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1.1 Introduction

Blocking is aresearch technique that is used to diminish the effects of variation among
experimental units. The units can be people, plants, animals, manufactured mechanical
parts, or numerous other objects that are used in experimentation. Blocks are groups of units
that are formed so that units within the blocks are as nearly homogeneous as possible. Then
levels of the factor being investigated, called treatments, are randomly assigned to units
within the blocks. An experiment conducted in this manner is called arandomized blocks
design. The primary objectives usualy are to estimate and compare treatment means. In
most cases, the treatment effects are considered fixed because the treatments in the
experiment are the only ones to which inference isto be made. That is, no conclusions will
be drawn about treatments which were not employed in the experiment. Block effects are
usually considered random because the blocks in the experiment are only a small subset of
the larger set of blocks over which inference about treatment meansisto be made. In other
words, the investigator wants to estimate and compare treatment means with statements of
precision (confidence intervals) and levels of statistical significance (from tests of
hypothesis) that are valid in reference to the entire population of blocks, not just those in the
experiment. To do so requires proper specification of random effectsin model equations. In
turn, computations for statistical methods must properly accommodate the random effects.
The model for data from a randomized blocks design usually should contain fixed effects for
treatment contributions and random effects for block contributions, making it a mixed
model.
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Section 1.2 presents the randomized blocks model as it is usually found in a basic
statistical methods textbook. The standard analysis of variance methods are given, followed
by an example to illustrate the standard methods. Section 1.3 illustrates using the MIXED
procedure to obtain the results for the example, followed by results using the GLM
procedure and the VARCOMP procedures for comparison. Then, basic mixed model theory
for the randomized blocks design is given in section 1.4, including a presentation of the
model in matrix notation. Section 1.5 presents an analysis of data from an incomplete blocks
design to illustrate PROC MIXED and PROC GLM with unbalanced data.

1.2 Mixed Model for a Randomized Complete Blocks Design

A randomized blocks design that has each treatment applied in each block is called a
randomized complete blocks design (RCBD). In the most common situation each
treatment appears once in each block. Assume thereéblreks and treatments and there
will be one observation per experimental unit. Because each tfrfa@ments is applied in
each of the blocks, there are experimental units altogether. Lettipngdenote the
response from the experimental unit that received treainreblockj, the equation for the

model is
Yy = H+T +h g (1.2)
where
i=1,...t
=10

U andr, are fixed parameters such that the mean for'theatmentis g =y +

b, is the random effect associated with jfhélock

g; is random error associated with the experimental unit in jldwk received
treatment.

Assumptions for random effects are
* block effects are distributatbr mally and independently with mean 0 and variance
o, that is, theb, are distributed iid N(@)
+ errorsg; are distributechor mally and independently with mean 0 and varianeg; that
is, theeg; are distributed iid N(@7).

These are the conventional assumptions for a randomized blocks model.
1.2.1 Means and Variances from Randomized Blocks Design
Recall that the usual objectives of a randomized blocks design are to estimate and
compare treatment means using statistical inference. Mathematical expressions are needed
for the variances of means and differences between means in order to construct confidence

intervals and conduct tests of hypotheses. It follows from model equation 1.1 that a treatment
mean, for exampley,, , can be written

V.= M +D, +e, (1.2)
Likewise, the difference between two means, suchasy,, - ,,, can be written

e A e ) (1.3)
From these expressions, you see that the variances of y, and y,, - y,, are

Var(y,,) = ©* o,)Ir (1.4)

and
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var(y, - ¥,.)=2c)r (1.5

Notice that the variance of a treatment mean ¥ar( ) contains the block variance
component,’, but the variance of the difference between two meansyyar(y,, ) does
not containe,2. This is the manifestation of the RCBD controlling block variation;
differences between treatments are estimated free of block variation.

1.2.2 The Traditional Method: Analysisof Variance
Almost all statistical methods textbooks present analysis of variance (ANOVA) as a key

component in analysis of data from a randomized blocks design. Our assumption is that
readers are familiar with fundamental concepts for analysis of variance, such as degrees of
freedom, sums of squares (SS), mean squares (MS), and expected means squares (Exp MS).
Readers needing more information concerning analysis of variance may consult Littell,
Freund, and Spector (1991), Milliken and Johnson (1984), or Winer (1991). Table 1.1 is a
standard ANOVA table for the RCB, showing sources of variation, degrees of freedom,
mean squares, and expected mean squares.

Table 1.1 ANOVA Table for Randomized Complete Blocks Design

Sour ce of

Variation df MS Exp MS
Blocks r-1 MS(BIks) o? + 16,2
Treatments t-1 MS(Trts) o2 + ro?

Error (r-1)(t-1) MS(Error) o’

1.2.3 Using Expected M ean Squar es

Expected means squar es are the quantities that are estimated by mean squares in an
analysis of variance. They can be used to motivate test statistics. The basic idea is to
examine the expected mean square for a factor and see how it differs under the null and
alternative hypotheses. For example, the expected mean square for treatments,
E(MS(Trts)) =c? + r¢? can be used to determine how to set up a test statistic for treatment
differences. The null hypothesisHs:p,=...=j4 . The expressiast in Exp MS(Trts) is
0=Z(W- i, )4(t-1), wherep1, is the mean of 4 ,.,.,u. Thids0 is equivalent to  =...5
So, if the null hypothesid :p,=...=y is true, MS(Trts) simply estimatgs On the other
hand, ifH,:y,=...= is false, then Exp MS(Trts) estimates a quantity largesthaxow,
MS(Error) estimates? regardless of whethét, is true or false. Therefore, MS(Trts) and
MS(Error) tend to be approximately the same magnitubie i true, and MS(Trts) tends to
be larger than MS(Error) H,:p,=...= is false. So a comparison of MS(Trts) with
MS(Error) is an indicator of whethét:p,=...=4 is true or false. In this way the expected
mean squares show that a valid test statistic is the ratio F=MS(Trt)/MS(Error).
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Expected mean squares also can be used to estimate variance components, variances of
treatment means, and differences between treatment means. They reveal that estimates of the
variance components are

6%= MS(Error) (1.6)
and
6,2=[MS(Blks) - MS(Error)]/t .7

These are calleahalysis of variance estimates of the variance components. It follows
that estimates of Vay{, ) and Vai(- v, ) are

Var(y,.)= (6+ 6,9/
= MS(BIks)/rt + (t-1)MS(Error)/rt (1.8)

and
Var(y,, - ,,) = 2MS(Error)/r (1.9)

The expression for Vay(, ) points out a common misconception that the estimate of the
variance of a treatment mean from a randomized blocks design is simply MS(Erfdriyg
misconception prevails in some text books and results in incorrect calculation of standard
errors by computer program packages. The good news is that it gives a starting point for
illustrating the MIXED procedure in the SAS System.

