
1

C H A P T E R

1
Oracle Rdb Chapter, First Edition

Introduction 1
Version 7 and Version 8 Information 2

Data Set Options: Oracle Rdb Specifics 2

Multiple-User Update Access to Oracle Rdb Tables (RDBLOCK=) 2

Evaluating Constraints at Commit Time (RDBCONST=) 3

ACCESS Procedure: Oracle Rdb Specifics 4
ACCESS Procedure Statements for Oracle Rdb 4

DBLOAD Procedure: Oracle Rdb Specifics 5

DBLOAD Procedure Statements for Oracle Rdb 5

Statements 6

SQL Procedure Pass-Through Facility: Oracle Rdb Specifics 7

Arguments to Connect to Oracle Rdb 7
Requesting READONLY Access to an Oracle Rdb Table Using the Pass-Through Facility 8

Oracle Rdb Naming Conventions 9

Oracle Rdb Data Types 9

String Data 9

Numeric Data 10
Date-Time Data 11

Oracle Rdb Nulls 11

ACCESS Procedure Data Conversions 11

DBLOAD Procedure Data Conversions 12

Introduction
This chapter introduces SAS System users to Oracle Rdb, which is a relational

database management system (DBMS). It accompanies and should be used with SAS/
ACCESS Software for Relational Databases: Reference (order #57204).*

This chapter focuses on terms and concepts that help you use the SAS/ACCESS
Interface to Oracle Rdb. It describes the Oracle Rdb-specific options and statements
that you use in the ACCESS and DBLOAD procedures and in the SQL procedure’s
CONNECT statement.

For general information about database management systems, including information
for the database administrator about how the SAS/ACCESS interfaces work, refer to
Appendix 2, "DBMS Overview and Information for the Database Administrator". For
more information on an Oracle Rdb concept or term, see your Oracle Rdb documentation.

* Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

2 Version 7 and Version 8 Information 4 Chapter 1

Version 7 and Version 8 Information
The SAS/ACCESS LIBNAME and data set options in Version 7 and Version 8 of

SAS/ACCESS software do not apply to Oracle Rdb at this time. However, you can use
the ACCESS and DBLOAD procedures to access or load DBMS data. You can still
create SAS/ACCESS descriptor files and PROC SQL Pass-Through queries and views.
There are some changes and enhancements to the ways in which these features work:

� The SAS Explorer window replaces the ACCESS window and its functionality.
� The ACCESS procedure has been enhanced by the UPDATE statement, which

enables you to edit and update access descriptors and view descriptors.

Data Set Options: Oracle Rdb Specifics
The SAS/ACCESS data set options for Oracle Rdb are as follows:

RDBLOCK= on page 2
RDBCONST= on page 3

Multiple-User Update Access to Oracle Rdb Tables (RDBLOCK=)
In Releases 6.08 and later of the SAS System, you can use the RDBLOCK= data set

option, which allows multiple users to update data in a table concurrently. This SAS
option can be used only with the FSEDIT procedure.

If you omit the RDBLOCK= option, the default value, RDBLOCK=NOCONCUR, is
used. A table-level lock is put on the table, which means that only one user can update
the table at a time.

Specify RDBLOCK=CONCUR for multiple-user, concurrent update access when you
use a view descriptor that updates Oracle Rdb data. For example:

proc fsedit data=vlib.usacust(rdblock=concur);
run;

Note: This example references a previously created view descriptor named
VLIB.CUSTOMER. 4

In this example, an update or deletion of a row locks that row (or record) until the
commit is issued, but the rest of the Oracle Rdb table remains accessible to other users
for additional updates or deletions. This is known as record-level locking.

If you specify a view descriptor in PROC FSEDIT and you are not allowed to update
a row, Oracle Rdb writes one of the following error messages to the SAS log:

� ERROR: Update failed. %RDB-E-LOCK_CONFLICT, request failed due
to locked resource.

REASON: Another user has locked this row in order to update it.
ACTION: You can wait until the user releases the lock, or you can type CANCEL

on the FSEDIT command line to cancel the update and advance to the next row.
� ERROR: Update failed. %SQL-W-NOTFOUND, No rows were found for

this statement.

