
3

C H A P T E R

1
What Is SAS/CONNECT Software?

Introduction 3
Using SAS/CONNECT in a Client/Server Environment 3

Compute Services That Use RSUBMIT in the SAS Client/Server Environment 5

Compute Services That Use Remote SQL Pass-Through in the Client/Server Environment 6

Data Transfer Services in the SAS Client/Server Environment 6

Remote Library Services in the SAS Client/Server Environment 7
Direct Messaging Services in the SAS Client/Server Environment 8

Indirect Messaging Services in the SAS Client/Server Environment 9

How SAS/CONNECT Works with the SAS System 10

Introduction
SAS/CONNECT software is a SAS-to-SAS client/server toolset. SAS/CONNECT

provides users and applications developers the ability to manage, access, and process
data in a distributed environment by enabling you to

� direct processing to a remote data source and get results back locally.
� develop local graphical user interfaces that process remote data sources.
� transfer disk copies of data.
� build integrated client/server applications.
� develop store-and-forward applications.
� write object-oriented applications that span platform boundaries.
� perform client/server based task scheduling.

This allows you to create a distributed environment that best utilizes your data and
hardware resources to satisfy your enterprise needs.

Using SAS/CONNECT in a Client/Server Environment
The client/server environment of SAS/CONNECT gives you access to files, hardware

resources, and SAS software on various remote hosts to use with a SAS session on the
local host.

You can connect to multiple remote SAS sessions, process applications, and access
data in any of the remote sessions or in your local SAS session. Processing and data
access can be performed asynchronously on a remote host as you continue processing on
your local host. This processing can be performed on a periodic basis using the SAS/
CONNECT agent scheduler.



4 Using SAS/CONNECT in a Client/Server Environment 4 Chapter 1

Having the ability to spread processing among remote resources, SAS/CONNECT
also provides the ability to design and develop applications that communicate directly
or indirectly by using message queues. Also, SAS/AF developers are no longer limited to
accessing objects only within their local environments. They can now distribute selected
portions of their encapsulated object frameworks across remote session boundaries.

The client/server capabilities of SAS/CONNECT also enable you to combine data
from two seemingly incompatible systems into one data set. For example, you can
access data in an ORACLE database on one system and in a DB/2 database on another
system and combine them on your local host.

With all SAS/CONNECT’s capabilities, you are able to use your computing resources
to their best advantage by distributing SAS processing to the most appropriate machine.

SAS/CONNECT provides several services to enable the development of distributed
applications:

Compute Services
give you access to all of the computing resources on your network by enabling you
to direct the execution of SAS programs to a remote host. The results and any
output generated by the remote execution is returned to the local SAS session. For
short running tasks, remote submits can be processed serially. This means that
control is regained after the remote processing is complete. For longer running
tasks, remote submits can be processed asynchronously so you can immediately
continue local processing.

Data Transfer Services
provide a method for moving a copy of the data from one machine to another
machine.

Remote Library Services
provide transparent access to remote data. The data resides in remote libraries
and moves the data through the network as the local execution requests it.

Messaging Services
give you the ability to design and implement applications that communicate by
sending data in messages. The message structure is completely user-defined.
Messaging Services can be further divided into direct and indirect messaging
services. Direct messaging is used to pass data between two active applications.
For example, direct messaging might be used when a remote application needs
data before processing can continue. Indirect messaging enables programs to
communicate indirectly by placing messages on queues. Therefore, the different
programs can run independently of each other.

Remote Objecting Services
give you the ability to process Frame objects between two SAS/CONNECT sessions.
Remote objecting extends the messaging capability by allowing SAS/AF developers
to distribute selected portions of their encapsulated object frameworks remotely.

Agent Scheduling Services
give you the ability to execute a series of SAS statements periodically or on a more
dynamic, on-demand basis. Agent scheduling can also be used to specify the
completion notification, to spawn additional jobs based on conditions, and to
produce alerts and reports.

Each set of services has a well defined set of benefits. By matching these
characteristics to the characteristics of your data and your application needs, you can
determine how best to combine these services to write the most efficient distributed
application. Most often, the best implementation of a distributed application
incorporates a combination of these services.



What Is SAS/CONNECT Software? 4 Compute Services That Use RSUBMIT in the SAS Client/Server Environment 5

Compute Services That Use RSUBMIT in the SAS Client/Server
Environment

Compute services take advantage of remote computing resources (hardware,
software, and data) to execute an application more efficiently by maximizing the use of
all computing resources. As Figure 1.1 on page 5 illustrates, these services enable you
to move some or all portions of an application’s processing to a remote machine.

