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1. The Nature of Survival Data

Survival data are special and, thus, they require special methods for their analyses.
Before going into what makes these data special and how they are analyzed, let's
establish some terminology and explain what is meant by survival data.

Although you might naturally think of survival data as dealing with the time until death,
actually the methods that are discussed in this book can be used for data that deal with

the time until the occurrence of any well-defined event. In addition to death, that event
can be, for example,

1. Relapse of a patient in whom disease had been in remission.
2. Death from a specific cause.

3. Development of a disease in someone at high risk.

4, Recovery of platelet count after bone marrow transplantation.

5. Relief from headache, rash, nausea, etc.

Note that for examples 1, 2, and 3, longer times until the event occurs are better. For
examples 4 and 5, shorter times are better. Nevertheless, the methods that are described
in this book can be applied to any of these examples. For the purpose of this book,
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2 WhatIs Survival Analysis?

words like survival and death are used to describe these methods, but you should be
aware of the broader areas of applicability.

This might be a good place for a few words about example 2 on the above list, cause-
specific death. When you analyze the survival of patients with, for example, some form
of cancer, you might want to focus on death caused by cancer, particularly in an older
population in which we expect deaths from other causes as well. You would then count
as “events” only those deaths caused by cancer. A death from any other cause would be
treated the same as if the patient had suddenly moved out of state and could no longer be
followed. Of course, this methodology requires that you establish rules and a mechanism
for distinquishing between cause-specific and noncause-specific deaths. In the New York
Health Insurance Plan study that was designed to assess the efficacy of mammography
(Venet et al. 1988), women were randomized either to a group that received annual
mammography or to a group that did not. Since the study’s planners realized there would
be considerable mortality not related to breast cancer, they took as their endpoint death
caused by breast cancer. A committee was created to determine whether or not the death
of a woman was due to breast cancer. This committee, which was blinded with respect to
the woman's group assignment, followed a detailed algorithm that was described in the
study protocol.

What makes analyses of these types of data distinctive is that often there are many
subjects in whom the event did not occur during the time that the patient was followed.
This can happen for several reasons. Here are some examples:

1. The event of interest is death, but at the time of analysis the patient is still alive.

2. A patient is lost to followup without having experienced the event of interest
(death).

3. A competing event occurs that precludes the event of interest. For example, in a
study designed to compare two treatments for prostate cancer, the event of
interest might be death caused by the cancer. However, a patient might die of an
unrelated cause instead, such as an automobile accident.

4, A patient is dropped from the study, without having experienced the event of
interest, because of a major protocol violation or for reasons specified by the
protocol.

In all of these situations, you don't know the time until the event occurs. Without
knowledge of the methods that are described in this book, a researcher might simply
exclude such cases. But clearly this throws out a great deal of useful information. In all
of these cases, we know that the time to the event was at least some number. For
example, a subject who was known to be alive three years into a study and then moved to
another state and could no longer be followed is known to have a survival time of at least
three years. This subject's time is said to be right censored. A subject's observed time, 7,
is right censored if, after time ¢, he or she is known to still be alive. Thus you know that
this subject's survival time is at least #. A survival time might also be left censored. This
happens if all that is known about the time to death is that it is less than or equal to some
value. A death is interval censored if it is known only that it occurred during some time
interval. Although much current research focuses on ways to deal with left- and interval-
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censored data, most survival analytic methods deal only with right-censored data. Of the
three SAS procedures that deal explicitly with survival data, two deal only with right
censoring. This is the type of censoring most commonly seen in medical research. The
third, the LIFEREG procedure, which is discussed in Chapter 5, “Parametric Methods,”
deals with left and interval censoring as well. Except for that chapter and a section in
Chapter 3, this book does not consider left- or interval-censored times, and the term
censored will always mean right censored.

Survival data, therefore, are described by a pair of variables, say (¢, d). They can be
interpreted as follows:

t  represents the time that the subject was observed on study.

d is an indicator variable that specifies whether the event in question either
ocurred or did not occur at the end of time ¢. The value of 4 might be 0 to
indicate that the event did not occur or 1 to indicate that it did. Then d=0 means
that the corresponding ¢ is a censored time. Of course, you can substitute your
choice of values.

