
 Part

The Basics of Debugging

Chapter 1 Understanding the Types of Errors in SAS Programs..................... 3

Chapter 2 Reading the SAS Log and Interpreting SAS Messages.......................29

2 Debugging SAS Programs: A Handbook of Tools and Techniques

 Chapter

Understanding the Types of Errors
in SAS Programs

Introduction..4
What Errors Does SAS Automatically Find for Me?..4

Syntax Errors...5
Semantic Errors...12
Execution-Time Errors...16
Data Errors ..21

What Errors Doesn’t SAS Find for Me?...24

4 Debugging SAS Programs: A Handbook of Tools and Techniques

Introduction
A variety of errors can occur in a SAS program, and these errors can occur at any
stage of processing a program. Understanding the types of errors found in SAS
programs can help you efficiently correct your program.

SAS detects some errors for you. For example, SAS finds misspelled keywords and
invalid options and writes messages to the SAS log describing the problems it
discovers. SAS finds these errors during compilation and prevents the program from
executing.

The errors that SAS cannot detect for you are the logic errors that you code into
your programming statements. To correct these errors, you must understand your
data and review the processing notes and output generated by your program. A
program with logic errors may execute and the SAS log may show that no errors
occurred during the processing. It is up to you to review the results to determine if
your program executed correctly.

This chapter describes the categories of errors that occur in SAS programs.
Understanding the content of this chapter requires that you understand the basics of
SAS processing. To review these concepts, refer to Appendix 1, “Review of SAS
Processing Concepts.”

What Errors Does SAS Automatically Find for Me?
SAS looks for four types of errors in your programs. These four types are

�� Syntax errors: occur when a program statement does not conform to the rules
of the SAS language (e.g., a variable name starts with a number)

�� Semantic errors: occur when a program statement is syntactically correct, but
the structure of the statement is incorrect (e.g., an array reference was not
specified correctly)

�� Execution-time errors: occur when compiled statements are applied to data
values (e.g., division by zero)

�� Data errors: occur when the statements are correct, but the data is invalid
(e.g., taking the logarithm of zero).

Chapter 1: Understanding the Types of Errors in SAS Programs 5

Syntax Errors
Syntax errors occur when program statements do not conform to the rules of the
SAS language. Most of these errors are up to you to correct. Occasionally SAS
makes assumptions about the context of the error, corrects the statement, and
continues processing the program.

Common syntax errors include misspellings of keywords or omission of
semicolons.

When SAS detects a syntax error, it first tries to correct the error by deleting,
inserting, or replacing tokens in the SAS statement. If this action succeeds, SAS
notifies you about the action it took by underlining the code where it detected the
syntax error and by writing a message to the SAS log about the error and the action
taken. SAS continues processing the step.

When SAS cannot correct a syntax error it finds, it stops processing the step.
Processing resumes with the next step in the program. The results of the subsequent
steps, however, may be incorrect if information in these steps was needed from the
step containing the error.

Six examples of syntax errors follow.

Example 1.1: Identifying a Syntax Error
in a DATA Step That SAS Can Correct

This example shows that SAS can correctly determine the correct syntax for a
specific syntax error it detected in a DATA step.

This DATA step reads specific observations from CORPLIB.ITEMS and creates a
new variable, PROJCOST.

The error in the program is the misspelling of the keyword ATTRIB.

Original Program
data temp;
 set corplib.items(where=(itemtype='S'));

 attrb projcost format=dollar10.2 label='Projected Cost';

 projcost=110*itemcost;
run;

The SAS log for this program follows. It shows that SAS correctly fixed the error in
the ATTRIB statement and that it executed the DATA step.

6 Debugging SAS Programs: A Handbook of Tools and Techniques

SAS Log
data temp;
11 set corplib.items(where=(itemtype='S'));
12
13 attrb projcost format=dollar10.2 label='Projected Cost';

 1
WARNING 1-322: Assuming the symbol ATTRIB was misspelled as attrb.

14
15 projcost=110*itemcost;
16 run;

NOTE: There were 751 observations read from the dataset
CORPLIB.ITEMS.

 WHERE itemtype='S';
NOTE: The data set WORK.TEMP has 751 observations and 15 variables.
NOTE: DATA statement used:
 real time 0.06 seconds

Example 1.2: Identifying a Syntax Error
in a DATA Step That SAS Cannot
Correct

This example demonstrates that SAS cannot always determine how to correct your
syntax errors.

This DATA step reads specific observations from CORPLIB.ITEMS and creates a
new variable, PROJCOST.

The syntax error in the program is that the semicolon that should end the SET
statement is missing.

Original Program
data temp;
 set corplib.items(where=(itemtype='S'))

 attrib projcost format=dollar10.2 label='Projected Cost';

 projcost=110*itemcost;
run;

The SAS log for this program follows. Callouts identify important features in the
log. A description of the features follows the log.

