned by a given user.

OLEDB::TABLE_PRIVILEGES(<"Catalog", "Schema", "Table-Name", "Grantor",
"Grantee">)

returns the privileges on tables defined in the catalog that are available to or
granted by a given user.

OLEDB::TABLES(<"Catalog", "Schema", "Table-Name", "Table-Type">)
returns the tables defined in the catalog that are available to or granted by a given
user.

SAS/ACCESS for OLE DB � Special OLE DB Queries 13

OLEDB::TRANSLATIONS(<"Catalog", "Schema", "Translation-Name">)
returns the character translations defined in the catalog that are accessible to a
given user.

OLEDB::USAGE_PRIVILEGES(<"Catalog", "Schema", "Object-Name", "Object-Type",
"Grantor", "Grantee">)

returns the USAGE privileges on objects defined in the catalog that are available
to or granted by a given user.

OLEDB::VIEW_COLUMN_USAGE(<"Catalog", "Schema", "View-Name">)
returns the columns on which viewed tables, defined in the catalog and owned by a
given user, are dependent.

OLEDB::VIEW_TABLE_USAGE(<"Catalog", "Schema", "View-Name">)
returns the tables on which viewed tables, defined in the catalog and owned by a
given user, are dependent.

OLEDB::VIEWS(<"Catalog", "Schema", "Table-Name">)
returns the viewed tables defined in the catalog that are accessible to a given user.

For a complete description of each rowset and the columns that are defined in each
rowset, refer to the Microsoft OLE DB Programmer’s Reference.

Examples of Special OLE DB Queries
The following example retrieves a rowset that displays all of the tables that are

accessed by the schema HRDEPT:

proc sql;
connect to oledb(provider=sqloledb properties=("User ID"=testuser

Password=testpass
"Data Source"=’dwtsrv1’));

select * from connection to oledb
(OLEDB::TABLES(,"HRDEPT"));

quit;

The following example uses the special query OLEDB::PROVIDER_INFO() to
produce the output that follows:

proc sql;
connect to oledb(provider=msdaora properties=("User ID"=testuser

Password=testpass
"Data Source"="Oraserver"));

select * from connection to oledb
(OLEDB::PROVIDER_INFO());

quit;

14 Passing SAS Functions to OLE DB � Chapter 1

Output 1.1 Provider and Properties Output

PROVIDER_NAME PROVIDER_DESCRIPTION PROVIDER_PROPERTIES
------------- -------------------- -------------------
MSDAORA Microsoft OLE DB Password;User ID;Data

Provider for Oracle Source;Window Handle;Locale
Identifier;OLE DB Services;
Prompt; Extended Properties;

SampProv Microsoft OLE DB Data Source;Window Handle;
Sample Provider Prompt;

You could then reference the output when automating a connection to the provider.
For the previous result set, you could write the following SAS/ACCESS LIBNAME
statement:

libname mydblib oledb provider=msdaora
props=(’Data Source’=OraServer ’User ID’=scott ’Password’=tiger);

Passing SAS Functions to OLE DB
The engine for OLE DB passes the following operations to OLE DB for processing.

See the section about optimizing SQL usage in SAS/ACCESS for Relational Databases:
Reference for information.

ABS

ARCOS (ACOS)

ARSIN (ASIN)

ATAN

AVG

BYTE

CEIL

COMPRESS

COS

COUNT

DATE

DATEPART

DATETIME

DAY

EXP

FLOOR

HOUR

INDEX

LENGTH

SAS/ACCESS for OLE DB � Passing Joins to OLE DB 15

LOG

LOG10

LOWCASE

MAX

MIN

MINUTE

MOD

MONTH

QRT

REPEAT

SECOND

SIGN

SIN

SOUNDEX

SQRT

SUMSTR

SUM

TAN

TIME

TIMEPART

TODAY

TRANWRD

TRIMN

UPCASE

WEEKDAY

YEAR

Passing Joins to OLE DB
In order for a multiple libref join to pass to OLE DB, all of the following components

of the LIBNAME statements must match exactly:
� user ID
� password
� datasource
� provider
� qualifier

(if specified)
� provider string

(if specified)

16 Temporary Table Support for OLE DB � Chapter 1

� UDL_FILE=
(if specified)

� INIT_STRING=
(if specified)

� READ_ISOLATION_LEVEL=
(if specified)

� UPDATE_ISOLATION_LEVEL=
(if specified)

� all properties specified in the PROPERTIES=() option
� PROMPT=

must not be specified

See the section about performance considerations in SAS/ACCESS for Relational
Databases: Reference for more information about when and how SAS/ACCESS passes
joins to the DBMS.