Figure 1.1 Model of Compute Services That Use RSUBMIT Processing

You can:

� take advantage of remote hardware resources.

� utilize software available in the remote environment.

� interface with existing mainframe and other legacy systems, for example, by
building a single SAS program that contains statements that run locally and
statements that execute on multiple remote legacy hosts.

� perform remote tasks in the background (asynchronously) while processing locally.

� execute against the remote copy of the data.

� use RSUBMIT to remote-submit macro steps to the remote host, and then pass
return code information about the remote process to the local SAS session.

� execute graphics programs on the remote host, and display the graphics locally by
using the graphics capabilities of the local workstation, plotter, or printer.

The results of the remote processing are then returned to the local machine. This is
useful when the remote machine has hardware or software resources available to
perform the task at hand more efficiently. It can also be preferable if the amount of
data to be processed is too large to be moved to the local machine or if the data are
updated too frequently for a local static copy to be useful.

In addition, compute services allow you to submit statements to be executed
asynchronously by a remote host. Once submitted, control is returned to the local host
to allow you to immediately continue local processing. This gives you the ability to
increase productivity by processing in parallel with both a local and a remote SAS
session. Results from the remote asynchronous processing can be retrieved at your
request.



6 Compute Services That Use Remote SQL Pass-Through in the Client/Server Environment 4 Chapter 1

Compute Services That Use Remote SQL Pass-Through in the Client/
Server Environment

Remote SQL Pass-Through (RSPT) gives you control of where SQL processing
occurs. As Figure 1.2 on page 6 shows, RSPT allows you to pass SQL statements to a
remote SAS SQL processor by passing them through a remote SAS server. You can also
use RSPT to pass SQL statements to a remote DBMS by passing them through a
remote SAS server and a REMOTE access engine that supports pass-through.

Figure 1.2 Remote SQL Pass-Through Services

With RSPT you can:
� pass SQL statements to a remote DBMS to select data or execute statements to

modify, manipulate, and manage data. This includes creating DBMS views.
� pass SQL statements to SAS SQL to select data or execute statements to modify,

manipulate, and manage data. This includes creating SAS SQL views.

You can invoke RSPT through PROC SQL statements that are passed to the remote
server for execution in the server SAS session, or you can store SQL pass-through
statements in local SQL views.

Data Transfer Services in the SAS Client/Server Environment
As Figure 1.3 on page 7 illustrates, data transfer services provide a method for

moving a copy of the data from one machine to another machine. Subsequent local
processing takes place against the local copy of the data without generating further
network traffic until you decide to update the copy of the data with another transfer.



What Is SAS/CONNECT Software? 4 Remote Library Services in the SAS Client/Server Environment 7

Figure 1.3 Model of Data Transfer Services Processing

Data is transferred with the UPLOAD and DOWNLOAD procedures. You can
transfer SAS data sets, SAS catalogs, MDDB, FDB, DMDB, SQL views, entire SAS
data libraries, and external files.

Note: External files can be transferred in either text or binary format. 4

The data transfer capabilities enable you to
� automate both data or application distribution and centralized data collection.
� increase the robustness of your decision support environment by keeping a local

copy of your data, which is insulated from network failure.
� transfer multiple SAS files in a single step by using the INLIB= and OUTLIB=

options. This capability enables you to transfer an entire library or selected
members of a library in a single PROC UPLOAD or PROC DOWNLOAD step.

� specify certain entries in a catalog or certain members in a library that should be
transferred by using the SELECT and EXCLUDE statements.

� name a specific translation table to be used during a data set or a catalog transfer.
� use WHERE processing for dynamic data subsetting and SAS data set options

when transferring individual SAS data sets.
� replicate certain data set attributes when you transfer a data set.
� back up local files to a remote host.
� back up remote files to a local host.
� transfer collections of files (such as a partitioned data set, a MACLIB, or a

directory) between local and remote hosts.
� distribute files from one workstation to others by uploading to a remote host and

then downloading to other workstations that need the files.
� move SAS files between releases of the SAS System as well as across hosts.
� transfer catalog entries that contain graphics output by using a simple one-step

process.