Chapter 1: Understanding the Types of Errors in SAS Programs 7

The first error message gives you a place to begin your search for the error in your
program. It tells you where SAS expected to find a token different from what it
found.

SAS Log
28 data temp;
29 set corplib.items(where=(itemtype='S'))
30
31 attrib projcost format=dollar10.2 label='Projected Cost';

 � 22
 76
ERROR 22-322: Syntax error, expecting one of the following: a name,
a quoted string, (, ;, END, KEY, KEYS, NOBS, OPEN, POINT, _DATA_,
LAST, _NULL_.

ERROR 76-322: Syntax error, statement will be ignored.

31
32 projcost=110*itemcost;
33 run;

NOTE: The SAS System stopped processing this step because of
 errors.
 �
WARNING: The data set WORK.TEMP may be incomplete. When this step
was stopped there were 0 observations and 2 variables.

NOTE: DATA statement used:
 real time 0.00 seconds

� SAS tokenizes the DATA step. SAS underlines the first token out of place,
 FORMAT=. The text of the error message lists several keywords associated
 with DATA statements and SET statements. Therefore, the error is likely in
 either the DATA statement or the SET statement. It appears that SAS considers
 FORMAT= to be part of the SET statement and ATTRIB and PROJCOST to be
 data set names.

� The WARNING informs you that SAS created the data set WORK.TEMP, but
 that it may be incomplete because SAS stopped the step as a result of the error.
 The data set WORK.TEMP contains no observations.

8 Debugging SAS Programs: A Handbook of Tools and Techniques

Example 1.3: Identifying Incorrect Repair
of a Syntax Error in a PROC SQL Step

This example demonstrates that SAS sometimes repairs syntax errors incorrectly.

This PROC SQL step should select specific observations and variables from
CORPLIB.ITEMS and present the selections ordered by the variable AUTHOR.

The syntax error in the PROC SQL step is the misspelled keyword ORDER. The
misspelling is such that SAS interprets the token as the operator OR rather than the
keyword ORDER.

Original Program
proc sql;
 select author,title,pubyear
 from corplib.items
 where pubyear=1999 and libsect='General'
 orer by author;
quit;

The SAS log shows where SAS misinterprets the misspelling. This
misinterpretation causes more errors, because SAS now interprets that the BY
keyword is a variable and part of the WHERE clause. It looks for an operator
following BY to complete the WHERE condition.

SAS Log
431 proc sql;
432 select author,title,pubyear
433 from corplib.items
434 where pubyear=1999 and libsect='General'
435 orer by author;
 ---- ------
 1 22
 76
WARNING 1-322: Assuming the symbol OR was misspelled as orer.

ERROR 22-322: Syntax error, expecting one of the following: !, !!,
&, *, **, +, -, '.', /, <, <=, <>, =, >, >=, ?, AND, CONTAINS, EQ,
GE, GROUP, GT, HAVING, LE, LIKE, LT, NE, OR, ORDER, ^=, |, ||, ~=.

ERROR 76-322: Syntax error, statement will be ignored.

436 quit;
NOTE: The SAS System stopped processing this step because of
 errors.
NOTE: PROCEDURE SQL used:
 real time 0.00 seconds

Chapter 1: Understanding the Types of Errors in SAS Programs 9

Example 1.4: Identifying a Syntax Error
in a Procedure That SAS Cannot Correct

This example demonstrates that SAS cannot always determine how to correct your
syntax errors.

SAS lists syntax errors found in PROC steps the same way as it does for DATA
steps. SAS identifies the error and writes a message to the SAS log. Syntax errors in
procedures include misspelled keywords and missing semicolons. An example of a
syntax error follows.

The report produced by this PROC TABULATE step should not include the
horizontal separator lines in the row titles and the body of the table. The option
NOSEPS suppresses these separators. This option is misspelled as NO SEPS in the
example.

Original Program
proc tabulate data=corplib.items no seps;
 class libsect
 var itemcost;
 tables libsect all='Total for All Sections',
 itemcost*(n*f=5. (mean sum)*f=dollar8.2);
run;

The SAS log for this program follows. SAS identifies the error and stops the step.