Temporary Table Support for OLE DB
See the section on the temporary table support in SAS/ACCESS for Relational

Databases: Reference for general information about this feature.

Establishing a Temporary Table
When you want to use temporary tables that persist across SAS procedures and DATA

steps with OLE DB, you must use the CONNECTION=SHARED LIBNAME option. In
doing so, the temporary table is available for processing until the libref is closed.

Terminating a Temporary Table
You can drop a temporary table at any time, or allow it to be implicitly dropped

when the connection is terminated. Temporary tables do not persist beyond the scope of
a singe connection.

Examples
Using the Internat sample table, the following example creates a temporary table,

#LONDON, with Microsoft SQL Server that contains information about flights that flew
to London. This table is then joined with a larger SQL Server table that lists all the
flights, March, but matched only on flights that flew to London.

libname samples oledb Provider=SQLOLEDB Password=dbigrp1 UID=dbitest
DSN=’lupin\sql2000’ connection=shared;

data samples.’#LONDON’n;
set work.internat;
where dest=’LON’;

run;

proc sql;
select b.flight, b.dates, b.depart, b.orig

SAS/ACCESS for OLE DB � Examples 17

from samples.’#LONDON’n a, samples.march b
where a.dest=b.dest;

quit;

In the following example a temporary table called New is created with Microsoft SQL
Server. The data from this table is then appended to an existing SQL Server table
named Inventory.

libname samples oledb provider=SQLOLEDB dsn=lupinss
uid=dbitest pwd=dbigrp1;

data samples.inventory(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12001’;
item=’screwdriver’;
quantity=15;
output;

itemnum=’12002’;
item=’hammer’;
quantity=25:
output;

itemnum=’12003’;
item=’sledge hammer’;
quantity=10;
output;

itemnum=’12004’;
item=’saw’;
quantity=50;
output;

itemnum=’12005’;
item=’shovel’;
quantity=120;
output;

run;

data samples.’#new’n(DBTYPE=(itemnum=’char(5)’ item=’varchar(30)’
quantity=’numeric’));

itemnum=’12006’;
item=’snow shovel’;
quantity=5;
output;

itemnum=’12007’;
item=’nails’;
quantity=500;
output;

run;

proc append base=samples.inventory data=samples.’#new’n;
run;

proc print data=samples.inventory;
run;

The following example demonstrates the use of a temporary table using the
Pass-Through Facility.

18 OLE DB Bulk Loading � Chapter 1

proc sql;
connect to oledb as test (provider=SQLOLEDB dsn=lupinss

uid=dbitest pwd=dbigrp1);
execute (create table #FRANCE (flight char(3), dates datetime,

dest char(3))) by test;

execute (insert #FRANCE select flight, dates, dest from internat
where dest like ’%FRA%’) by test;

select * from connection to test (select * from #FRANCE);
quit;

OLE DB Bulk Loading
The LIBNAME option BULKLOAD= calls the SQLOLEDB interface of

IRowsetFastLoad, which enables you to efficiently insert rows of data into a Microsoft
SQL Server database table as a unit. BCP= is an alias for this option.

Note: This functionality is available only when accessing Microsoft SQL Server data
on Windows platforms using Microsoft SQL Server Version 7.0 or later. �

As SAS/ACCESS sends rows of data to the bulk load facility, the data is written to an
input buffer. When you have sent all the rows or when the buffer reaches a certain size
(as determined by the DBCOMMIT= option), all of the rows are inserted as a unit into
the table and the data is committed to the table. Alternatively, you can set the
DBCOMMIT= option to commit rows after a specified number of insertions.

If an error occurs, a message is written to the SAS log, and any rows that were
inserted before the error are rolled back.

