
3

C H A P T E R

1
Introduction to SCL

Introduction 3
SAS Component Language Elements 3

Entering SCL Code 4

Compiling SCL Programs 4

Compiling Your Program Interactively 4

Compiling Your Program in Batch 5
The SCL Data Vector 5

Testing Applications 6

Debugging Programs 6

Saving Programs 6

Optimizing the Performance of SCL Code 6

Using Other SAS Software Features in SCL Programs 7

Introduction

SAS Component Language (SCL)* is a programming language that enables you to
develop many different types of applications, from simple programs that accomplish a
few tasks to sophisticated, interactive applications that use procedures available in
other SAS software products. For example, you can use SCL with other SAS software to
create data entry applications, to display tables and menus, and to generate and submit
SAS source code. SAS/ASSIST software is an example of the powerful applications that
you can build with SCL.

SAS Component Language Elements

SAS Component Language has statements, functions, CALL routines, operators,
expressions, and variables—elements that are common to the base SAS language and to
many other programming languages. If you have experience writing DATA or PROC
steps in the base SAS language, the basic elements of SCL are familiar to you. For
example, in SCL programs, you can use DO loops, IF-THEN/ELSE statements,
comparison operators such as EQ and LT, and SAS macros.

SCL provides additional statements, functions, and other features that make it easy
to create object-oriented, interactive applications. For example, SCL provides CLASS

* In earlier releases of SAS software, SCL was called SAS Screen Control Language. Version 7 introduced several new
features that enable you to design object-oriented applications. The new name, SAS Component Language, reflects the
object-oriented capabilities of the new SCL.



4 Entering SCL Code 4 Chapter 1

and INTERFACE statements that enable you to define classes and interfaces to those
classes. You can use dot notation to access an object’s attributes directly and to invoke
methods instead of using the SEND and NOTIFY routines.

Chapter 2, “The Structure of SCL Programs,” on page 9 describes the organization of
an SCL application. Chapter 3, “SCL Fundamentals,” on page 17 describes the basic
elements of SCL and the rules that you must follow to put these elements together in a
program. Chapter 6, “Controlling Program Flow,” on page 65 describes the statements
and other features that you can use to control the flow of your application.

Entering SCL Code
You can enter your SCL code in four ways:
� In the SAS Explorer, select the catalog where you want to store your SCL code,

and select

File I New... I SCL Program

� Issue the BUILD command followed by the name of the entry that you want to edit:

BUILD libref.catalog.entry.SCL

� In the Build window for the frame, select

View I Frame SCL

� In the Build window for the program screen, select

Tools I Source Window

Compiling SCL Programs
You must compile SCL programs before testing or executing an application. The

SCL compiler translates your SCL application into an intermediate form that can be
executed by the SCL interpreter. In the process of translating your application, the
compiler identifies any syntax errors that are present. You should correct these errors
and compile the code again until the program compiles without errors. If there are
errors in the program, then no intermediate code is produced, and running the entry
produces a message stating that the entry has no code.

The compiler produces a list of errors, warnings, and notes in the Log window. A
program that compiles with no errors or warnings produces a message like the
following in the message line of the Source window:

NOTE:
Code generated for SALES.FRAME. Code size=2649.

Compiling Your Program Interactively
Note: You must save frames before you can compile them. 4

You can compile frames, program screens, and SCL programs by issuing the
COMPILE command in the Build window or by selecting Compile from the pull-down
menus. In the Build window for frames or SCL programs, select



Introduction to SCL 4 The SCL Data Vector 5

Build I Compile

In the Build window for program screens, select

Run I Compile

You can also compile FRAME, PROGRAM, and SCL entries from the SAS Explorer.
If your SCL code is associated with a frame or a program screen, then you must compile
the FRAME or PROGRAM entry in order for the associated code to be compiled
correctly. The SCL code is compiled when you compile the FRAME or PROGRAM entry.
If your SCL code is not associated with a FRAME or PROGRAM entry, then you
compile the SCL entry. To compile an entry from the Explorer, select the entry, then
select Compile from the pop-up menu.

If you compile a FRAME or PROGRAM entry that does not have any associated SCL
code, the SCL compiler displays an error message.