1.2.4 Example: A Randomized Complete Blocks Design

An example from Mendenhall, Wackerly, and Scheaffer (1990) is used to illustrate
analysis of data from a randomized blocks design.

Data for an RCB designed experiment are presented in Data Set 1.1, “BOND,” in
Appendix 4, “SAS Data Sets.” Blocks are ingots of a composition material and treatments
are metals (nickel, iron, or copper). The response is the amount of pressure required to
break a bond of two pieces of material from an ingot that used one of the metals as the
bonding agent.

Table1.2 ANOVA Table for BOND Data

Sour ce of

Variation df SS MS F P

Ingots 6 268.29 44.72

Metal 2 131.90 65.95 6.36 0.0131
Error 12 124.46 10.37

The ANOVA table and the metal means provide the essential computations for statistical
inference about the population means.

The ANOVA F = 6.36 for metal gives a test of the null hypothisig,, =y =4 . The
significance probability for the F-testps= 0.0131, indicating strong evidence of differences
between metal means. Estimates of the variance componeifs are = 10.37 and
6, = (44.72-10.37)/3 = 11.45. Thus, an estimate of the variance of a metal mean is
(6+6,2)/7 = 3.11, and the estimated standard error is”3.11 =1.77. An estimate of the
variance of a difference between two metal meansis 2 /7 = 2¥10.37/7=2.96, and the
standard error is (2.96) .
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A Notefor PROC GLM Users
It might seem natural at this point to illustrate the use of PROC GLM to obtain the

analysis described in the previous subsection. Indeed, this was strongly considered.
However, the main focus of this book is on PROC MIXED, and we decided that this
procedure should be the first introduced rather than forever linking PROC MIXED through
PROC GLM. Itisimportant to show relationships between the two procedures, and thisis
done throughout the book. Readers who want to see PROC GLM results for the RCBD first
may turn to subsection 1.3.3.

1.3 Using PROC MIXED to Analyze RCBD Data

PROC MIXED is aprocedure based on likelihood. That is, many of the estimation and
inferential methods are implemented on the basis of the likelihood function and associated
principles and theory. Most readers are probably more familiar with the analysis of variance
approach described in the previous section. In fact, section 1.2 is presented as a frame of
reference rather than as an indication of how PROC MIXED works. In section 1.3.1 results
from PROC MIXED are shown that duplicate many of the results of the previous section.

1.3.1 Basic PROC MIXED Statementsand Output
Program
Here are the basic PROC MIXED statements for the RCBD data analysis:

proc m xed dat a=rchb;
class ingot netal;
nodel pres=netal;
random i ngot ;

run;

The PROC MIXED statement calls the procedure.

The CLASS statement specifies that INGOT and METAL are classification variables as
opposed to continuous variables.

The MODEL statement is an equation whose left-hand side contains the name of the
response variable to be analyzed, in this case PRES. The right-hand side of the MODEL
statement contains alist of the fixed-effect variables, in this case the variable METAL. In
terms of the statistical model, this specifiesthe 1, parameters. (The intercept parameter u is
implicitly contained in all models unless otherwise declared.)

The RANDOM statement contains a list of temdom effects, in this case INGOT, and
represent the, terms in the statistical model.

The MODEL and RANDOM statements are the core essential statements for many mixed
model applications. Results from these statements appear in Output 1.1.
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Results
Output 1.1 Results of the RCBD Data Analysis

The M XED Procedure

Cl ass Level Information®

d ass Level s Val ues
1 NGOT 7 1234567
METAL 3 cin

REML Estimation |teration History®

Iteration Evaluations bj ective Criterion
0 1 79.32809232
1 1 74.70841482 0. 00000000

Convergence criteria net.

Covari ance Paraneter Estinates (REM.)®

Cov Parm Ratio Estimate Std Error 4
I NGOT 1.10376333 11. 44777778 8. 72036577 1.31
Resi dual 1. 00000000 10. 37158730 4.23418279 2.45

Covari ance Paraneter Estinmates (REM)
Pr > |2

0. 1893

0.0143

Model Fitting Information for PRES®

Description Val ue
Cbservati ons 21. 0000
Vari ance Estinmate 10. 3716
Standard Devi ati on Estinmate 3. 2205
REML Log Li kel i hood -53.8951
Akai ke’s Information Criterion -55.8951
Schwar z’ s Bayesian Criterion -56. 7855
-2 REML Log Likelihood 107. 7902

Tests of Fixed Effects®

Sour ce NDF DDF Type Il F Pr > F

MVETAL 2 12 6.36 0.0131

I nter pretation
Thefirst feature you notice in Output 1.1 is that the PROC MIXED output reflectsits
likelihood orientation, as opposed to the analysis of variance orientation of the ANOVA and
GLM procedures. Here are annotations of key portions of the output.

@ ClassLevel Information lists the variables in the CLASS statement and their levels.

® REML Estimation Iteration History shows the sequence of evaluations to obtain
(restricted) maximum likelihood estimates of the variance components. This portion of
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the output is not critical to most applications, such as the present RCBD analysis.

® Covariance Parameter Estimates (REM L) show estimates of the variance component
parameters. The estimate of 6,2, the block variance component, is 11.45 (labeled
INGOT), and the estimate of 62, the error variance component, is 10.37 (labeled
Residual). For this example of a balanced data set, these variance component estimates
are exactly the same as the estimates obtained from the analysis of variance method.
That is, the estimate of 62 is MS(Error) from the ANOVA table, and the estimate of 6,2
is (MS(Blocks)-MS(Error))/7. In more complicated unbalanced data sets, the REML
estimates are not necessarily equal to the ANOV A estimates.

® Model Fitting Information for PRES shows the “Number of Observations” equal to
21. Nextis the “Variance Estimate,” 10.3716, which is the same as the Residual
variance component. This is followed by the Standard Deviation Estimate, 3.2205,
which is simply the square root of the Variance Estimate, equal to 16?3716
Remaining computations are more complicated to explain and are not essential to this
analysis.

® Testsof Fixed Effectsis like an abbreviated ANOVA table showing a line of
computations for each term in the MODEL statement, in this example, METAL.
Included is an F-test for testing the null hypothekigi, = 4 =4 . With 2 numerator
and 12 denominator degrees of freedom, the F-value of 6.36 is significant at the
p=0.0131 level. If the true METAL means are equal, then an F-value as large as 6.36
would occur less than 131 times in 10,000 by chance. This is the same F-test that was
obtained from the analysis of variance in Table 1.2.

In summary, the basic PROC MIXED computations are based on likelihood principles,
but many of the statistical computions are the same as those obtained from analysis of
variance methods for a balanced data set.