If you specify BULKLOAD=YES and the PROVIDER= option is set, the SAS/ACCESS
interface for OLE DB uses the specified provider. If you specify BULKLOAD=YES and
PROVIDER= is not set, the engine assumes the value PROVIDER=SQLOLEDB.

If you specify BULKLOAD=YES, connections that are made through OLE DB
Services or UDL files are not allowed.

Locking in the OLE DB Interface
The following LIBNAME and data set options enable you to control how the interface

to OLE DB handles locking. See the section about the LIBNAME statement in
SAS/ACCESS for Relational Databases: Reference for additional information about
these options.

READ_LOCK_TYPE= ROW | NOLOCK

UPDATE_LOCK_TYPE= ROW | NOLOCK

READ_ISOLATION_LEVEL= S | RR | RC | RU
The default value is set by the data provider. OLE DB supports the S, RR, RC,
and RU isolation levels defined in the following table:

SAS/ACCESS for OLE DB � Overview 19

Table 1.3 Isolation Levels for OLE DB

Isolation Level Definition

S (serializable) Does not allow dirty reads, nonrepeatable reads, or
phantom reads.

RR (repeatable read) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RC (read committed) Does not allow dirty reads or nonrepeatable reads; does
allow phantom reads.

RU (read uncommitted) Allows dirty reads, nonrepeatable reads, and phantom
reads.

The terms in the table are defined as follows:
� Dirty read — A transaction that exhibits this phenomenon has very minimal

isolation from concurrent transactions. In fact, it can see changes that are
made by those concurrent transactions even before they commit.

For example, suppose that transaction T1 performs an update on a row,
transaction T2 then retrieves that row, and transaction T1 then terminates
with rollback. Transaction T2 has then seen a row that no longer exists.

� Nonrepeatable read — If a transaction exhibits this phenomenon, it is
possible that it might read a row once and if it attempts to read that row
again later in the course of the same transaction, the row might have been
changed or even deleted by another concurrent transaction. Therefore, the
read is not (necessarily) repeatable.

For example, suppose that transaction T1 retrieves a row, transaction T2
then updates that row, and transaction T1 then retrieves the same row again.
Transaction T1 has now retrieved the same row twice but has seen two
different values for it.

� Phantom reads — When a transaction exhibits this phenomemon, a set of
rows that it reads once might be a different set of rows if the transaction
attempts to read them again.

For example, suppose that transaction T1 retrieves the set of all rows that
satisfy some condition. Suppose that transaction T2 then inserts a new row
that satisfies that same condition. If transaction T1 now repeats its retrieval
request, it sees a row that did not previously exist, a phantom.

UPDATE_ISOLATION_LEVEL= S | RR | RC
The default value is set by the data provider. OLE DB supports the S, RR, and RC
isolation levels defined in the preceding table. The RU isolation level is not
allowed with this option.

Accessing OLE DB for OLAP Data

Overview
The SAS/ACCESS interface to OLE DB provides a facility for accessing OLE DB for

OLAP data. You can specify a Multidimensional Expressions (MDX) statement through
the Pass-Through Facility to access the data directly, or you can create an SQL view of
the data. If your MDX statement specifies a data set with more than 5 axes

20 Using the Pass-Through Facility with OLAP Data � Chapter 1

(COLUMNS, ROWS, PAGES, SECTIONS and CHAPTERS), SAS returns an error.
Refer to the Microsoft Data Access Components Software Developer’s Kit for details
about MDX syntax.

Note: This implementation provides read-only access to OLE DB for OLAP data.
You cannot update or insert data with this facility. �

Using the Pass-Through Facility with OLAP Data
The main difference between normal OLE DB access using the Pass-Through Facility

and the implementation for OLE DB for OLAP is the use of additional identifiers to pass
MDX statements to the OLE DB for OLAP data. These identifiers are the following:

MDX::
identifies MDX statements that return a flattened data set from the
multidimensional data.

MDX_DESCRIBE::
identifies MDX statements that return detailed column information.

