
Chapter 1
Screen Design for FRAME Entries

1.1 Overview 2

1.2 Widgets 2
1.2.1 The Types of Widgets 3
1.2.2 How Many Widgets Can Fit on a Screen? 5
1.2.3 Listboxes 5
1.2.4 Prompting Widgets 6
1.2.5 Objects from Other Applications 6
1.2.6 Popmenus 6
1.2.7 Modifying Objects at Run Time 7
1.2.8 Using the _FEEDBACK_ Method with Extended Text Entries 8

1.3 Screen Layout and Data Flow 13
1.3.1 Automatic Ending on Execution of Commands 13
1.3.2 Navigating Around Objects on FRAME Entries 18
1.3.3 Initial Field Placement 21
1.3.4 Insert Mode 22
1.3.5 Hidden, Grayed, and Swapped Out Fields 22
1.3.6 Placement of Action Widgets on the Screen 26
1.3.7 Tool Tips 30

1.4 Screen-Related Issues 39
1.4.1 The Size of Our Screens 39
1.4.2 Logos and Logo Placement 40
1.4.3 What is a Menu? 40
1.4.4 Fonts 41
1.4.5 Storing User Choices 42

1.5 Displaying Messages 43
1.5.1 Designing Systems to Avoid Error Conditions 43
1.5.2 Messages for Multiple Fields 44
1.5.3 Error Message Layout 45
1.5.4 Unmodified Fields 46
1.5.5 Difficulties with Error Processing and Screen Design 46
1.5.6 Informing Users about Long-Running Tasks 48

1.6 The HELPMODE Command 49
1.6.1 What is HELPMODE? 49
1.6.2 Starting HELPMODE 49
1.6.3 What If No Help is Available? 49

1.7 Summary 52

Revised Stanley Chapter 1 10/19/98 6:02 PM Page 1

1.1 Overview
This chapter presents some ideas for designing screens used with FRAME
applications. These ideas are a combination of tried and tested techniques,
my ideas and those of others that I have found work in practice. The code in
this chapter allows you to use a set of tools and ideas immediately in your
applications.

GUI development is different from the old menu-driven “select a number
and be branched off somewhere to fill out a couple of fields” system. A GUI
is not just a pretty face; it is also the first and often only thing that forms a
user’s opinion of a system.

Here is a statement worth considering when building a GUI screen:

O
Users don’t care what happens behind the scenes. They don’t
care about case tools, traditional structured programming, or
object-oriented techniques. As far as they are concerned, the
system is the GUI that they interact with.

Few developers are trained to develop screens that are ergonomic. We
know that if the user clicks a certain box, certain events must happen, and we
code those events with relish. How much thought do we put into whether
the user can easily use the screens we create? Who uses our systems, and
what right have we to dictate to the end user how their system interface will
look? When developing GUI applications in an organization, we should work
to accepted organization standards and involve users in determining the look
and feel of the screen.

1.2 Widgets
We can add extra widgets at run time by creating dynamic objects using the
CLASS class _NEW_ method. The ability to swap regions in and out also
allows additional widgets to be viewed in an application without having them
on screen (hidden, grayed, or visible). From Release 6.12 on, the TAB LAYOUT
object allows us to place practically any number of objects in a FRAME
without making the screen cluttered.

As GUI designers, we need to maximize visual impact as well as provide users
with a screen that suits their work habits and methodologies. If a user requires
many fields on a screen and regularly works with all that data, then we maxi-
mize the user’s ability to carry their job out by having all those fields on screen.

2 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:02 PM Page 2

If they regularly work with a few fields that are physically divorced from an
aspect of their job that uses other fields, then putting all the fields together
may be confusing.

There’s only one hard and fast rule. Get the users to help design (or com-
pletely design) the GUI. We are just here to make their job a bit easier, not
to impose our interpretations of how we think they work. At the very least,
create a prototype and have the user review it.

1.2.1 The Types of Widgets

An object class is a template like a push button. We create a region using the
mouse to drag out a rectangular box and fill it with a particular object class.
These regions are called widgets.

A widget is a type of object. The other type of object is called non-visible or
non-widget. Non-visible objects are not seen by the user and do their work
behind the scenes. These are not referred to as widgets.

Push buttons take a bit of extra space but are a fairly standard way of pre-
senting any sort of clickable selection. They can look at bit disjointed when
you have different sized ones together, consequently it’s not unusual to see
buttons of a standard size that contain varying amounts of white space.
Note that push buttons require an extra character on all sides of the visible
button. Don’t use push buttons to display non-clickable information.

Icons are considered more graphically pleasing because they include a picture.
You are limited in your selection of icons. You can define your own, but it is a
lengthy task and defeats the point of rapid applications development. Consult
“Creating User-Defined Icons to Use with the SAS System” in Observations
(Second Quarter 1994). You can only use SAS fonts with this object.

Text entries aren’t intended for command driving, however, you can associ-
ate a command that is executed when the field is modified with a text entry
object. You can make text entries look like buttons. I often use a border
around them, as the region is not always obvious, especially if the pad charac-
ter is blank. This object is irritating with its insistence on not permitting use
of the first and last apparent character position. You can only use SAS fonts
with this object.

Graphics text can be used just like text labels, but you can change the type
font to make them look nicer, and they are graphical rather than character.
You can also cram different lengths of text into the same size boxes. Try to
avoid this as it can look awful! You can only use SAS/GRAPH fonts for this
object class.

Chapter 1: Screen Design for FRAME Entries 3

Revised Stanley Chapter 1 10/19/98 6:02 PM Page 3

SAS/GRAPH and IMAGE widgets let you use as small a region as you like
because the picture is scaled to fit. Be careful — you can display an unintelligi-
ble picture: something created at 640X480 and displayed at about 40X40 can’t
maintain all the information it started with. The more pictures you use, the
longer it will take for your application window to open and redraw. You can
use region attributes to make GRAPH and IMAGE widgets resemble a button.
Image objects maintain the picture better than GRSEGs, however, the image
will not necessarily fill the whole region if you use the KEEP ASPECT RATIO
attribute; if you don’t use that attribute, the image may be distorted.

Image icon is an image with text attached. It is different from an icon
because you can combine a picture with text. You can use operating system
fonts for the text.

Toolbars are a collection of images or text all under one region. I like using
these as I can define a whole set of buttons easily. Toolbars allow you to mix
text and graphics. You can use operating system fonts for the text.

Extended text entries are a graphical form of text entry. They accept char-
acters as input, but the object is inherently graphical, allowing it to be moved
on a pixel basis rather than a character basis. Extended text entries only
accept character input and can use operating system fonts rather than SAS
system fonts. This object is powerful in its ability to allow the entry of a char-
acter (without an ENTER) to be an event that drives a method called _FEED-
BACK_. You can have code running as the user types. For example, you could
ask the user to enter some text and have the _FEEDBACK_ method display
a listbox that displays only the records in a dataset that match the currently
entered text.

Input fields are a simple input mechanism. They are a composite widget,
utilizing an extended text entry for the actual data input. They offer the abili-
ty to use formatted input and display.

Composite widgets are a special type of widget that is based on multiple
classes. An example is the image icon, which is built from more than one
object class. If you use cursor tracking with composite widgets, you may need
to switch on the push button region attribute because the region may only
track on the border otherwise.

TAB LAYOUT objects arrived with Release 6.12. They have the inherent
ability to place many objects in a FRAME, while only displaying the ones on
the currently selected tab. I think this object should be used extensively; it
allows an application to group tasks simply and elegantly.

4 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:02 PM Page 4

1.2.2 How Many Widgets Can Fit on a Screen?

FRAME entries make it easy to forget that we can call up other FRAME entries
to do additional tasks. Its easy to see some spare space and put another field in
it. Question whether the overall impact of the screen is improved by doing
that or whether calling another entry would be better. My experience is that
I often get carried away with the ability to get everything in one place, and I
have to go back and re-examine the screen when I run TESTAF on it.
However, with the TAB LAYOUT object my whole approach to screen design
has changed, and the cluttering that can result in FRAMES is minimized.

A related issue is the choice of which screen resolution to use during devel-
opment. Use the lowest common denominator. If your site has predominantly
640X480 screens with 16 colors, don’t develop at 1024X780 with 16 million
colors. 640X480 with 256 colors is a good size. Be aware of and guided by
your client’s hardware.

Attachments are a feature of FRAME entries intended to give developers
control over the resizing of objects in relation to other objects and the
FRAME master region. You can use attachments to maximize your ability to
run an application on different screen sizes.

I find attachments work best when all your objects are graphic based. You
can resize a FRAME master region so that character-based objects disappear
off the edge of the FRAME because they cannot be shrunk beyond a certain
size. In particular with push buttons, you may find that graphic image icons
work better than attachments.

1.2.3 Listboxes

Make extensive use of listboxes to aid users with data entry. Listboxes used
in this manner are often known as a component of data driven software
because, instead of making the user enter a value and possibly get it wrong,
the user is given a list of items to select from.

Remember that a LISTBOX object contains the entire set of listbox items in
the object. The listbox items exist in memory while the listbox exists. You can
quite easily run out of memory if you use listboxes that have a lot of items.

Don’t give users listboxes with so many items that they become counter-
productive. As a rule of thumb, I try to avoid using listboxes with more than
three to four screens of scrolling.

Chapter 1: Screen Design for FRAME Entries 5

Revised Stanley Chapter 1 10/19/98 6:02 PM Page 5

1.2.4 Prompting Widgets

A prompting widget is one that contains a message such as ‘Please Enter Your
Name’. Instead of using a prompting widget, the title area of a widget can
provide prompting if the widget is wide enough. You can use the entry field
with the title ‘Enter Name’ at the top, with an offset of three to position the
title. By not using that prompting widget, you gain a lot more usable screen
real estate. From Release 6.11 on, you can use operating system fonts in the
title area.

O
If you position the title as I have suggested in the title area, the
pixels between the title and the region are not part of the
region. If you click on these pixels, nothing happens. If you are
using cursor tracking, the pointer is in the FRAME master
region, not the widget region. It isn’t clear from documentation
that the area between the region and the title is not part of
the region, but that is the case. The title itself is part of the
region, and if you enable cursor tracking or define tool tips,
then these will function when the pointer is on the title.