REASON: Another user changed the values of the row after you read the values
that are displayed on your screen. The WHERE expression that the interface view

Oracle Rdb Chapter, First Edition 4 Evaluating Constraints at Commit Time (RDBCONST=) 3

engine appended to the Oracle Rdb SQL UPDATE statement (to ensure the data
integrity of your update) failed to find the appropriate rows to update.

ACTION: Type CANCEL on the FSEDIT command line to cancel the update.
Refresh the row by scrolling forward to the next row, then scroll backward to the
observation that you attempted to update.

Note: When RDBLOCK=NOCONCUR is in effect, updates, deletions, and insertions
are committed after you type the FSEDIT SAVE command and after you end the
FSEDIT procedure. When RDBLOCK=CONCUR is in effect, updates, deletions, and
insertions are committed after you type FSEDIT SAVE, after you end the FSEDIT
procedure, and whenever you scroll backward. 4

You can control the amount of time that the system waits for update access before it
provides an error message. To do so, set the logical lock timeout interval before
invoking SAS. For example, the following DCL command sets the lock timeout interval
to 5 seconds:

$define rdm$bind_lock_timeout_interval 5

Evaluating Constraints at Commit Time (RDBCONST=)
The RDBCONST= data set option enables you to override the Oracle Rdb default

action of evaluating constraints at commit time. This option has no effect on constraints
that must be evaluated at commit time.

The RDBCONST= option corresponds to the execution of the following Oracle Rdb
SQL statements:

SAS Option Value Oracle Rdb SQL Statement

RDBCONST=ON SET DEFAULT CONSTRAINTS ON

RDBCONST=OFF SET DEFAULT CONSTRAINTS OFF

The default setting is RDBCONST=OFF. This causes the constraint evaluation to be
deferred until commit time, as in Releases 6.06 and 6.07 of the SAS/ACCESS Interface
to Oracle Rdb.

When you use the default RDBCONST=OFF, a commit might not occur until several
rows of data have been entered. Be aware that if RDBCONST=OFF and you enter a
NULL value for a column that has been defined as NOT NULL, you are not notified of
your error until commit time. All of the rows that are part of the current commit batch
are rejected, and you must re-enter or modify all of the rows of data that you have
entered since the previous commit.

Setting RDBCONST=ON causes all of the affected constraints to be evaluated after
each row (or observation) is entered or updated. If your data violates a NULL
constraint, you are informed immediately, and only the current record is rejected.

When RDBCONST=ON is specified, the SET DEFAULT CONSTRAINTS ON
statement is executed immediately after you are connected to the database. It is
re-executed after each commit because the statement remains in effect for only one
transaction.

The following example shows how to specify the RDBCONST= option in a view
descriptor that is based on Oracle Rdb data.

proc fsedit data=adlib.allinv(rdbconst=on);
run;

4 ACCESS Procedure: Oracle Rdb Specifics 4 Chapter 1

Note: This example references a previously created view descriptor named
VLIB.INVOICE. 4

ACCESS Procedure: Oracle Rdb Specifics
Chapter 9, "ACCESS Procedure Reference" describes the generic options and

procedure statements that enable you to create access descriptors, view descriptors, and
SAS data files from DBMS data. The following section describes the DBMS-specific
statements that you use in the SAS/ACCESS Interface to Oracle Rdb.

ACCESS Procedure Statements for Oracle Rdb
To create an access descriptor, you can use the DATABASE= statement, which is a

database-description statement for Oracle Rdb. Database-description statements supply
database-specific information to the SAS System. If used, the DATABASE= statement
must immediately follow the CREATE statement that specifies the access descriptor to
be created. The DATABASE= statement is optional.

Database-description statements are specified only when you create access
descriptors. Because Oracle Rdb information is stored in an access descriptor, you do
not need to repeat this information when you create view descriptors.

The syntax for other statements you use to create an access descriptor is provided
below. For complete descriptions of these statements and their uses, see Chapter 9,
"ACCESS Procedure Reference".