The SAS survival analysis procedures, as well as the macros that are presented in this
book, do allow the user to specify any set of values to indicate that a time is censored.
This is convenient when you have data in which a variable indicating a subject's final
status can have several values that indicate censoring. Subscripts will be used to
distinguish the subjects. Thus, if there are n subjects in a study, their survival data might
be represented by the n pairs (¢, d,), (t,, ), . . . (¢,, d,).

Sometimes in textbooks or in journal articles, survival data are reported by using only the
time variable. Censoring is indicated by adding a plus sign to the time. For example,
reporting survival data as 2.6, 3.7+, 4.5, 7.2, 9.8+ would mean that the second and fifth
observations are censored and the others are not. In a data set, you can store information
about both the survival time and the censoring value using only one variable. Censoring
is indicated by making the time negative. Using this convention, the above data would be
2.6,-3.7,4.5,7.2, - 9.8. A SAS DATA step can easily be written to convert such a data
set to the desired forms, which contains separate variables for ¢ and d. This is illustrated
by the example code and output below:

proc print data=original;
title 'Original Data Set';
data; set original;

d=1;

if time<0 then do;
d=0;
time=-time;
end;

proc print;
title 'Modified Data Set';
run;
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Original Data Set

OBS3 TIME

U w N
1=
W N

Modified Data Set

OBS3 TIME D
1 2.6 1
2 3.7 0
3 4.5 1
4 7.2 1
5 9.8 0

There is another way of thinking about the variables 7 and d. Each patient on study is
really subject to two random variables: the time until death (or the event of interest) and
the time until censoring. Once one of these events happens, you can observe that time but
not the other. The variable ¢ can be thought of as the minimum of the time until death and
the time until censoring. The variable d indicates whether that minimum is the time until
death (d=1) or the time until censoring (d=0). An important assumption in any analysis
that follows is that the time until death and the time until censoring are independent.

This would generally be true, for example, if censoring occurred simply because the
follow-up period ended. On the other hand, suppose you are analyzing the data from a
study in which patients with some sort of cardiac disease are randomized to drug
treatment or surgery. In some cases it might later be decided that a patient randomized to
drug treatment now needs to get surgery. You might be tempted to take the patient off
study with a censored survival time that is equal to the time until surgery. However, if the
decision for surgery was based on the patient's deteriorating condition, to do so would
create bias in favor of the drug treatment. That is because such a patient’s death would
not be counted as a death once he had been censored. A better approach might be to
anticipate this possibility when planning the study. You might plan the study as a
comparison of two treatment strategies: immediate surgery versus initial drug treatment
with surgery under certain conditions that are established in advance.

2. Calendar Time and Study Time

Another concept we need to discuss is how time is defined in survival studies. In most
survival studies, patients do not all begin their participation at the same time. Instead they
are accrued over a period of time. Often they are also followed for a period of time after
accrual has ended. Consider a study that starts accrual on February 1, 1996 and accrues
for twenty-four months until January 31, 1998 with an additional twelve months of
follow-up until January 31, 1999. In other words, no more patients are entered on study
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after January 31, 1998, and those accrued are followed until January 31, 1999. Now
consider the following patients:

Patient #1:  Enters on February 15, 1996 and dies on November 8, 1996.

Patient #2:  Enters on July 2, 1996 and is censored (lost to follow-up) on
April 23, 1997.

Patient #3:  Enters on June 5, 1997 and is still alive and censored at the end of the
followup period.

Patient #4:  Enters on July 13, 1997 and dies on December 12, 1998.