Compiling Your Program in Batch
To compile your SCL application in batch, run PROC BUILD with the COMPILE

option:

PROC BUILD CATALOG=libref.catalog BATCH;

COMPILE <ENTRYTYPE=entry-type>;

RUN;

The default entry type is PROGRAM. If you do not specify an entry-type, then all
PROGRAM, FRAME, and SCL entries in the catalog are compiled. All PROGRAM,
FRAME, and SCL entries in an application must be compiled before the application can
be executed.

If you compile a frame in batch, and the compiler cannot find the associated SCL
source, the frame will not compile.

The SCL Data Vector
Compiling an SCL program opens a temporary storage area called the SCL data

vector (SDV). The SDV holds the values of all window, nonwindow, and system
variables that are used in the application.* Areas in the SDV are created automatically
for system variables as well as for window variables for all controls in the application
window, even if the variables are not used in the SCL program. Figure 1.1 on page 6
shows the SDV for an application that uses the window variables NAME, HEIGHT,
AGE, and WEIGHT and the nonwindow variables HFACTOR and WFACTOR.

* The SDV is similar to the program data vector (PDV) that is created by base SAS software when it compiles a DATA step.
The program data vector holds the values of the variables that are defined in the DATA step.



6 Testing Applications 4 Chapter 1

Figure 1.1 SCL Data Vector for a Typical Application

Testing Applications
After an SCL program compiles successfully, you can test it. For catalog entries that

use the TESTAF, AF, or AFA command, you can issue the command from either the
Source window or the Display window. You must use the AF or AFA command if a
program contains SUBMIT statements, or if you are testing a FRAME entry that is in a
library accessed with SAS/SHARE software. It is recommended that you issue the
SAVE command before issuing the AF or AFA command.

SCL programs for FSEDIT and FSVIEW applications run when you return to the
FSEDIT or FSVIEW window.

Debugging Programs
SCL includes an interactive debugger for monitoring the execution of SCL programs.

The debugger enables you to locate logical errors while a program is executing. To use
the debugger, issue the DEBUG ON command before compiling. Then either use the
TESTAF command or use the AF or AFA command with the DEBUG=YES option to
run the entry under the debugger. To deactivate the SCL debugger, issue the DEBUG
OFF command followed by the COMPILE command. For more information about the
SCL debugger, see Chapter 13, “The SCL Debugger,” on page 191.

Saving Programs
After you create an SCL program, use the SAVE command to save it. You should

also use SAVE /ALL to save the entry before issuing a TESTAF command if the entry
uses CALL DISPLAY to call itself. Also be sure to save all other open entries before
issuing a TESTAF command so that CALL DISPLAY and method calls will execute the
most recent versions of your SAS/AF entries.

Optimizing the Performance of SCL Code
You can optimize the performance of SCL programs in your applications with the

SCL analysis tools.



Introduction to SCL 4 Using Other SAS Software Features in SCL Programs 7

The following table lists the available tools and provides information about when you
might want to use each tool.

Use the... when you want to...

Coverage Analyzer monitor an executing application and access a
report that shows which lines of SCL code are
not executed during testing.

List Diagnostic Utility monitor an executing application and access
reports on the use of SCL lists, including any
lists that are left undeleted.

Performance Analyzer monitor an executing application and identify
any bottlenecks in the application’s SCL code.

Static Analyzer access reports that detail SCL code complexity;
variable, function, method and I/O usage; and
error and warning messages.

To display a menu of the SCL analysis tools, enter sclprof at the command prompt.
For detailed information about using these tools, see the SAS/AF online Help.

Using Other SAS Software Features in SCL Programs

SCL supports most of the features of the base SAS language. Some base SAS
features are directly supported by SCL. Other base SAS features have equivalent
features in SCL, although there may be small differences in functionality. For example,
the IN operator in SCL, returns the index of the element if a match is found rather
than a 1 (true).

Chapter 16, “SAS Component Language Dictionary,” on page 249 provides entries for
elements that have different functionality in SCL programs. The differences are
summarized in “Using SAS DATA Step Features in SCL” on page 78.

Although SCL does not provide an equivalent for every command that is available
under your operating system, it does provide features that interact directly with SAS
software and with host operating systems. For example, you can use the SUBMIT
statement to access other features of SAS software, and you can use the SYSTEM
function to issue host operating system commands. SCL also supports the SAS macro
facility. For more information about these features, see Chapter 7, “Using Other SAS
Software Products,” on page 77.



8 Using Other SAS Software Features in SCL Programs 4 Chapter 1