Note: Unlike other SAS/ACCESS products, the SAS/ACCESS Interface to Oracle
Rdb does not use the following procedure statements: USER= and PASSWORD=. 4

The SAS/ACCESS Interface to Oracle Rdb uses the following procedure statements
in interactive line, noninteractive, or batch mode:

PROC ACCESS <access-descriptor-options|view-descriptor-options>;

ASSIGN <=> YES|NO;
CREATE <libref.>member-name.ACCESS|VIEW <password-option>;
UPDATE <libref.>member-name.ACCESS|VIEW <password-option>;

DATABASE=<’>Oracle-Rdb-pathname<’>;
DROP <’>column-identifier-1<’><…<’>column-identifier-n< ’>>;
FORMAT<’>column-identifier-1<’><=> SAS-format-name-1

<…<’>column-identifier-n<’><=>SAS-format-name-n>;
LIST <ALL|VIEW|<’>column-identifier<’>>;

QUIT;
RENAME <’>column-identifier-1<’><=>SAS-variable-name-1

<…<’>column-identifier-n<’><=>SAS-variable-name-n>;
RESET ALL|<’>column-identifier-1<’><…<’>column-identifier-n<’>>;
SELECT ALL|<’>column-identifier-1<’><…<’>column-identifier-n<’>>
SUBSET selection-criteria;
TABLE=<’>Oracle-Rdb-table-name<’>

UNIQUE<=>YES|NO;

RUN;

Oracle Rdb Chapter, First Edition 4 DBLOAD Procedure Statements for Oracle Rdb 5

DATABASE=<’>Oracle-Rdb-pathname<’>;
The DATABASE= statement specifies the name and physical location of the Oracle
Rdb database. The name can be the operating-system-specific pathname of the
database or an OpenVMS logical name that points to the fully qualified Oracle
Rdb database name. The .RDB file extension is optional.

If you are accessing a remote database, you can specify the OpenVMS node
name as part of the OpenVMS pathname of the database:

DATABASE=<’><OpenVMS-net-node::> OpenVMS-pathname<’>;

The DATABASE= statement is optional. If you omit the DATABASE=
statement, the default action is to use the value of the OpenVMS logical name
SQL$DATABASE. For more information about SQL$DATABASE and accessing
remote databases, see your Oracle Rdb documentation.

Note: Double quotation marks cannot be used with this option. 4

The following example uses a DATABASE= statement for a remote database called
TEXTILE on the OpenVMS node ATLANTA.

proc access dbms=rdb;

/*create access descriptor */

create adlib.customer.access;
database=’atlanta::disk1:[root]textile.rdb’;
table=customers;
assign=yes;
rename customer = customer_number

firstorder = firstorder_date;
list all;

/*create usacust view */

create vlib.usacust.view;
select customer state zipcode name

firstorder;
subset where customer like ’1%’;

run;

DBLOAD Procedure: Oracle Rdb Specifics

Chapter 10, "DBLOAD Procedure Reference" describes the generic options and
procedure statements that enable you to create a DBMS table and to insert data in it.
The following section describes the DBMS-specific statements that you use in the
SAS/ACCESS Interface to Oracle Rdb.

DBLOAD Procedure Statements for Oracle Rdb
To create and load an Oracle Rdb table, you use the DBMS=RDB option and one

optional database description statement in the PROC DBLOAD step, DATABASE=. The

6 DBLOAD Procedure Statements for Oracle Rdb 4 Chapter 1

database description statement supplies database-specific information to the SAS
System.

The syntax for statements that you use to create and load an Oracle Rdb table is
provided below. For complete descriptions of these statements and their uses, see
Chapter 10, "DBLOAD Procedure Reference".

Note: Unlike other SAS/ACCESS products, the SAS/ACCESS interface to Oracle
Rdb does not use the following procedure statements: USER= and PASSWORD=. 4

The SAS/ACCESS Interface to Oracle Rdb uses the following statements in
interactive line, noninteractive, or batch mode.

PROC DBLOAD <DBMS=RDB> <DATA=<libref.>SAS-data-set> <APPEND>;
ACCDESC=<libref.access-descriptor>;
COMMIT=commit-frequency;
DATABASE= <’>Oracle-Rdb-pathname<’>;
DELETE variable-identifier-1<…variable-identifier-n>;
ERRLIMIT=error-limit;
LABEL;
LIMIT=load-limit;
LIST <list-selection>;
LOAD;
NULLS variable-identifier-1=Y|N<…variable-identifier-n=Y|N>;
QUIT;
RENAME variable-identifier-1=<’>column-name-1< ’>