1.2.5 Objects from Other Applications

With OCX and OLE, FRAME entries can use widgets that are external to the
SAS software base classes. OLE was in Release 6.10; OCX is in Release 6.11
onward. You can use an existing object stored in a Visual Basic object library
as if it were part of the SAS tool set. You don’t have to re-invent the wheel,
but you may have difficulties in migrating code because more than just the
SAS application will need to be tracked and moved.

Do not expect to achieve portability with OCX and OLE objects. You will
not in general be able to build an application using Windows objects and then
port it to UNIX or other non-Windows based systems.

1.2.6 Popmenus

You need to consider placement of popmenus, particularly where a selection
leads to another popmenu. I often code the popmenu start position to ensure
that I’m not too near the screen bottom, and also to ensure that the popmenus
that follow will appear in a logical place.

6 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 6

You can jazz up popmenus a little by judicious use of the SETLATTR function
to gray items. This allows information items to appear in the popmenu. For
example, I had a popmenu that could be selected by clicking on a filename in
an extended table field. The popmenu was to provide the three options Add,
Edit, and Delete. I added a header ‘Select an option’ followed by a blank item;
both the header and the blank item were set to inactive by using the SET-
LATTR function. At the end, I added a blank and a “do nothing” option; the
blank was inactive. It’s far from obvious to many users that the popmenu will
disappear just by clicking somewhere off the popmenu or by using the escape
key. I prefer to provide a “do nothing” option that closes the popmenu.

In SCL, you can use code like the following:

SELECT (popmenu(<listid>)) ;
when (1) ...
when (2) ...

otherwise ;
END ;

The OTHERWISE, which does nothing in this example, executes when the
“do nothing” item is selected.

1.2.7 Modifying Objects at Run Time

You can change some widget attributes at run time. For example, suppose you
have a screen that requests a user to enter something. On one invocation it
may be a SAS dataset name. On another it may be a SAS variable name. The
two have different lengths, the first being up to 17 characters, the second
being up to 8 characters.

It is not necessary to have different FRAME entries to enter the different types
of fields, nor is it necessary to use the same FRAME entry with extra spaces.
You can use the _RESIZE_REGION_ method at run time to set the size of the
field. For extended text entries, you could use the _SET_MAXCOL_ method,
which will always leave the widget the same physical length on screen. However,
it will restrict the number of characters that the user can type in.

You can also move regions and change the layout of a FRAME entry screen to
suit different circumstances. For example, you could allow your users to
define at install time whether they want EXIT/CANCEL/HELP buttons at the
bottom or arranged vertically down one side. Store the information in a
SASUSER profile, and access the button placement in your FRAME entry’s
SCL INIT section.

Chapter 1: Screen Design for FRAME Entries 7

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 7

You can create widgets at run time by using a feature of the CLASS class
called run-time instantiation. This uses the _NEW_ method. You can also
create non-widget classes in this way.

1.2.8 Using the _FEEDBACK_ Method with
Extended Text Entries

The following example creates a listbox at development time but hides it
until the user wants to use it. The listbox contains a list of items that match
the data typed into an extended text entry. There is a checkbox that the
users check if they require assisted entry in an extended text entry. A listbox
appears, and the extended text entry’s _FEEDBACK_ method is overridden
to assist with the data entry.

The BUILD mode screen is shown in Figure 1. It consists of an extended text
entry (called REQUEST) surrounded by a container box that provides a bor-
der. Within the container box, under the extended text entry, is a listbox
(called PROMPTR). Note the checkbox with the text ‘Assisted Entry On’. The
checkbox is called ASSIST.

Figure 1: Development Screen with Listbox

8 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 8

When the application starts, the listbox is hidden. If the user checks the
‘Assisted Entry On’ check box, the listbox appears and displays the data where
the characters typed into the extended text entry match the first letter of the
listbox items. The assisted entry uses a dataset called SASHELP.COMPANY.

A sample screen is shown in Figure 2. In this figure, the user has switched on
assisted entry and has entered an S in the extended text entry. The listbox
displays only the items that start with an S.

Figure 2: Run-Time Screen with Listbox

When the user selected the check box, the code allowed the _FEEDBACK_
method to execute, causing each keystroke to run the method. Checking it
again will switch off the keystroke feedback.

The checkbox label has changed in Figure 2. It now includes a tick (✓) in the
box to indicate that it is presently selected (switched on). Checking it now
would switch off the assisted entry. The tick is platform dependent. Under
UNIX Solaris, for example, it is a filled in diamond shape.

Chapter 1: Screen Design for FRAME Entries 9

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 9

The SCL code associated with this FRAME entry is as follows:

10 Solutions for Your GUI Applications Development

Place the cursor in
the extended text
entry, hide the
list box that is
used for prompting,
and switch off
feedback mode.

This is the labeled
code for the
checkbox. Start by
finding the current
state of the
checkbox.

If the assisted
entry is being
switched off, hide
the prompting
object, switch off
feedback mode,
place the cursor in
the extended text
entry and close the
data set used for
prompting.

Switch on
assisted entry.
Open the
dataset that the
listbox is based
on. Then switch on
feedback mode and
display the listbox.

Place the cursor
back in the
extended text
entry.

length rc 3 text $ 30 ;

init:
call notify(‘request’,’_cursor_’) ;
call notify(‘promptr’,’_hide_’) ;
call notify(‘request’,’_set_mode_’,’NONE’) ;
call notify(‘request’,’_set_instance_method_’,’

feedback’,
‘sasuser.book16.methods.scl’,’fback’) ;

return ;
assist:

if assist eq ‘OFF’ then do ;
call notify(‘promptr’,’_hide_’) ;
call notify(‘request’,’_set_mode_’,’NONE’)
call notify(‘request’,’_cursor_’) ;
if dsid(‘sashelp.company’) then

rc=close(dsid(‘sashelp.company’)) ;
return ;

end ;

dsid = open(‘sashelp.company’,’i’) ;
call notify(‘request’,’_set_mode_’,’ALWAYS’) ;
call notify(‘promptr’,’_unhide_’) ;

call notify(‘request’,’_cursor_’) ;

1

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 10

This is an unusual way to close a dataset. In this example, the dataset is
closed each time the user switches off assisted entry. By the time we get to
TERM, the dataset may or may not be open. However, the CLOSE function
only removes the association between the DSID and the dataset; it does
not set DSID back to missing or zero. Thus a statement such as

rc = close(dsid) ;

or
if dsid then rc = close(dsid) ;

is likely to fail at some point because the DSID may not be associated
with the dataset. A sure way to find out if the dataset is still open is to
use the DSID function as I did above.

Now code the _FEEDBACK_ override. Given the above instance method def-
inition, this code would go into SASUSER.BOOK16.METHODS.SCL.

Chapter 1: Screen Design for FRAME Entries 11

Check if there is
already text in the
extended text
entry. If there is,
force execution of
the feedback method
to set the listbox
up correctly.
Otherwise,
populate the list
box with all
possible data.
Close the dataset
if it is open.

When a listbox
item is clicked,
the contents of the
listbox appear in
the extended text
entry

call notify(‘request’,’_get_text_’,text) ;
if text ne _blank_ then

call notify(‘request’,’_feedback_’,’ ‘,.,.) ;
else call notify(‘promptr’,’_repopulate_’) ;

return ;

term:
if dsid (‘sashelp.company’) then

rc=close(dsid(‘sashelp.company’)) ;
return
promptr:

call notify(‘promptr’,’_get_last_sel_’,rc,
rc,text) ;

call notify(‘request’,’_set_text_’,text) ;
return ;

1

1

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 11

Users do not see the listbox until they switch on assisted entry by clicking
the checkbox. If they click on a listbox item, that item is moved into the
extended text entry.

12 Solutions for Your GUI Applications Development

This statement
stops the compiler
from issuing warning
messages.

To override a
method, follow
the directions
in the
SAS/AF Software:
FRAME Entry
Usage and
Reference.

Find out what the user
has entered so far.

Get the listbox
object ID so that
methods can be sent
to it from here.

Find the data set
that is the source of
the listbox.

Build a WHERE
clause to restrict
the listbox to
only the items that
match the text
already entered.
Note that this implies
that the input
entry matches the
dataset text, i.e.,
no formatting.

Repopulate the list
box to show just
the restricted
records.

length text $ 200 varname $ 8 rc 3 ;

self = _self_ ;

fback:
method event $ 20 line 8 offset 8 ;

call send(_self_,’_get_text_’,text) ;

call send(_frame_,’_get_widget_’,’promptr’,
list box) ;

dsid = dsid(‘sashelp.company’) ;

rc = where(dsid,’level5’ !! ‘ like “‘ !!
text !! ‘%”’) ;

call send(list box,’_repopulate_’) ;
endmethod ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 12

1.3 Screen Layout and Data Flow
One of the first factors to consider when planning your GUI screen is the
logical flow of data entry. Does TAB always take you to a sensible place?
Does ENTER cause processing that triggers errors in fields not yet filled in?
Should pressing ENTER automatically end the window and return to a parent
or should it spawn a child?

There are certain generally accepted rules of screen layout and processing flow:

• TAB should proceed through a group of related fields before going back
to unrelated fields. In FRAME, you achieve this by placing the related
objects inside a container box object.

• Fields that cannot be selected should be hidden, grayed, or protected.
In FRAME, you use the _HIDE_, _GRAY_, and _PROTECT_ methods to
do this.

• The cursor should be placed in the first data entry field on screen
when the GUI starts. However, on return to the window from a second
screen, the cursor should be where it was before the second screen
was displayed.

• Don’t do error processing for fields that haven’t yet been filled in unless
the user tries to advance to the next function. Display a message that the
field must be filled in if the user tries to leave the screen.

• Tabbing to a clickable field and pressing ENTER should trigger the same
processing as clicking on the field with the mouse.

1.3.1 Automatic Ending on Execution of Commands

In some applications, a button such as OK or END is highlighted when you
access the window. This highlighted button is the default button. When the
window opens, the cursor is placed in a different field. Pressing ENTER exe-
cutes the command that is associated with the button.

