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As the title of this book clearly indicates, the purpose of this book is to provide a practical guide for 
using the SAS System to conduct Monte Carlo simulation studies to solve many practical problems 
encountered in different disciplines. The book is intended for quantitative researchers from a variety 
of disciplines (e.g., education, psychology, sociology, political science, business and finance, 
marketing research) who use the SAS System as their major tool for data analysis and quantitative 
research. With this audience in mind, we assume that the reader is familiar with SAS and can read and 
understand SAS code. 

Although a variety of quantitative techniques will be used and discussed as examples of conducting 
Monte Carlo simulation through the use of the SAS System, quantitative techniques per se are not 
intended to be the focus of this book. It is assumed that readers have a good grasp of the relevant 
quantitative techniques discussed in an example such that their focus will not be on the quantitative 
techniques, but on how the quantitative techniques can be implemented in a simulation situation.   

Many of the quantitative techniques used as examples in this book are those that investigate linear 
relationships among variables. Linear relationships are the focus of many widely used quantitative 
techniques in a variety of disciplines, such as education, psychology, sociology, business and finance, 
agriculture, etc. One important characteristic of these techniques is that they are all fundamentally 
based on the least-squares principle, which minimizes the sum of residual squares. Some examples of 
these widely used quantitative methods are regression analysis, univariate and multivariate analysis of 
variance, discriminant analysis, canonical correlation analysis, and covariance structure analysis (i.e., 
structural equation modeling). 
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Before we begin our detailed discussion about how to use the SAS System to conduct Monte Carlo 
studies, we would like to take some time to discuss briefly a few more general but relevant topics. 
More specifically, we want to discuss the following: 

�� What is a Monte Carlo study?   

�� Why are Monte Carlo studies often necessary? 

�� What are some typical situations where Monte Carlo simulation is needed? 

�� Why use the SAS System for conducting Monte Carlo studies? 
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What is a Monte Carlo study? According to Webster’s dictionary, Monte Carlo relates to or involves 
"the use of random sampling techniques and often the use of computer simulation to obtain 
approximate solutions to mathematical or physical problems especially in terms of a range of values 
each of which has a calculated probability of being the solution" (Merriam-Webster, Inc., 1994, pp. 
754-755). This definition provides a concise and accurate description for Monte Carlo studies. For 
those who are not familiar with Monte Carlo studies, a simple example below will give you a good 
sense of what a Monte Carlo study is. 

1.2.1  Simulating the Rolling of Two Dice  
Suppose that we are interested in knowing what the chances are of obtaining two as the sum from 
rolling a dice twice (assuming a fair dice, of course). There are basically three ways of obtaining an 
answer to our question. The first is to do it the hard way, and you literally roll a dice twice tens of 
thousands of times so that you could reasonably estimate the chances of obtaining two as the sum of 
rolling a dice twice. 

Another way of estimating the chance for this event (i.e., obtaining two as the sum from rolling a fair 
dice twice) is to rely on theoretical probability theory. If you do that, you will reason as follows: to 
obtain a sum of two from rolling a fair dice twice necessarily means you obtain one in each roll. The 
probability of obtaining one from rolling the dice once is 1/6 (0.167). The probability of obtaining 
one from another rolling of the same dice is also 1/6. Because each roll of the dice is independent of 
another, according to probability theory, the joint probability of obtaining one from both rolls is the 
product of two—that is, 0.167 × 0.167 ≈ 0.028. In other words, the chances of obtaining the sum of 
two from rolling a fair dice twice should be slightly less than 3 out of 100, a not very likely event.  In 
the same vein, the chances of obtaining the sum of 12 from rolling a fair dice twice can also be 
calculated to be about 0.028. Although it is relatively easy to calculate the theoretical probability of 
obtaining two as the sum from rolling a fair dice twice, it is more cumbersome to figure out the 
probability of obtaining, say, seven as the sum from rolling the dice twice, because you have to 
consider multiple events (6+1, 5+2, 4+3, 3+4, 2+5, 1+6) that will sum up to be seven.  Because each 
of these six events has the probability of 0.028 to occur, the probability of obtaining the sum of seven 
from rolling a dice twice is 6 × 0.028 = 0.168. 