<…variable-identifier-n =<’>column-name-n<’>>;
RESET ALL|variable-identifier-1<…variable-identifier-n>;
SQL Oracle-Rdb SQL-statement;
TABLE=<’>Oracle-Rdb-table-name<’>;
TYPE variable-identifier-1 = <’>column-type-1’

<…variable-identifier-n=’column-type-n’>;
WHERE SAS-where-expression;

RUN;

Statements

DATABASE=<’>Oracle-Rdb-pathname<’>;
indicates the name and physical location of the Oracle Rdb database where you
want to create the new table. The name can be the operating-system-specific
pathname or an OpenVMS logical name that points to the fully qualified Oracle
Rdb database name. The .RDB extension is optional. If you specify a database, it
must exist. If you do not know the names of your databases, contact your database
administrator.

If you are accessing a remote database, you can specify the OpenVMS node
name as part of the OpenVMS pathname of the database:

DATABASE=<’><OpenVMS-net-node::> OpenVMS-pathname<’>;

If DATABASE= is not specified, the default action is to use the value of the
OpenVMS logical name SQL$DATABASE. For more information about
SQL$DATABASE, see your Oracle Rdb documentation.

Oracle Rdb Chapter, First Edition 4 Arguments to Connect to Oracle Rdb 7

Note: Double quotation marks cannot be used with this option. 4

The following example creates a new Oracle Rdb table, EXCHANGE, from the
DLIB.RATEOFEX data file. An access descriptor ADLIB.EXCHANGE is also created,
based on the new table. You must be granted the appropriate privileges to create new
Oracle Rdb tables or views. This example also uses a DATABASE= statement for a
remote database called TEXTILE on the OpenVMS node ATLANTA.

Note: The DLIB.RATEOFEX data set is included in the sample data that is shipped
with your software. 4

proc dbload dbms=rdb data=dlib.rateofex;
database=atlanta::disk1:[root]textile.rdb;
table=exchange;
accdesc=adlib.exchange;
rename fgnindol=fgnindoll 4=dollarsfgn;
nulls updated=n fgnindoll=n 4=n country=n;
load;

run;

Note: Rdb has a 30–character limit on its database column names. Therefore, when
you load a SAS data set into Rdb, be sure SAS variable names are no longer than 30
characters. 4

SQL Procedure Pass-Through Facility: Oracle Rdb Specifics
Chapter 6, "SQL Procedure’s Interaction with SAS/ACCESS Software" describes the

generic PROC SQL statements that you use to connect to and disconnect from a DBMS,
to send DBMS-specific statements to the DBMS, and to retrieve DBMS data for your
SAS programs. The following section describes the Oracle Rdb-specific arguments that
you use in the CONNECT statement“Arguments to Connect to Oracle Rdb” on page 7.

Arguments to Connect to Oracle Rdb
CONNECT is an optional statement that can be used when connecting to Oracle Rdb.

Oracle Rdb has one database-connection-argument that you can specify in this
statement. It can also be used to connect to multiple Oracle Rdb systems.

CONNECT TO RDB <AS alias> <(DATABASE=<’>Oracle-Rdb-pathname< ’>;>

(DATABASE=<’>Oracle-Rdb-pathname<’>)
specifies the name and physical location of the Oracle Rdb database. The name
can be the operating-system-specific pathname or an OpenVMS logical name that
points to the fully qualified Oracle Rdb database name. The entire DATABASE=
argument must be enclosed in parentheses. The .RDB extension is optional.

If you are accessing a remote database, you can specify the OpenVMS node
name as part of the OpenVMS pathname of the database:

(DATABASE=<’><Oracle-Rdb-net-node::> OpenVMS-pathname<’>)

The DATABASE= argument is optional. If you specify a database, it must exist.
If you do not know the names of your databases, contact your database
administrator.

If the CONNECT statement or the DATABASE= argument is omitted, the
default action is to use the value of the OpenVMS logical name SQL$DATABASE.
For more information about SQL$DATABASE, see your Oracle Rdb documentation.