An MDX_DESCRIBE:: identifier is used to obtain detailed information about each
returned column. During the process of flattening multidimensional data, OLE DB for
OLAP builds column names from each level of the given dimension. For example, for
OLE DB for OLAP multidimensional data that contains CONTINENT, COUNTRY,
REGION, and CITY dimensions, you could build a column with the following name:

[NORTH AMERICA].[USA].[SOUTHEAST].[ATLANTA]

This name cannot be used as a SAS variable name because it has more than 32
characters. For this reason, the SAS/ACCESS engine for OLE DB creates a column
name based on a shortened description, in this case, ATLANTA. However, since there
could be an ATLANTA in some other combination of dimensions, you might need to
know the complete OLE DB for OLAP column name. Using the MDX_DESCRIBE::
identifier returns a SAS data set that contains the SAS name for the returned column
and its corresponding OLE DB for OLAP column name:

SASNAME MDX_UNIQUE_NAME

ATLANTA [NORTH AMERICA].[USA].[SOUTHEAST].[ATLANTA]
CHARLOTTE [NORTH AMERICA].[USA].[SOUTHEAST].[CHARLOTTE]

. .

. .

. .

If two or more SASNAME values are identical, a number is appended to the end of
the second and later instances of the name; for example, ATLANTA, ATLANTA0,
ATLANTA1, and so on. Also, depending on the value of the VALIDVARNAME= system
option, illegal characters are converted to underscores in the SASNAME value.

Syntax
This facility uses the following general syntax. For more information about

Pass-Through Facility syntax, see in SAS/ACCESS for Relational Databases: Reference.

PROC SQL <options>;

SAS/ACCESS for OLE DB � Using the Pass-Through Facility with OLAP Data 21

CONNECT TO OLEDB (<options>);
<non-SELECT SQL statement(s)>
SELECT column-identifier(s) FROM CONNECTION TO OLEDB

(MDX:: | MDX_DESCRIBE:: <MDX statement>)
<other SQL statement(s)>

;

Examples
The following code uses the Pass-Through Facility to pass an MDX statement to a

Microsoft SQL Server Decision Support Services (DSS) Cube. The provider used is the
Microsoft OLE DB for OLAP provider named MSOLAP.

proc sql noerrorstop;
connect to oledb (provider=msolap prompt=yes);
select * from connection to oledb

(MDX::select {[Measures].[Units Shipped],
[Measures].[Units Ordered]} on columns,
NON EMPTY [Store].[Store Name].members on rows
from Warehouse);

See the Microsoft Data Access Components Software Developer’s Kit for details about
MDX syntax.

The CONNECT statement requests prompting for connection information, which
facilitates the connection process (especially with provider properties). The MDX::
prefix identifies the statement within the parentheses that follows the MDX statement
syntax, and is not an OLAP-specific SQL statement. Partial output from this query
might look like this:

Store Units Shipped Units Ordered

Store6 10,647 11,699
Store7 24,850 26,223

. . .

. . .

. . .

You can use the same MDX statement with the MDX_DESCRIBE:: identifier to see
the full description of each column:

proc sql noerrorstop;
connect to oledb (provider=msolap prompt=yes);
select * from connection to oledb

(MDX_DESCRIBE::select {[Measures].[Units Shipped],
[Measures].[Units Ordered]} on columns,
NON EMPTY [Store].[Store Name].members on rows
from Warehouse);

The next example creates a view of the OLAP data, which is then accessed using the
PRINT procedure:

proc sql noerrorstop;
connect to oledb(provider=msolap

props=(’data source’=sqlserverdb
’user id’=myuserid password=mypassword));

create view work.myview as
select * from connection to oledb

22 Naming Conventions for OLE DB � Chapter 1

(MDX::select {[MEASURES].[Unit Sales]} on columns,
order(except([Promotion Media].[Media Type].members,
{[Promotion Media].[Media Type].[No Media]}),
[Measures].[Unit Sales],DESC) on rows

from Sales)
;

proc print data=work.myview;
run;

In this example, full connection information is provided in the CONNECT statement,
so the user is not prompted. The SQL view can be used in other PROC SQL statements,
the DATA step, or in other procedures, but you cannot modify (that is, insert, update, or
delete a row in) the view’s underlying multidimensional data.

