
1

C H A P T E R

1
Introduction to the Metadata
API

Changes and Enhancements 1
Prerequisites 4

What is Metadata? 4

What is the SAS/Warehouse Administrator Metadata API? 5

What Can I Do with the SAS/Warehouse Administrator Metadata API? 5

How the Metadata API Works 5
Identifying Metadata 7

Reading Metadata: A Simple Example 8

Metadata Repositories 10

Setting the Active Metadata Repository 11

Learning to Use the Metadata API 12

Naming Conventions Used in This Manual 12
Where Metadata API Classes and SLISTS are Stored 12

Changes and Enhancements
This section describes changes to the SAS/Warehouse Administrator metadata API

after Release 2.0.
� You can add and update the PATH property for the WHEFILE type.
� You can now use the metadata API to add, update, and delete process objects. For

example, you can write a metadata API program that creates a data store and also
creates all of the processes that are required to extract, transform, and load
information into that data store. The following metadata types have been updated
to support this feature:

� WHCOLUMN
� WHCOLDTL
� WHCOLDAT
� WHCOLODD
� WHCOLOLP
� WHCOLTIM

� WHCTRNFM
� WHEFILE
� WHEXTATR
� WHINDEX
� WHOLAP

� WOLPDIM

2 Changes and Enhancements � Chapter 1

� WOLPHIR
� WOLPCRS
� WOLPCUB

� WHPHYSTR
� WHDMSST
� WHSASSTR

� WHPOBJECT
� WHJOB
� WHGRPJOB
� WHEVENT

� WHTFILE
� WHTXTFIL
� WHSCRFIL

� WHTXTCAT
� WHNOTE
� WHSRCCAT

� WHJOBCAT

� WHDW
� WHDWENV
� WHINFO
� WHINFOFL
� WHTABLE

� WHDATTBL
� WHDETAIL
� WHLDETL
� WHODDTBL
� WHODTTBL
� WHSUMTBL
� WHOLPSTC

� WHGRPOLP
� WHOLPTBL
� WHOLPMDD

� WHTBLPRC
� WHTBLMAP
� WHTBLREC
� WHTBLUSR
� WHTBLXFR

� WHPROCES
� WHPRCMAN

� WHPRCMAP
� WHPRCREC
� WHPRCUSR

Introduction to the Metadata API � Changes and Enhancements 3

� WHPRCXFR
� WHPRCLDR

� WHLDRDAT
� WHLDRDTL
� WHLDREXT
� WHLDRINF
� WHLDRIMF
� WHLDRLDT
� WHLDRMDB
� WHLDRODD
� WHLDRODT
� WHLDRSUM
� WHLDOTBL
� WHLDOMDD

� WHLDOPRX

� WHPRCSPR
� WHPRCPST
� WHSUBSET
� WHROWSEL

� The TABLE OPTIONS property of the WHDBMSST type has a new sublist—the
APPEND sublist. The APPEND sublist contains any SAS/ACCESS LIBNAME
data set options that are used to create or load the table, such as BULKLOAD=yes.

� Load process options for warehouse tables, such as GENERATION LEVEL and
DROP INDEXES, are now surfaced through the WHPRCLDR type and all of its
subtypes. For example, you can write a SAS/Warehouse Administrator add-in that
reads the load options that are specified in a table’s load process and uses these
options to load the corresponding table.

� The operating system and SAS version that are associated with a given host are
now available through the WHHOST property. For example, you can write a
SAS/Warehouse Administrator add-in that reads the host metadata that is
associated with a given data store and then uses these values to generate code
that is appropriate for the operating system and SAS version.

� You can now write OLAP objects through the metadata API. The following types
have been updated:

� WHMDDSTR
� WHOLPSTC
� WHGRPOLP
� WHOLPTBL
� WHOLPMDD
� WHCOLOLP
� WHOLPDIM
� WHOLPHIR
� WHOLPCRS
� WHOLPCUB.