Such a logic flow is so tightly ingrained in Windows and OS/2 GUI screen
design and interface that it seems a glaring omission in FRAME entries.
When you do see a SAS window in SAS that associates a command with a
highlighted default button, it is usually an operating system dialog called from
inside SAS, not a FRAME feature. An example is when you select the FILE Ò
NEW Ò CATALOG option from the BUILD window.

Chapter 1: Screen Design for FRAME Entries 13

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 13

You can create a pushbutton that executes a default command in FRAME
entries, but you cannot highlight the border. Push buttons actually have a
much larger region than is visible on screen at run time. When you modify a
border, the region border, not the border of the visible pushbutton, is altered.

To create a FRAME entry that contains a default button and an associated
command, follow the layout in Figure 3 and add the SCL below.

Figure 3: Sample FRAME with Autorun End Button

You call this FRAME using CALL DISPLAY.

The fields and their non-default attributes for this screen are as follows.
The field listing follows the fields in the screen from top to bottom and left
to right.

Field name Description/Attributes

MESSAGE This displays a prompt message from the calling
program.
• Extended text entry
• Protected
• Blue text
• 40 characters
• Centered

USERFLD This is the text that the user enters.
• Extended text entry
• 200 characters length

14 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 14

Field name Description/Attributes

END This will end the screen when selected.
• Push button
• Label End
• Command processing END

CANCEL This will end the screen when pressed and always pass
blank back to the caller.
• Push button
• Label Cancel
• Command processing CANCEL

The SCL for this screen is as follows:

Chapter 1: Screen Design for FRAME Entries 15

These are called
ENTRY parameters
and are the means of
communication
between this screen
and the caller. The
fields are as follows:

PROMPT gives
this program a
prompt to display.

USERTEXT allows
the entered data to be
given back to the
caller.

INPUT_LENGTH
is the maximum
number of characters
that the user can enter.

EMPTY_ALLOWED
determines whether
a normal (non
CANCEL) exit should
allow a blank value to
be passed back.

Define a field to
tell us whether
various widgets have
been changed or
clicked.

entry prompt $ usertext $ input_length empty_allowed 3;

length select1 select2 3 ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 15

You can place this FRAME and code in any catalog and catalog entry you
desire.

In the above TERM code, I check if the field is blank and the
EMPTY_ALLOWED parameter indicates it should be filled in. Then I issue a
message to tell the user to fill it in. If you are happy to use the default SAS/AF
message when a required field is left empty, change the INIT section to add
the following:

if not empty_allowed then
call notify(‘userfld’,’_set_required_’,’Y’) ;

16 Solutions for Your GUI Applications Development

Display the prompt.

Set maximum entry
length.

Default user entry to
blank.

Set cursor on user
entry.

Allow user entry to
be tabbed to.

If a CANCEL, just
exit after emptying
the user entry field.

Get entered text. If
it is blank and the
caller has specified
it must not be, issue
an error and continue.

Check if the user
pressed END or
CANCEL. If not, force
an END command.This
permits the ‘autoend’
when they press ENTER
on the USERFLD.

init:
call notify(‘message’,’_set_text_’,prompt) ;

call notify(‘userfld’,’_set_maxcol_’,
input_length) ;

call notify(‘userfld’,’_set_text_’,’ ‘) ;

call notify(‘userfld’,’_cursor_’) ;

call notify(‘userfld’,’_set_tabbable_’,’on’) ;
return ;

term:
if _status_ eq ‘C’ then do ;

usertext = _blank_ ;
return ;

end ;

call notify(‘userfld’,’_get_text_’,usertext) ;
if not empty_allowed & usertext = _blank_ then do ;

status = ‘R’ ;
msg = ‘ERROR: Data Entry Required Before END’ ;
return ;

end ;
return ;

userfld:
call notify(‘end’,’_is_modified_’,select1) ;
call notify(‘cancel’,’_is_modified_’,select2) ;
if not select1 and not select2 then call execcmd(‘end’)

;
return ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 16

This allows SAS/AF to track that the required field is entered and issue its
own message if it is not entered when you try to exit the FRAME. In this
case, add the following in the TERM section:

if _status_ eq ‘C’ then usertext = _blank_ ;

This FRAME entry is a called program. This is an example of using OOP tools
(the NOTIFY routine and methods) in FRAME to implement a standard SCL
programming task. You do not have to create objects, override methods, or
understand all about instance variables to use FRAME entries.

An example program that uses this FRAME follows. Place the program in an
SCL entry, compile, and execute.

length paper $ 25 ;

init:
call display(‘runok.frame’,’Enter paper type’,paper,

8,0) ;
sysrc = sysrc(1);
put paper= sysrc=;

return ;

The value of zero for the EMPTY_ALLOWED parameter means that the user
cannot END from the screen without entering some text in the USERFLD.
The user can, however, CANCEL. Any other value for EMPTY_ALLOWED
will allow an empty string to be passed back even if END is selected or if
ENTER is pressed with the cursor on USERFLD.

The SYSRC(1) function is a special case of the SYSRC function. It permits the
caller to determine whether the FRAME executed in the CALL DISPLAY
was exited via END or CANCEL. If SYSRC(1) returns 0, CALL DISPLAY was
exited via END; if –1 is return, the exit was via CANCEL.

It looks as though it would be simpler to have an END in the Command
Processing attribute on USERFLD. However, if the user clicks the END or
CANCEL button, two commands would be executed. The first one will be
the USERFLD command, due to the processing order of fields. That would
END this FRAME. However, the second END or CANCEL is still waiting for
an opportune moment to execute. That moment will be when the next
screen kicks back into life, and the screen will end itself! That is why the END
command is pushed using EXECCMD only if neither the END nor CANCEL
buttons were selected.

Now you have a very useful tool for your development tool box, an auto-
matically ending entry that simulates the way many Windows and OS/2
dialogs work.

Chapter 1: Screen Design for FRAME Entries 17

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 17

1.3.2 Navigating Around Objects on FRAME Entries

By default, when the user tabs between fields, the cursor moves from top to
bottom and left to right. With FRAME entries, you can create groups of
fields. When the user tabs to a grouped set of fields, the tabbing order fol-
lows the same rule within the group. Tabbing from the last element of the
group moves to the next logical element on screen. Because the next logical
element may be above the last element of the group, care should be taken to
ensure that the user is not confused.

If a group of fields has a border, users will think that it is a grouped set of
fields, and they will process these fields as a group. To create a group of fields,
you must enclose the fields in a widget, such as the container box object.
A container box object creates a visual border and forces objects within that
border to all be tabbed before a tab takes you back to outside objects.

When you view a screen in development mode, using MAKE GROUP places
a border around widgets in a similar manner to a container box. When you
execute the screen, you see the border around the fields. However, only the
container box will cause the tabbing and processing order to change from the
default. The reason is that to change that order requires that the fields to be
processed as a group be enclosed within a widget. MAKE GROUP does not
create a widget, it is an editing tool only.

Try to avoid allowing users to tab to widgets that are not obviously selected.
For instance, if a user places a cursor on a SAS/GRAPH object or an IMAGE
object, the object may not appear to be selected. A GUI region should
scream “here I am” at the user. Changing the color and width of the border is
an ideal way to show where the selected graphics region is.

The _TAB_IN_ method executes whenever the user tabs to a widget. You
can use this method to change the borders of a graphic. The method is also
executed when you click on a widget and when you execute _CURSOR_ on
a widget.

Use the _TAB_OUT_ method to override the default tabbing order. The
_TAB_OUT_ method is executed whenever the user moves out of a widget.
You can use this method to send a _CURSOR_ method to another widget;
the user will be moved to that widget.

Suppose you have a FRAME entry that contains just two objects; each
object is an image. You can show the user clearly which image is active
by using the following code stored in a catalog entry named
SASUSER.TABOUT.OVERRIDE.SCL.

18 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 18

tabout:
method:

/*
set object border color to background and then
execute the SAS/AF _tab_out_ code. Use background
for the color so that the border cannot be seen.

*/

call send(_self_,’_set_border_color_’,’background’) ;
call super(_self_,’_tab_out_’) ;

endmethod;

tabin:
method:

/*
change the border color and then execute the
SAS/AF _tab_in_ default

*/

call send(_self_,’_set_border_color_’,’pink’) ;
call super(_self_,’_tab_in_’) ;

endmethod ;

Each labeled section is a method override. Method overrides allow us to replace
or enhance the default processing performed by SAS/AF software when an
object is selected. See the SAS Institute FRAME Application Development
Concepts manual for a discussion of methods and method overrides. What
method overrides essentially provide is a mechanism for adding our own
functionality to that already supplied (either by SAS Institute or through
another override).

By itself, the above code does nothing. Image objects must be linked with the
code so that an event triggered on one of the images causes the code to
execute. When a user causes a _TAB_OUT_ or _TAB_IN_ method to be
triggered by SAS/AF, the code will run when the code is linked to an object.

The method override uses the CALL SUPER method, as will most of the
overrides you build. CALL SUPER is used to execute the code that is sup-
plied with SAS/AF to provide the functionality of the object. Sometimes we
must call the SUPER method because it does something that FRAME cannot
do without (e.g., an _POSTINIT_ override will program halt if no CALL
SUPER is executed).

Chapter 1: Screen Design for FRAME Entries 19

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 19

To create the FRAME entry screen in Figure 4, the two objects are defined as
follows:

Attribute Object 1 Object 2

Name IMAGE1 IMAGE2

Image Name SASHELP.C0C0C. SASHELP.C0C0C.
HELP.IMAGE DISKLIST.IMAGE

Source Catalog entry Catalog entry

Region Attributes Set outline Set outline
to simple to simple

Figure 4: Two Image Objects in a FRAME

The SCL associated with the FRAME is as follows:

20 Solutions for Your GUI Applications Development

Make the images
able to be tabbed to.
By default, you
cannot tab to
graphical objects.

These next four lines
of code define the
method overrides
that will run when

init:

call notify(‘image1’,’_set_tabbable_’,’on’) ;
call notify(‘image2’,’_set_tabbable_’,’on’) ;

call notify(‘image1’,’_set_instance_method_’,
‘_tab_out_’,
‘sasuser.tabout.override.scl’,
‘tabout’) ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 20

Running the method overrides is automatic once the instance methods are
defined. The above SCL assumes that the override code created above is in
catalog SASUSER.TABOUT, but it can go any desired catalog and catalog
entry. Change the INIT section above to point the instance methods to the
correct entry.