1.3.2 Estimating and Comparing Means: LSMEANS, ESTIMATE, and CONTRAST Statements
You can obtain treatment means from the LSMEAN&a@t uares MEANS) statement

| smeans netal / pdiff;

Results appear in Output 1.2.
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Results Using the L SM EANS Statement
Output 1.2 Results of Using the LSVIEANS Slatement

Least Squares Means
Level LSMEAN Std Error DDF T Pr > T
METAL ¢ 70. 18571429 1.76551753 12 39.75 0. 0001

METAL 75. 90000000 1. 76551753 12 42.99 0. 0001
METAL n 71. 10000000 1. 76551753 12 40. 27 0. 0001

Di fferences of Least Squares Means

Level 1 Level 2 Di fference Std Error DDF T Pr > |T|
METAL c METAL i -5.71428571 1.72142692 12 -3.32 0. 0061
METAL c METAL n -0.91428571 1.72142692 12 -0.53 0. 6050
METAL i METAL n  4.80000000 1.72142692 12 2.79 0.0164

I nterpretation

For the case of balanced data, the LS means are simply the averages for treatments. Also
printed are standard errors for the means. The value is 1.766 for each of the means. This
estimate is equal to§( &2 )M , which is a valid estimate of the true standard error
((6*+6,9)/7)"? because it uses the correct linear combinations of variance components.

Pairwise comparisons of means are obtained by the PDIFF option on the LSMEANS
statement. In Output 1.3 you see pairwise differences and standard errors of the differences.
Each standard error has the value 1.721, equald® (2> /7) . You also see resiaitssof
for the statistical significance of the difference between the means in each pair. The results
declare both copper and nickel different from iron but copper and nickel not different from
each other.

Linear combinations of means can be estimated with the ESTIMATE statement. For
illustration, consider the linear combination equal to the nickel megan, u . First of all, express
the nickel mean as a linear combination of the model parameters,tit SNere explicitly,
M,=1p+@+0r+11,. Then insert these coefficients of the model parameters into the
ESTIMATE statement:

estimate 'nickel nean’ intercept 1 metal 0 0 1;
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In a similar fashion, the difference between the means for copper and iron is gt =
so the ESTIMATE statement is

estimate 'copper vs iron’ netal 0 1 -1;
Results of these ESTIMATE statements appear in Output 1.3.

Output 1.3 Inference about Linear Combinations of Means

ESTI MATE St atenent Results

Par anet er Esti mate Std Error DDF T Pr > |T|
ni ckel mean 71.10000000 1. 76551753 12 40.27 0.0001
copper vs iron -5.71428571 1.72142692 12 -3.32 0.0061

CONTRAST St atenent Results

Sour ce NDF DDF F Pr > F
copper vs iron 1 12 11.02 0. 0061

You see that the estimates of the nickel mean and differences between the copper and iron
means are the same as those obtained from the LSMEANS statement in Output 1.2.

The CONTRAST statement is a companion to the ESTIMATE statement. It is used to
test hypotheses about linear combinations of model parameters. To test the null hypothesis
Ho: -l = 0, submit the statements

contrast 'copper vs iron’ netal 1 -1 0;

This CONTRAST statement produces the F-test shown in Output 1.3.

The F-value of 11.02 is equal to the square of-tredue from the corresponding
ESTIMATE statement.

The general use of the ESTIMATE and CONTRAST statements is to estimate and test
linear combinations ddll terms in the mixed model, including random effects.

1.3.3 Comparison of PROC M| XED with PROC GLM for the RCBD Data
PROC GLM was the principal SAS procedure for analyzing mixed models data prior to
the advent of PROC MIXED, even though the basic computations of PROC GLM are for
fixed effect models. The GLM procedure uses statements similar to those used by PROC
MIXED. In this section you will see differences and similarities in the statements and
output. However, you will not see complete coverage of PROC GLM capabilities. Refer to
Littell, Freund, and Spector (1991) for more detailed PROC GLM coverage.
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Program
Statements for PROC GLM to obtain the ANOVA table, mean estimates, and
comparisons analogous to those discussed in Section 1.3.1 and 1.3.2 are

proc gl m dat a=rchb;
class ingot netal;
nodel pres=ingot netal;
| smeans netal /stderr pdiff;
estimate 'nickel nean’ intercep 1 nmetal 0 0 1;
-1 0;
-10

estimate 'copper vs iron’ netal 1
contrast 'copper vs iron’ netal 1
random i ngot ;

run;

Results of these statements appear in Output 1.4.

Results
Output 1.4 Randomized Blocks Analysis with PROC GLM

CGeneral Linear Mbdels Procedure
C ass Level Information

d ass Level s Val ues
1 NGOT 7 1234567
METAL 3 cin

Nurmber of observations in data set = 21

General Linear Mddels Procedure

Dependent Vari abl e: PRES

Sour ce DF Sum of Squares F Val ue Pr > F
Model 8 400. 19047619 4.82 0. 0076
Error 12 124. 45904762
Corrected Total 20 524. 64952381
R- Squar e C. V. PRES Mean
0.762777 4.448490 72.3952381
Sour ce DF Type | SS F Val ue Pr > F
1 NGOT 6 268. 28952381 4. 31 0. 0151
METAL 2 131. 90095238 6. 36 0.0131

Sour ce DF Type 11 SS F Val ue Pr > F
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1 NGOT 6 268. 28952381 4. 31 0. 0151
METAL 2 131. 90095238 6. 36 0. 0131
CGeneral Linear Mdels Procedure
Least Squares Means
METAL PRES Std Err Pr > |T| LSMEAN

LSVEAN LSMVEAN HO: LSVEAN=O Nunber
c 70. 1857143 1.2172327 0. 0001 1
i 75. 9000000 1.2172327 0. 0001 2
n 71.1000000 1.2172327 0. 0001 3
Pr > |T| HO: LSMEAN(i)=LSMEAN(j)
ilj 1 2 3
1 . 0.0061 0.6050
2 0.0061 0.0164
3 0.6050 0.0164
NOTE: To ensure overall protection level, only probabilities
associ ated with pre-planned conparisons should be used.
General Linear Mddels Procedure
Sour ce Type |11 Expected Mean Square
| NGOT Var (Error) + 3 Var (1 NGOT)
METAL Var (Error) + Q METAL)
Contr ast Contrast Expected Mean Square
copper vs iron Var (Error) + Q METAL)
General Linear Mddels Procedure
Dependent Vari abl e: PRES
Cont r ast DF Contrast SS F Val ue Pr > F
copper vs iron 1 114. 28571429 11. 02 0. 0061
T for HO: Pr > |T| Std Error of
Par anet er Estimate Par armet er =0 Estimate
copper vs iron -5.7142857 -3.32 0. 0061 1.72142692
ni ckel nean 71.1000000 58. 41 0. 0001 1.21723265

I nterpretation

Following is a comparison of syntax and output for PROC GLM and PROC MIXED

statements:

e First, both procedures use the same CLASS statements; if avariableisaclassification
variablein PROC GLM, then so it iswith PROC MIXED.