SAS Log
44 proc tabulate data=corplib.items no seps;
 --
 22

 202
ERROR 22-322: Syntax error, expecting one of the following: ;,
 (, CLASSDATA, CONTENTS, DATA, DEPTH, EXCLNPWGT,
 EXCLNPWGTS, EXCLUSIVE, FORMAT, FORMCHAR,
 MISSING, NOSEPS, ORDER, OUT, PCTLDEF, QMARKERS,
 QMETHOD, QNTLDEF, STYLE, TRAP, VARDEF.
ERROR 202-322: The option or parameter is not recognized and
 will be ignored.
45 class libsect;
46 var itemcost;
47 tables libsect all='Total for All Sections',
48 itemcost*(n*f=5. (mean sum)*f=dollar8.2);
49 run;

10 Debugging SAS Programs: A Handbook of Tools and Techniques

SAS Log
(continued)

NOTE: The SAS System stopped processing this step because of
 errors.
NOTE: PROCEDURE TABULATE used:
 real time 0.04 seconds

Example 1.5: Identifying an Invalid
Request of a SAS Procedure

This example presents a syntax error that prevents the PROC step from executing.
The error is the omission of required specifications for an option.

The PROC FREQ step specifies that the frequencies for EMPSTATE not be printed.
The step does not include code to create an output data set. With the NOPRINT
option in effect and no output data set requested, SAS does not process the step.

Original Program
proc freq data=corplib.employees;
 tables empstate / noprint;
run;

The SAS log shows the warning SAS produces when this program executes. The
SAS language statements follow the rules, but the request is invalid.

SAS Log
53 proc freq data=corplib.employees;
54 tables empstate / noprint;
55 run;

WARNING: There are no valid requests for output data sets or
 printed output, so processing will terminate.
NOTE: PROCEDURE FREQ used:
 real time 0.04 seconds

The program can be corrected either by removing the NOPRINT option or by
adding the OUT= option. The PROC FREQ step below includes the OUT= option.

Revised Program
proc freq data=corplib.employees;
 tables empstate / noprint out=statefreqs;
run;

Chapter 1: Understanding the Types of Errors in SAS Programs 11

Example 1.6: Identifying a Syntax Error
in Macro Language

This example shows how the macro processor detects a syntax error in macro
language.

This macro program should produce a PROC TABULATE step that summarizes
data in CORPLIB.CIRCUL for a specific year. The parameter to the program is the
year of the analysis.

The problem with the macro program is the incorrect specification of the macro
program name in the %MACRO statement. The error in the name is the space. The
macro processor cannot tokenize the macro program because of this syntax error.

Original Program
%macro annual_circulation_ statistics(year);
 proc tabulate data=corplib.circul;
 where year(checkout)=&year;
 title "Circulation Statistics for &year";
 class nrenew;
 tables nrenew all,n*f=6.;
 run;
%mend annual_circulation_statistics;

The SAS log for compilation of the macro program follows. The first error message
indicates that a semicolon is missing from a macro language statement. The note at
the end of the macro program provides a clue that something is wrong with the
%MACRO statement, because it states that the macro program name is
ANNUAL_CIRCULATION_.

SAS Log
ERROR: Expected semicolon not found. The macro will not be
 compiled.
ERROR: A dummy macro will be compiled.
205 %macro annual_circulation_ statistics(year);
206 proc tabulate data=corplib.circul;
207 where year(checkout)=&year;
208 title "Circulation Statistics for &year";
209 class nrenew;
210 tables nrenew all,n*f=6.;
211 run;
212 %mend annual_circulation_statistics;
NOTE: Extraneous information on %MEND statement ignored for
 macro definition ANNUAL_CIRCULATION_.

12 Debugging SAS Programs: A Handbook of Tools and Techniques

This example generates a second error message as well. The “dummy macro” is a
macro program that the macro processor compiles but does not store and does not
execute. The macro processor creates this dummy macro program when it finds a
syntax error.

Semantic Errors
A semantic error occurs when the structure of a SAS statement is correct, but
elements in the statement are not valid for that usage. A semantic error is like a
sentence in which the subject and the verb don’t agree:

The sky are cloudy.

The compiler detects semantic errors. SAS does not detect semantic errors during
tokenization because nothing is wrong with the tokens. The problem is that SAS
does not know how to interpret your code.

Typical semantic errors include misspellings of variable names and incorrect
specifications of arrays. Three examples follow.

Example 1.7: Identifying a DATA Step
with a Semantic Error

This example presents a DATA step containing a semantic error that stops the
DATA step from completely executing. The code is syntactically correct and
compiles without errors, but execution of the code is not possible.

This DATA step reads usage information for items for the four years 1999 through
2002. An item’s four years of information is on one data line. The goal is to create
four observations for each item, one for each year.

For example, the first data line should produce these four observations:

 Obs

ITEMID

ITEM
YEAR

NCHECKOUT

1 LIB0784 1999 3

2 LIB0784 2000 10

3 LIB0784 2001 0

4 LIB0784 2002 2

Chapter 1: Understanding the Types of Errors in SAS Programs 13

The semantic error is the incomplete specification of the ITEMOUT array in the DO
loop.