Their experience is shown graphically in Figure 1.1. In survival analyses, all patients are
thought of as starting at time 0. Thus, their survival experience can be represented as in
Figure 1.2. When reference is made to the number surviving or the number at risk at
some time, the time referred to is the time from each patient's study entry—not the time
since the study started. For example, among the above four patients, two of them (#3 and
#4) are still at risk at 12 months. None are still at risk at 24 months. Both of these
statements are made based on Figure 1.2. If, at some later date, you speak of those who
are at risk at + = 6 months, that has nothing to do with the situation on July 31, 1996, 6
months after the start of the study. Rather you mean those who, as of the last date that the
data were updated, had been on study for at least 6 months without dying or being
censored.

Figure 1.1
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Figure 1.2
Study Time
41
e
:
33—
Z
F]
c
o
._2-
-
©
o
1—I T T T T T T T T T T
o 2 4 6 8 10 12 14 16 18 20
M onths

3. An Example

Sometimes in studies that involve follow-up of patients, there is interest in more than one
time variable. For example, an oncology study might examine the time until death, which
will be called survival time, and the time until death or relapse, which will be called
disease-free survival time. The database must then contain information on both
endpoints. Because SAS handles dates internally as numeric constants (the number of
days before or after January 1, 1960), it is often convenient for the data sets to contain
the dates of interest and to include in a SAS DATA step the statements to calculate the
time values that are needed. As an example, consider a sample of patients who are treated
for malignant melanoma. Presumably they are rendered disease free surgically. Suppose
that, in addition, they are treated with either treatment A or B, both of which are thought
to inhibit relapse and improve survival. We might want to consider both survival and
discase-free survival of these patients and how they are affected by treatment, tumor
thickness, stage of disease, and tumor site. The database might look like this:
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PTID DATESURG | DATEREL DATEDTH DATELAST | TRTMENT SITE STAGE THICK
13725 10/5/93 11/6/94 1/5/95 1/5/95 A 1 I 1.23
25422 3/7/93 2/6/94 2/6/94 B 3 I 1.13
34721 9/6/94 3/18/95 B 2 I 2.15
etc.

Note the inclusion of a unique patient identifying number, PTID. While this number will
play no role in the analyses of this data set, it is a good idea to associate such a number
with each patient on a trial. This will facilitate merging with other data sets if you decide
to add other variables of interest later. Names are usually not good for this purpose
because of the risk of spelling variations and errors. Also, note that treatment
(TRTMENT), site (SITE), and stage (STAGE) are represented by codes or brief
symbolic names. For obvious reasons, we should avoid having long words or phrases
for things like disease site or tumor histology. TRTMENT is a dichotomous variable.
Although numbers are used for the possible sites, SITE is categorical. The numbers

used do not imply any ordering. STAGE is ordinal; stages I, II, III, and IV represent
successively more extensive disease. Finally, tumor thickness in millimeters (THICK) is
a continuous variable. Later chapters discuss SAS procedures that deal with all of these
types of variables. In this case, missing values for date variables are used to indicate that
the event did not occur. In order to analyze survival time and disease-free survival time,
the following variables are needed:

DFSEVENT has the value 1 if the patient died or relapsed, O otherwise.
DFSTIME s the time, in months, from surgery to death or relapse, if either
occurred. Otherwise, it is the time that the patient was observed after

surgery.
SUREVENT has the value 1 if the patient died, O otherwise.

SURVTIME is the time, in months, from surgery to death, if the patient died.
Otherwise, it is the time that the patient was observed after surgery.

To add the variables that are needed to analyze survival and disease-free survival to the
data set, the code might look like this:

data melanoma; set melanoma;
/* Defining dfs time and event variables */
dfsevent = 1 - (daterel = .)*(datedth = .);
/* Divide by 30.4 to convert from days to months */
if dfsevent = 0 then dfstime = (datelast - datesurg)/30.4;
else dfstime = (min(daterel, datedth) - datesurg)/30.4;
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/* Defining survival time and event variables */

surevent = (datedth ne .);
if surevent = 0 then survtime = (datelast - datesurg)/30.4;
else survtime = (datedth-datesurg)/30.4;