*  You seethat the MODEL statements of PROC MIXED and PROC GLM are not
exactly the same. Thisisavery important distinction between the procedures: In
PROC MIXED, you list only the fixed effects in the right-hand side of the MODEL
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statement. But in PROC GLM you list all effects, both fixed and random, although
PROC GLM does not really treat the random effects as random. The optionsin PROC
GLM for inference accommodating random effects are adaptations of the fixed effect
computations for this procedure. PROC MIXED, on the other hand, was conceived
from the outset for mixed models. The distinction between MODEL statementsin
PROC MIXED and PROC GLM carries over to the output from the two procedures. In
Output 1.6, from PROC GLM, you see an ANOVA tablelisting all the termsin the
MODEL statement, with no distinction between fixed and random. But in Output 1.2,
from PROC MIXED, the list of Tests of Fixed Effects contains only termsin the
MODEL statement.

*  The LSMEANS statements for the two procedures are essentially the same, except that
you need the STDERR option in the LSMEANS statement for PROC GLM. Hereis
another important distinction between the procedures. In comparing Output 1.3 with
Output 1.4, you see that the LSMEANS estimates are the same for the two procedures,
but their standard errors are not the same. Thisis due to the inherent fixed-effect nature
of PROC GLM. The standard errors for the LSMEANS computed by PROC GLM are
(&/7)"2, which would be appropriate if INGOT (the blocks) were fixed. Recall from
section 1.3.1 that PROC MIXED performed correct computations for the LSMEAN
standard errors with INGOT random.

e Syntax for ESTIMATE statements is the same in PROC GLM as in PROC MIXED for
estimating linear combinations of fixed effects. The remarks comparing standard errors
of LSMEANS estimates from PROC MIXED and PROC GLM also hold pertaining to
ESTIMATE statements. You see in Output 1.5 from PROC GLM that the standard
error of the estimate of the nickel mean is the same as for the nickel LSMEAN, which
previously was stated to be incorrect.

Estimates, their standard errors and tests of the difference between the COPPER and
IRON means are the same for PROC GLM (Output 1.4) and PROC MIXED (Outputs
1.2 and 1.3). This is true for the present example, but not for all mixed model data sets,
as you will see in the case of an incomplete block design in subsection 1.5.2.

« The RANDOM statements for PROC MIXED and PROC GLM represent another major
distinction between the two procedures although they have the same appearance for the
present example. In PROC MIXED, listing INGOT in the RANDOM statement causes
all standard errors and test statistics to incorporate the information that the effect is
random. This is not true in PROC GLM. The RANDOM statement in PROC GLM (as
used here) merely computes expected mean squares for terms in the MODEL statement
and for linear combinations in the CONTRAST statement. You must then digest the
information in the expected means squares table and formulate appropriate tests. (The
TEST option in the PROC GLM RANDOM statement will do this automatically for
terms in the MODEL statement, but not for CONTRAST statements.) In the RCBD
example, the default tests computed by PROC GLM are correct, so no modification is
needed for the test of differences from the MODEL and CONTRAST statements.

These comparisons of PROC MIXED and PROC GLM are summarized in Table 1.3 in
the next section.

1.3.4 Comparison of PROC VARCOMP with PROC MIXED and PROC GLM for the RCBD Data
Program
The VARCOMP procedure is used to obtain estimates of the variance components in a
mixed model. For the RCBD data, submit the statements

proc varconp nethod=renl data=rcb;
class ingot netal;
nodel pres=netal ingot/ fixed=1;
run;
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PROC VARCOMP uses the same CLASS statement as PROC GLM and PROC MIXED.
The MODEL statement in PROC VARCOMP contains alist of all fixed-effect variables
followed by all random-effect variables. The designation FIXED=1 tells VARCOMP how
many of the variables are fixed. Only classification variables are allowed in the MODEL
statement of PROC VARCOMP. Results appear in Output 1.5.

Results
Output 1.5 Variance Component Estimation Procedure

Vari ance Conponents Estimation Procedure
Class Level Information

d ass Level s Val ues
1 NGOT 7 1234567
METAL 3 cin

Nurmber of observations in data set = 21

REML Vari ance Conponents Estination Procedure

Dependent Vari abl e: PRES

Iteration bj ective Var (| NGOT) Var (Error)
0 50. 87068437 11. 44777778 10. 37158730
1 50. 87068437 11. 44777778 10. 37158730

Convergence criteria net.

Asymptotic Covariance Matrix of Estimates

Var (1 NGOT) Var (Error)
Var (1 NGOT) 76.04477922 -5.97610129
Var (Error) -5.97610129 17. 92830386

I nter pretation
Y ou see iterative computations toward estimation of the variance components 6,2 and 62

The estimates are 11.45 and 10.37. These are the same estimates produced by PROC
MIXED. The “Asymptotic Covariance Matrix of Estimates” contains estimates of the large
sample variances and covariances of the variance component estimates. The variance
estimate of the INGOT variance component estimate is 76.04; its square root of 8.72 is the
standard error of the variance component estimate printed by PROC MIXED in Output 1.1.
Likewise, the variance estimate of the ERROR variance component estimate is 17.93, and its
square root of 4.23 is the standard error of the variance component estimate labeled Residual
in Output 1.1. The estimate of the covariance between the variance component estimates is
-5.98.
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Comparisons of PROC VARCOMP, PROC GLM, and PROC MIXED for the RCBD
data are summarized in Table 1.3.

Table 1.3 Summary Comparison of Syntax and Output for PROC GLM, PROC MIXED,

and PROC VARCOMP
Statement PROC MIXED PROC GLM PROC VARCOMP
CLASS list classification variables  same same
MODEL specify dependent specify dependent specify dependent
variable and list fixed variableand list all terms  variable and list all
effect in model termsin model, fixed
effects preceding
random
RANDOM specify random effects obtain table of expected not applicable
mean squares
LSMEANS estimate means for fixed estimate meansfor fixed  not applicable
effect factors effect factors
ESTIMATE estimate linear estimate linear not applicable
combination of model combination of model
terms terms
CONTRAST  test set of linear test set of linear not applicable

combinations of model
terms

combination of model
terms

1.4 Introduction to the Theory of Linear Models

Y ou have seen an application of PROC MIXED to the RCBD data set. Before
introducing other example data sets, a brief introduction to mixed model theory is presented
to help you understand the basis for applications. Also, this introduction to theory helpsyou
understand the differences between results produced by PROC MIXED and PROC GLM.
Thisisavery brief and incomplete presentation of mixed model theory. Complete results
are presented in Appendix 1. The use of matrix notation makes the results more concise and
easily comprehensible than the use of summation notation.