Instead of relying on actually rolling a dice tens of thousands of times, or on probability theory, we 
can also take an empirical approach to obtain the answer to the question without actually rolling a 
dice. This approach entails a Monte Carlo simulation (MCS) in which the outcomes of rolling a dice 
twice are simulated, rather than actually rolling a dice twice. This approach is only possible with a 
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                                     Cumulative  Cumulative 
          SUM   Frequency   Percent   Frequency    Percent 
          ------------------------------------------------- 
            2        299      2.99         299       2.99 
            3        534      5.34         833       8.33 
            4        811      8.11        1644      16.44 
            5       1177     11.77        2821      28.21 
            6       1374     13.74        4195      41.95 
            7       1685     16.85        5880      58.50 
            8       1361     13.61        7241      72.41 
            9       1083     10.83        8324      83.24 
           10        852      8.52        9176      91.76 
           11        540      5.40        9716      97.10 
           12        284      2.84       10000     100.00 
 

computer and some appropriate software, such as SAS.  The following (Program 1.1) is an annotated 
SAS program that conducts an MCS to simulate the chances of obtaining a certain sum from rolling a 
dice twice. 
 

Program 1.1   Simulating the Rolling of Two Dice 
 

 
*** simulate the rolling of two dice and the distribution; 
*** of the sum of the two outcomes; 

 
DATA DICE(KEEP=SUM) OUTCOMES(KEEP=OUTCOME); 
     DO ROLL=1 TO 10000;                   *** roll the two dice 10,000 times.; 
        OUTCOME1=1+INT(6*RANUNI(123));     *** outcome from rolling the first dice; 
        OUTCOME2=1+INT(6*RANUNI(123));     *** outcome from rolling the second dice; 
        SUM=OUTCOME1+OUTCOME2;             *** sum up the two outcomes.; 
        OUTPUT DICE;                       *** save the sum.; 
        OUTCOME=OUTCOME1; OUTPUT OUTCOMES; *** save the first outcome.; 
        OUTCOME=OUTCOME2; OUTPUT OUTCOMES; *** save the second outcome.; 
     END; 
RUN; 
 
PROC FREQ DATA=DICE;         *** obtain the distribution of the sum.; 
     TABLE SUM; 
RUN; 
 
PROC FREQ DATA=OUTCOMES;    *** check the uniformity of the outcomes.; 
     TABLE OUTCOME; 
RUN; 
 

 
Output 1.1a presents part of the results (the sum of rolling a dice twice) obtained from executing the 
program above. Notice that the chances of obtaining two as the sum from rolling a dice twice (2.99%) 
is very close to what was calculated according to probability theory (0.028). In the same vein, the 
probability of obtaining the sum of 7 is almost identical to that based on probability theory (16.85% 
from MCS versus 0.168 based on probability theory). 

Output 1.1b presents the estimated chances of obtaining an outcome from rolling a dice once. Note 
that the chances of obtaining 1 though 6 are basically equal from each roll of the dice, as theoretically 
expected if the dice is fair. 

 
Output 1.1a 
Chances of 
Obtaining a 
Sum from 
Rolling a 
Dice Twice 
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                                       Cumulative  Cumulative 
        OUTCOME   Frequency   Percent   Frequency    Percent 
        ----------------------------------------------------- 
              1       3298     16.49        3298      16.49 
              2       3367     16.84        6665      33.33 
              3       3362     16.81       10027      50.14 
              4       3372     16.86       13399      67.00 
              5       3341     16.71       16740      83.70 
              6       3260     16.30       20000     100.00 
 

Output 1.1b  
Chances of 
Obtaining 
an Outcome 
from Rolling 
a Dice Once 
 
 

 

Some readers may have some trouble understanding all the elements in the program presented in 
Program 1.1. We elaborate on the details of the program in later sections. The basic idea of this 
program is to use a computer to simulate the process of rolling two dice independently, and then sum 
up the outcomes of the two dice. After 10,000 replications (each consisting of rolling two dice), we 
obtain 10,000 sums, each of which is based on rolling two dice. By using the SAS FREQ procedure, 
we obtain the percentage associated with each sum (2 through 12), and this percentage represents the 
chance of obtaining a specific sum from rolling two dice. 