8 Requesting READONLY Access to an Oracle Rdb Table Using the Pass-Through Facility 4 Chapter 1

Note: Double quotation marks cannot be used with this option. 4

The following example connects to Oracle Rdb and sends it two EXECUTE
statements. The database name is TEXTILE, and it is located on an OpenVMS node
named ATLANTA.

proc sql;
connect to rdb

(database=atlanta::disk1:[root]textile.rdb);
execute (create view whotookord as

select ordernum, takenby, firstname,
lastname, phone
from orders, employees
where orders.takenby=employees.empid)

by rdb;
execute (grant select on whotookord to sasdemo)

by rdb;
disconnect from rdb;

quit;

Note: Rdb has a 30–character limit on its database column names. Therefore, when
you create an Rdb table using the PROC SQL EXECUTE statement, be sure the column
names are no longer than 30 characters. 4

Requesting READONLY Access to an Oracle Rdb Table Using the
Pass-Through Facility

The READONLY option is used in the CONNECT statement of the SQL Procedure
Pass-Through Facility. It enables you to use a PROC SQL view without locking other
users out of the table.

The option values are READONLY | NOREADONLY. The default value is
NOREADONLY. This example illustrates the option:

connect to rdb(database=atlanta::disk1:[root]
textile.rdb

readonly);

When you specify the READONLY option value, a SET TRANSACTION READ
ONLY command is executed after the connection to the database is established. This
option is useful if you want to create a permanent PROC SQL view that contains a
Pass-Through query. This view can then be used without locking other users out of the
table. For example, when you use FSBROWSE on the view, the data is read in a READ
ONLY transaction. The following example connects to Oracle Rdb and creates a view
using the READONLY option. The database name is TEXTILE, and is located on an
OpenVMS node named ATLANTA.

proc sql;
connect to rdb

(database=atlanta::disk1:[root]textile.rdb
readonly);

create view invoice as
select *

from connection to
(select * from invoice);

disconnect from rdb;
quit;

Oracle Rdb Chapter, First Edition 4 String Data 9

When you create a PROC SQL view, any arguments that you specify in the
corresponding CONNECT statement are stored also. Thus, when the PROC SQL view
is used in a SAS program, the SAS System can establish the appropriate connection to
the DBMS.

Oracle Rdb Naming Conventions
Oracle Rdb database objects that can be named include tables, views, columns,

indexes. Use the following Oracle Rdb naming conventions:
� A name must start with a letter.
� A name can be from 1 to 30 characters long.
� A name can contain the letters A through Z, the digits 0 through 9, the underscore

(_), and the dollar sign ($). (Although dollar signs are permitted in names, they
are also used in some operating system-supplied names. To avoid conflicts with
these names, you should not to use dollar signs in your table, view, column, or
index names.)

� Names are not case sensitive; for example, CUSTOMER is the same as Customer.
� A name must end with a letter or a digit.
� A name must not be an Oracle Rdb reserved word.
� A name must not be the same as another Oracle Rdb database object that has the

same type.

Oracle Rdb Data Types
Every column in a table has a name and a data type. The data type tells Oracle Rdb

how much physical storage to set aside for the column and the format in which the data
is stored. The Oracle Rdb data types are described in the following tables

For more information on these data types, see your Oracle Rdb documentation.

String Data

10 Numeric Data 4 Chapter 1

Table 1.1 String Data Types

Oracle Rdb SQL Description

CHAR(n) fixed-length column for character string data composed of 8-bit ASCII bytes
where n specifies the length of the string. Use an unsigned integer (n). If
you omit n , a 1-character column is created. Maximum n is 65,271.

VARCHAR(n) varying-length column for character string data composed of 8-bit ASCII
bytes, where n specifies the maximum length of the string. Use an
unsigned integer (n). Maximum n is 65,269 characters.

LONG VARCHAR varying-length column for character string data, which has 16,383
characters. LONG VARCHAR is equivalent to specifying VARCHAR(16,383).

Numeric Data

Table 1.2 Numeric Data Types

Oracle Rdb SQL Description

TINYINT(n)* a tiny integer (signed byte, 8 contiguous bits). Can store a
range of values from −128 through 127.

SMALLINT(n)* a small integer (signed 16-bit word). Can store a range of
values from −32,768 to 32,767.

INTEGER(n)* an integer (signed 32-bit longword). Can store a range of
values from −2**31 to (2**31)−1. You can abbreviate INTEGER
to INT in your program.

BIGINT(n)* a signed 64-bit quadword. Can store a range of values from
−2**63 to (2**63) −1.