1.4.1 Some Basic Theory Results

You are probably already familiar with the standard linear regression model in matrix

notation,

Y=Xp+e

where

Y isthe vector of observations
X isthe matrix of values of independent variables
B isthe vector of regression parameters

eisavector of errors.

(1.10)
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Ordinary least squares (OLS) estimates of the parametersin p are given by solving the
normal eguations

X'Xp=X'Y (1.11)
A solution is given by
B = (X'X)X"Y) (1.12)

where (X'X ) isageneralized inverse of X'X.

Notice that we have not made any assumptions about the probability distribution of the
vector e of errors. The estimator B isan OLS estimator of B regardless of the distribution of
e. Now assume that the errors are independently and normally distributed with common
variance 2. Then the covariance matrix of B isc?(X'X)". Also, B isthe best estimate of B
in the following sense: if K is avector of coefficients such that the linear combination K' g is
estimable, then the best linear unbiased estimate (BLUE) of K' g isK' p. These results
provide the foundation for statistical inference about linear combinations of the parameter
vector .

The regression model is a special case of the general linear mixed model (GLMM), which
has the equation

Y=XB+Zu+e (113)

In this equation u is distributed multivariate normal with mean vector 0 and covariance
matrix G (which we denote MVN(0,G)), and eisdistributed MVN(O,R). Theonly
requirement of the matrices G and R is that they be positive definite (that is, they are
covariance matrices). Then the covariance matrix of Y is

V(Y)=ZGZ +R (1.14)

The RANDOM statement in PROC MIXED defines G and the REPEATED statement,
which will be introduced in Chapter 4, defines R

It followsthat Y isdistributed MVN(XB,ZGZ' + R). Thusthe generalized least squares
(GLS) estimate of B is

B = (X'VIX)yX'Viy (1.15)

whereV = V(Y) = ZGZ' + R. Also,

V) = (V) (116)

If K'B isestimable, thenthe BLUE of K' B isK' ﬁ and the variance of
K BisK (X'V X)K.

Analogous to the regression model, the preceding results provide the foundation for
statistical inference about linear combinations of the parameter vector . That is, they can be
used to test hypotheses and to construct confidence intervals about linear combinations of
parameters. These are some of the basic theoretical results used by PROC MIXED.

In reality, the covariance matrices G and R are usually functions of unknown
parameters which must be estimated. Typically, the parameters are variance components
or correlation parameters. PROC MIXED uses either ML or REML to estimate the
parametersof G and R (ML and REML are described in Appendix 1). Then these estimates
are substituted in place of the true parameters valuesin G and R to compute estimates of f3
and V(B). Also, the matrix X'V X typically is singular so that a generalized inverseis used.
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1.4.2The RCBD Model in Matrix Notation
The RCBD model in equation (1.1) can be written in matrix notation. In explicit detail,
the model equation is

- _
u 11...0 1 0 ey
u 10 1M %1 &
.. N ! )

(117)

: b

er 11... O _Tt_ O | r qr
_Y.tr_ 10 . 0. . .1 |t

with terms defined following equation (1.1). In more compact matrix notation the equation
is

Y=Xp+Zu+e (1.18)

where
Y is the vector of observations
X is the treatment design matrix
B is the vector of treatment fixed effect parameters
Z is the block design matrix
u is the vector of random block effects
eis the vector of experimental errors.

The equation states that the vectoof observations can be expressed as a sum of fixed
treatment effectXp, random block effect&u, and random experimental erresTheXp
portion is defined by the MODEL statement, andZgportion is defined by the RANDOM
statement. It is not necessary in this example to define the experimentakerrors

For the RCBD model in matrix notation, the random veatbas a multivariate normal
distribution with mean vectdr and covariance matrix?2, (V is distributed MVNQ,c,l,)),
and the random vecteris distributed MVNOQ, ¢?,,).

The variance of the observation vecYois

V=V(Y)=ZGZ +R

oo, @ @

2,
Itr

r_



Chapter 1 17

where V, = 6,2, + 64, is the covariance matrix of all the observationsin a particular block,
@, isanrxr matrix of zeros, and, is anrxr matrix of 1's.

The matrixX'V*X is singular, so a generalized inverse must be used to obtain a GLS
estimatep of the fixed effect parameter vector. But the treatment means and differences
between treatment means are estimable parameters. Thus, no matter what generalized inverse
is used, there will bela vector for whichK'p is equal to a mean or a difference between
means. For example, choosiKg-(1,1,0,...,0) give&K'p= 1 +1, = ;. Then the general
theory givesV (K'B)=(c,2+ ¢?)/r. Likewise,K'=(0,1-1,0...,0) giveK’B=y, - K,, and
V(K'B)=2(cd/r. These are the expressions presented in section 1.2.1.

In the case of a relatively simple, balanced design such as an RCBD, the variance

Vv, @, @,
(Dr \4 b (Dr
@, @, Vy

expressions can be derived directly from the model as was done in subsection 1.2.1. Butin
more complicated unbalanced situations, the general theoretical results must be invoked. In
this subsection, we have illustrated the general results in the RCBD setting to confirm their
validity and to assist you in becoming more comfortable in using the general linear mixed
model.
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1.5 Example of an Unbalanced Two-way Mixed Model: Incomplete

Block Design

M odel

In some applications of blocking there are not enough experimental unitsin each block to
accommodate all treatments. Incomplete block designs are designs in which only a subset
of the treatments are applied in each block. The treatments that go into each block should be
selected in order to provide the most information relative to the objectives of the experiment.

Two types of incomplete block designs are the so-called balanced incomplete block
design (BIBD) and the partially balanced incomplete block design (PBIBD). This does not
mean “balanced” in the more common sense of the word, in which each treatment appears
the same number of times in each block. In fact, any incomplete block design is
“unbalanced” by the common definition.

The BIB and PBIB designs result in all treatments having the same variance (and hence
the same standard error). Also, the variances of differences between two treatment means
are the same for all pairs of treatments with BIBDs and for sets of treatments with PBIBDs.
As you may suspect, it is not possible to construct BIB or PBIB designs for all possible
numbers of treatments and blocks. Discovery of numbers of blocks and treatments for which
BIBDs and PBIBDs can be constructed was once an active area of statistical research. With
the advent of fast computers and good statistical software, the existence of BIBDs and
PBIBDs for given numbers of blocks and treatments has become a less important problem.
Mead (1988) has an excellent discussion of this issue.

This section presents analyses for a PBIBD using PROC GLM and PROC MIXED to
further illustrate some of the similarities and differences between the two procedures. You
can see some distinctions between PROC MIXED and PROC GLM that did not occur in the
analyses of the RCB design. Although the example is a PBIBD, data analysis methods of
this section apply to incomplete block designs in general.