4 Prerequisites � Chapter 1

� Metadata for columns that are selected using point and click in the Expression
Builder and that are used in either a WHERE clause or a row selector is now
surfaced through the WHSUBSET and WHROWSEL types. For example, you can
write a SAS/Warehouse Administrator add-in that reads the column metadata that
is associated with a WHERE clause or a row selector and uses this metadata to
generate the appropriate code.

� You can now update the EXTENDED ATTRIBUTES property and other properties
in the WHCOLTIM type. For example, you can use an add-in tool to add data
mining attributes to a _LOADTM column, export the metadata for the table to
Enterprise Miner and analyze the _LOADTM column in Enterprise Miner.

� The usage notes for the _UPDATE_METDATA_ method have been expanded. For
details, see “Using _UPDATE_METADATA_” on page 46.

Prerequisites
To get the most out of this manual, you should be familiar with
� SCL (SAS Component Language), a programming language that controls SAS/AF

applications and provides complete object-oriented programming constructs for
creating an entire object-oriented application in SCL

� the SAS/AF software development environment
� SCL applications that use FRAME entries
� the SAS application whose metadata you want to read or write.

To use the metadata API, you will need the following SAS products in addition to
API software:

� Base SAS software, Release 6.12 or later
� SAS/AF software
� SAS/GRAPH software—if you need to modify or write API software that includes a

GUI
� the SAS application whose metadata you want to read or write, such as

SAS/Warehouse Administrator, Release 1.2 or later.

SCL applications that use the metadata API must run under Release 6.12 or later of
SAS.

What is Metadata?
Metadata is information that is internal to an application that describes elements in

the application, such as tables and columns. Metadata can be divided into two main
categories:

Physical metadata
specifies a set of software instructions that describe an application element.

For example, the physical metadata for a SAS table might specify a certain
number of rows and columns, with certain data transformations applied to some
columns.

Business metadata
specifies text that describes the content or purpose of an application element.

Introduction to the Metadata API � How the Metadata API Works 5

For example, the business metadata for a SAS table might describe the purpose
of the table and contact information for the person responsible for the accuracy of
the information in the table.

Most SAS/Warehouse Administrator metadata contains information about data
sources, data stores, and the jobs that extract, transform, and load source data into the
warehouse data stores. SAS/Warehouse Administrator metadata is stored in two or
more metadata repositories.

What is the SAS/Warehouse Administrator Metadata API?
It is a set of software tools that enable programmers to write applications that access

metadata in SAS/Warehouse Administrator.

What Can I Do with the SAS/Warehouse Administrator Metadata API?
Using the metadata API, you can write programs that read, add, update, or delete

the metadata in SAS/Warehouse Administrator—without going through the user
interface. You can write SCL applications that

� publish HTML pages that contain the current metadata for a SAS/Warehouse
Administrator group or data store

� change path names in metadata
� copy a table’s metadata (in order to create a similar table, for example)
� add columns to a table
� update a column attribute
� add tables and other objects that are defined by metadata
� use the API in a SAS macro to generate a LIBNAME statement.

How the Metadata API Works
Figure 1.1 on page 6 illustrates how client applications written in SCL use the

metadata API to read or write metadata from SAS applications.

6 How the Metadata API Works � Chapter 1

Figure 1.1 Metadata API Model

Note: The figure shows how one component works with one interpreter; however, the
metadata API accommodates multiple components as long as each component has an
appropriate interpreter. �

metadata client
specifies an application that uses metadata API methods to read or write
metadata. For the current release of the SAS metadata API, metadata clients
must be written in SCL.

metadata API
specifies a set of software tools that enables users to write applications that access
metadata.

metadata type
represents a template that models the metadata for a particular kind of object in
an application. The parameter list for a metadata type matches the items of
metadata that are maintained for the corresponding object.

SAS/Warehouse Administrator metadata types are listed in “Index to SAS/
Warehouse Administrator Metadata Types” on page 70.