Instance overrides occur at run time and are defined to an object in the
FRAME. By contrast, class overrides are defined at the time a class is built and
apply to every object belonging to that class that you place on a FRAME. An
instance override executes the code found at a labeled section. That code
does not need to be a method block – unless you wish to pass parameters.
The _TAB_IN_ override above could have been coded as follows:

tabin:
call send(_self_,’_set_border_color_’,’pink’) ;

return ;

1.3.3 Initial Field Placement

To avoid confusion, place the cursor on the first field that requires some
data entry.

Chapter 1: Screen Design for FRAME Entries 21

the code is linked
to an object. An
instance override
is a mechanism
that assigns to a
specific object at
run time the code to
run when a method
executes.

Position the cursor
on the first image
when the screen
starts. This also
triggers the
_TAB_IN_ override.

) ;

call notify(‘image2’,’_set_instance_method_’,
‘_tab_out_’,
‘sasuser.tabout.override.scl’,
‘tabout’) ;

call notify(‘image1’,’_set_instance_method_’,
‘_tab_in_’,
‘sasuser.tabout.override.scl’,
‘tabin’) ;

call notify(‘image2’,’_set_instance_method_’,
‘_tab_in_’,
‘sasuser.tabout.override.scl’,
‘tabin’) ;

call notify(‘image1’,’_cursor_’);

return

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 21

If you are creating a data entry screen that is intended to have data entered
from a form such as a questionnaire, design the screen to resemble the form
so that users do not get confused when they look back and forth between
the paper and the online form.

An example of poor initial field placement occurs in the Region Attributes Ò
Set Title popup prior to Release 6.11. The cursor is not placed on the first
field, which is for text entry; the cursor defaults to the OK push button. Most
of the time, the text entry field is the reason for accessing this window. No
description is highlighted to show where the cursor is placed.

1.3.4 Insert Mode

Under program control it is sometimes possible to switch insert mode on or
off. I prefer to turn insert mode off when a screen starts, but there is no
obvious way to do this in SAS if the user has pressed INS earlier in a SAS
session. On some platforms, the insert key can be turned off easily by issuing
the following command in the INIT section of the SCL:

call execcmd(‘winsert off’) ;

Refer to the SAS host companion for your platform for more information.

Use WINSERT OFF or equivalent functions if it exists on the platform you
are developing on. It seems pointless to allow typists and developers to access
a screen, with the cursor positioned ready to start typing, and be inhibited
immediately or a few characters into the text. Note that in Release 6.12
FRAME does not provide the ability to determine whether insert mode is one
or off (ditto nums lock and caps lock)

1.3.5 Hidden, Grayed, and Swapped Out Fields

FRAME allows you to control the fields that are available to users. You can
mask fields from users until the fields are needed. Likewise, you can gray fields
so that they can be seen but can’t be tabbed to or selected.

Don’t leave fields on screen and selectable if they are not relevant to the
current status of the screen. I prefer graying to hiding because it doesn’t leave
the screen with chunks missing.

22 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 22

You can swap regions in and out. Swapping is similar to the concept of virtual
memory. With virtual memory, when an application needs more memory, it
moves something that is not being used out of the way. In a FRAME entry’s
SCL, you can swap out an unused object and reuse the space with another
object.

Swapping has some distinct advantages over hiding or graying:

• You are not using screen real estate for a widget that has no meaning in
some contexts.

• You can swap a non-graphical region out and place another non-graphical
region in its place.

• You do not have to overlay regions to achieve the same result as you had
to in earlier releases. I have one application that displays either a listbox
or a graph, depending on user selection. The two regions physically over-
lap, and the development environment looks messy and is hard to work
with. Swapping allows one object to exist on screen and the other to be
swapped in as needed.

If you swap regions that are character based rather than graphical, you must
instantiate at least one region at run time. You cannot create both regions
at development time because they will use the same space, and you cannot
overlap text regions. Use the _SWAP_IN_ and _SWAP_OUT_ methods to
swap a widget between the physical and virtual frames.

In the following example, a FRAME contains a text entry (which is a non-
graphical widget) and a push button (which is also a non-graphical widget).
We want to display the push button and, if it is clicked, replace it with the
text entry. We cannot create them in the build environment because text
regions cannot overlap.

To accomplish the display and swapping of text entries, this example creates
one of the objects at build time and the other at run time. The run-time
code is quite complex because it explicitly tells SAS/AF the position, size,
name, and other attributes of the object.

First, create a FRAME with a push button. Name the push button object
CLICKME and assign to it some text.

Chapter 1: Screen Design for FRAME Entries 23

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 23

Figure 5: Push Button on a FRAME

Add the following SCL. In this example there are no overrides needed, as all
the code will be in the FRAME SCL entry.

24 Solutions for Your GUI Applications Development

Text field to store
user input in text
entry.

The REG list will
hold the
description of
where the text
entry will be
positioned.

It draws its
position from the
initial position of
the push button.

ATTR is the object
list that will
contain the data
about the text
entry object. Here
the list that is
needed to position
it on screen is
defined.

length mytext $ 30 ;

init:

reg = makelist();

call notify(‘clickme’,’_get_region_’,reg,’c’);

attr = makelist();
rc = setniteml(attr, reg, ‘_region_’);
rc = setnitemc(attr, ‘tbox’, ‘name’);

return ;

1

2

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 24

The _GET_REGION_ method is extremely useful anytime you want to
replace an object with another one or modify the size of a field. It
returns the region co-ordinates in the list passed as the first parameter
after the method name. An interesting practical example I have of this
is where I have several thumbnail-size graphics on screen. When the
user selects one, it explodes to full screen. I load the thumbnail region
co-ordinates to a list first and use them to restore the thumbnail to the
original size.

The text entry is given a name (i.e.,TBOX) when it is created simply so
that a labeled section can exist in the FRAME SCL code. You do not have
to give a name to an object created at run time. The INSTANCE function
will cause a unique object identifier to be generated, which is how
FRAME uniquely identifies all objects.

The text entry cannot be created by the INSTANCE function in the INIT
section. It is not possible to define a new text-based region, which will
occupy space used by an existing text-based region, until the existing
region is swapped out. Because it is not desirable to swap the push but-
ton out in the INIT section, the creation of the text entry is left until the
push button has explicitly been swapped out.

Chapter 1: Screen Design for FRAME Entries 25
defined.
When the FRAME
finishes, you need
to explicitly
remove the text
entry object (if it
exists) and the
lists associated
with it.
If the button is
clicked then swap
it out, check if
the text entry
exists (create it
is it doesn’t),and
display the text.

If the text entry
labeled section is
driven (i.e., the
widget text is
modified), then
display what the
user entered, swap
the text entry out,
and redisplay the
push button.

term:
if textbox then call send(textbox,’_term_’) ;
rc = dellist(reg) ;
rc = dellist(attr);

return ;

clickme:
call notify(‘clickme’,’_swap_out_’) ;
if textbox le 0 then

textbox = instance(
loadclass(‘sashelp.fsp.efield.class’),
attr);

call send(textbox,’_swap_in_’) ;
return ;
tbox:
call send(textbox,’_get_text_’,mytext) ;
put mytext= ;
call send(textbox,’_swap_out_’) ;
call notify(‘clickme’,’_swap_in_’) ;

return ;

3

1

2

3

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 25

1.3.6 Placement of Action Widgets on the Screen

Some functions, for instance EXIT (or END or OK), CANCEL, and HELP,
appear repeatedly in applications. In mainstream Windows applications, the
only standard for placement of these functions is in pull-down menus. EXIT
and CANCEL usually are found under the far left menu, which is often a FILE
menu; HELP is usually the far right menu. Some products also place these
functions on screen as push buttons, but position, text, and order tend to be
inconsistent. In FRAME system windows, you will find these functions at the
bottom or the right of the window.

For Windows users, much of the screen design and layout standard has been
taken from Microsoft applications and texts. Microsoft does not have a fixed
standard for many screen attributes; rather, they impart guidelines. For exam-
ple, action push buttons may be at the bottom or at the right of the screen. It
seems to be fairly well accepted that action buttons should appear at the
bottom of the screen. Don’t try to define a completely different layout–follow
acceptable guidelines as defined by other applications.

SAS Institute uses push buttons for END, CANCEL, and other functions in
their development software, but our end-users don’t necessarily use SAS, and
we don’t have to inflict buttons on them if they are used to pull-down menus
in other applications. However, I believe that push buttons are one the best
mechanisms for triggering action commands. They are intuitive and easy to
set up.

If you use widgets to identify actions such as END, be consistent from screen
to screen. Don’t swap the position of the END and CANCEL buttons in
different screens.

The developers of SAS/AF have extended the idea of a push button to an
object called the command push button. This object looks a bit different from
the usual push button, but behaves in the same way from the end user’s
perspective. The COMMAND PUSH BUTTON class is useful because it is
already populated with commands, and you can select the appropriate com-
mand during development.

You can make use of methods defined in the development environment to
assist with placement of standard buttons. The following is an adaptation of
code in the SAS Institute FRAME documentation (SAS/AF Software: FRAME Class
Dictionary,Version 6, First Edition, pg. 11–12 of FRAME Class chapter). This code
automatically places END and HELP buttons on every screen whenever you
enter a FRAME entry in build mode. It removes some of the tedium of placing
the buttons on every screen. It also adds the commands for the buttons, so

26 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 26

the entire creation of the objects is done automatically. The code forces the
names of the buttons to be the same in every entry. Buttons will not be
placed on the screen if any other widget is already in the FRAME entry. You
also have the option not to have the END and HELP buttons.

Subclassing is a way of customizing a SAS/AF class that is supplied by SAS
Institute. The customization could be very simple, like setting a certain color
for the background, or very complex. SAS/EIS objects are complex examples
of subclassed FRAME objects.

You can subclass any of the base FRAME classes, including the FRAME class
itself. By subclassing the FRAME class, you can modify the development envi-
ronment, as well as adding functionality to the run-time environment. Note
that widgets, as well as FRAMEs, have the ability to customize their BUILD-
time characteristics.