As implied from the above, Monte Carlo simulation offers researchers an alternative to the theoretical 
approach. There are many situations where the theoretical approach is difficult to implement, much 
less to find an exact solution. An empirical alternative like the one above is possible because of 
technological developments in the area of computing. As a matter of fact, with computing power 
becoming increasingly cheap and with powerful computers more widely available than ever, this 
computing-intensive approach is becoming more popular with quantitative researchers. In a nutshell, 
MCS simulates the sampling process from a defined population repeatedly by using a computer 
instead of actually drawing multiple samples (i.e., in this context, actually rolling dice) to estimate the 
sampling distributions of the events of interest. As we will discuss momentarily, this approach can be 
applied to a variety of situations in different disciplines. 
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After going over the example provided in the previous section, some readers may ask the question: 
Why is MCS needed or necessary? After all, we already have probability theory which allows us to 
figure out the chances of any outcome as the sum from rolling a dice twice, and using probability 
theory is relatively efficient, obviously more so than writing the SAS program presented in Program 
1.1. For the situation discussed above, it is true that using probability theory will be more efficient 
than using the MCS approach to provide the answer to our question.  But please keep in mind that the 
example provided in Program 1.1 is for illustration purposes only, and there are many situations 
where MCS is needed, or where MCS is the only viable approach to providing analytic solutions to 
some quantitative research questions. 

Although statistical theories are efficient, the validity of any statistical theory is typically contingent 
upon some theoretical assumptions. When the assumptions of a theory are met by the data that we 
have in hand, the statistical theory provides us with valid and efficient estimates of sampling 
distribution characteristics for a statistic of our interest. On the other hand, when the assumptions of a 
theory are violated in the data that we have, the validity of the estimates about certain sampling 
distribution characteristics based on the theory is often compromised and uncertain; consequently, we 
are often at a loss about how much we can trust the theoretical estimates, or about how erroneous our 
conclusion might be if we blindly rely on the theory, even if some crucial assumptions of the theory 
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have been violated. It is in these kind of analytic situations that MCS becomes very useful to 
quantitative researchers, because this approach relies on empirical estimation of sampling distribution 
characteristics, rather than on theoretical expectations of those characteristics. With a large number of 
replications, the empirical results should asymptotically approach the theoretical results, and this can 
be demonstrated when the theoretical results can be obtained. 

In addition to the situations discussed above in which the assumptions of statistical theories may not 
be met by the data we have at hand, and where consequently, MCS becomes an empirical alternative 
to theoretical approach, there are some other situations where statistical theories are either so weak 
that they can not be fully relied upon, or statistical theories simply do not exist. In these situations, 
MCS may be the only viable approach to providing answers to a variety of questions quantitative 
researchers may have.  

Such situations abound. For example, the distributional characteristics of sample means are well 
known (e.g., unbiased, with mean equal to � and standard deviation equal to 

N
� ). But how about 

the distributional characteristics of sample medians? Is a sample median an unbiased estimate? What 
is the expected standard deviation of a distribution of sample medians?  Does the central limit 
theorem, which is so important for the distribution of sample means, apply to the distribution of 
sample medians? These and other similar questions may not be answered from statistical theory, 
because it is an area where theory is weak or nonexistent. As a result, these questions may need to be 
answered empirically by conducting MCS, and the distributional characteristics of sample medians 
can be examined empirically, rather than theoretically based on statistical theory. 
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As the brief discussion in the previous section indicates, for quantitative researchers in a variety of 
disciplines, there are two typical situations in which MCS may be called for: when theoretical 
assumptions of a statistical theory may not hold; and when statistical theory is either weak or 
nonexistent. In this section, we will discuss some typical situations in which MCS becomes relevant 
or necessary. 

1.4.1  Assessing the Consequences of Assumption  
          Violations 
As is well known, statistical techniques can generally be classified into two broad categories: 
parametric and non-parametric. Most popular statistical techniques belong to the category of 
parametric statistics.  A common characteristic for all parametric statistics is that there are certain 
assumptions about the distribution of the data. If the assumptions are violated, the validity of the 
results derived from applying these techniques may be in question. However, statistical theory itself 
does not usually provide any indication about what, if any, the consequences are, and how serious the 
consequences will be. If a quantitative researcher wonders about these questions, MCS becomes, in 
many situations, the only viable approach to obtaining answers to these questions. 
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For example, for the very popular statistical technique of analysis of variance (ANOVA), which is 
designed to test the hypothesis of equal means on the dependent variable from two or more groups, a 
fundamental assumption for the validity of the probability statement from ANOVA is that the groups 
involved come from populations with equal population variances on the variable of interest 
(homogeneity of variance assumption). What happens if, in reality, the populations that the groups are 
from do not have equal population variances on the variable of interest? To what extent is the 
probability statement from ANOVA invalid? How robust is the ANOVA technique in relation to the 
violation of this equal variance assumption? 