The divisions by 30.4 are simply to convert time from days to months, a more convenient
time unit. Note that 30.4 is approximately 365/12. Also, when terms such as (daterel=.)
or (datedth=.) are used in an arithmetic expression, they have the value O if false and 1 if
true. The above statements create the variables DESTIME and DFSEVENT to be used in
analyses of disease-free survival, and the variables SURVTIME and SUREVENT to be
used in analyses of survival. The first three observations of the resultant data set would
look like this:

PTID DATESURG DATEREL DATEDTH DATELAST TRTMENT SITE STAGE
13725 10/05/93 11/06/94 01/05/95 01/05/95 A 1 III
25422 03/07/93 . 02/06/94 02/06/94 B 3 II
34721 09/06/94 . 03/18/95 B 2 III

PTID THICK DFSEVENT DFSTIME SUREVENT SURVTIME

13725 1.23 1 13.0592 1 15.0329
25422 1.13 1 11.0526 1 11.0526
34721 2.15 0 6.3487 0 6.3487

Now that these variables have been defined, there are several questions you might want
to address. For example, using the methods described in Chapter 2, “Nonparametric
Survival Function Estimation,” you might want to estimate the survival and disease-free
survival probabilities over time for the overall cohort and for subgroups defined by treat-
ment, stage, site, etc. Standard errors and confidence intervals for those estimates can
also be calculated. You might also want to perform statistical tests to assess the evidence
for the superiority of one treatment over the other. This is discussed in Chapter 3,
“Nonparametric Comparison of Survival Distributions.” Now, it might happen that the
patients who were treated with treatment A had a worse prognosis (as seen by their
stages, perhaps) than did those treated with treatment B. If the treatment assignment was
not randomized, this might happen if the treating physicians preferred treatment A for
more advanced tumors. Even if the treatment assignment were randomized, it could
happen by chance that one of the treatment groups had a higher proportion of patients
with more advanced disease. Using methods that are discussed in Chapter 3 and in
Chapter 4, “Proportional Hazards Regression,” you will learn how to compare the two
treatments after adjusting for the stage of the disease. In addition, you will be able, if you
make certain assumptions, to create a model that produces estimated survival and
disease-free survival probabilities for patients with specified values of the above vari-
ables. Techniques for doing this are presented in Chapters 4 and 5. For example, you will
learn how to estimate the probability that a patient will survive for at least three years if
that patient is treated with treatment A for a stage II tumor of thickness 1.5 mm at site 1.

4. Functions that Describe Survival
4.1 The Distribution Function and the Survival Function

The survival time of a subject being followed on a clinical study will be thought of as a
random variable, 7. As with random variables in other areas of statistics, this random
variable can be characterized by its cumulative distribution function, often simply called
distribution function, denoted F(f) and defined by

F() = PriT<t], t=0 (D
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That is, for any nonnegative value of ¢, F(¢) is the probability that survival time will be
less than 7. Of course, you could just as well describe the random variable, T, in terms of
the probability that survival time will be at least 7. This function is called the survival
Junction and will be denoted S(¢). We then have

S@t) =1 - F@ = Pr[T > 1], t>0. @

By convention, S(¢) is usually used in survival analysis, although F(¢) is more commonly
used in other areas of statistics.

4.2 The Density Function

Another function that is useful in describing a random variable is the density function.
To understand how this function is defined, think of the change in the value of a
cumulative distribution function (as defined in the previous section) as ¢ increases by a
small amount, say from 7 to ¢ + At. Symbolically, this change can be written as F(t + Af)
- F(?). The average change over the interval is simply this value divided by the interval
length, that is

F(t + At) - F(v) 3)
At

Now consider the limit of this ratio as Az approaches 0, which is written as

A = lim FGt + Aty - F(p)

4
At~ 0 At @

Those who are familiar with calculus will recognize this limit, f(¢), as the derivative of
F(r) with respect to ¢, generally written F’(#). This function is known as the probability
density function, or simply the density function, of the random variable 7. You might
think of it as the instantaneous rate of change of the death probability with respect to
time. Since S(¢) = 1 - F(2), it is not surprising that its instantaneous rate of change, S'(¢),

is —f) = -F'(1).
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4.3 The Hazard Function