Introduction to the Metadata API � Identifying Metadata 7

component
specifies a group of related metadata types. Each component has an ID (such as
WHOUSE) and a name (such as SAS/Warehouse Administrator) that often match
the name of the application whose metadata is modeled by the component. The
component that is supplied with the current API is WHOUSE (SAS/Warehouse
Administrator).

application program interface (API) interpreter
represents a program that translates the API metadata type that is requested by a
client to the corresponding metadata object in a repository. The current API has
two interpreters: one for SAS/Warehouse Administrator and the other for the Job
Scheduler utility.

API interpreters insulate client applications from the details of metadata
repositories. If you use the metadata API and there is an interpreter for your
target repository, client applications do not need to handle the details of that
repository in order to read from it or write to it. Also, if the metadata structure in
a repository should change, in many cases only the interpreter would have to be
updated and not the client applications that use the metadata API.

SAS application
specifies the SAS application whose metadata you want to read or write. The
current API supports two applications: SAS/Warehouse Administrator and its Job
Scheduler utility.

metadata repository
specifies a data store that contains an application’s metadata. For example,
SAS/Warehouse Administrator has multiple metadata repositories—one for each
environment and one for each warehouse within an environment. Accordingly, the
API provides methods for identifying primary and secondary repositories.
Repositories are described in more detail in “Metadata Repositories” on page 10.

Identifying Metadata

Each metadata object in a repository, such as the metadata for a particular column in
a SAS table, has a unique identifier. Each object can have a name and a description as
well. For example, here is the ID, name, and description for a SAS table column, as
returned by the metadata API’s _GET_METADATA_ method.

COLUMNS=((ID=’A000000E.WHCOLDTL.A0000032’
NAME=’PRODNUM’
DESC=’product number’
)[575]

) [671]

To read or write a metadata object, you must pass a list of properties for that type to
the appropriate metadata API method. (These methods are listed in “Index to Metadata
API Methods” on page 16.) The following properties are common to all metadata types.
They are often referred to as the general identifying information for a metadata object.

ID
specifies the unique three-level identifier for a metadata object. It takes the
following form: reposid.typeid.instanceid. For example, in the previous code
example, the ID for the COLUMNS object is A000000E.WHCOLDTL.A0000032.

A000000E is the repository ID that is assigned to a particular warehouse
repository when it was created in SAS/Warehouse Administrator. A reposid

8 Reading Metadata: A Simple Example � Chapter 1

(metadata repository ID) is a unique 8-character string that identifies the metadata
repository that stores the object. Each application has one or more repositories.

WHCOLDTL is the type ID for a column in a SAS/Warehouse Administrator
detail table. A typeid (metadata type ID) is a maximum 8-character string that
defines the type of the metadata object. Each application has its own set of
metadata types. For example, SAS/Warehouse Administrator metadata types are
listed in “Index to SAS/Warehouse Administrator Metadata Types” on page 70.

A0000032 is the instance ID that is assigned to a particular column in the
detail table when it was created in SAS/Warehouse Administrator. An instanceid
(metadata object instance ID) is an 8-character string that distinguishes one
metadata object from all other objects of the same type within a given repository.

NAME
specifies the name of the metadata object, up to 40 characters long. The name is
from the context of the component that it comes from. For example,
SAS/Warehouse Administrator names are those that appear in the Explorer, the
Setup window, the Process Editor, and other frames in that application. In the
previous code example, the NAME of the table column is PRODNUM.

DESC
describes the metadata object, up to 200 characters long. Not all objects will have
a description. In the previous code example, the DESC of the table column is
“product number.”

CAUTION:
It is strongly recommended that you avoid coding the literal identifier of a particular
metadata object in a client application. Instead, use the _GET_METADATA_OBJECTS_
method or other metadata API methods to return an SCL list of the unique object
identifiers, names, and descriptions for objects of a particular type. �

Reading Metadata: A Simple Example
The following steps illustrate how to use the API to select and display the metadata

for a particular detail table in a particular data warehouse that is created by
SAS/Warehouse Administrator. For the sake of simplicity, assume that you have
already attached to the relevant metadata repositories, that the metadata that you
want is in the A000000E repository, and that the type ID for the SAS/Warehouse
Administrator detail table is WHDETAIL.