FLOAT (n) a real (32-bit) or double precision (64-bit) floating-point
number, depending on the precision indicated in the positive
integer (n). If n is less than 25, FLOAT specifies a 32-bit
floating-point number. If n is 25 or greater, FLOAT specifies a
64-bit floating-point number. The maximum value for n is 53.
If n is omitted, FLOAT specifies a 64-bit floating-point number.

REAL a floating-point number (32-bit) with precision to 24 binary
digits.

DOUBLE PRECISION a floating-point number (64-bit) with precision to 53 binary
digits. (The way this data type is stored is the closest match to
the way that the SAS System stores its numeric data type;
therefore, numeric columns of this type require the least
processing when being accessed by the SAS System.)

* (n) represents a scale factor that indicates the number of places to the right of the decimal point,
and must be an integer in the range from 0 to 127.

Oracle Rdb Chapter, First Edition 4 ACCESS Procedure Data Conversions 11

Date-Time Data

Table 1.3 Date-time Data Types

Oracle Rdb SQL Description

DATE ANSI specifies a DATE that contains YEAR to DAY

DATE |DATE VMS specifies a timestamp that contains YEAR to SECOND

Oracle Rdb Nulls
Oracle Rdb has a special value that is called NULL, which signifies an absence of

information and is analogous to the SAS System’s missing value. By default, columns
allow NULL values.

Columns can be defined so that they cannot contain NULL data. For example, the
CREATE TABLE statement for the CUSTOMERS table defines the first column,
CUSTOMER, as CHAR(8) and NOT NULL. NOT NULL tells Oracle Rdb not to add a
row to the table unless the row has a value for CUSTOMER.

ACCESS Procedure Data Conversions
The following table shows the default SAS System variable formats that the

ACCESS procedure assigns to each Oracle Rdb SQL data type. To calculate some of the
SAS formats (for example, (5+n).n), see the explanation following the table.

Table 1.4 Default SAS System Variable Formats for Oracle Rdb SQL Data
Types—ACCESSProcedure

Oracle Rdb SQL Data Type SAS Variable Format*

CHAR(n) $n.n < 200

$200. n >= 200

VARCHAR(n) $n.n < 200

$200. n >= 200

LONG VARCHAR $200.

TINYINT 4.0

TINYINT(n) (3+n).n

SMALLINT 6.0

SMALLINT(n) (5 + n).n

INTEGER 11.0

INTEGER(n) (10 + n).n

BIGINT 20.0

BIGINT(n) (19 + n).n

12 DBLOAD Procedure Data Conversions 4 Chapter 1

Oracle Rdb SQL Data Type SAS Variable Format*

REAL E14.0

DOUBLE PRECISION E23.0

DATE DATETIME21.2

DECIMAL NUMERIC(n,n) Oracle Rdb SQL converts to other numeric type.
SAS/ACCESS supports the converted type.

LIST OF BYTE VARYING unsupported

datetime intervals unsupported

* constant + n.n in Oracle Rdb SQL data types is equivalent to w.d in SAS formats.

To determine how an Oracle Rdb SQL data type is formatted by the SAS System, use
the following conversion example, SMALLINT(n) to (5 + n).n :

SMALLINT(1) is equivalent to a SAS format of 6.1, or (5 + 1).1
SMALLINT(2) is equivalent to a SAS format of 7.2, or (5 + 2).2
SMALLINT(5) is equivalent to a SAS format of 10.5, or (5 + 5).5

Thus, the value of n is added to the 5 and the value of n also replaces the decimal value.
If Oracle Rdb data falls outside valid SAS data ranges, you get an error message in

the SAS log when you try to read the data. For example, an Oracle Rdb SQL date
might not fall in the valid SAS date range.

DBLOAD Procedure Data Conversions
The following table shows the default Oracle Rdb data types that the DBLOAD

procedure assigns to each SAS variable format.

Table 1.5 Default Oracle Rdb Data Types for SAS System Variable
Formats—DBLOADProcedure

SAS Variable

Format Oracle Rdb SQL Data Type

IBw.d, PIBw.d INTEGER

w.d TINYINT(d)

w.d SMALLINT(d)

w.d INTEGER(d)

w.d BIGINT(d)

QUADWORD(d)

w.d DOUBLE PRECISION

$n. CHAR(n)

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8 (Oracle Rdb®

Chapter), Cary, NC: SAS Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8 (Oracle
Rdb® Chapter)
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–536–1
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