A third very useful way to characterize survival is by using a function called the hazard
function, which we will usually denote by A(z). It is the instantaneous rate of change of
the death probability (as described in the previous section) conditioned on the patient's
having survived to time #. The formula for the hazard is

h(t) = @ = L/(t), >
S() S() &)

To understand why f(¢) is divided by S(#), consider the probability of rolling a 3 on a toss
of a six-sided die. Of course, that probability is 1/6. But suppose somebody tossed a die
and told you that the result was an odd number. Then, what is the probability that the
result is a 3, conditioned on the fact that the result is odd? Since there are now only three
possible outcomes (1, 3, and 5) and all are equally likely, the answer is 1/3. That answer
can be obtained by dividing 1/6 by 1/2, which is the probability of rolling an odd
number. In the same manner, you can calculate the instantancous change in the death
probability at time 7, conditioned on survival to time ¢ by dividing f(r) by the probability
of surviving to time ¢, S(¢).

Although the hazard at time ¢ conveys information about the risk of death at that time for
a patient who has survived for that long, you should not think of the hazard as a
probability. In fact, it may exceed 1.0. A way to associate the hazard, A(r), at time ¢, with
a probability is to note that, based on equation 5 and the definition of f{¢), you can
calculate the approximation for Az near 0, of

Fit + A - F(p) (6)
S(t)

h(H)Ar =

The numerator in equation 6 is the probability that the patient dies by time ¢ + Af minus
the probability that he or she dies by time ¢; that is, the numerator is the probability that
the patient dies at the time between ¢ and ¢ + At. As noted above, dividing by S(¢)
conditions on surviving to time ¢. Thus the hazard at time 7 multiplied by a small
increment of time approximates the probability of dying within that increment of time
after ¢ for a patient who survived to time ¢.

Using a fundamental theorem of calculus, if we plot the graph of the function y = f(¢),
then for any value, ¢, of ¢, F(¢,) is the area above the horizontal axis, under the curve, and
to the left of a vertical line at 7, S(z,) is the area to the right of #,. Figure 1.3 illustrates
this property for 7, = 3 and an arbitrary density function f{r).
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Figure 1.3

F(3)
Pr[T < 3]

Another important relationship between the functions that describe survival is given by
t
S = expl- f h(u)du] D
0

The integral in equation 7 is called the cumulative hazard at time 7, and it plays a critical
role in long-term survival. If this integral increases without bound as ¢ — «, then S(¢)
approaches 0 as ¢ - «. In other words, there are no long-term survivors or “cures.”

If, however, the integral approaches a limit, ¢ < «, as ¢ - «, then S(¢) approaches

exp(-c) as t - o, In this case, we can think of exp(-c) as the cure rate. Estimation of a
cure rate is one of the most important and challenging problems of survival analysis.
An approach to this problem will be presented in Chapter 5.

"
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5. Some Commonly Used Survival Functions
5.1 The Exponential Function

The simplest function that you can use to describe survival is the exponential function
given by

S(t) = exp(-Ar), 10 (®)

This survival function has only one parameter, the constant hazard, A. The median
survival time, defined as the solution of S(¢) = 0.5, is 1= ~log,(0.5)/A. Also, if we assume
a probability of p of surviving for time 7, then A is determined by A = -log,(p)/s.

5.2 The Weibull Function

A more complex, but often more realistic, model for survival is given by the Weibull
function

S = exp(-AtY), 20 ©)

Note that the exponential survival function is a special case of the Weibull function
where y=1. The hazard function is given by A(H)=Ayf"". It increases as t increases if
vy > 1, and decreases as ¢ increases if 0 < y < 1

Graphs of survival functions of each type are shown in Figures 1.4 and 1.5.

Figure 1.4
Exponential Survival
1.0]
0.8
©
S 0.6
>
[
5 04
0]
0.2
O'O—I T T T T T T T T T T
o 1 2 3 4 5 6 7 8 =} 10
Y ears
A = 0.231




Extending SAS Survival Analysis Techniques for Medical Research

Figure 1.5
Weibull Survival

Survival

Other functions, such as the lognormal, gamma, and Rayleigh, are also sometimes used
to describe survival, but will not be discussed in this chapter.