1 Concatenate the DW_REPOS_ID (A000000E)with the metadata type ID
(WHDETAIL) and store them in the variable TYPE.

type=dw_repos_id||’.WHDETAIL’;

2 Define a list (L_OBJS) to hold the results of a read operation in the next step.

l_objs=makelist();

3 Call the _GET_METADATA_OBJECTS_ method, which accepts the
REPOSID.TYPEID that is assigned to the TYPE variable. It then loads the
L_OBJS list with the instance IDs and names of WHDETAIL objects in repository
A000000E .

call send(i_api,’_GET_METADATA_OBJECTS_’,rc,
type,l_objs);

Introduction to the Metadata API � Reading Metadata: A Simple Example 9

4 Use the PUTLIST function to display the list in the Message Window or SASLOG.

call putlist(l_objs,’WAREHOUSE OBJECTS’,2);
WAREHOUSE OBJECTS
(A000000E.WHDETAIL.A000001L=’Customer detail table’
A000000E.WHDETAIL.A000002X=’Product detail table’
A000000E.WHDETAIL.A000003M=’Customer detail table’
A000000E.WHDETAIL.A000004H=’Sales fact table’
A000000E.WHDETAIL.A000005U=’Oracle
A000000E.WHDETAIL.A000006Q=’Sybase’
A000000E.WHDETAIL.A000007L=’Remote Detail Table’
A000000E.WHDETAIL.A000008I=’Suppliers’
)[421]

5 Search the list for the unique ID of the product detail table and pass it to
_GET_METADATA_ in order to retrieve information about that table.

If you are interested in particular properties for a given metadata type, you can
pass those properties to the _GET_METADATA_ method as named items. For
example, in the code that follows, the LIBRARY, COLUMNS, and TABLE NAME
properties for the detail table metadata type are inserted in the metadata property
list (l_meta) that is passed to the _GET_METADATA_ method.

index=searchc(l_objs,’Product’,1,1,’Y’,’Y’);

id=nameitem(l_objs,index);
rc=clearlist(l_meta,’Y’);
l_meta=insertc(l_meta,id,-1,’ID’);
l_lib=makelist();
l_meta=insertl(l_meta,l_lib,-1,’LIBRARY’);
l_cols=makelist();
l_meta=insertl(l_meta,l_cols,-1,’COLUMNS’);
l_meta=insertc(l_meta,’ ’,-1,’TABLE NAME’);
call send(i_api,’_GET_METADATA_’,l_rc,l_meta);
rc=putlist(l_meta,’PRODUCT table’,2);

6 The method populates these sublists with the requested information.

PRODUCT table(ID=’A000000E.WHDETAIL.A000002X’
LIBRARY=(ID=’A0000001.WHLIBRY.A000000U’

NAME=’Warehouse Data Library’
DESC=’’
)[405]

COLUMNS=((ID=’A000000E.WHCOLDTL.A0000032’
NAME=’PRODNUM’
DESC=’product number’
)[575]

(ID=’A000000E.WHCOLDTL.A0000034’
NAME=’PRODNAME’
DESC=’product name’
)[643]
(ID=’A000000E.WHCOLDTL.A0000036’
NAME=’PRODID’
DESC=’product id/abbreviation’
)[619]
(ID=’A000000E.WHCOLTIM.A00000FU’

10 Metadata Repositories � Chapter 1

NAME=’_LOADTM’
DESC=’DateTime Stamp of when row was

loaded’
)[621]
)[407]

The API enables you to read and write many metadata objects using techniques that
are similar to those used in these steps.

Metadata Repositories
You can divide an application’s metadata into different physical stores based on the

following criteria:
� different storage locations (such as separate repositories for local and remote

metadata)
� different intended users (such as separate repositories for business users and IT

staff)
� different levels of access control (such as separate repositories for testing and

production).

Each physical store of metadata is called a metadata repository. There are two main
types of metadata repositories—stand-alone and partitioned.