Remote Library Services in the SAS Client/Server Environment
Remote library services (RLS) provides transparent access to remote data. The data

resides in remote libraries, and RLS moves the data through the network as the local
execution requests it. As Figure 1.4 on page 8 illustrates, a copy of the data is not



8 Direct Messaging Services in the SAS Client/Server Environment 4 Chapter 1

written to the local file system, and the data must pass through the network on any
subsequent use by the local processing system.

Figure 1.4 Model of RLS Processing

RLS gives you:
� transparent access to remote data.

� access to current data because no local copy is made.
� a reduction of disk space consumption because multiple copies of the data are not

created.
� the ability to run a local graphical user interface and process remote data.

Remote library services are enabled in the client/server environment by a REMOTE
engine that executes in the local or client SAS session and a server that executes in the
remote or server SAS session. The SAS procedures and DATA steps that execute in the
local session pass requests to access remote SAS files to the REMOTE engine. The
REMOTE engine communicates the requests for data to the server. The server then
administers the requests to SAS files on behalf of the local (client) SAS session.

Direct Messaging Services in the SAS Client/Server Environment
Messaging allows applications to communicate by sending each other data in

messages. Any action can be taken upon receipt of a message, and acknowledgments
can be returned to the sender if appropriate.

The direct-messaging facility allows basic and flexible message construction,
transmission, and notification services that span operating system and hardware
boundaries across the enterprise. Messages are free-form. Their structure, which is
defined by the applications developer, may range from a simple collection of variables to
complex hierarchies of SCL lists. Additionally, messages may include one or more
attachments that can take the form of SAS data sets or filtered subsets, catalogs or
catalog entries, MDDB, FDB, DMDB, SQL views, and external files.

Each message contains a message type field. This field is used to define the set of
message types that are meaningful to a particular program. When a program receives a
message with a known message type, it knows the layout of the data that is contained
in the message body and can take the appropriate action based on the values of the
data. Figure 1.5 on page 9 illustrates the basic structure of direct-messaging.



What Is SAS/CONNECT Software? 4 Indirect Messaging Services in the SAS Client/Server Environment 9

Figure 1.5 Basic Structure of Direct-Messaging

Platform B

. . .

100

200

1

2

Message Type

Message Type

Program 1 Program 2

Platform A

Direct messaging services can be used to
� develop and deploy multi-tiered distributed applications.
� separate and centralize business and data access to the server portion of the

application.
� develop single and/or multi-user server applications.
� segment your logic into individual distributed programs.
� execute individual programs of an application on the best host that meets your

data and resource requirements.
� isolate message transmissions to only those programs that require the information.
� allow for a simple, direct exchange of data.

Indirect Messaging Services in the SAS Client/Server Environment
SAS indirect messaging enables programs to communicate indirectly by placing

messages on queues in storage. Therefore, the pieces of your application can run
independently of each other, can run at different speeds and times, and can run without
a direct connection between them. Figure 1.6 on page 10 illustrates the basic structure
of indirect-messaging.

Indirect messaging provides a basic and logical means of communication. Programs
communicate indirectly by delivering messages to queues and by fetching from or
browsing messages in queues. The message queues are administered by a queue
manager. The queue manager is a server process that is responsible for allocating the
queues, maintaining access information for each of the queues, and administering the
messages that belong to each queue. Queues can be designated as permanent, which
means that the queue manager is responsible for storing the messages sent to this type
of queue and for maintaining their persistence until the messages are fetched.



10 How SAS/CONNECT Works with the SAS System 4 Chapter 1

Figure 1.6 Basic Structure of Indirect-Messaging

Program 2

Platform BPlatform A

Program 1

Queue 1Queue 2

Queue Manager

Queue 1

DOMAIN Server

. . .

Collection Manager

Queue Manager

. . .

Collection 1 Collection 2

Indirect messaging services provide:
� the ability to design the communicating programs of your distributed application

to run independently of each other with respect to time.
� a messaging-queue facility that is integrated with the SAS System and completely

portable.
� access to the message queue interface through SCL programs, the SAS DATA step,

and the SAS macro facility.
� a way for each program to be completely removed from the interface of any other

program by using indirect communication through message queues.
� the ability to execute different logic based on message receipt.
� a scheduling technique so programs can be run on different platforms or at

different times without affecting other programs in the application.
� reduced network maintenance in the event of a network failure by minimizing the

number of active connections, because queue-based programs never require a
direct connection.

� applications developers with the ability to focus on the business needs for the
application rather than the details of the network.

How SAS/CONNECT Works with the SAS System
SAS/CONNECT enables both direct and indirect connections between two or more

SAS sessions. Typically, each of these sessions is running on a different host. After the
connection is made, you have access to the services and resources available to both
sessions.