To use this code you first need to subclass the FRAME class. Follow these
steps. Open a catalog in BUILD mode before you begin.
1. Issue the command EDIT.NEWFRAME.CLASS.
2. Make the parent class SASHELP.FSP.FRAME.
3. Make the description My FRAME With END/HELP Buttons.
4. Click the METHODS attribute.
5. Locate _BPOSTINIT_ method, click it once, and enter a source entry

and SCL label to execute. Here I use NEWFRAME.SCL (you need to
add the LIBNAME and catalog), and the label is BPOST.

Enter the following SCL program. You can END out of the edit of
NEWFRAME.CLASS and enter the name of the SCL entry that you defined
to store the method, or click on the Actions Ò Edit Source Entry popup.
This SCL program uses instance variables to define attributes for an object
created in SCL using the _NEW_ method. SAS/AF Software: FRAME Class
Dictionary contains detailed information about instance variables, as well as
detailed information about the _NEW_ method.

Chapter 1: Screen Design for FRAME Entries 27

Set the label
to what you
called the
override in the
NEWFRAME.CLASS
entry.

Start by calling
SUPER. It is done
here to ensure the
FRAME setup is
complete.

bpost:
method ;

call super(_self_,’_bpostinit_’) ; 1

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 27

28 Solutions for Your GUI Applications Development

If any widgets
already exist, don’t
do anything at all
here.

Create lists to be
used to check if the
user wants the
fields.

Find the FRAME co-
ordinates.

Create the new co-
ordinates for the END
button. Set it just left
of center and 1 row
above the bottom.

Initialize the
instance variables
needed to create the
object.

Determine if the user
wants an END
button. If so, give it a
name of END (i.e.,
this will be the object
name), create it, and
use an SCL identifier
of BUTTEND so
that CALL SEND can
be used. Give it a
command of END.

call send(_self_,’_get_widgets_’,widget_list) ;

if listlen(widget_list) gt 0 then return ;

endcheck = makelist() ;
rc=insertc(endcheck,’Insert An END Button’,-1) ;
rc=insertc(endcheck,’Do Not Insert END Button’,-1);

helpcheck = makelist() ;
rc=insertc(helpcheck,’Insert A HELP Button’,-1) ;
rc=insertc(helpcheck,

‘Do Not Insert HELP Button’,-1) ;

call send(_self_,’_WINFO_’,’STARTROW’,sr) ;
call send(_self_,’_WINFO_’,’STARTCOL’,sc) ;
call send(_self_,’_WINFO_’,’NUMROWS’,nr) ;
call send(_self_,’_WINFO_’,’NUMCOLS’,nc) ;

center = (nc-sc)/2 ;
lry = nr - 1 ;
lrx = ceil(centre) - 2 ;
ulx = lrx - 10 ;
uly = lry - 4 ;

attr = makelist() ;
reg = makelist() ;
rc = setniteml(attr,reg,’_region_’) ;
rc = setnitemc(attr,’C’,’_justify_’) ;
rc = setnitemn(reg,ulx,’ulx’) ;
rc = setnitemn(reg,uly,’uly’) ;
rc = setnitemn(reg,lrx,’lrx’) ;
rc = setnitemn(reg,lry,’lry’) ;

select(popmenu(endcheck)) ;
when (1) do ;

rc = setnitemc(attr,’END’,’name’) ;
end = loadclass(‘sashelp.fsp.pbutton’) ;
call send(end,’_new_’,buttend,attr) ;
call send(buttend,’_set_label_’,’End’) ;

call send(buttend,’_set_cmd_’,’end’) ;
end ;
otherwise ;

end ;

2

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 28

Finally, exit back to the build environment.

There are a number of methods in FRAME that are used at BUILD time.
They allow us to modify the development environment. This one,
BPOSTINIT, is the BUILD-time POSTINIT method. It runs when we
open a FRAME for editing in the development environment, but after the
FRAME display and widgets have been built. We could not run this code
in a _BINIT_ override because the FRAME would not have completed
building at that time.

I use CALL SEND rather than CALL NOTIFY because this is an override
and thus has no associated FRAME entry. CALL NOTIFY can only be
used in SCL that runs in a FRAME. Although I created a name for each
of the new objects (END and HELP), those names are for use in the
application being built, not in the underlying development environment.

Create a new RESOURCE entry (named BUILD.RESOURCE) by copying
from SASHELP.FSP.BUILD.RESOURCE to your development catalog (or add
to an existing RESOURCE entry if you have one) and editing the RESOURCE
entry. Then do the following:

1. Select Actions ÒAdd and add your new FRAME class.
2. Click on the new class, select Actions Ò Set Active to make it the

default FRAME class used to create new FRAME entries.
3. Exit the RESOURCE entry.

O
If you do not name a RESOURCE entry BUILD.RESOURCE,
you need to use the RESOURCE command before editing a
FRAME to specify the name of the RESOURCE entry to use.

Chapter 1: Screen Design for FRAME Entries 29

Determine if the user
wants a HELP button.
If so, give it a name of
HELP (i.e., this will be
the object name),
create it, and use an
SCL identifier of
BUTTHLP so that
CALL SEND can be
used.Give it a command
of HELPMODE ON.

Give rid of the
temporary lists.

select(popmenu(helpcheck)) ;
when (1) do ;

rc = setnitemc(attr,’HELP’,’name’) ;
rc = setnitemn(reg,lrx+4,’ulx’) ;
rc = setnitemn(reg,lrx+14,’lrx’) ;
help = loadclass(‘sashelp.fsp.pbutton’) ;
call send(help,’_new_’,butthlp,attr) ;
call send(butthlp,’_set_label_’,’Help’) ;
call send(butthlp,’_set_cmd_’,’Helpmode on’) ;

end ;
otherwise ;

end ;
rc = dellist(endcheck) ;
rc = dellist(helpcheck) ;
rc = dellist(attr) ;
rc = dellist(reg) ;

endmethod ;

1

2

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 29

In a RESOURCE entry, the word ACTIVE to the left of a class indicates that it
is the FRAME class that every FRAME edited with this RESOURCE entry will
use. Only one class will be marked active in a FRAME RESOURCE entry.

Now when you edit a FRAME entry, you will be prompted to indicate whether
you want the END and HELP buttons. If yes, they will be placed for you.

As an exercise, modify the code to add a CANCEL and a PRINT button.

The ability to modify the development environment is one of the things that
make SAS/AF FRAME entries so versatile. You can use FRAME entries and
the object-oriented programming approach to add a lot of extra functionality
so that your development environment becomes easier to manage.

1.3.7 Tool Tips

My favorite GUI feature in Windows products is the ability to display text
that describes what a widget will do if you click on it. For example, in
Microsoft Word, if you move the cursor onto a toolbar image and hold it
there, a short piece of text appears telling you what will happen if the widget
is clicked. This feature is called a tool tip.

You can create tool tips from Release 6.11 of SAS onward. Tool tips influence
the design of GUI applications because you no longer have to mix icons and
text. I find icons often take up too much space and are difficult to create
because of this.

To add tool tips to most widgets, follow these steps:

• Select Region Attributes from the popup menu.

• Select the outline push button option at the left of the window.

• Set Outline Type to Button.

• Set button behavior to push button.

• Add tool tip text to the Description field. Start the text with \n. \n is the
delimiter that SAS/AF uses to determine the start of the tool tip. The \n
can be anywhere in the field; characters preceding it do not become part
of the tool tip.

30 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 30

O
You cannot always create tool tips. For example, a text entry
widget does not display the tool tip. On the other hand,
an extended text entry will display the tool tip, but when
Push button behavior is defined, you cannot do any data entry.

You can also use the _CURSOR_TRACKER_ method to create these short
text descriptions that appear as you move over the object. The Release 6.12
FRAME documentation contains an example using a widget that appears and
disappears as you move the pointer over the region that a tip is defined for.
This example uses the description field that all objects have in the Object
Attributes screen.

An alternative technique is to use the message area rather than a FRAME
widget (similar to the SAS BUILD directory and other parts of SAS, or
WordPerfect). This example uses features to add the ability to specify the tip
at development time. This means that the Description field can be different
than the tip. Because the message area is available, this method can use longer
tips than the Description field allows. This example also demonstrates how
you can override the FRAME class, override methods for that class, and
create an additional attribute screen. So as well as a different way of seeing
tool tips, you are also going to learn about many aspects of the FRAME
environment.

The example in this section illustrates the following:

• cursor tracking, i.e., the ability to detect mouse pointer movement and
take action dependent on the position of the pointer

• overriding methods in the FRAME class

• creating additional FRAME class methods

• adding a custom attribute screen in the FRAME class

• per instance methods, i.e., methods that we define to an object at
run time.

Chapter 1: Screen Design for FRAME Entries 31

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 31

Follow these steps (using an appropriate catalog; DGS.TOOLBOX is used here):

• Subclass the FRAME class. Call the new class NEWFRAME.CLASS.

• Override the _POSTINIT_ method. The override is a labeled section
called POSTINIT in DGS.TOOLBOX.TOOL TIPS.SCL. Note that this
section will run when the FRAME is created at run time, not develop-
ment time.

• Override the _CURSOR_TRACKER_ method. The override is a labeled
section called FTRACK in DGS.TOOLBOX.TOOL TIPS.SCL.This is the
override for the FRAME, and we will also create a cursor tracking over-
ride for the widget class later.

• Add the new class to the relevant resource entry. Make the new class
the active FRAME class by selecting the Actions Ò Set Active options
with the class highlighted. Exit back to the BUILD directory. If the
resource entry is not called BUILD.RESOURCE, issue the RESOURCE
command so that FRAME entries built hereafter use the correct entry.

Figure 6: New Attribute Screen for Adding Tool Tips

• Create the custom attribute screen. Edit a FRAME entry called
CUSTOM.FRAME, as shown in Figure 6.

The fields on CUSTOM.FRAME are as follows. In this table, the fields are list-
ed in standard FRAME screen order, top to bottom, left to right.