The equation for the model of an incomplete blocks design is the same as for an RCBD.
That is, the responsg that results from applying treatment blockj is assumed to be
equal to a treatment mean p =, plus a block effedh, plus experimental err@;. Thus
the equation

Y, =M +1,+h +g (12.29)
where the block effects by areiid N(0,0,%), the experimental errorsg; areiid N(0,6%), and the
b, are independent of the g;. An analysis of variance table for an incomplete blocks design is

shown in Table 1.4.

Table 1.4 Analysis of Variance Table for Incomplete Blocks Design

Sour ce of
Variation df F
Blocks r-1
Treatments
(adjusted for blocks) t-1 MS(Trts adj.)/MS(Error)
Error N-r-t+1
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Inthetable, r isthe number of blocks, t isthe number of treatments, and N is the total
number of observations. Notice that the Treatments source of variation is adjusted for
blocks. The Treatments cannot be compared simply on the basis of the usual sum of sgquared
differences between treatment means because this would contain effects of blocks aswell as
treatment differences. Instead, a sum of squared differences must be computed between
treatment means that have been adjusted to remove the block effects.

Analyses of BIBD and PBIBD datathat are presented in most statistics textbooks are
called intra-block analyses because treatments are compared on the basis of differences
computed within blocks. Y ou can perform this type of analysis with PROC GLM. Itis
discussed first in subsection 1.5.1 because thisis the analysis with which you are most likely
familiar. In subsection 1.5.2, an analysisis presented using PROC MIXED that utilizes
information about treatment means contained in differences between blocks. Thistype of
analysis combines intra- and inter-block information.

1.5.1 The Usual Intra-block Analysisof PBIB Data Using PROC GLM
Data Set 1.5.1, PBIB, in Appendix 4, “SAS Data Sets,” contains data from Cochran and
Cox (1957, p. 456). The design is a PBIBD with fifteen blocks, fifteen treatments, and four
treatments per block. Data are pounds of seed cotton per plobloEkesize is the number
of treatments per block. This PBIBD has a block size of four. Each treatment appears in
four blocks. Some pairs of treatments appear together in one block (e.g., treatments 1 and 2)
and others do not appear together in the same blocks (e.g., treatments 1 and 6).

Program
An intra-block analysis of the PBIBD data is obtained from submitting the statements

proc gl m dat a=pbi b;
class blk treat;
nodel response=blk treat;
neans treat;
| smeans treat / stderr pdiff;
estimate 'treat 1 nean’ intercep 1 treat 1;
estimate 'trt 1 nean’ intercep 15 treat 15
blk 11111111111 1111/ divisor=15;
estimate 'trt 1 blk 1' intercep 1 treat 1 blk 1;
estimate 'trt 1 vs trt 2' treat 1 -1;
contrast 'trt 1 vs trt 2° treat 1 -1;
random bl ock;
run;

Results appear in Output 1.6.
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Results

Output 1.6 Incomplete Blocks Design: PROC GLM Analysis

CGeneral Linear Mbdels Procedure
C ass Level Information
Cd ass Level s Val ues
BLK 15 12345678910 11 12 13 14 15
TREAT 15 12345678910 11 12 13 14 15
Nurmber of observations in data set = 60
General Linear Mddels Procedure
Dependent Vari abl e: RESPONSE
Sour ce DF Sum of Squares F Val ue Pr > F
Model 28 6. 32855556 2.62 0. 0050
Error 31 2.67077778
Corrected Total 59 8. 99933333
R- Squar e C. V. RESPONSE Mean
0. 703225 10. 72546 2.73666667
Sour ce DF Type 111 SS F Val ue Pr > F
BLK 14 3.33422222 2.76 0. 0090
TREAT 14 1. 48922222 1.23 0. 3012
General Linear Mddels Procedure
Level of ----------- RESPONSE- - - - - - - - - -
TREAT N Mean SD
1 4 2. 77500000 0. 17078251
2 4 2.40000000 0.21602469
3 4 2. 45000000 0.23804761
4 4 2. 95000000 0. 36968455
5 4 2. 80000000 0. 14142136
6 4 2.92500000 0. 80156098
7 4 2. 82500000 0.17078251
8 4 2. 72500000 0. 34034296
9 4 2. 82500000 0.51881275
10 4 2. 45000000 0. 12909944
11 4 2.97500000 0. 32015621
12 4 3. 12500000 0. 29860788
13 4 2.52500000 0. 37749172
14 4 2. 42500000 0. 05000000
15 4 2. 87500000 0. 55000000
Ceneral Linear Mbdels Procedure
Least Squares Means
TREAT RESPONSE Std Err Pr > |T| LSVEAN
LSMEAN LSMEAN  HO: LSMEAN=0 Nunber
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1 2.84555556  0.16342514 0. 0001 1
2 2.41277778  0.16342514 0. 0001 2
3 2.45166667  0.16342514 0. 0001 3
4 2.68333333  0.16342514 0. 0001 4
5 2.80666667  0.16342514 0. 0001 5
6 2.90388889  0.16342514 0. 0001 6
7 2.77111111 0. 16342514 0. 0001 7
8 2.81000000  0.16342514 0. 0001 8
9 2.93333333  0.16342514 0. 0001 9
10 2.51500000 0. 16342514 0.0001 10
11 2.85388889  0.16342514 0.0001 11
12 3.01277778  0.16342514 0.0001 12
13 2.66833333  0.16342514 0.0001 13
14 2.53333333  0.16342514 0.0001 14
15 2.84833333  0.16342514 0.0001 15

Pr > | T| HO: LSMEAN(i)=LSNEAN(])

i/] 1 2 3 4 5 6 7 8

1. 0.0711 0.0989 0.4887 0.8677 0.8093 0.7500 O0.8789

2 0.0711 . 0.8677 0.2515 0.0989 0.0420 0.1450 0.0962

3 0.0989 0.8677 . 0.3248 0.1354 0.0599 0.1776 0.1450

4 0.4887 0.2515 0.3248 . 0.5981 0.3482 0.7072 0.5882

5 0.8677 0.0989 0.1354 0.5981 . 0.6774 0.8789 0.9886

6 0.8093 0.0420 0.0599 0.3482 0.6774 . 0.5705 0. 6879

7 0.7500 0.1450 0.1776 0.7072 0.8789 0.5705 . 0. 8677

8 0.8789 0.0962 0.1450 0.5882 0.9886 0.6879 0.8677 .