A stand-alone repository is a single metadata store, such as a SAS/EIS respository.
Once you access a stand-alone repository, all metadata is accessible. Figure 1.2 on page
10 illustrates a stand-alone repository.

Figure 1.2 Stand-Alone Metadata Repository

A partitioned repository has one or more primary repositories, each of which has one
or more secondary repositories. Figure 1.3 on page 11 illustrates the relationship
between a primary repository and its secondary repositories.

Introduction to the Metadata API � Setting the Active Metadata Repository 11

Figure 1.3 Partitioned Metadata Repository

Partitioning allows different kinds of metadata to be stored in different locations, in
different formats, and so on. The amount of metadata that you can access is controlled
by setting which repositories are active. Each repository in a partitioned repository has
a unique repository identifier (reposid).

SAS/Warehouse Administrator has a partitioned metadata repository. Each primary
repository stores metadata that is shared by all warehouses in an environment. Each
secondary repository stores metadata for an individual warehouse within an
environment.

Metadata that is stored in each repository can be associated with metadata in other
repositories. The secondary repositories can contain references to metadata in the
primary repository, but the primary repository cannot contain references to metadata in
any of the secondary repositories (as indicated by the solid arrow in Figure 1.3 on page
11). Some partitioned repositories also support secondary repositories that contain
metadata references into other secondary repositories, which are referred to as
cross-secondary repository references.

Note: The current SAS/Warehouse Administrator metadata repository does not
support cross-secondary repository references. Also, it supports only a single secondary
repository (metadata for one warehouse) to be active at one time. �

Setting the Active Metadata Repository
To use the metadata API, your SCL programs must attach to the repository that

contains the metadata that you want to read or write. This is done with the
_SET_PRIMARY_REPOSITORY_ method and the _SET_SECONDARY_REPOSITORY_
method.

In the context of the “set repository” methods, primary refers to either a stand-alone
repository or a primary repository of a partitioned repository. If the metadata that you
want is in a stand-alone repository or if it is in a primary portion of a partitioned
repository there is no need to set the secondary repository.

To identify the repository where a given type of metadata resides, you could use the
_GET_METADATA_OBJECTS_ method (with the SEARCH_SECONDARY parameter).

12 Learning to Use the Metadata API � Chapter 1

This method returns a list of all metadata objects of a given type. The reposid for each
object identifies the repository where the object is stored.

Learning to Use the Metadata API

The following are some steps you can take to learn the metadata API:

1 Become familiar with the elements of the metadata API—primary repository,
secondary repository, types, subtypes, type names, type IDs, and so on.

2 Study the “Read Metadata Code Sample” on page 273 and the “Write Metadata
Code Sample” on page 277.

3 Learn how to initialize the metadata API by executing simple API method calls
that do not read any actual metadata. For example, list all the object types that
are available in the API. List the properties for a given object in the API.

4 Try some simple queries against the metadata of a well-known metadata object.
Because this is just a test program, you can code the literal identifier of the object
in your client application. For example, list all the detail tables that are defined in
a warehouse.

5 Try a more realistic task by using the code samples in Appendix 1, “Sample
Metadata API Code,” on page 273 as a starting point.

a Decide what information you need.
b Translate this information into metadata types and attributes.
c Determine how the different metadata types you need are related so that you

will know how to access the metadata that you want.
For example, if you want to list all of the owners that are defined for a

given data warehouse and list all of the detail tables for which each owner is
responsible, you must first get a list of all detail tables. Then you can list the
owner of each detail table. For details about SAS/Warehouse Administrator
metadata relationships, see “Relationships Among Metadata Types” on page
53.

d Write the client application.
e Run the application and compare the returned metadata with the actual

metadata that you can view through the application.

Naming Conventions Used in This Manual

This document uses the following conventions in the examples:

� any variable that begins with i_ is an object (an instance of a class)

� any variable that begins with l_ is an SCL list identifier

� method names and SCL list item names appear in uppercase letters.

Where Metadata API Classes and SLISTS are Stored

The default classes and SLISTS for the metadata API are stored in the
SASHELP.METAAPI catalog.