32 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 32

Field name Description/Attributes

TOOL TIP • Extended text entry
• Line length: 70
• Region title = Enter Tooltip

WIDGETS • Listbox
• Sourced from SCL list named WIDGET
• Single-click selects an item

DESCR • Extended text entry
• Protected
• Line length: 70
• Region title = Description

PROMPT • Extended text entry
• Number of rows = 6
• Line length: 200
• Protected
• Color: red
• Region outlines are SIMPLE with a width of 6

END • Push button
• Command = END
• Label = End

CANCEL • Push button
• Command = CANCEL
• Label = Cancel

CUSTOM.FRAME is a FRAME entry in its own right, but you should under-
stand that it is intended to become part of our FRAME development environ-
ment, not part of the run-time environment that your application users will
see. It will be called from the Custom Attribute screen in the FRAME devel-
opment environment.

Chapter 1: Screen Design for FRAME Entries 33

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 33

• Add the SCL for CUSTOM.FRAME. This is stored in CUSTOM.SCL.

34 Solutions for Your GUI Applications Development

Custom attribute
screens have an
optional parameter,
LISTID, which
contains data about
the FRAME that
called the custom
attribute.This is
needed because in
the custom
attribute, _FRAME_
refers to the
custom FRAME, not
the original
caller.

Get the calling
FRAME entry’s
object ID and
extract a list of
widgets on the
FRAME.

Create lists to
store tips and
widget data.

Loop through the
widget list, storing
the widget name and
SCL ID in a list.
Also, look at the
widget and see if a
tool tip already
exists. Place the tip in
the tips list if
so.

This is the code that
is executed when a
widget is selected
from the listbox.

entry optional= listid 8 _uattr_ $ class 8 ;

length text $ 8 tip $ 70 rc 3 ;

init:
frameid = getnitemn(listid,’_frame_’) ;
widget_list = makelist() ;
call send(frameid,’_get_widgets_’,widget_list) ;

tipslist = makelist() ;
widget = makelist() ;

do i=1 to listlen(widget_list) ;
rc = setnitemc(widget,

nameitem(widget_list),
popl(widget_list)) ;

widget_id = nameitem(widget,i) ;
if nameditem(widget_id,’TOOLTIP’) then

rc = setnitemc(tipslist,
getnitemc(widget_id,’TOOLTIP’),widget_id);

else rc = setnitemc(tipslist,’ ‘,widget_id) ;
end ;

return ;
widgets:

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 34

Chapter 1: Screen Design for FRAME Entries 35

This finds which
widget was selected,
and return if it is a
deselection.

Get the widget
description.

Place the cursor on
the tool tip entry.

Get the widget ID
and load the
current tool tip
into the tool tip
field.
The TERM section
causes an exit if the
user enters a CANCEL.

If a normal END, it
moves any non-blank
tool tips from the
TIPSLIST list into
the widget that the
tip belongs to. If
the TIPSLIST entry
is blank and a tip
exists in the
widget, the widget
tip is deleted.
Finally,TERM
removes the lists
used in this SCL.

The tool tip section
executes when a
tip is altered. It
moves the tip
from the Input
field to the tips
list.

text) ;
if issel eq 0 then return ;

call notify(‘descr’,’_set_text_’,
getnitemc(nameitem(widget,rn),’DESC’));

call notify(‘tooltip’,’_cursor_’) ;

widget_id = nameitem(widget,rn) ;
call notify(‘tooltip’,’_set_text_’,

getnitemc(tipslist,widget_id)) ;
return ;
term:

if _status_ = ‘C’ then return ;

do i=1 to listlen(tipslist) ;
widget_id = nameitem(tipslist,i) ;
if getitemc(tipslist,i) ne ‘ ‘ then do ;

tip = getitemc(tipslist,i) ;
rc = setnitemc(widget_id,tip,’TOOLTIP’) ;

end ;
else

if nameditem(widget_id,’TOOLTIP’) then
rc = delnitem(widget_id,’TOOLTIP’) ;

end ;

rc = dellist(tipslist) ;
rc = dellist(widget) ;
rc = dellist(widget_list) ;

return ;
tooltip:

call notify(‘tooltip’,’_get_text_’,tip) ;
rc = setnitemc(tipslist,tip,widget_id) ;

return ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 35

O
Note that the TOOLTIP entry field appears on the FRAME
entry before the list of widgets. If it didn’t, a user could edit a
tip, click on the widget list, and the widget listbox processing
would remove the tip, as the TOOLTIP labeled section of code
would find the tip for the newly selected widget, not the one
just edited. This is due to the left to right, top to bottom
processing order. You need to be constantly aware that field
positioning and order of processing are related.

Now add the custom attribute to NEWFRAME.CLASS. To do this, edit the
class, select the Add Custom Attributes option, and enter CUSTOM.FRAME as
the custom attributes. Use the Display From Custom Attribute Button option.

At this stage you have completed the steps needed to integrate the custom
tips entry screen into the development environment. To test that it works,
edit a new FRAME entry called TEST.FRAME. Add some widgets, fill them as
desired, and select the General Attributes popup option. Then select the
Custom Attributes option. You should see the new screen, complete with the
widget list. Click on a widget to see its description. The cursor will be placed
in the TOOLTIP field, where you can add a tip for this widget. When you
have added all the tips (as many as you want — you do not need to add tips
for all fields), click on END to save the tips.

Now we create the method overrides needed to support the tips in the
run-time environment. This is what will happen here:

1. Code a _POSTINIT_ method to perform initialization of the tips.
2. An override to the _CURSOR_TRACKER method is required for the

FRAME, plus an override to the same method for widgets. The widget
override will display the tool tip, the FRAME override will remove it.

Code the methods in TOOL TIPS.SCL, which follows. The sections in this
code are as follows:

• tracker overrides the widget _CURSOR_TRACKER_ method as a
per-instance method

• ftrack overrides the FRAME _CURSOR_TRACKER_ method as a
per-instance method

• postinit overrides the FRAME _POSTINIT_ method.

The _POSTINIT_ method override is used to run code automatically each
time the FRAME is executed. That code runs after the FRAME has been
created (which is when _POSTINIT_ always automatically runs) and is used
to define the _CURSOR_TRACKER_ overrides to all the widgets that have a

36 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 36

tool tip defined, as well as defining the FRAME _CURSOR_TRACKER_
method. The code is as follows:

Chapter 1: Screen Design for FRAME Entries 37

This is the override
for the FRAME
POSTINIT.

Call the SUPER
method first.

Get a list of
widgets in the
FRAME.

Initialize TRACKON
to zero. It gets set
to one, which is
used as a flag to
switch on FRAME
level cursor tracking,
if a widget is found in
the FRAME with a
tool tip.

Loop through the
list of widgets,
switch on cursor
tracking for any
that have an item
named TOOL TIP in
the list, and set the
flag to switch on
FRAME cursor
tracking if needed.

Finished with the
widget list now, so
delete it.

Switch on FRAME
cursor tracking if
required.
Widget cursor
tracking. Just
display the tool tip
in the message area.

FRAME cursor
tracking. Blank out
the message area.

self = _self_ ; _frame_ = _frame_ ;

postinit:
method ;

call super(_self_,’_postinit_’) ;

widget_list = makelist() ;
call send(_self_,’_get_widgets_’,widget_list) ;

trackon = 0 ;

do i=1 to listlen(widget_list) ;
widget_id = popl(widget_list) ;
if nameditem(widget_id,’TOOLTIP’) then do ;

call send(widget_id,’_set_instance_method_’,
‘_cursor_tracker_’,
‘dgs.toolbox.tooltips.scl’,
‘tracker’) ;

call send(widget_id,’_cursor_tracking_on_’) ;
trackon = 1 ;

end ;
end ;

rc = dellist(widget_list) ;

if trackon eq 1 then
call send(_frame_,’_cursor_tracking_on_’) ;

endmethod ;
tracker:
method x y 8 ;

call send(_frame_,’_set_msg_’,
getnitemc(_self_,’TOOLTIP’)) ;

endmethod ;
ftrack:
method x y 8 ;

call send(_frame_,’_set_msg_’,’ ‘) ;
endmethod ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 37

Having completed the above steps, you should now have a functional system
for writing tips to the message area. Here is how to check that it all works.

Create a new FRAME entry using the resource entry that contains
NEWFRAME.CLASS as the active FRAME class. Add some widgets to the
new entry and fill them as desired. Use the General Attributes option to
access the custom tips screen and add some tips. Now add the following SCL:

init:
return ;

Now compile and testaf your entry. You should see your tips appearing in the
message area as you move the cursor over the widgets in TESTAF.

For instance (oops, using that term in a book related to OOP seems a bit
punnish), create the screen in Figure 7 in the FRAME development environ-
ment. The widgets are an image and three text entries. Add a tool tip of ‘This
Is An IMAGE’ for the image object and ‘This Is A TEXT ENTRY’ for one of
the text entries. Leave the other tips blank.

Figure 7: Sample Screen to Show Tool Tips

In run-time mode, with the cursor over the image, you see a screen like Figure 8.

38 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 38

Figure 8: Sample Screen Showing Tool Tip In Message Area

Note the tip in the message area.

You could modify the code provided in SAS/AF Software: FRAME Class
Dictionary, Widget Class, pg. 73 to give yourself a system that used the custom
attribute screen above to enter and store the tips and then presented them
as boxes. You would need to alter the code to extract the TOOL TIP list
item rather than the DESCR instance variable from the object list.

1.4 Screen-Related Issues

1.4.1 The Size of Our Screens

An application doesn’t need to fill a whole screen. Sometimes the application
looks and feels better by utilizing a small part of the screen. In general, PC
users are confident with maximizing windows and seeing multiple windows
from multiple products on screen. My feeling is why prevent them seeing and
using other windows if I don’t need the whole screen myself. On other
platforms, you need to consider whether the platform is inherently window
or full-screen oriented.

A related item is the use of AFA to start up a separate AF task stream.
This allows multiple AF applications to be running and allows swapping
between them.

Chapter 1: Screen Design for FRAME Entries 39

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 39

O
Be warned that using AFA starts a new AF task, and it is not
possible for different tasks to communicate using methods.
It is even possible that a FRAME entry created in a new task
could have the same frame-id as one in the calling task. I sug-
gest that if you design applications that may benefit by using
separate tasks, you think carefully about whether the tasks are
intended to have inter-object communication.

1.4.2 Logos and Logo Placement

Wherever possible, replace the start-up SAS Institute logo with one that is
more suited to the application. I don’t think it is a good start-up procedure to
tell the user all about SAS when they aren’t using SAS — they’re using Don’s
Financial Application, for example.