When you initiate a connection from a local SAS session to a remote host, you invoke
the SAS System on the remote host. This type of connection is required when you use
remote compute services or remote library services, perform data transfers, or use
remote objects. Connections are not required for messaging services or agent scheduling.

The terms remote and local refer to how you interact with a SAS session. These
terms are not related to the physical location of the host device. The SAS session in



What Is SAS/CONNECT Software? 4 How SAS/CONNECT Works with the SAS System 11

which you issue local commands is the local host. The SAS session to which you direct
your remote commands is the remote host. In addition, the term host is used to describe
any computer and operating system on which you can run SAS software.

The remote SAS session is not directly accessible. However, you can think of it as
running in a special mode. You can access it only through the SAS/CONNECT link
from your local host. All output and log messages produced by the remote session are
generally displayed in the local session.

To make the connection, SAS/CONNECT uses a communications access method.
There are a number of different access methods supported by SAS/CONNECT. Before
you can use SAS/CONNECT, you must configure your hosts for a supported
communications access method. Table 1.1 on page 11 identifies the communications
access methods that you can use to make a connection between a local and a remote
host.

Table 1.1 SAS/CONNECT: Valid Access Methods between Hosts

Local HostsRemote
Hosts CMS OpenVMSOS/2 OS/390 UNIX Win

NT
Win 95
Win 98

Win
32s

(V6
only)

Macintosh

(V6
only)

VSE

(V6
only)

CMS APPC

TCP/IP

TCP/
IP

TELNET

APPC

EHLLAPI

TCP/IP

APPC

TCP/
IP

APPC

TCP/IP

TELNET

APPC

EHLLAPI

TCP/IP

TELNET

APPC

CPIC

EHLLAPI

TCP/
IP

TELNET

TCP/IP APPC

OpenVMS TCP/IP TCP/
IP

TELNET

DECnet

TCP/IP

TELNET

TCP/
IP

TCP/IP

TELNET

TCP/IP

TELNET

DECnet

TCP/
IP

TELNET

DECnet

TCP/IP none

OS/2 APPC

TCP/IP

TCP/
IP

APPC

TCP/IP

NetBIOS

APPC

TCP/
IP

APPC

TCP/IP

APPC

TCP/IP

NetBIOS

APPC

TCP/
IP

NetBIOS

CPIC

TCP/IP APPC

OS/390 APPC

TCP/IP

TCP/
IP

TELNET

APPC

TCP/IP

TELNET

EHLLAPI

APPC

TCP/
IP

APPC

TCP/IP

TELNET

APPC

TCP/IP

TELNET

EHLLAPI

APPC

TCP/
IP

TELNET

EHLLAPI

CPIC

TCP/IP APPC

UNIX TCP/IP TCP/
IP

TCP/IP TCP/
IP

TCP/IP TCP/IP TCP/
IP

TCP/IP none



12 How SAS/CONNECT Works with the SAS System 4 Chapter 1

Local HostsRemote
Hosts CMS OpenVMSOS/2 OS/390 UNIX Win

NT
Win 95
Win 98

Win
32s

(V6
only)

Macintosh

(V6
only)

VSE

(V6
only)

Win
NT
Win 95
Win 98

APPC

TCP/IP

TCP/
IP

DECnet

APPC

TCP/IP

NetBIOS

APPC

TCP/
IP

APPC

TCP/IP

APPC

TCP/IP

DECnet

NetBIOS

APPC

TCP/
IP

DECnet

NetBIOS

CPIC

TCP/IP APPC

VSE

(V6
only)

APPC none APPC

EHLLAPI

APPC APPC APPC

EHLLAPI

APPC

EHLLAPI

CPIC

none APPC

To initiate and terminate a connection, you invoke the SIGNON and SIGNOFF
commands, respectively. Based on the access method that you use, these commands
execute a script or connect you directly to the remote host. A script is an external file
on the local system that contains special SAS statements that control the connection.
You can use one of the sample scripts that is provided by SAS Institute, a script that is
provided by your computing installation, or a script that you write on your own.

You can use SAS/CONNECT in interactive line mode and non-interactive mode, as
well as in the SAS windowing environment. Noninteractive mode gives you a way to

� perform daily or nightly automated backups.
� initiate transaction processing to a master database at a specified time each day.
� centralize and automate data and report distribution to workstations in a network.
� centralize and automate data collection from workstations in a network.