6. Functions that Allow for Cure
6.1 The Idea of Cure Models

The survival functions described in the previous section are all based on proper
distribution functions, that is F(¢) -~ 1 as ¢ —~ «. Of course, this means that

S(1) -~ 0 as t - ». Often, however, a model, to be realistic, must allow for a nonzero
probability of indefinite survival - that is, a nonzero probability of cure. Suppose you
were analyzing survival data for a cohort of children who had Hodgkin’s Disease. You
might find that a considerable number of patients were alive, apparently free of disease
and still being followed after ten years, and that no deaths had occurred after four years.
You could assume that a nonzero proportion had been cured in this case. A survival
function that goes to zero with increasing time is not a good model for such data.

Figures 1.6, 1.7, and 1.8 graphically illustrate three types of survival functions that allow
for cure. For purposes of comparison, the parameters in each case are chosen so that the
cure rate is 30% and the noncures have a median survival time of one year.

6.2 Mixed Models

One way to model such data is to assume that the population being studied is a mixture of

two subpopulations. A proportion, T, is cured, and the remaining proportion, 1-m, has a

13
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survival function as described in section 6.1. If, for example, the survival function of the
non-cured patients is exponential, the survival of the entire population can be given by

S@) =7 + (1 - mexp(-Ar), t > 0 (10)

The graph of such a survival function approaches a plateau at S(f) = m as ¢ > «, This
model has been studied by Goldman (1984) and Sposto and Sather (1985). Figure 1.6
illustrates this example. Of course, the exponential function in equation 10 can be
replaced by any survival function. For example, Gamel et al. (1994) have considered
such a model based on a lognormal survival function for the non-cured patients.

Figure 1.6
Exponential Survival with Cure
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6.3 The Piecewise Exponential Model

Another model that can allow for cure is the piecewise exponential model as described
by Shuster (1990). This model assumes that the hazard is constant over intervals, but can
be different for different intervals. For example, we suppose that A(z)=A for O < ¢ < ¢ and
h()=0 for ¢ > t,. For this model, the survival function is given by

S(t) = exp(-Ar) for 0 < t < t,
S() = exp(-My) for > 1, (1D
Figure 1.7 illustrates this example.
Figure 1.7
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6.4 The Gompertz Model

Still another model for survival that allows for cure is given by the Gompertz function,
which is defined by

S = exp{‘%[eXP(et) -1} v>0,120 (12)

Although this function appears to be rather complicated, it follows by equation 7 from
the assumption that 7(¢) is increasing or decreasing exponentially with rate 0 as ¢
increases. In fact, this function was first used by Gompertz (1825) to describe mortality

15
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in an aging male population in which he observed an exponentially increasing hazard.
With 0 < 0, it's not hard to see that S(z) ~ exp(y/0) as t-~. This function was first used to
describe survival of patients by Haybittle (1959). It has also been studied in this context
by others (Gehan and Siddiqui, 1973; Cantor and Shuster, 1990; and Garg, Rao, and
Redmond, 1970). S(r) -~ exp(-y¢) as O - 0, so that the exponential function can be
thought of as a special case of the Gompertz function with 0 = 0. Figure 1.8 illustrates
this example.

Figure 1.8
Gompertz Survival
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7. Parametric and Nonparametric Methods