An invocation option to define which bitmap to use for the start-up logo is
available from Release 6.11 TS040 on some platforms and generally available
from Release 6.12. The option is -SPLASHLOC. Here is an example:

—SPLASHLOC c:\mybmp\mypic.bmp

1.4.3 What is a Menu?

A menu lists a set of alternatives from which one can be chosen for further
processing. Usually a menu is displayed as a list, with a number or letter to be
entered on a command line to choose an item.

GUI design adds to the menu concept by allowing us to logically divide
screens so that previous menu items are on screen. It also allows us to dis-
play the mechanisms for selection in an intuitive manner.

A screen can be modified very quickly with FRAME entries. Once code is
written and working, widgets can be changed with little code change, provided
the names are retained. Sometimes methods depend on widgets, but in general,
you can quite quickly alter method calls.

An interesting and intuitive menu is a bitmap with hotspots. SAS Institute in
Australia wrote an EIS system that had a picture of an office as its front end.
The office had a door. If you clicked on the door, you exited the application.
The office had a filing cabinet. If you clicked on that, you saw a submenu of
folders that you could investigate. The EIS system had other hotspots

40 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 40

that corresponded to things in the real world: a sales chart on a wall that
triggered a sales EIS; an IN tray that triggered e-mail. Users who don’t like
this graphical approach can switch to a more traditional menu.

A good rule to follow when designing menus or selection screens is do not
allow the user to have access to menu items that are meaningless in the current
context of the screen. Gray these items, or remove them completely. Switch
off SAS software menus that the user doesn’t need to see, for example,
SAS default PMENUS, by issuing OPTIONS NOAWSMENUMERGE at start-
up. This assists an application user who knows nothing about SAS, as the
menu items that carry out tasks in the SAS environment, rather than the
developed application environment, would often do things that we don’t
need an application user to do.

1.4.4 Fonts

When I design software that is to run on many machines on the same plat-
form, I use the standard fonts that were supplied with the operating system.
Many products stamp a sort of watermark on their software by using unique
fonts. Because of this, I can’t guarantee that a particular font will be available
on another machine, even with a product like SAS.

Although all of the installed SAS software is theoretically available to all users
in most applications, my experience is that different users install different fea-
tures, and the supplied SAS MONOSPACE FONT is not always available. This
gets further complicated when an application is shipped in run-time (trace-
back) mode, as fonts are often not even installed on the target machine.

A missing font causes the operating system to try to place the nearest font,
or a default, in its place. A carefully designed descriptive box suddenly loses
its last few characters, or a title that just fits in a region is truncated. You can
use the MULTENVAPPL option to cause FRAME entries to restrict their
fonts to portable fonts. Portable fonts are system fonts that are used on
many systems. They include the DMS font, times, helvetica, and courier. You
can select the size, style, and weight of system fonts.

SAS/GRAPH software fonts, which are the same on every system, are also
enabled by MULTENVAPPL. However, no other product uses SAS/GRAPH
fonts, and using them removes the consistency of operating system fonts.

In general, there are two font types: serif and sans serif. A third type of font
is the unusual ones such as Script type fonts, which are not discussed here.
In sans serif fonts, such as this one, each character has no foot.

Chapter 1: Screen Design for FRAME Entries 41

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 41

Here, you are reading times roman, a serif font. Note that each character has a
foot. This is the main visual entity that defines a serif font. Note also that this
font is thicker than a sans serif font.

With serif, the base of some characters can be in the way of region outlines.
On pull-down menus, using serif can get in the way of the underline under
shortcut characters. Sans serif characters tend to look better on screen.

Another criterion for deciding on a font is whether characters such as ‘g’
descend below the line or not. I prefer fonts where characters such as ‘g’
descend (this is from times new roman), as opposed to non-descending.
For example, using antique olive, the ‘g’ is non-descending. I prefer descending
fonts, as they are more natural to the eye. They reflect the way that most of
us learned to write, and are most heavily used in the printing industry.

You can use different fonts to present different types of information. There
are a number of categories for text information that goes onscreen.

Banners are headings such as vendor or developer company names. For
banners, I use graphic text and a strong, filled font such as XSWISSB.
I use a restrained color because a banner is not intended to be something
that constantly grabs the eye.

Information fields are items telling you what to do on a screen. For
information fields I use extended text entries because they are simple to
spread across multiple lines and they permit the use of operating system
fonts. Under Windows and OS/2, I use italic bold fonts such as arial.

Errors are program-generated notes that the user must see. For errors
presented in the status line you must use the current SAS system font, but
you can use SAS DMS colors. If I create an object to display error messages,
I always use extended text entries.

Input fields are entered by the user. Input fields usually use a sans serif font.
I often use extended text entries for these, but FRAME has many candidates
for data entry, and often the text entry will provide the necessary functionality.

1.4.5 Storing User Choices

If an application field has a number of options, you can store each user’s last
choice in a list in SASUSER. For example, usually each user will use the same
printer each time they print; you can store the user’s printer choice from
session to session rather than make the user re-enter it.

42 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 42

1.5 Displaying Messages
In this context, a message is a response from the application that is displayed
for the user’s benefit. Usually the message conveys some information. SAS
software uses Error, Warning, or Notes messages in an application, but there
is nothing to stop us as SAS software users from using other titles.

Error messages should cause some action to prevent the application from
continuing until the user corrects the problem. In SAS/AF, the ERRORON
statement (and its equivalent method _ERRORON_) accomplish this. Warning
messages suggest to the user that, although the data is valid, it may not be use-
ful. For example, a report covering a period that is very old. Notes are purely
informational, for example,‘Data Has Been Saved.’

This section addresses error messages, but many of the principles are
applicable to all message types.

The user has a right to expect meaningful and concise error messages. All
fields that can be in error should be able to display an error message. All
error messages should be displayed in the same place. Error messages should
follow the same format.

From Release 6.11 on, the _MSG_ area is available on some platforms
regardless of whether a command line exists. The _MSG_ area is the most
sensible standard position for display of single error messages. With plat-
forms or applications that do not have a message line, you can create a mes-
sage system or use the screen name area to display messages.

1.5.1 Designing Systems to Avoid Error Conditions

It is frequently possible to prevent error situations by forcing the application
to take advantage of existing data. For example, a user may need to enter a
project identification number. Rather than allowing users to enter an incor-
rect number, give them a list of valid projects from which to choose.

Sometimes this can cause more problems than it fixes. Suppose you have a very
large number of projects that all start with a similar structure, for example,
W02045, a letter followed by a sequential number. A listbox approach requires
that all the listbox data be stored in the listbox object (i.e., in the object’s list).
You may find memory a problem. A bigger problem is likely to be that the user
finds a long list very hard to use. Extended tables or other table objects have
the same issues in terms of amount of data to scroll through, but using these
objects will usually alleviate the memory problem because not all data is stored
in memory at all times.

Chapter 1: Screen Design for FRAME Entries 43

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 43

There are alternatives to listbox-based approaches, for example, remembering
the last value entered by the user and re-entering it. This approach requires
that a dataset or a list in a private library (usually SASUSER) has data stored for
each field and that the data is reloaded the next time the screen is entered.

A way to use listboxes intelligently is to code the _FEEDBACK_ method of
the extended text entry. You can allow a user to enter text and simultane-
ously have code update a listbox to show only data that matches the text
already entered by the user. It is clear when an error occurs (there is no
matching data) because the listbox will be empty. An example of this is pre-
sented on page 9.

Case Study

A good example of a system that could have bypassed some error conditions
is a security request management system at a site where I have been working
recently. All the demographic information about a user is available to the
application, but the user is forced to enter a phone number. The phone num-
ber field is buried in the midst of other demographics; the application doesn’t
tab to the field. It is often a time consuming affair to exit this application, as it
checks every field for errors when exiting, and then displays just the first error
condition, which is often the phone number and it is often the only error.

The application displays a child window, which describes the error but doesn’t
allow it to be fixed. If you click OK, you return to the application, which takes
you to the last field you were on. You have to scroll back up to the phone
number field. Upon correcting the phone number, the application then goes
back through the entire field error check. To cap it all off, the only exit button
is at the bottom of the screen, so you need to scroll back down to it.

This situation would be made much simpler by loading the phone number
from the known data, or at least by placing the user back in the phone number
field and avoiding the child window.

1.5.2 Messages for Multiple Fields

From Release 6.11 on, you can create intuitive means of displaying messages.
Figure 9 demonstrates these facilities.

• Switch ERRORON for each field in error.

• Enable cursor tracking.

44 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 44

• When the _CURSOR_TRACKER_ method detects the mouse moving
over a widget that is in error, display a previously hidden or swapped out
widget containing a context sensitive message. Hide, or swap out, the
message widget when the user moves the cursor off the widget in error.
When another widget in error is moved onto, change the message
displayed in the widget.

Figure 9: Error Message Display

This is quite a stunning way to present errors. You can present messages for
every field in error simply by having the user move the cursor across or
onto it.

I have implemented this under Release 6.12. The object pops up as above
when a field is in error. Figure 9 shows what the screen will look like when
the error message displays pops up. When the cursor moves off the field in
error, the explanation box disappears again. The code for this is presented in
Chapter 2.

1.5.3 Error Message Layout

Start each message with the word ERROR, WARNING, or NOTE. Make sure
the user understands what the message means and what needs to be done.

Ensure that the display of messages is in sync with the placement of the
corresponding fields on screen. Also, ensure that the error messages match
up with their corresponding fields.

Chapter 1: Screen Design for FRAME Entries 45

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 45

There is also an art to determining what information to place in error mes-
sages. My pet hate is software that dumps unintelligible messages, but as we
all know, sometimes it is unavoidable. If you can trap an error condition and
print a meaningful message, you should do so rather than leaving the system
to dump its own internal messages.

Keep messages as short and succinct as you can. Consider the experience
level and needs of your user base.

1.5.4 Unmodified Fields

For unmodified fields, you can supply a generic message issued in MAIN that
the field should be filled in. You may find it easiest to issue such messages
during the TERM processing. At that stage you can check for any required
fields not being complete. If a required field is found empty, set _STATUS_ to
‘R’ and issue a RETURN from the TERM section, or set the REQUIRED
attribute to ensure that information is entered in the field.

