
3

C H A P T E R

1
Moving and Accessing SAS Files
between Operating Environments

Deciding to Move a SAS File between Operating Environments 3

Deciding to Access a SAS File across Operating Environments 3
Strategies for Moving and Accessing SAS Files 4

Summary of Strategy Features 5

Moving and Accessing SAS Files in International Environments 7
The Data Set Used for Examples 7

Naming Conventions Used for Examples 8

Deciding to Move a SAS File between Operating Environments

Moving SAS files between operating environments is a common work task. Reasons
for moving a SAS file between operating environments include:

� To move SAS files to a new operating environment on a different machine; for
example, HP-UX files to a RedHat Linux operating environment.

� To move a file and its processing to a high-performance operating environment
that will be returned to the requesting operating environment.

� To make a static copy of a SAS file available to a physically separate operating
environment for continued data processing. Files are duplicated for use in the
receiving operating environment because the SAS files are not available to the
receiving operating environment by means of NFS-mounted file systems.

In all of these scenarios, the move operations recognize differences between machine
architectures and SAS releases, allowing the original files to be used in the receiving
operating environment.

Deciding to Access a SAS File across Operating Environments

In some instances, accessing instead of owning and maintaining your own copy of a
file might be preferable. Alternatively, you might need to read data from a locally
mounted tape that was created elsewhere, or you might need to read, write, or update
data that is remotely mounted on your network.

Note: Do not confuse the term access with the product SAS/ACCESS. In the context
of moving or accessing SAS files across operating environments, access means to reach
and process SAS files. SAS/ACCESS enables users to use third-party DBMS files. For a
list of products that SAS/ACCESS supports, see the list on page 6. �



4 Strategies for Moving and Accessing SAS Files Chapter 1

You can use the following methods to access remote SAS files:

� CEDA (Cross-Environment Data Access) enables you to process SAS 8 and later
SAS files.

� use SAS/SHARE on your client to access a remote SAS file that resides on an
operating environment that a SAS/SHARE server runs under. SAS/SHARE
facilitates a transparent concurrent access to remote data among multiple users.
Restrictions apply to cross-release access of SAS data.

In addition, SAS/SHARE enables you to access certain third-party DBMS files
by means of engines that are supported by SAS/ACCESS.

� without the aid of SAS/SHARE or CEDA, you can rely upon network services for
access to remote files (both SAS files and third-party DBMS files). Usually, the
client and the server must share a compatible architecture, and they must run the
same release of SAS software. The operating environment, the network software,
and the security software might control users’ permissions to access specific
remote files. For more information, see the SAS companion documentation that is
appropriate to your operating environment, and see the third-party documentation
for the network software and security software that you use.

Strategies for Moving and Accessing SAS Files

Cross-Environment Data Access (CEDA)
This feature of SAS enables a SAS file that was created in any directory-based
operating environment (for example, Solaris, Windows, HP-UX, OpenVMS) to be
processed by a SAS session that is running in another directory-based
environment.

CPORT and CIMPORT procedures
In the source environment, you can use PROC CPORT to write data sets or
catalogs to transport format. In the target environment, PROC CIMPORT can be
used to translate the transport file into the target environment’s native format.

XPORT engine with DATA step or PROC COPY
In the source environment, you can use the LIBNAME statement with the XPORT
engine and either the DATA step or PROC COPY to create a transport file from a
SAS data set. In the target environment, the same method can be used to
translate the transport file into the target environment’s native format.

Note: The XPORT engine does not support SAS 8 and later features, such as
long file and variable names. �

XML engine with DATA step or PROC COPY
In the source environment, you can use the LIBNAME statement with the XML
engine and either the DATA step or PROC COPY to create an XML document from
a SAS data set. In the target environment, the same method can be used to
translate the XML document into the target environment’s native format.

Data Transfer Services (DTS) in SAS/CONNECT
This feature enables you to transfer data sets and catalogs from the source
environment to the target environment. DTS dynamically translates the data
between operating environment representations and SAS versions, as necessary.
The transfer is accomplished using the SIGNON statement to connect two SAS
sessions and then the PROC UPLOAD or PROC DOWNLOAD to move the data.



Moving and Accessing SAS Files Summary of Strategy Features 5

REMOTE engine and Remote Library Services in SAS/SHARE and SAS/CONNECT
These features give you transparent access to remote data using the REMOTE
engine and the LIBNAME statement.

Summary of Strategy Features

Table 1.1 Summary of Strategy Features for Moving or Accessing SAS Files

Strategies That Can Be UsedFeatures

CEDA PROC
CPORT/
PROC
CIMPORT

XPORT
Engine

XML
Engine

SAS/CONNECT
DTS

SAS/CONNECT
RLS and
SAS/SHARE
RLS

SAS
Member
Types
Supported

Data File,
PROC SQL
views*,
SAS/ACCESS
views (Oracle
and
SYBASE),
MDDB*

Library,
Data Set,
Catalog,
Catalog
entry

Library,
Data
Set

Data
File

Library, Data
Set, Catalog,
Catalog entry,
PROC SQL
view, MDDB,
External
third-party
databases***

Library, Data
Set, Catalog**,
Catalog
entry**, PROC
SQL view,
MDDB, DATA
Step view,

SAS/ACCESS
view, External
third-party
databases***

* Data set (files) can have read, write, and update access. PROC SQL views and MDDBs are
read-only.