9 0.7072 0.0318 0.0458 0.3049 0.5882 0.8996 0.4887 0.5981
10 0.1634 0.6619 0.7863 0.4727 0.2328 0.1031 0.2772 0.2121
11 0.9725 0.0661 0.0923 0.4669 0.8397 0.8361 0.7231 0.8509
12 0.4756 0.0178 0.0214 0.1648 0.3802 0.6414 0.3211 0.3879
13 0.4498 0.2782 0.3729 0.9488 0.5545 0.3168 0.6602 0.5587
14 0.1873 0.6063 0.7267 0.5360 0.2468 0.1196 0.3124 0.2412
15 0.9905 0.0694 0.0967 0.4814 0.8631 0.8120 0.7410 O0.8696

Pr > | T| HO: LSMEAN(i)=LSNEAN(])

i/ 9 10 11 12 13 14 15

1 0.7072 0.1634 0.9725 0.4756 0.4498 0.1873 0.9905

2 0.0318 0.6619 0.0661 0.0178 0.2782 0.6063 0.0694

3 0.0458 0.7863 0.0923 0.0214 0.3729 0.7267 0.0967

4 0.3049 0.4727 0.4669 0.1648 0.9488 0.5360 O0.4814

5 0.5882 0.2328 0.8397 0.3802 0.5545 0.2468 0.8631

6 0.8996 0.1031 0.8361 0.6414 0.3168 0.1196 0.8120

7 0.4887 0.2772 0.7231 0.3211 0.6602 0.3124 0.7410

8 0.5981 0.2121 0.8509 0.3879 0.5587 0.2412 0.8696

9 . 0.0805 0.7338 0.7338 0.2612 0.1052 0.7160
10 0.0805 . 0.1533 0.0395 0.5127 0.9374 0.1742
11 0.7338 0.1533 . 0.4977 0.4290 0.1761 0.9810
12 0.7338 0.0395 0.4977 . 0.1469 0.0468 0.4829
13 0.2612 0.5127 0.4290 0.1469 . 0.5641 0.4428
14 0.1052 0.9374 0.1761 0.0468 0.5641 . 0.1835
15 0.7160 0.1742 0.9810 0.4829 0.4428 0.1835

NOTE: To ensure overall protection level, only probabilities
associ ated with pre-planned conpari sons should be used.
CGeneral Linear Mdels Procedure
Sour ce Type |11 Expected Mean Square

BLK Var (Error) + 3.2143 Var (BLK)
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TREAT Var (Error) + Q TREAT)
Contr ast Contrast Expected Mean Square
trtl vs trt2 Var (Error) + Q TREAT)

CGeneral Linear Mbdels Procedure

Dependent Vari abl e: RESPONSE

Contr ast DF Contrast SS F Val ue Pr > F
trtl vs trt2 1 0.30101240 3.49 0.0711
T for HO: Pr > |T| Std Error of
Par anet er Esti mat e Par anet er =0 Estimate
treat 1 nean 2. 84555556 17. 41 0. 0001 0. 16342514
trt 1 nmean 2. 84555556 17. 41 0. 0001 0. 16342514
trt 1 blk 1 2. 39666667 11.74 0. 0001 0. 20406165
trt 1 vs trt 2 0.43277778 1.87 0.0711 0.23153188

From Output 1.6, you can construct the analysis of variance table, as shown in Table 1.5.
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Table 1.5 Analysisof Variance Table for Incomplete Blocks Design from Cochran and Cox

(1957)
Sour ce of
Variation df SS MS F p
Blocks 14 3.334 0.238
Treatments
(adjusted for blocks) 14 1.489 0.106 2.62 0.3012
Error 31 2671 0.086

I nter pretation

The F-test for differences between (adjusted) treatment differences has a significance
probability of p=0.3012, which presents no evidence of differences between treatments. In
agreement with this conclusion, the table of significance probabilities for the Ismeans shows
only six (out of 120) p-values less that 0.05. Y ou would expect that many by chance.

L east squares means, obtained from the LSMEANS statement, are usually called
adjusted means in standard textbooks. These means and their standard errors come from
the OLS estimation of the treatment means. Thus, they do not take into account the fact that
blocks are random. The adjustment of treatment means to remove block effectsisa
computation that treats blocks simply as another fixed effect. Thisanalysis of variance,
along with adjusted treatment means and differences between them and their standard errors,
comprise the so-called intra-block analysis of PBIBD data.

In the PROC GLM statements following the LSMEANS statement, you see three
ESTIMATE statements and a CONTRAST statement. The first ESTIMATE statement (with
the label “treatl mean”) specifies coefficients for the INTERCEPT and the TREAT 1
parameter. By default, PROC GLM averages across the BLK parameters to form the linear
combination of model terms. The second ESTIMATE statement (with the label “trt 1
mean”) explicitly specifies the same linear combination of model terms; that is, it specifies
coefficients 1/15 for each of the BLK terms. The results of these two ESTIMATE
statements are identical, including their standard errors. Moreover, they duplicate the
LSMEAN for TREAT 1 and its standard error. These standard errors do not take into
account the random block effects. Subsection 1.5.2 shows analogous ESTIMATE
statements in PROC MIXED that produce different results. This is the purpose for showing
these first two ESTIMATE statements. The fourth ESTIMATE statement (with label “trt 1
vs trt 2”) simply computes the difference between the Ismeans for TREAT 1 and TREAT 2.
The CONTRAST statement with the label “trt 1 vs trt 2” computes an F-test that is
equivalent to thé-test from the ESTIMATE statement with the same label.

The RANDOM statement in GLM, as already mentioned, causes only expected mean
squares to be computed. The expected mean squares table in Output 1.7 shows that the
correct denominator for the F-test for TREAT is MS(Error).
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1.5.2 The Combined Intra- and Inter-block Analysis of PBIB Data Using PROC MIXED

Program

Results

When blocks are treated as random, the result is then combined intra- and inter-block

analysis. You can obtain this using PROC MIXED by submitting the statements:

proc m xed dat a=pbi b;
class blk treat;
nodel response=treat;
random bl ock;
| smeans treat / pdiff;
estimate 'treat 1 nean’
estimate 'trt 1 nean’ intercept 15 treat 15 |

ntercept 1 treat 1;

i
blk 1711111111111111/ divisor=15;
n

estimate 'trt 1 blk 1' intercept 1 treat 1 | bl
estimate "trt 1 vs trt 2’ treat 1 -1;
contrast 'trt 1 vs trt 2' treat 1 -1;

run;

k 1;

Results appear in Output 1.7 for the combined intra- and inter-block analysis.

Output 1.7 Incomplete Block Design: PROC MIXED Analysis

The M XED Procedure

Cl ass Level Information

Convergence criteria net.

-2 REM. Log Likelihood 51.