To answer these and other similar questions, we may want to design a MC study in which we 
intentionally manipulate the variances of different population groups, draw samples from these 
populations, and apply ANOVA to test the hypothesis that the groups have equal means. Over 
repeated replications, we will be able to derive an empirical distribution of any sample statistic of our 
interest. Based on these distributions, we will be able to provide some answers to the questions that 
cannot be addressed by the statistical theory. Researchers have long used MCS to examine these 
issues related to ANOVA. (For a very early review, see Glass, Peckham, & Sanders 1972.) 

For many popular statistical techniques, data normality is an important assumption. For example, for 
regression analysis, which is used in almost all disciplines, the tests for regression model parameters, 
both for the overall regression model fitted to the sample data and for the individual regression 
coefficients, it is assumed that the data are normally distributed. What are the consequences if the data 
are not normally distributed as assumed? How extreme should the non-normality condition be before 
we discount the regression analysis results as invalid? These are only a few of the potential questions 
quantitative researchers may ask. As discussed before, the answers to these questions may be 
provided by MCS, because statistical theory only stipulates what the condition should be, and it does 
not provide a clear indication of what the reality would be if the conditions were not met by the data. 

1.4.2   Determining the Sampling Distribution of a  
           Statistic That Has No Theoretical Distribution 
In some situations, due to the complexity of a particular statistic, a theoretical sampling distribution of 
the statistic may not be available. In such situations, if one is interested in understanding how the 
statistic will vary from sample to sample, i.e., the sampling distribution of the statistic, MCS becomes 
one viable and realistic approach to obtaining such information. 

For example, discriminant analysis and canonical correlation analysis are two multivariate statistical 
techniques widely used in different disciplines.  In both of these techniques, there are (discriminant 
and canonical) function coefficients which are analogous to regression coefficients in regression 
analysis, and also, there are (discriminant and canonical) structure coefficients which are the 
correlations between the measured variables and the (discriminant and canonical) functions. Because 
of the complexity of these statistics, theoretical distributions are not available for these coefficients 
(both function and structure coefficients). In the case of discriminant or canonical correlation analysis, 
there has been a lot of debate about which type of coefficients, function or structure, is more stable 
across samples (Stevens 1996). Because theoretical sampling distributions are not available for these 
two type of coefficients, it is not possible to answer the question from any theoretical perspective. 
Faced with this lack of theoretical sampling distributions, Thompson (1991) conducted a Monte Carlo  
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study in which the sampling distributions of these two types of coefficients were empirically 
generated, and based on these empirical sampling distributions, this issue was empirically 
investigated.   

The same situation exists for exploratory factor analysis, a popular statistical technique widely used in 
psychometrics and in social and behavioral science research in general. In factor analysis, factor 
pattern coefficients play an important role. Unfortunately, the theoretical sampling distributions of 
factor pattern coefficients are not available. The lack of theoretical sampling distributions for factor 
pattern coefficients makes it difficult to assess the importance of a variable in relation to a factor. In 
practice, such assessment often relies on half guess work and half common sense. It is often suggested 
that factor pattern coefficients smaller than 0.30 be discounted. Ideally, such an assessment should be 
made by taking into consideration the sampling variability of the factor pattern coefficient. If one 
wants to get some idea about the sampling variability of such factor pattern coefficients, in the 
absence of the theoretical sampling distribution, MCS becomes probably the only viable approach. 
Quantitative researchers have utilized MCS to investigate this issue in factor analysis. (For examples, 
see Stevens 1996, pp. 370-371.) 

In the past two decades, covariance structure analysis, more commonly known as structural equation 
modeling (SEM), has become a popular analytic tool for quantitative researchers.  In SEM analysis, a 
group of descriptive model fit indices have been developed to supplement the model fit information 
provided by the 2

�  test, or to compensate for the widely perceived limitations of the 2
�  test in SEM, 

that is, it is heavily influenced by the sample size used in testing the model fit (Fan & Wang, 1998). 
These descriptive fit indices, however, have unknown theoretical sampling distributions, so it is not 
clear how these fit indices will vary from sample to sample. Again, MCS becomes the primary tool 
for providing the information about the variability of these fit indices, and many researchers have 
used this approach in their research (e.g., Fan, Thompson, & Wang 1999; Fan & Wang 1998; Marsh, 
Balla, & Hau 1996). 
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As discussed above, Monte Carlo simulation has been an important research area for quantitative 
researchers in a variety of disciplines. Because MCS is computation-intensive, it is obvious that MCS 
research typically requires programming capabilities. Furthermore, because many MC studies involve 
some type of statistical techniques and/or mathematical functions, statistical/mathematical capabilities 
are also essential. The SAS System has the combination of a powerful variety of built-in statistical 
procedures (e.g., in SAS/STAT and SAS/ETS software), mathematical functions, and the versatile 
programming capabilities (in base SAS, the SAS Macro Facility, and SAS/IML software). This 
combination makes the SAS System ideal for conducting Monte Carlo simulation research, especially 
research related to statistical techniques. Such a combination of built-in statistical procedures and 
versatile programming capabilities makes it much more convenient for MCS researchers to get their 
job done. Without such a combination of statistical capabilities and programming capabilities within 
the same system, an MCS researcher may have to deal with different systems, and consequently 
worry about the interface among different systems. 