** SAS 9 does not support cross-operating environment access to catalog entries or catalogs in
operating environments that are incompatible. For information about architecture groups, see
SAS/CONNECT User’s Guide or SAS/SHARE User’s Guide.

***SAS/CONNECT supports external text files and binary files. SAS/CONNECT and SAS/SHARE
support third-party external databases by means of the Remote SQL Pass-Through Facility, but
you must have a SAS/ACCESS license to access these databases. Here is a list of external files
that SAS/CONNECT and SAS/SHARE support:

� Relational databases

� CA-OpenIngres, DB2 for OS/390, DB2 for UNIX and PC operating environments,
Informix, ODBC, Oracle, Oracle Rdb, and SYBASE

� Nonrelational databases

� ADABAS, CA-IDMS, IMS-DL/I, and SYSTEM 2000

� PC files

� PC file formats Excel and Lotus



6 Summary of Strategy Features Chapter 1

Strategies That Can Be UsedFeatures

CEDA PROC
CPORT/
PROC
CIMPORT

XPORT
Engine

XML
Engine

SAS/CONNECT
DTS

SAS/CONNECT
RLS and
SAS/SHARE
RLS

Dynamic
Translation
or Create a
File
Format

Dynamic Transport**** Transport****XML Dynamic Dynamic

SAS
Versions
Supported

SAS 8 and
later

SAS 6 and
later

SAS 6 and
later****

SAS 8.2
and
later

SAS 6 and
later

SAS 6 and
later

Regression
from a
Later to an
Earlier
SAS
Release

No No Yes No Yes Yes

Limited to
Operating
Environments
that Use
Directory-
Based File
Structures

Yes No No No No No

SAS
Product
License
Required

Base SAS Base SAS Base SAS Base
SAS

SAS/CONNECT SAS/CONNECT
or
SAS/SHARE

****The XPORT engine does not support features that were introduced in SAS 8 (such as long file
and variable names). If the XPORT engine is used to regress a SAS 8 or later SAS file to an
earlier release, the features that are exclusive to SAS 8 and later are removed from the SAS
file. Also, the transport formats that are produced by the XPORT engine and PROC CPORT
are not interchangeable.

For complete details about relational databases, see SAS/ACCESS for Relational
Databases: Reference. For details about nonrelational databases, see SAS/ACCESS
Interface to CA-Datacom/DB: Reference, SAS/ACCESS Interface to IMS: Reference,
SAS/ACCESS DATA Step Interface to CA-IDMS: Reference, or SAS/ACCESS Interface
to SYSTEM 2000: Reference, as appropriate.



Moving and Accessing SAS Files The Data Set Used for Examples 7

Moving and Accessing SAS Files in International Environments
SAS provides National Language Support (NLS) for SAS applications and data that

are created in supported operating environments. Customers who use the English
language can use SAS applications and data that are created in the United States.
However, without NLS, customers in other geographic regions of the world such as Asia
and Europe would not be able to run SAS applications and read and write data that
was created in the United States. NLS features enable customers to process data
successfully in their native languages and environments, regardless of the language
that the application and data were created in.

As an example, a source SAS session runs a SAS application and creates a data set,
which is written in the English language, on a SAS 8 PC. A target SAS session runs a
different SAS application, which is written in the German language, on a SAS 6
mainframe that needs to read from and write to the SAS data set that was created in
the English language.

Before the data can be moved or accessed using the preferred strategy, (for example,
CEDA or PROC CPORT and PROC CIMPORT), locale or encoding must be specified at
the source session and target session to enable the source data to be translated to the
format of the target session. If encodings are not accounted for in an international
environment, source and target sessions cannot read and write the data. Strategies for
specifying locale or encoding vary according to the version of SAS that is running on the
source and target machines.

If you are moving or accessing SAS files in an international environment, see SAS
National Language Support (NLS): User’s Guide.

The Data Set Used for Examples
If you choose to experiment, you can create several simple data sets in a library.

Here is a sample SAS program that creates the data set GRADES:

data grades;
input student $ test1 test2 final;
datalines;

Fred 66 80 70
Wilma 97 91 98
;
proc print data=grades;
run;

Here is the output:

The SAS System 10:59 Friday, April 25, 2003

Obs student test1 test2 final
1 Fred 66 80 70
2 Wilma 97 91 98



8 Naming Conventions Used for Examples Chapter 1

Naming Conventions Used for Examples
The following consistent naming conventions are used in the examples in this

documentation:

WORK
is the default libref that points to the library that contains the data set GRADES.

XPORTOUT
is the libref that points to the location where the transport file is created with the
XPORT engine.

XPORTIN
is the libref that points to the location on the target machine that you transferred
the transport file to.

XMLOUT
is the libref that points to the location where the XML file is created with the XML
engine.

XMLIN
is the libref that points to the location on the target machine that you transferred
the XML file to.

CPORTOUT
is the fileref that points to the location where the transport file is created with
PROC CPORT.

IMPORTIN
is the fileref that points to the location on the target machine that you transferred
the transport file to.

SOURCE
is the libref that points to the location of the source file that is translated into
transport or XML format.

LIST
is a catalog entry type.

GRADES
is the name of a data set.

TARGET
is the libref that points to the location where the restored SAS file is created.

TESTCAT
is the name of a catalog.

TESTNPGM
is the name of a catalog entry.