If you are willing to assume that survival can be described by a distribution of one of the
types described in this chapter, then the way to use a set of sample data to make estimates
or inferences about the underlying population is clear. You need to somehow obtain esti-
mates of the parameter(s) that determine the distribution. Then, the desired estimates fol-
low almost immediately. For example, assume that survival in a particular cohort can be
described by the exponential model in equation 8. Then, if A is estimated (by using met-
hods to be described later in this book) to be 0.043 where the unit of time is years, then
exp(—3x0.043) = exp(-0.129)=0.879 is the estimated probability of survival for at least
three years. Furthermore, if the standard error of the estimate of A is known, then stan-
dard methods permit us to calculate the standard error of the estimate of S(f) and confi-
dence intervals for S(3). Similarly, if exponentiality is assumed for survival of patients in
each of two treatment arms, then the superiority of one of the treatments is equivalent to
its having a smaller A. These matters will be discussed in more detail in Chapter 5.
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Often, however, statisticians are reluctant to base analyses on assumed types of
distributions. Many statistical methods, such as ¢ tests and ANOVA, are rather robust

to the assumption of normality for reasonably large sample sizes. Thus, inferences can
often be made with some confidence even if you are not confident of normality. This

is not true for methods of survival analysis. An estimate or inference based on the
assumption of exponentiality might be grossly erroneous if that assumption does not
hold. Thus, you would rather make statements that hold regardless of the underlying
distribution. To enable us to make such statements, a class of methods has been
developed that are valid without any distributional assumptions, or sometimes with

only very modest distributional assumptions. Because of their power and, in many cases,
their simplicity and intuitive appeal, these methods have come to dominate. Most SAS
procedures that are used for survival analysis, and most of this book, is based upon such
methods.

8. Parameters, Estimates, and the “hat” Notation

The parametric models described in sections 5 and 6 are each characterized by one or
more parameters that are generally denoted by Greek letters. Their values, of course, are
not known to us, but later in this book you learn about ways to estimate them. It is
important that you keep in mind the distinction between parameters and their estimates.
A parameter is an unknown and unknowable characteristic of a population. We study a
sample drawn from a population in order to derive estimates of parameters. Sometimes
these estimates also lead to hypothesis tests about the parameters. It is helpful to have a
notation for estimates that reminds us of the parameter we are estimating. This book
uses the name of a parameter with a “hat” (") over it to represent an estimate for the
parameter. For example, A is the notation used for an estimate of A. How to calculate A
from a sample is discussed in Chapters 4 and 5. Similarly, if survival time in a given
population is described by a survival function S(#), the notation S(r) will be used for
estimates of S(¢). Methods of calculating S(¢) from a sample are discussed in Chapters 2,
4, and 5.

9. Some Common Assumptions

In the analysis of survival data, we are frequently concerned about the effect of a variable
on survival. The treatment to which a patient is assigned might be such a variable. Other
variables might be demographic - age, race, or sex, for example. Still others might be
associated with the patient's disease - cancer stage, number of blocked arteries,
Karnofsky status, and so on. There are many ways in which a variable can impact on
survival. Suppose a variable that is thought to impact on survival is observed, and

let A(z, x) be the hazard at time ¢ for a patient with a value of x for that variable. The
survival function has the proportional hazards property if, for some positive number, c,
we have for all values of ¢ and x
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According to this assumption, the effect of the variable is multiplicative on the hazard
function. Then, whether the hazard is increasing, decreasing, or not affected by
increasing values of the variable depends upon whether that constant multiple is less
than, greater than, or equal to 1. Another possible assumption is that the effect of a
variable might be to accelerate (or decelerate) mortality. Let S,(f) and S,(#) be the survival
functions for two values of a variable. Often, this variable is the treatment a patient
received, so that S,(¢) and S,(¢) are the survival functions for the two treatments. Then, for
some positive number, b, you might have S,(r) = S,(bf) for all nonnegative values of ¢. In
other words, the probability of surviving to time ¢ for one value of the variable is the
same as the probability of surviving to time bt for the other. This is called the accelerated
failure time assumption. Whether the value associated with S,(7) is better than, worse
than, or equivalent to the value associated with S,(f) depends upon whether b is less than,
greater than, or equal to 1. While there are statistical methods that do not require such
assumptions, as you shall see later in this book, often these assumptions are reasonable
and can lead to more powerful and informative analyses. Assumptions such as these,
which attribute certain properties to the underlying survival distribution without
specifying its form, are said to be semiparametric. Methods based on such assumptions
occupy a place between the nonparametric and parametric methods.