REML Estimation Iteration History

Cd ass Level s Val ues

BLK 15 123456789 10 11 12 13
14 15

TREAT 15 1234567 89 10 11 12 13
14 15

Criterion

Iteration Evaluations oj ective
0 1 -24.83873612
1 3 -30.71608590 0. 00022046
2 1 -30.71956742 0. 00000043
3 1 -30.71957397 0. 00000000

Covari ance Paraneter Estinmates (REM)

Cov Parm Ratio Estimate Std Error 4
BLK 0. 54373914 0. 04652189 0. 02795193 1. 66
Resi dual 1. 00000000 0. 08555921 0. 02157637 3.97

Model Fitting Information for RESPONSE

Descri ption Val ue
Cbservations 60. 0000
Vari ance Estimate 0. 0856
St andard Devi ation Estinmate 0. 2925
REML Log Li kel i hood -25.9924
Akai ke's Information Criterion -27.9924
Schwar z’ s Bayesian Criterion -29.7991

9849

Pr > |2

0. 0960
0. 0001
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Tests of Fixed Effects
Sour ce NDF DDF Type Il F Pr > F

TREAT 14 31 1.53 0.1576

ESTI MATE St atenent Results

Estimat e Std Error DDF T
an 2.81752245 0.16641271 31 16. 93
2.81752245 0. 15681751 31 17.97
1 2.52880832 0. 18454599 31 13.70
rt 2 0.41220751 0. 22206087 31 1.86
CONTRAST Statenent Results
rce NDF DDF F Pr >F
1vs trt 2 1 31 3.45 0.0729
Least Squares Means
LSMEAN Std Error DDF T Pr > |T
2. 81752245 0.16641271 31 16. 93 0. 0001
2. 40531494 0.16641271 31 14. 45 0. 0001
2. 45494317 0.16641271 31 14.75 0. 0001
2.78383061 0.16641271 31 16.73 0. 0001
2. 80489797 0.16641271 31 16. 86 0. 0001
2.91069390 0.16641271 31 17. 49 0. 0001
2.78898509 0.16641271 31 16. 76 0. 0001
2.78160548 0.16641271 31 16.72 0. 0001
2.89131103 0.16641271 31 17.37 0. 0001
2.49106159 0.16641271 31 14.97 0. 0001
2. 89869913 0.16641271 31 17. 42 0. 0001
3. 05282147 0.16641271 31 18. 34 0. 0001
2.61776910 0.16641271 31 15.73 0. 0001
2.49131103 0.16641271 31 14.97 0. 0001
2. 85923304 0.16641271 31 17.18 0. 0001
Di fferences of Least Squares Means
Level 2 Di fference Std Error DDF T
TREAT 2 0. 41220751 0.22206087 31 1.86
TREAT 3 0. 36257929 0. 22206087 31 1.63
TREAT 4 0. 03369184 0. 22206087 31 0.15
TREAT 5 0.01262448 0.22206087 31 0. 06
TREAT 6 -0.09317145 0.22720031 31 -0.41
TREAT 7 0. 02853736 0. 22206087 31 0.13
TREAT 8 0. 03591697 0.22206087 31 0.16
TREAT 9 -0.07378858 0.22206087 31 -0.33
TREAT 10 0. 32646086 0. 22206087 31 1.47
TREAT 11 -0.08117667 0.22720031 31 -0.36
TREAT 12 -0. 23529902 0.22206087 31 -1.06
TREAT 13 0. 19975335 0.22206087 31 0.90
TREAT 14 0. 32621142 0.22206087 31 1.47
TREAT 15 -0.04171059 0. 22206087 31 -0.19
TREAT 3 -0.04962822 0.22206087 31 -0.22
TREAT 4 -0. 37851567 0.22206087 31 -1.70
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Pr > |T

0. 0001
0. 0001
0. 0001
0. 0729
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Chapter 127

I nter pretation

Y ou will note several differences from the intra-block
analysis given by PROC GLM.

First of dl, referring to the results of the first two
ESTIMATE statements (with labels “treat 1 mean” and “trt 1
mean”), the estimates of the treatment means are different.
Granted, the differences are not major, but they are certainly
numerically different. In other applications the distinction can
be dramatic. The PROC MIXED estimate of the treatment 1
mean is 2.817, compared with the PROC GLM estimate of
2.846. The distinction is that the PROC GLM estimate is OLS,
whereas the MIXED estimate is (estimated) GLS. Theoretically,
the GLS estimate is superior. PROC MIXED accounts for BLK
being random and computes the BLUE estimates accordingly.
Estimates of the variance components are used to comipnte
equation (1.15) because the true variance components are
unknown. The standard errors in PROC MIXED likewise are
different from those in PROC GLM. The standard error of the
OLS estimate is 0.163 from GLM. This is not a valid estimate
of the true standard error of the OLS estimate for the same
reason that PROC GLM did not compute a valid standard error
estimate for a treatment mean for the RCBD data in subsection
1.1.1; the random effects of blocks were ignored. You see
different standard errors for the “treat 1 mean” and “trt 1 mean”
estimates from PROC MIXED. The ESTIMATE statement with
label “treat 1 mean” did not specify coefficients for the block
terms, whereas the ESTIMATE statement with label “trt 1
mean” did specify coefficients for blocks. This made no
difference with PROC GLM, but it does with PROC MIXED.
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The standard error from the ESTIMATE statement labeled “treat
1 mean” correctly estimates the standard error of the GLS
estimate considering blocks to be random. Thus it can be used
to produce a confidence interval for the mean that would be
valid for inference across the population of blocks from which
those in the experiment were randomly drawn. The standard
error from the ESTIMATE statement labelled “trt 1 mean,”
however, does not involve the block variance component. Thus
a confidence interval based on this standard error is valid only
for the blocks in the experiment. Standard errors of the
LSMEANS are the same as for the “treat 1 mean” estimate. The
“trt 1 mean” is an example ofleest linear unbiased predictor
(BLUP), and linear combination of fixed and random effects.
BLUPs are unique to mixed model theory and are discussed in
Chapter 6.

1.6 Summary

Chapter 1 begins with an example of a randomized blocks
design with fixed treatments and random blocks. The
importance of accounting for random effects in such a basic
situation as computing a variance for a treatment mean is
demonstrated. The use of PROC MIXED is introduced with
explanations of how to set up the MODEL and RANDOM
statements. The chapter continues with illustrations of
CONTRAST, ESTIMATE, and LSMEANS statements. Then,
PROC GLM is applied to the same example to illustrate
similarities and differences of PROC GLM and PROC MIXED
and to emphasize what basic applications are handled correctly
by PROC MIXED and not by PROC GLM. A brief explanation
of mixed model theory is presented in relation to the randomized
blocks design, including explicit descriptions of the matrices in
the general linear mixed model. Then, an incomplete block
design is used to illustrate some of the issues confronted with
unbalanced mixed model data.
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