Original Program
data itemusage;
 input itemid $ 1-7 n1999 n2000 n2001 n2002;

 array itemout{4} n1999-n2002;
 keep itemyear ncheckout;

 do i=1 to 4;
 itemyear=i+1998;
 ncheckout=itemout;
 output;
 end;
datalines;
LIB0784 3 10 0 2
LIB0785 0 1 0 0
LIB0786 11 14 23 18
run;

The SAS log shows that the DATA step could be tokenized and that the step did not
contain any syntax errors. An ERROR message states that the reference to the array
on line 277 cannot be resolved. This type of message indicates a semantic error.

SAS Log
269 data itemusage;
270 input itemid $ 1-7 n1999 n2000 n2001 n2002;
271
272 array itemout{4} n1999-n2002;
273 keep itemyear ncheckout;
274
275 do i=1 to 4;
276 itemyear=i+1998;
277 ncheckout=itemout;
ERROR: Illegal reference to the array itemout.
278 output;
279 end;
280 datalines;

NOTE: The SAS System stopped processing this step because of
 errors.
WARNING: The data set WORK.ITEMUSAGE may be incomplete. When
this step was stopped there were 0 observations and 2 variables.
NOTE: DATA statement used:
 real time 0.11 seconds
run;

14 Debugging SAS Programs: A Handbook of Tools and Techniques

The corrected statement in the DO loop referencing ITEMOUT follows.

 ncheckout=itemout{i};

Example 1.8: Identifying a DATA Step
with a Semantic Error

This example presents a DATA step containing a semantic error that stops the
DATA step from completely executing. The code is syntactically correct and
compiles without errors, but execution of the code is not possible.

This DATA step creates an output data set containing observations from
CORPLIB.ITEMS where the value of the variable ITEMCOST is greater than 100.

The semantic error in this DATA step is that the data set name in the DATA
statement and the OUTPUT statement do not agree.

The OUTPUT statement directs that observations be written to a specific data set.
That data set name must be explicitly named in the DATA statement.

Original Program
data tmp;
 set corplib.items;

 if itemcost > 100 then output temp;
run;

The SAS log identifies the mismatch between the data set name in the DATA
statement and the data set name following OUTPUT. SAS cannot correct this kind
of error; it can only tell you where it thinks the problem is.

SAS Log
285 data tmp;
286 set corplib.items;
287
288 if itemcost > 100 then output temp;

 455
ERROR 455-185: Dataset was not specified on the DATA statement.

289 run;

NOTE: The SAS System stopped processing this step because of
 errors.
WARNING: The data set WORK.TMP may be incomplete. When this step
was stopped there were 0 observations and 13 variables.

NOTE: DATA statement used:
 real time 0.04 seconds

Chapter 1: Understanding the Types of Errors in SAS Programs 15

Example 1.9: Incorrectly Specifying a
PROC REPORT Statement

This example presents a PROC step with a semantic error.

The goal of this PROC step is to list the number of orders per distributor and the
total cost of all orders per distributor. The syntax of the PROC REPORT step is
correct, but the DEFINE statement for DISTID is incorrectly specified. The variable
DISTID is character and cannot be specified as an analysis variable.

Original Program
proc report data=corplib.orders box nowindows;
 column distid ordertot;
 define distid / analysis n 'Distributor' width=11;
 define ordertot / analysis sum 'Total Cost' width=11
 format=dollar10.2;
run;

The SAS log for this PROC step follows. The error message identifies the problem
in the DEFINE statement with the variable DISTID.

SAS Log
86 proc report data=corplib.orders box nowindows;
87 column distid ordertot;
88 define distid / analysis n 'Distributor' width=11;
89 define ordertot / analysis sum 'Total Cost' width=11
90 format=dollar10.2;
91 run;

ERROR: distid is an ANALYSIS variable but not numeric.
NOTE: The SAS System stopped processing this step because of
 errors.
NOTE: PROCEDURE REPORT used:
 real time 0.00 seconds

One way to correct this program follows. The variable DISTID is now defined as a
GROUP variable. A new column, N, shows the total number of orders per DISTID.

Revised Program
proc report data=corplib.orders box windows;
 column distid n ordertot;
 define distid / group 'Distributor' width=11;
 define n / "Number of Orders" width=6;
 define ordertot / analysis sum 'Total Cost' width=11
 format=dollar10.2;
run;

16 Debugging SAS Programs: A Handbook of Tools and Techniques

Execution-Time Errors
SAS detects execution-time errors when it applies compiled programming
statements to data values. Typical execution-time errors include

�� INPUT statements that do not match the data lines
�� illegal mathematical operations such as division by zero
�� observations not sorted in the order specified in the BY statement when

doing BY-group processing
�� reference to a nonexistent member of an array
�� illegal arguments to functions
�� no resources to complete a task specified in the program.

When SAS encounters execution-time errors, it usually produces warning messages
and continues to process the program. The information that SAS writes to the SAS
log includes the following:

�� an error message
�� the values stored in the input buffer if SAS is reading data values from a

source other than a data set (e.g., an external file)
�� the contents of the program data vector at the time the error occurred
�� a message explaining the error.

Errors that occur prior to the PROC step may be the source of an error in a
procedure step. If the procedure depends on data generated in previous steps, the
procedure may not execute and SAS may generate an error. Depending on the
procedure, incorrect data may not stop the processing of the procedure, but the
results instead will be in error.

Note that the information written to the SAS log varies depending on how you
specify certain SAS options. These options are described in Chapter 2.

Since execution-time errors result from applying your compiled SAS statements to
your data values, you must understand the data you are processing in order to
correct the errors.

Three examples of execution-time errors follow.

Example 1.10: Identifying an Execution-
Time Error in a DATA Step Caused by
Division by Zero

This example shows how SAS processes a DATA step that contains an execution-
time error. In this example, but not in all DATA steps with execution-time errors,
the DATA step compiles correctly and executes completely.

Chapter 1: Understanding the Types of Errors in SAS Programs 17

This DATA step reads in three data lines and does a computation. The value for
NRECVD in the second data line is zero. Since NRECVD is the divisor in the
computation, this statement does not execute for the second observation. Division
by zero in the second data line is the execution-time error in this DATA step.

Original Program
data newbooks;
 input title $ 1-20 totlcost nrecvd;
 attrib nrecvd label='Number of Copies Received'
 totlcost label='Total Cost for Title'
 cost label='Cost Per Copy Received';
 cost=totlcost/nrecvd;
datalines;
My Computer 28.63 3
Business 101 56.33 0
Ergonomic Offices 73.98 1
run;
proc print data=newbooks;
 title 'New Books Ordered';
run;

The SAS log for this program identifies the record where the division by zero
occurred. Processing does not stop when SAS encounters this type of error. For the
data line in error, SAS assigns a missing value to COST. SAS describes this action
in the SAS log.

SAS Log
66 data newbooks;
67 input title $ 1-20 totlcost nrecvd;
68 attrib nrecvd label='Number of Copies Received'
69 totlcost label='Total Cost for Title'
70 cost label='Cost Per Copy Received';
71 cost=totlcost/nrecvd;
72 datalines;

NOTE: Division by zero detected at line 71 column 16.
RULE:----+----1----+----2----+----3----+----4----+----5----+
74 Business 101 56.33 0
title=Business 101 totlcost=56.33 nrecvd=0 cost=. _ERROR_=1 _N_=2
NOTE: Mathematical operations could not be performed at the
 following places. The results of the operations have
 been set to missing values.
 Each place is given by:
 (Number of times) at (Line):(Column).
 1 at 71:16

18 Debugging SAS Programs: A Handbook of Tools and Techniques

SAS Log
(continued)

NOTE: The data set WORK.NEWBOOKS has 3 observations and 4
 variables.
NOTE: DATA statement used:
 real time 0.15 seconds
76 run;
77 proc print data=newbooks;
78 title 'New Books Ordered';
79 run;

NOTE: There were 3 observations read from the dataset
 WORK.NEWBOOKS.
NOTE: PROCEDURE PRINT used:
 real time 0.00 seconds

The following PROC PRINT output verifies that the value of COST is missing in
the second data line.

Output
 New Books Ordered 6

 Obs title totlcost nrecvd cost

 1 My Computer 28.63 3 9.5433
 2 Business 101 56.33 0 .
 3 Ergonomic Offices 73.98 1 73.9800

One way to avoid the error is to test the value of NRECVD and to compute COST
only when NRECVD is greater than zero. The following IF statement accomplishes
this and prevents the execution-time error.

 if nrecvd > 0 then cost=totlcost/nrecvd;

Example 1.11: Identifying an Execution-
Time Error Caused by Errors in BY-
Group Specifications

This example shows how SAS processes a program that contains an execution-time
error. The DATA step where SAS detects the error compiles correctly but does not
completely execute.

This program sorts a data set and summarizes the data set in a DATA step according
to BY-group values. The goal of the program is to determine for each author the
number of titles with multiple copies.

Chapter 1: Understanding the Types of Errors in SAS Programs 19

The list of variables in the BY statement in the PROC SORT step and the list of
variables in the BY statement in the DATA step do not agree. This is an example of
an execution-time error that stops the processing of a step.

Original Program
proc sort data=corplib.items;
 by author;
run;
data temp;
 set corplib.items;
 by author title;

 attrib nmult length=4
 label='Number of Titles with Multiple Copies';

 if first.title then do;
 nmult=0;
 if not last.title then nmult+1;
 end;

 if last.author then output;
run;

SAS writes a message to the SAS log describing the error. SAS displays the values
of the variables for the observation where it first encounters the problem. Following
these are the notes and warnings that describe the action that SAS took with regard
to this problem. Here, SAS stopped the DATA step and the resulting data set,
WORK.TEMP, is incomplete.

SAS Log
290 proc sort data=corplib.items;
291 by author;
292 run;

NOTE: There were 3750 observations read from the dataset
 CORPLIB.ITEMS.
NOTE: The data set CORPLIB.ITEMS has 3750 observations and 14
 variables.
NOTE: PROCEDURE SORT used:
 real time 0.04 seconds

293 data temp;
294 set corplib.items;
295 by author title;
296

20 Debugging SAS Programs: A Handbook of Tools and Techniques

SAS Log
(continued)

297 attrib nmult length=4
298 label='Number of Titles with Multiple Copies';
299
300 if first.title then do;
301 nmult=0;
302 if not last.title then nmult+1;
303 end;
304
305 if last.author then output;
306 run;

ERROR: BY variables are not properly sorted on data set
CORPLIB.ITEMS.

itemid=LIB0859 title=Title 2-1E3 author=Last1E3, First1E3 copynum=2
callnum=110.28 publish=Publisher 9 pubcity=City 9 pubyear=2004
libsect=Serials itemtype=S orderdat=. ordernum=.

itemcost=. subscdat=. FIRST.author=0 LAST.author=0 FIRST.title=1
LAST.title=0 nmult=1 _ERROR_=1 _N_=162

NOTE: The SAS System stopped processing this step because of
 errors.
NOTE: There were 163 observations read from the dataset
CORPLIB.ITEMS.

WARNING: The data set WORK.TEMP may be incomplete. When this step
was stopped there were 111 observations and 15 variables.

NOTE: DATA statement used:
 real time 0.04 seconds

Correct the program by modifying the BY statement in the PROC SORT step as
follows. The DATA step remains the same.

Revised Program
proc sort data=corplib.items;
 by author title;
run;

Chapter 1: Understanding the Types of Errors in SAS Programs 21

Example 1.12: Identifying a PROC Step
That Executes but Does Not Produce
Expected Results

This example shows that a PROC step with execution-time errors may execute
completely, but it will not necessarily produce the expected results. This
demonstrates the importance of careful review of the SAS log to determine that an
error occurred.

The semicolon is missing in the TITLE statement. Because of the TITLE
statement’s position, the CLASS statement becomes part of the TITLE statement.
Statistics then are computed overall rather than by the categories of LIBSECT.

Original Program
proc means data=corplib.items;
 title "Means by Library Section"
 class libsect;
 var itemcost;
run;

A warning message does indicate that there may be a problem with the TITLE
statement.

SAS Log
64 proc means data=corplib.items;
65 title "Means by Library Section"
66 class libsect;
WARNING: The TITLE statement is ambiguous due to invalid
 options or unquoted text.
67 var itemcost;
68 run;

NOTE: There were 3750 observations read from the dataset
 CORPLIB.ITEMS.
NOTE: PROCEDURE MEANS used:
 real time 0.04 seconds

Data Errors
A data error occurs when a data value is not appropriate for the SAS statements you
coded. SAS detects these errors when the program executes, but these errors are
different from execution-time errors. With execution-time errors, something in the
program statements is wrong. With data errors, the data is wrong. Data errors reflect
problems with the creation of the input data source.

22 Debugging SAS Programs: A Handbook of Tools and Techniques

Remedies for data errors include correcting the data entry process or changing the
DATA step to reflect the chance that errors may occur.

When SAS detects a data error, it writes a message to the SAS log, lists the values
of the input buffer when it reads raw data, and lists the program data vector for the
observation where the error occurred.

One example follows.

Example 1.13: Identifying Input Data
That Generates a Data Error

This example presents a DATA step where a data value is in error and the DATA
step code is not. It demonstrates that you may need to include statements to handle
potential errors to ensure that the DATA step executes as requested.

This DATA step reads in four data lines. The second variable is a date, and the date
of January 32, 2001, on the third data line is invalid. This invalid date generates a
data error.

Original Program
data temp;
 input empno 6. +1 checkout mmddyy10.;
datalines;
002020 01152001
002043 01162001
002087 01322001
002218 01232001
run;
proc print data=temp;
 format checkout mmddyy10.;
run;

The SAS log for this program identifies the data line containing the problem.

SAS Log
445 data temp;
446 input empno 6. +1 checkout mmddyy10.;
447 datalines;

NOTE: Invalid data for checkout in line 450 8-17.
RULE:----+----1----+----2----+----3----+----4----+----5----+--
450 002087 01322001
empno=2087 checkout=. _ERROR_=1 _N_=3
NOTE: The data set WORK.TEMP has 4 observations and 2 variables.

Chapter 1: Understanding the Types of Errors in SAS Programs 23

SAS Log
(continued)

NOTE: DATA statement used:
 real time 0.06 seconds

452 run;
453 proc print data=temp;
454 format checkout mmddyy10.;
455 run;

NOTE: There were 4 observations read from the dataset
 WORK.TEMP.
NOTE: PROCEDURE PRINT used:
 real time 0.05 seconds

The following PROC PRINT output shows that SAS read the four data lines and set
the value of CHECKOUT to missing for the third observation.

Output
 The SAS System 1

 Obs empno checkout

 1 2020 01/15/2001
 2 2043 01/16/2001
 3 2087 .
 4 2218 01/23/2001

One way to correct this program is to read the month, day, and year separately and
test for valid values. When a value is valid, assign it to CHECKOUT using the
MDY function. If invalid, the value of CHECKOUT remains missing. A corrected
program follows.

Revised Program
data temp;
 input empno 6. +1 cmonth 2. cday 2. cyear 4.;

 if (1 le cmonth le 12) and
 ((1 le cday le 28) or
 ((29 le cday le 30) and cmonth ne 2) or
 (cday=31 and cmonth in (1,3,5,7,8,10,12)) or
 (cday=29 and cmonth=2 and mod(cyear,4)=0)) then
 checkout=mdy(cmonth,cday,cyear);
datalines;
002020 01152001
002043 01162001
002087 01322001
002218 01232001
run;

24 Debugging SAS Programs: A Handbook of Tools and Techniques

What Errors Doesn’t SAS Find for Me?
According to SAS, your program is syntactically correct and executes without error.
Your SAS log does not contain messages describing syntax errors, semantic errors,
execution-time errors, or data errors. Yet, when you review the results of your SAS
program, you find them incorrect. This happens when your instructions to SAS did
not correctly convey the actions you wanted SAS to take. Your program executes
anyway because SAS does not know how to detect when your logic is faulty.

How can you find the logic errors that you introduce into your programs? The
answer is by fully understanding your data, closely reading the messages in the SAS
log, carefully reviewing the results, and using the tools that SAS provides for
detecting logic errors.

Chapters 3 and 4 describe the tools for finding logic errors in SAS language.
Chapter 5 describes the tools in the macro facility.

Example 1.14: Identifying a DATA Step
with a Logic Error

The program in this example contains a logic error in the DATA step. The program
compiles correctly and executes without errors. The example demonstrates that
careful review of the notes and the output may be necessary to identify incorrect
results of your program.

This program merges the distributor information with the order information and
retains information only for distributor ‘D001’. The data sets should be matched by
the distributor ID, DISTID.

A logic error exists in the DATA step. The program executes without errors, as
shown in the SAS log, but the output shows that the merge did not execute as
required. Distributor information for distributor ‘D001’ is not merged with the order
information as required.

The problem with the DATA step is that a BY statement directing a matched merge
on DISTID is missing. Without a BY statement, SAS does a one-to-one merge.
SAS, however, does not know that this is an error.

Original Program
proc sort data=corplib.distrib;
 by distid;
run;
proc sort data=corplib.orders;
 by distid
run;
data distid1;

TIP!

Chapter 1: Understanding the Types of Errors in SAS Programs 25

Original
Program
(continued)

 merge corplib.distrib corplib.orders;
 if distid='D001';
run;
proc print data=distid1;
 title "Orders for Distributor D001";
run;

The SAS log for the DATA step shows that it executed without error.

SAS Log
57 data distid1;
58 merge corplib.distrib corplib.orders;
59
60 if distid='D001';
61 run;

NOTE: There were 5 observations read from the data set
 CORPLIB.DISTRIB.
NOTE: There were 53 observations read from the data set
 CORPLIB.ORDERS.
NOTE: The data set WORK.DISTID1 has 7 observations and 13
 variables.
NOTE: DATA statement used:
 real time 0.10 seconds

Reviewing the results shows that the DATA step included information about
distributors other than D001 in WORK.DISTID1. The data set CORPLIB.DISTRIB
contains information about five distributors, and the data set CORPLIB.ORDERS
contains information about seven orders for D001. The resulting data set
WORK.DISTID1 does contain seven observations, but all except the first are in
error. Observations 2 through 5 contain address information for distributors other
than D001. Observations 6 and 7 contain no distributor addresses.

Output
 Orders for Distributor D001

Obs distid distname distaddr distcity

 1 D001 Distributor 1 Distributor 1 Distributor 1
 2 D001 Distributor 2 Distributor 2 Distributor 2
 3 D001 Distributor 3 Distributor 3 Distributor 3
 4 D001 Distributor 4 Distributor 4 Distributor 4
 5 D001 Distributor 5 Distributor 5 Distributor 5
 6 D001
 7 D001

26 Debugging SAS Programs: A Handbook of Tools and Techniques

Output
(continued) Obs diststat distzip distphon distfax ordernum

 1 NY 13021 3155555555 3155555555 0003
 2 IL 60000 3125555555 3125555555 0009
 3 CA 94000 6515555555 6515555555 0021
 4 MN 55100 6515555555 6515555555 0024
 5 PA 19000 9995555555 9995555555 0032
 6 . . . 0039
 7 . . . 0042

Obs ordrdate nitems ordertot datercvd

 1 02/28/1999 14 $458.17 04/25/1999
 2 07/21/1999 9 $274.66 08/16/1999
 3 01/03/2000 14 $512.78 01/16/2000
 4 02/03/2000 4 $111.92 03/11/2000
 5 04/06/2000 15 $554.96 04/07/2000
 6 07/12/2000 9 $257.99 08/27/2000
 7 09/06/2000 11 $430.04 10/10/2000

Adding a BY statement to the DATA step corrects the error.

Revised Program
data distid1;
 merge corplib.distrib corplib.orders;
 by distid;
 if distid='D001';
run;

Example 1.15: A PROC STEP That
Executes, but Not on the Data Set
Expected

This example demonstrates the importance of reviewing the SAS log and the output
to determine if the program executed as required. The program compiles correctly
and executes without error, but the results are not as expected.

This program reads the circulation statistics data set and computes the number of
days an item has been checked out. These data are then matched against the
CORPLIB.ITEMS data set to find the library section for the item. The PROC
MEANS step computes statistics on the new variable DAYSOUT for each value of
LIBSECT and saves the results in the temporary data set, WORK.CIRCSUMM.

The intent of the PROC PRINT step is to list each of the items in the CIRC data set
that has been in circulation for at least 30 days. Since the DATA= option is missing
from the PROC PRINT statement, PROC PRINT lists the data from the most

Chapter 1: Understanding the Types of Errors in SAS Programs 27

recently created data set. In this program, the most recently created data set is the
one created by PROC MEANS and not the WORK.CIRC data set.

Original Program
data circ;
 set corplib.circul;

 if checkin=. then daysout=today()-checkout;
 else daysout=checkin-checkout;
run;
proc sql;
 create table circ
 as select daysout,c.itemid,c.copynum,libsect
 from circ c left join corplib.items i
 on c.itemid=i.itemid;
quit;
proc means data=circ;
 class libsect;
 var daysout;
 output out=circsumm n=n mean=daysout;
run;
proc print;
 title "Items Checked Out Longer than 30 Days";
 where daysout > 30;
run;

The SAS log shows no errors because the variable name DAYSOUT has been
assigned to the mean value of DAYSOUT in the PROC MEANS step. The note
from the PROC PRINT step shows that the PROC PRINT output was produced
from WORK.CIRCSUMM. The intent was to list with PROC PRINT the
observations in WORK.CIRC .

SAS Log
111 data circ;
112 set corplib.circul;
113
114 if checkin=. then daysout=today()-checkout;
115 else daysout=checkin-checkout;
116 run;

NOTE: There were 446 observations read from the dataset
 CORPLIB.CIRCUL.
NOTE: The data set WORK.CIRC has 446 observations and 10
 variables.

28 Debugging SAS Programs: A Handbook of Tools and Techniques

SAS Log
(continued) NOTE: DATA statement used:

 real time 0.10 seconds

117 proc sql;
118 create table circ
119 as select daysout,c.itemid,c.copynum,libsect
120 from circ c left join corplib.items i
121 on c.itemid=i.itemid;
NOTE: Table WORK.CIRC created, with 2306 rows and 4 columns.
122 quit;
NOTE: PROCEDURE SQL used:
 real time 0.04 seconds

123 proc means data=circ;
124 class libsect;
125 var daysout;
126 output out=circsumm n=n mean=daysout;
127 run;

NOTE: There were 2306 observations read from the dataset
 WORK.CIRC.
NOTE: The data set WORK.CIRCSUMM has 7 observations and 5
 variables.
NOTE: PROCEDURE MEANS used:
 real time 0.06 seconds

128 proc print;
129 title "Items Checked Out Longer than 30 Days";
130 where daysout > 30;
131 run;

NOTE: There were 7 observations read from the dataset
 WORK.CIRCSUMM.
 WHERE daysout>30;
NOTE: PROCEDURE PRINT used:
 real time 0.16 seconds

To correct this program, modify the PROC PRINT statement as follows:

proc print data=circ;