For example, some MCS researchers use the Fortran language for programming their Monte Carlo 
simulations. Because there are no built-in statistical procedures, any statistical analysis will either 
have to be programmed by the researchers themselves (a formidable task if one is dealing with a 
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complicated quantitative technique), or some other system has to be used for the purpose (e.g., IMSL: 
International Mathematical & Statistical Libraries, a package of mathematical routines).  In the latter 
case, the interface between different programs in the programming process may become cumbersome 
and difficult. 

By relying on the SAS System for statistical simulation, almost all statistical procedures are already 
built in, and statistical analysis results are easily obtained either through the built-in statistical 
procedures, or through programming using the powerful interactive matrix language (PROC IML) 
under the SAS System. In either case, both the statistical computation and programming are highly 
integrated within the same system, which considerably simplifies the tasks of Monte Carlo 
researchers. In addition, the SAS System offers great flexibility in data generation, data 
transformation, obtaining and saving simulation results, etc. The completeness and the flexibility of 
the SAS System have convinced us that currently no other system makes Monte Carlo research, 
especially research involving statistical techniques, easier and more efficient than the SAS System 
does.  
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This book has nine chapters. The first two chapters provide an overview of the Monte Carlo research 
process. Starting with the third chapter, we lead the readers through a step-by-step process of 
conducting a Monte Carlo simulation. The third chapter discusses data generation by using different 
random number generators that are available in base SAS. This chapter lays the foundation for 
Chapter 4, which focuses on generating multiple variables that are correlated and that have different 
population characteristics (e.g., variables that deviate from the theoretical normal distribution to 
different degrees). As a matter of fact, data generation is so crucial that it is no exaggeration to say 
that the success of Monte Carlo simulation research hinges on the correct data generation process. 

Once readers understand the data generation process in Monte Carlo simulation research, the next 
chapter, Chapter 5, discusses an important programming aspect of a Monte Carlo study:  automation 
of the simulation process. Because a Monte Carlo study usually involves a large number (e.g., 
thousands, or hundreds of thousands) of replications (i.e., repeatedly drawing samples from a 
specified statistical population, and obtaining and analyzing the sample statistic of interest), unless the 
process can be automated through programming, MCS would be almost impossible to do in practice. 
Chapter 5 provides a detailed practical guide for automating the MCS process in SAS. 

Chapter 6 and Chapter 7 present some Monte Carlo simulation examples involving both univariate 
and multivariate statistical techniques widely used by researchers in different fields. The examples in 
these two chapters integrate what has been discussed up to Chapter 5. Quantitative researchers who 
are interested in conducting Monte Carlo simulation involving statistical techniques will find these 
two chapters very useful and practical. For each of the examples used, a problem is presented, and the 
rationale for conducting a Monte Carlo simulation study is provided. Then, the SAS program and 
explanatory comments are presented step by step. Finally, some selected results of the simulation are 
presented. Thus, each example provides a complete examination of a Monte Carlo study. 
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In Chapter 8, our focus shifts a little, and we discuss Monte Carlo simulation examples related to the 
financial industry. As the examples in this chapter clearly indicate, the issues addressed by Monte 
Carlo simulation tend to be quite different from those in Chapters 6 and 7. For this reason, we present 
these examples from the financial industry in this separate chapter. Lastly, Chapter 9 provides 
discussion about implementing a Monte Carlo simulation study using techniques that involve 
SAS/ETS software. Examples related to time series analysis are presented in Chapter 9 as well. 

Combined, the chapters in this book provide a systematic and practical guide to conducting Monte 
Carlo simulation studies in SAS. In our presentation of the examples, if a quantitative technique is 
involved, the quantitative technique per se is not our focus; instead, we focus more on the 
programming aspects of the Monte Carlo study, and the quantitative technique is presented as an 
example.  Because of this, we provide little elaboration on the mathematical or statistical aspects of 
the quantitative techniques used as examples, and we assume that readers who are interested in the 
quantitative techniques will consult other relevant sources. 
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