Using the REQUIRED attribute standardizes the message that the users sees
to use that supplied by SAS Institute. You will need to supply your own mes-
sage (using _MSG_ or the _SET_MSG_ method) if checking for required
fields in TERM.

My preference is not to use the REQUIRED attribute because I usually want to
issue a more context-specific message than the SCL default.

1.5.5 Difficulties with Error Processing and Screen Design

There is no hard and fast rule for how we cope with error processing that
causes problems in the design of the screen. The literature and courses on
screen design that I have attended simply don’t address these issues.

It can sometimes be difficult to co-ordinate error messages. If a screen has a
number of fields and the user places the cursor on the fifth field and enters
an incorrect value, do you display messages for fields one to four that need
to be populated, or do you display a message for the error in field five? How
do you process errors for those first four fields, given that the labeled section
will not run?

46 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 46

This is a design issue. The error for the fifth field is easy to display, because its
labeled section will run. If you wish to display a message for the other sections,
you could place code in MAIN and use CONTROL ALWAYS to trigger MAIN
if no fields are entered.

The code that you need in MAIN is as follows:

if not modified(‘obj1’) then link obj1 ;
if not modified(‘obj2’) then link obj2 ;

In MAIN, determine if the user has modified the fields that you desire to
issue messages for. If the fields are not modified, the labeled section will not
have run, so you explicitly force it to run.

Suppose a user fills out the third and fifth field in error. You switch
ERRORON for each field and display a message for the third field. The user
corrects the fifth field but doesn’t correct the third field. Because the label for
the third field isn’t carried out by default, no message is displayed even though
the third field is still in error.

Again the answer is to make use of MAIN. However, because you don’t want
to run the labeled sections for sections that are not modified, use the ERROR
function instead of the MODIFIED function in MAIN.

if error(objname) then link <label> ;

Use of ERROR can create another difficulty. If a section did execute this time
through the SCL and switched errors on for an object, MAIN would cause
the labeled section to run again. You can resolve this difficulty by bypassing
the labeled section completely and always linking from MAIN. CONTROL
ERROR does not help here because it refers only to the running of MAIN,
not to object labeled sections. Using MAIN in this manner makes it difficult
to bypass sections that should not execute, such as hidden fields.

If multiple sections find fields in error, by default the last one is the one that
MSG gets written for. Because the cursor will be placed on the first field
for which ERRORON was switched on, the cursor positioning may be out of
sync with the message. The message that displays for the first field physically
in error on the screen may also be out of sync.

Change the logic flow to check whether _MSG_ contains a value and not to
assign a value if it does. If you don’t do this, the user sees error messages
appearing in an illogical order.

Chapter 1: Screen Design for FRAME Entries 47

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 47

For example:

label1:
if <error condition> then do ;

msg = ‘....’ ;
erroron label1 ;
return ;

end ;
... non error processing ...

return ;

label2:
if <error condition> then do ;

if _msg_ eq ‘ ‘ then
msg = ‘....’ ;

erroron label2 ;
return ;

end ;
.. non error processing ...

return ;

1.5.6 Informing Users about Long-Running Tasks

Some tasks take a long time to run. It is difficult for a user to know what is
going on unless you provide some sort of message system to keep them
informed. With SCL code that runs for a long time without user interven-
tion, you can display a graphics text object that updates with a percentage of
completion. Alternatively, the FRAME Class documentation, pg. 35–36 of SAS/AF
Software: FRAME Class Dictionary,Version 6, First Edition gives an example of
changing the cursor shape during a long-running SCL task. You can use either
of these methods with submitted code if you are willing to split the SUBMIT
block into several smaller blocks. Then you can update your graphic text or
cursor shape in between the submit blocks.

48 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 48

1.6 The HELPMODE Command

1.6.1 What is HELPMODE?

HELPMODE places every field in a pseudo unprotected mode so that you
can click on fields and display the object help entry for the field. By “pseudo
unprotected,” I mean that a field can be clicked on, but it cannot trigger its
SCL section nor can data be entered into it. This mode exists purely to
obtain help on the field.

When HELPMODE is switched on, the cursor changes to a help cursor
shaped like a question mark. This cursor shape displays only until you select a
widget. You must switch HELPMODE on for each widget that you require
help on.

These overrides to FRAME processing are in existence only while
HELPMODE is on. It is not possible for users to compromise the integrity of
applications because a previously protected or grayed field cannot be selected
except to access object help.

1.6.2 Starting HELPMODE

You use HELPMODE by issuing a HELPMODE ON command from a widget
(e.g., a push button) that executes the command. You can also use a toolbar
icon. You can assign the HELPMODE ON command to a function key or a
pmenu or a popup. You can have users enter HELPMODE ON themselves
at a command line, although I think the toolbar or widget approach is more
intuitive.

1.6.3 What If No Help is Available?

When HELPMODE is used on a widget that has no object help, an error is
returned by SAS/AF. This violates one of my basic development principles:
don’t mention the word error to the user if they haven’t done anything
wrong. In situations where it is impractical to have any help available, avoid
the error message by overriding the _HELP_ method. This is the method that
causes the object help to be displayed.

The code in the FRAME entry SCL consists of a temporary override to the
FRAME entry’s _POSTINIT_ method. _POSTINIT_ is an internal method that
runs after the code in your INIT section, but before the FRAME actually dis-
plays. This is needed because I want to get a list of all widgets and, at the time

Chapter 1: Screen Design for FRAME Entries 49

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 49

POSTINIT runs, the display is created and all widgets have been created. To
override _POSTINIT_, enter the following statement in your INIT section.
This is an example of a per instance method.

call notify(‘.’,’_set_instance_method_’,’_postinit_’,
‘sasuser.book24.methods.scl’,’postinit’) ;

O
Note that if you have a FRAME subclass in use, the above is
not needed in the FRAME SCL because the subclass could
specify the _POSTINIT_ override.

In the above example, the override code is in SASUSER.BOOK24.METH-
ODS.SCL. Change the SASUSER.BOOK24 to the catalog you use to store
your method overrides.

The actual override code in SASUSER.BOOK24.METHODS.SCL gets a list
of all the widgets in the FRAME entry and checks each for the presence of
the Object Help attribute. If the attribute does not exist, a per instance over-
ride is created for the widget’s _HELP_ method to prevent the error mes-
sage being issued. The override does nothing, not even a CALL SUPER as the
CALL SUPER would generate the message. This is one of those occasions
where the bypassing of CALL SUPER is desirable.

The code and explanation follow.

50 Solutions for Your GUI Applications Development

FRAME POSTINIT.

Start by getting a
list of all the
widgets in the
FRAME. Note
that the
_GET_WIDGETS_
method is being sent
to the calling FRAME
for execution.That
occurs because
SELF is the FRAME
entry object ID
because this override
is at the FRAME
level.

Loop through the
widgets in the
FRAME, looking for
any without the
HELP attribute set.

postinit:
method ;
widget_list = makelist() ;
call send(_self_,’_get_widgets_’,widget_list) ;

do i=1 to listlen(widget_list) ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 50

Note that a blank help entry is possible and must be accounted for above.
You could get a blank entry if you had entered an object help in the Object
Help attribute field, then backspaced over it to delete.

The _HELP_ override in METHODS.SCL is as follows:

help:
method ;
endmethod ;

If you wanted to display a message rather than do nothing when there is no help
defined, assign your message to _MSG_ using the _SET_MSG_ method.

help:
method ;

call send(_frame_,’_set_msg_,
’No HELP Available For This Object’) ;

endmethod ;

Chapter 1: Screen Design for FRAME Entries 51

Get the current
widget ID from the
list.

Determine if HELP
is set.

No HELP set, so
override the _HELP_
method to avoid
error messages.

There may be a
HELP, but it could
be blank. Don’t
continue in that
case.

Always override the
HELP method at
the FRAME level.
Also, use the override
if there is no HELP
or a blank HELP.

Delete the list of
widgets.

Don’t forget to
SUPER the
POSTINIT method!

curr_widget = getiteml(widget_list,i) ;

if nameditem(curr_widget,’HELP’) eq 0 then

call send(curr_widget,’_set_instance_method_’,
‘_help_’,’sasuser.book24.methods.scl’,
‘help’) ;

else
if getnitemc(curr_widget,’HELP’) eq ‘ ‘ then
call send(curr_widget,’_set_instance_method_’,

‘_help_’,
‘sasuser.book24.methods.scl’,’help’) ;

end ;

if nameditem(_self_,’HELP’) eq 0 then
call send(_self_,’_set_instance_method_’,

‘_help_’,’sasuser.book24.methods.scl’,’help’);
else if getnitemc(_self_,’HELP’) eq _blank_ then
call send(_self_,’_set_instance_method_’,

‘_help_’,
‘sasuser.book24.methods.scl’,’help’) ;

rc = dellist(widget_list) ;

call super(_self_,’_postinit_’) ;
endmethod ;

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 51

You need to be wary with per-instance methods, as you risk losing an existing
override. You cannot tell if the method is already overridden because the
class editor is where you see that information.

1.7 Summary
What I have tried to do here is provide a few ideas about how to approach
the whole GUI development paradigm from a screen design perspective.
The concept of GUI is quite new to many SAS programmers, and we need
to modify our thinking from just resolving the issues that the application
addresses to considering how to let the user interact with that application.

If you want to see hundreds of different ideas on GUI screen design, check
out some World Wide Web home pages on the Internet. You will rapidly
come to appreciate consistency in other applications. WWW is like anarchy
at the best of times, and the home pages show many forms of human inter-
action with applications.

There are two excellent texts that I recommend if you wish to explore some
of the subtleties of screen design. They are quite different, one preaching the
Microsoft line, the other taking a wider view of screen design. Both go into
much deeper discussion of GUI screen design than it is possible to do here.

Cooper, A. (1995), About Face:The Essentials of User Interface Design,
Foster City, CA: IDG Books Worldwide Inc.

Microsoft Corporation (1994), The Windows Interface — An Application Design
Guide, Redmond, WA: Microsoft Press.

52 Solutions for Your GUI Applications Development

Revised Stanley Chapter 1 10/19/98 6:03 PM Page 52