Naming Conventions for OLE DB
Because OLE DB is an application programming interface (API), data source names

for files, tables, and columns are determined at run time. In Version 7 and later, most
SAS names can be up to 32 characters long. The SAS/ACCESS interface for OLE DB
also supports file, table, and column names up to 32 characters long. If the column
names are longer than 32 characters, they are truncated to 32 characters. If truncating
a name results in identical names, then SAS generates unique names by replacing the
last character with a number. For more information, see the section about SAS names
and support for DBMS names in SAS/ACCESS for Relational Databases: Reference.

The PRESERVE_COL_NAMES= and PRESERVE_TAB_NAMES= options determine
how the interface to OLE DB handles case sensitivity, spaces, and special characters.
The default value for both options is NO for most data sources. The default value is
YES for Microsoft Access, Microsoft Excel, and Microsoft SQL Server.

Data Types for OLE DB
Each data source column in a table has a name and a data type. The data type tells

the data source how much physical storage to set aside for the column and the form in
which the data is stored.

The following table shows all of the data types and default SAS formats that are
supported by the SAS/ACCESS interface to OLE DB. This table does not explicitly
define the data types as they exist for each data source. It lists the types that each data
source’s data type might map to. For example, an INTEGER data type under DB2
might map to an OLE DB data type of DBTYPE_I4. All data types are supported.

Table 1.4 OLE DB Data Types and Default SAS Formats

OLE DB Data Type Default SAS Format

DBTYPE_R8 none

DBTYPE_R4 none

DBTYPE_I8 none

DBTYPE_UI8 none

DBTYPE_I4 11.

SAS/ACCESS for OLE DB � OLE DB Null Values 23

OLE DB Data Type Default SAS Format

DBTYPE_UI4 11.

DBTYPE_I2 6.

DBTYPE_UI2 6.

DBTYPE_I1 4.

DBTYPE_UI1 4.

DBTYPE_BOOL 1.

DBTYPE_NUMERIC m or m.n or none, if m and n are not specified

DBTYPE_DECIMAL m or m.n or none, if m and n are not specified

DBTYPE_CY DOLLARm.2

DBTYPE_BYTES $n.

DBTYPE_STR $n.

DBTYPE_BSTR $n.

DBTYPE_WSTR $n.

DBTYPE_DBDATE DATE9.

DBTYPE_DBTIME TIME8.

DBTYPE_DBTIMESTAMP and DBTYPE_DATE
DATETIMEm.n, where m depends on precision
and n depends on scale

The following table shows the default data types that the SAS/ACCESS interface to
OLE DB uses when creating DBMS tables.

Table 1.5 Default OLE DB Output Data Types

SAS Variable Format Default OLE DB Data Type

m.n
DBTYPE_R8 or DBTYPE_NUMERIC using m.n
if the DBMS allows it

$n. DBTYPE_STR using n

date formats DBTYPE_DBDATE

time formats DBTYPE_DBTIME

datetime formats DBTYPE_DBTIMESTAMP

The SAS/ACCESS interface to OLE DB allows nondefault data types to be specified
with the DBTYPE= data set option.

OLE DB Null Values
Many relational database management systems have a special value called NULL. A

DBMS NULL value means an absence of information and is analogous to a SAS
missing value. When SAS/ACCESS reads a DBMS NULL value, it interprets it as a
SAS missing value.

In most relational databases, columns can be defined as NOT NULL so that they
require data (they cannot contain NULL values). When a column is defined as NOT
NULL, the DBMS will not add a row to the table unless the row has a value for that

24 OLE DB Null Values � Chapter 1

column. When creating a DBMS table with SAS/ACCESS, you can use the DBNULL=
data set option to indicate whether NULL is a valid value for specified columns.

OLE DB mirrors the behavior of the underlying DBMS with regard to NULL values.
Refer to the documentation for your DBMS for information about how it handles NULL
values.

For more information about how SAS handles NULL values, see “Potential Result
Set Differences When Processing Null Data” in SAS/ACCESS for Relational Databases:
Reference.

Note: To control how SAS missing character values are handled by the DBMS, use
the NULLCHAR= and NULLCHARVAL= data set options. �

