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1.1 Introduction

Blocking is a research technique that is used to diminish the effects of variation among
experimental units.  The units can be people, plants, animals, manufactured mechanical
parts, or numerous other objects that are used in experimentation.  Blocks are groups of units
that are formed so that units within the blocks are as nearly homogeneous as possible.  Then
levels of the factor being investigated, called treatments, are randomly assigned to units
within the blocks.  An experiment conducted in this manner is called a randomized blocks
design.  The primary objectives usually are to estimate and compare treatment means.  In
most cases, the treatment effects are considered fixed because the treatments in the
experiment are the only ones to which inference is to be made.  That is, no conclusions will
be drawn about treatments which were not employed in the experiment.  Block effects are
usually considered random because the blocks in the experiment are only a small subset of
the larger set of blocks over which inference about treatment means is to be made.  In other
words, the investigator wants to estimate and compare treatment means with statements of
precision (confidence intervals) and levels of statistical significance (from tests of
hypothesis) that are valid in reference to the entire population of blocks, not just those in the
experiment.  To do so requires proper specification of random effects in model equations.  In
turn,  computations for statistical methods must properly accommodate the random effects. 
The model for data from a randomized blocks design usually should contain fixed effects for
treatment contributions and random effects for block contributions, making it a mixed
model.
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Section 1.2 presents the randomized blocks model as it is usually found in a basic
statistical methods textbook.  The standard analysis of variance methods are given, followed
by an example to illustrate the standard methods.  Section 1.3 illustrates using the MIXED
procedure to obtain the results for the example, followed by results using the GLM
procedure and the VARCOMP procedures for comparison.  Then, basic mixed model theory
for the randomized blocks design is given in section 1.4, including a presentation of the
model in matrix notation.  Section 1.5 presents an analysis of data from an incomplete blocks
design to illustrate PROC MIXED and PROC GLM with unbalanced data.

1.2 Mixed Model for a Randomized Complete Blocks Design

A randomized blocks design that has each treatment applied in each block is called a
randomized complete blocks design (RCBD).  In the most common situation each
treatment appears once in each block.  Assume there are r blocks and t treatments and there
will be one observation per experimental unit.  Because each of the t treatments is applied in
each of the r blocks, there are tr experimental units altogether.  Letting y  denote theij

response from the experimental unit that received treatment i in block j, the equation for the
model is

y  = µ +  + b  + e (1.1)ij i j ij

where
i=1,...,t
j=1,...,r
µ and  are fixed parameters such that the mean for the i  treatment is µ  = µ + i i i

th

b  is the random effect associated with the j  blocki
th

e  is random error associated with the experimental unit in block j that received ij

     treatment i.

Assumptions for random effects are
C block effects are distributed normally and independently with mean 0 and variance

; that is, the b  are distributed iid N(0, )b j b
2 2

C errors e  are distributed normally and independently with mean 0 and variance ; thatij
2

is, the e  are distributed iid N(0, ).ij
2

These are the conventional assumptions for a randomized blocks model.  

1.2.1 Means and Variances from Randomized Blocks Design
 Recall that the usual objectives of a randomized blocks design are to estimate and

compare treatment means using statistical inference.  Mathematical expressions are needed
for the variances of means and differences between means in order to construct confidence
intervals and conduct tests of hypotheses. It follows from model equation 1.1 that a treatment
mean, for example, , can be written

= µ  + + e (1.2)1 1C

Likewise, the difference between two means, such as , can be written

(1.3)

From these expressions, you see that the variances of and are

Var( ) = ( + )/r (1.4)2 2
b

 and
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ȳ1C
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Var( ) = 2( )/r (1.5)2

Notice that the variance of a treatment mean Var( ) contains the block variance
component , but the variance of the difference between two means Var( ) doesb

2

not contain .  This is the manifestation of the RCBD controlling block variation;b
2

differences between treatments are estimated free of block variation.

1.2.2 The Traditional Method: Analysis of Variance   
Almost all statistical methods textbooks present analysis of variance (ANOVA) as a key

component in analysis of data from a randomized blocks design.  Our assumption is that
readers are familiar with fundamental concepts for analysis of variance, such as degrees of
freedom, sums of squares (SS), mean squares (MS), and expected means squares (Exp MS). 
Readers needing more information concerning analysis of variance may consult Littell,
Freund, and Spector (1991), Milliken and Johnson (1984), or Winer (1991).  Table 1.1 is a
standard ANOVA table for the RCB, showing sources of variation, degrees of freedom,
mean squares, and expected mean squares.

Table 1.1 ANOVA Table for Randomized Complete Blocks Design

Source of
Variation df MS Exp MS

Blocks r&1 MS(Blks)  + t2 2
b

Treatments t&1 MS(Trts)  + r2 2

Error (r&1)(t&1) MS(Error) 2

1.2.3 Using Expected Mean Squares 
Expected means squares are the quantities that are estimated by mean squares in an

analysis of variance.  They can be used to motivate test statistics.  The basic idea is to
examine the expected mean square for a factor and see how it differs under the null and
alternative hypotheses.  For example, the expected mean square for treatments, 
E(MS(Trts)) =  + r , can be used to determine how to set up a test statistic for treatment2 2

differences.  The null hypothesis is H :µ =...=µ .  The expression  in Exp MS(Trts) iso 1 t
2

= (µ! ) /(t!1), where  is the mean of µ ,...,µ .  Thus =0 is equivalent to µ =...=µ  2 2 2
i . 1 t 1 t

So, if the null hypothesis H :µ =...=µ   is true, MS(Trts) simply estimates .  On the othero 1 t
2

hand, if H :µ =...=µ   is false, then Exp MS(Trts)  estimates a quantity larger than .  Now,o 1 t
2

MS(Error) estimates  regardless of whether H  is true or false.  Therefore, MS(Trts) and2
0

MS(Error) tend to be approximately the same magnitude if H  is true, and MS(Trts) tends too

be larger than MS(Error) if H :µ =...=µ  is false.  So a comparison of MS(Trts) witho 1 t

MS(Error) is an indicator of whether H :µ =...=µ  is true or false.  In this way the expectedo 1 t

mean squares show that a valid test statistic is the ratio F=MS(Trt)/MS(Error).
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ȳ1C

ˆ 2

ˆ
ˆ ˆ

ˆ 2

4 A Setting for Mixed Models Applications: Randomized Blocks Designs

Expected mean squares also can be used to estimate variance components, variances of
treatment means, and differences between treatment means.  They reveal that estimates of the
variance components are

= MS(Error) (1.6)
and

= [MS(Blks) & MS(Error)]/t (1.7)b
2

These are called analysis of variance estimates of the variance components.  It follows
that estimates of Var( ) and Var(! ) are

= ( + )/rb
2

= MS(Blks)/rt + (t&1)MS(Error)/rt (1.8)

and 
& ) = 2MS(Error)/r (1.9)

The expression for Var( ) points out a common misconception that the estimate of the
variance of a treatment mean from a randomized blocks design is simply MS(Error)/r.  This
misconception prevails in some text books and results in incorrect calculation of standard
errors by computer program packages.  The good news is that it gives a starting point for
illustrating the MIXED procedure in the SAS System.

1.2.4 Example: A Randomized Complete Blocks Design  
An example from Mendenhall, Wackerly, and Scheaffer (1990) is used to illustrate

analysis of data from a randomized blocks  design.
Data for an RCB designed experiment are presented in Data Set 1.1, “BOND,” in

Appendix 4, “SAS Data Sets.”  Blocks are ingots of a composition material and treatments
are metals (nickel, iron, or copper).  The response is the amount of pressure required to
break a bond of two pieces of material from an ingot that used one of the metals as the
bonding agent.

Table 1.2   ANOVA Table for BOND Data

Source of
Variation df SS MS F P

Ingots   6 268.29 44.72
Metal   2 131.90 65.95 6.36 0.0131
Error 12 124.46 10.37

The ANOVA table and the metal means provide the essential computations for statistical
inference about the population means.

The ANOVA F = 6.36 for metal gives a test of the null hypothesis H : µ  = µ  = µ .  Theo c i n

significance probability for the F-test is p = 0.0131, indicating strong evidence of differences
between metal means.  Estimates of the variance components are = 10.37 and 

 =  (44.72 !10.37)/3 = 11.45.  Thus, an estimate of the variance of a metal mean isb
2

( + )/7 = 3.11, and the estimated standard error is 3.11 =1.77.  An estimate of theb
2 1/2

variance of a difference between two metal means is 2 /7 = 2*10.37/7=2.96, and the
standard error is (2.96) .1/2
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A Note for PROC GLM Users   
It might seem natural at this point to illustrate the use of PROC GLM to obtain the

analysis described in the previous subsection.  Indeed, this was strongly considered. 
However, the main focus of this book is on PROC MIXED, and we decided that this
procedure should be the first introduced rather than forever linking PROC MIXED through
PROC GLM.  It is important to show relationships between the two procedures, and this is
done throughout the book.  Readers who want to see PROC GLM results for the RCBD first
may turn to subsection 1.3.3.

1.3 Using PROC MIXED to Analyze RCBD Data

PROC MIXED is a procedure based on likelihood.  That is, many of the estimation and
inferential methods are implemented on the basis of the likelihood function and associated
principles and theory.  Most readers are probably more familiar with the analysis of variance
approach described in the previous section.  In fact, section 1.2 is presented as a frame of
reference rather than as an indication of how PROC MIXED works.  In section 1.3.1 results
from PROC MIXED are shown that duplicate many of the results of the previous section.  

1.3.1 Basic PROC MIXED Statements and Output
Program  

Here are the basic PROC MIXED statements for the RCBD data analysis:

proc mixed data=rcb;
   class ingot metal;
   model pres=metal;
   random ingot;
run;

The PROC MIXED statement calls the procedure.
The CLASS statement specifies that INGOT and METAL are classification variables as

opposed to continuous variables.
The MODEL statement is an equation whose left-hand side contains the name of the

response variable to be analyzed, in this case PRES.  The right-hand side of the MODEL
statement contains a list of the fixed-effect variables, in this case the variable METAL.  In
terms of the statistical model, this specifies the  parameters.  (The intercept parameter µ isi

implicitly contained in all models unless otherwise declared.)
The RANDOM statement contains a list of the random effects, in this case INGOT, and

represent the b  terms in the statistical model.j

The MODEL and RANDOM statements are the core essential statements for many mixed
model applications.  Results from these statements appear in Output 1.1.
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Results
Output 1.1 Results of the RCBD Data Analysis

                        The MIXED Procedure

                      Class Level InformationÀ

                  Class     Levels  Values

                  INGOT          7  1 2 3 4 5 6 7
                  METAL          3  c i n

                 REML Estimation Iteration HistoryÁ

         Iteration  Evaluations     Objective     Criterion

                 0            1   79.32809232
                 1            1   74.70841482    0.00000000

                     Convergence criteria met.

               Covariance Parameter Estimates (REML)Â

    Cov Parm          Ratio      Estimate     Std Error       Z

    INGOT        1.10376333   11.44777778    8.72036577    1.31
    Residual     1.00000000   10.37158730    4.23418279    2.45

               Covariance Parameter Estimates (REML)

               Pr > |Z|

                 0.1893
                 0.0143

                 Model Fitting Information for PRESÃ
              Description                        Value

              Observations                     21.0000
              Variance Estimate                10.3716
              Standard Deviation Estimate       3.2205
              REML Log Likelihood             -53.8951
              Akaike’s Information Criterion  -55.8951
              Schwarz’s Bayesian Criterion    -56.7855
              -2 REML Log Likelihood          107.7902

                      Tests of Fixed EffectsÄ

             Source      NDF   DDF  Type III F  Pr > F

             METAL         2    12        6.36  0.0131

Interpretation
The first feature you notice in Output 1.1 is that the PROC MIXED output reflects its

likelihood orientation, as opposed to the analysis of variance orientation of the ANOVA and
GLM procedures.  Here are annotations of key portions of the output.

À Class Level Information lists the variables in the CLASS statement and their levels.

Á REML Estimation Iteration History shows the sequence of evaluations to obtain
(restricted) maximum likelihood estimates of the variance components.  This portion of
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the output is not critical to most applications, such as the present RCBD analysis.

Â Covariance Parameter Estimates (REML) show estimates of the variance component
parameters.  The estimate of , the block variance component, is 11.45 (labeledb

2

INGOT), and the estimate of , the error variance component, is 10.37 (labeled2

Residual).  For this example of a balanced data set, these variance component estimates
are exactly the same as the estimates obtained from the analysis of variance method. 
That is, the estimate of  is MS(Error) from the ANOVA table, and the estimate of 2 2

b

is (MS(Blocks)!MS(Error))/7. In more complicated unbalanced data sets, the REML
estimates are not necessarily equal to the ANOVA estimates.  

Ã Model Fitting Information for PRES  shows the “Number of Observations” equal to
21.  Next is the “Variance Estimate,” 10.3716, which is the same as the Residual
variance component.  This is followed by the Standard Deviation Estimate, 3.2205,
which is simply the square root of the Variance Estimate, equal to 10.3716 . 1/2

Remaining computations are more complicated to explain and are not essential to this
analysis.

Ä Tests of Fixed Effects is like an abbreviated ANOVA table showing a line of
computations for each term  in the MODEL statement, in this example,  METAL. 
Included is an F-test for testing the null hypothesis H : µ  = µ  = µ .  With 2 numerator0 c i n

and 12 denominator degrees of freedom, the F-value of 6.36 is significant at the
p=0.0131 level.   If the true METAL means are equal, then an F-value as large as 6.36
would occur less than 131 times in 10,000 by chance.  This is the same F-test that was
obtained from the analysis of variance in Table 1.2.

In summary, the basic PROC MIXED computations are based on likelihood principles,
but many of the statistical computions are the same as those obtained from analysis of
variance methods for a balanced data set.

1.3.2 Estimating and Comparing Means: LSMEANS, ESTIMATE, and CONTRAST Statements
You can obtain treatment means from the LSMEANS (Least Squares MEANS) statement

lsmeans metal / pdiff;

Results appear in Output 1.2.
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Results Using the LSMEANS Statement
Output 1.2 Results of Using the LSMEANS Statement

                        Least Squares Means

    Level           LSMEAN     Std Error   DDF       T  Pr > |T|

    METAL c    70.18571429    1.76551753    12   39.75    0.0001
    METAL i    75.90000000    1.76551753    12   42.99    0.0001
    METAL n    71.10000000    1.76551753    12   40.27    0.0001

                 Differences of Least Squares Means

    Level 1   Level 2   Difference   Std Error   DDF     T     Pr > |T|

    METAL c   METAL i  -5.71428571  1.72142692    12   -3.32     0.0061
    METAL c   METAL n  -0.91428571  1.72142692    12   -0.53     0.6050
    METAL i   METAL n   4.80000000  1.72142692    12    2.79     0.0164

Interpretation
For the case of balanced data, the LS means are simply the averages for treatments.  Also

printed are standard errors for the means.  The value is 1.766 for each of the means.  This
estimate is equal to (( + )/7) , which is a valid estimate of the true standard errorb

2 1/2

(( + )/7)  because it uses the correct linear combinations of variance components.2 2 1/2
b

Pairwise comparisons of means are obtained by the PDIFF option on the LSMEANS
statement.  In Output 1.3 you see pairwise differences and standard errors of the differences. 
Each standard error has the value 1.721, equal to (2 /7) .  You also see results of t-tests2 1/2

for the statistical significance of the difference between the means in each pair.  The results
declare both copper and nickel different from iron but copper and nickel not different from
each other.

Linear combinations of means can be estimated with the ESTIMATE statement.  For
illustration, consider the linear combination equal to the nickel mean, µ .  First of all, expressn

the nickel mean as a linear combination of the model parameters, µ =µ+.  More explicitly,n n

µ =1µ+0 +0 +1 .  Then insert these coefficients of the model parameters into then c i n

ESTIMATE statement:

estimate ’nickel mean’ intercept 1 metal 0 0 1;
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In a similar fashion, the difference between the means for copper and iron is µ -µ =! ,c i c i

so the ESTIMATE statement is 

estimate ’copper vs iron’ metal 0 1 -1;

Results of these ESTIMATE statements appear in Output 1.3.  

Output 1.3 Inference about Linear Combinations of Means

ESTIMATE Statement Results

Parameter Estimate  Std Error DDF T Pr > |T|
nickel mean 71.10000000 1.76551753 12 40.27 0.0001
copper vs iron !5.71428571 1.72142692 12 !3.32 0.0061

CONTRAST Statement Results

Source NDF DDF F   Pr > F 
copper vs iron 1    12   11.02 0.0061

You see that the estimates of the nickel mean and differences between the copper and iron
means are the same as those obtained from the LSMEANS statement in Output 1.2.

The CONTRAST statement is a companion to the ESTIMATE statement.  It is used to
test hypotheses about linear combinations of model parameters.  To test the null hypothesis    
H :µ -µ  = 0, submit the statementso c i

contrast ’copper vs iron’ metal 1 -1 0;

This CONTRAST statement produces the F-test shown in Output 1.3.
The F-value of 11.02 is equal to the square of the t-value from the corresponding

ESTIMATE statement.
The general use of the ESTIMATE and CONTRAST statements is to estimate and test

linear combinations of all terms in the mixed model, including random effects. 

1.3.3 Comparison of PROC MIXED with PROC GLM for the RCBD Data
PROC GLM was the principal SAS procedure for analyzing mixed models data prior to

the advent of PROC MIXED, even though the basic computations of PROC GLM are for
fixed effect models.  The GLM procedure uses statements similar to those used by PROC
MIXED.  In this section you will see differences and similarities in the statements and
output.  However, you will not see complete coverage of PROC GLM capabilities.  Refer to
Littell, Freund, and Spector (1991) for  more detailed PROC GLM coverage.
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Program
Statements for PROC GLM to obtain the ANOVA table, mean estimates, and

comparisons analogous to those discussed in Section 1.3.1 and 1.3.2 are

proc glm data=rcb;
   class ingot metal;
   model pres=ingot metal;
   lsmeans metal/stderr pdiff;
   estimate ’nickel mean’ intercep 1 metal 0 0 1;
   estimate ’copper vs iron’ metal 1 -1 0;
   contrast ’copper vs iron’ metal 1 -1 0;
   random ingot;
run;

Results of these statements appear in Output 1.4.

Results
Output 1.4 Randomized Blocks Analysis with PROC GLM

                  General Linear Models Procedure
                      Class Level Information

                  Class    Levels    Values

                  INGOT         7    1 2 3 4 5 6 7

                  METAL         3    c i n

              Number of observations in data set = 21

                  General Linear Models Procedure

Dependent Variable: PRES

Source                  DF    Sum of Squares    F Value     Pr > F

Model                    8      400.19047619       4.82     0.0076

Error                   12      124.45904762

Corrected Total         20      524.64952381

                  R-Square              C.V.             PRES Mean

                  0.762777          4.448490            72.3952381

Source                  DF         Type I SS    F Value     Pr > F

INGOT                    6      268.28952381       4.31     0.0151
METAL                    2      131.90095238       6.36     0.0131

Source                  DF       Type III SS    F Value     Pr > F
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INGOT                    6      268.28952381       4.31     0.0151
METAL                    2      131.90095238       6.36     0.0131

                  General Linear Models Procedure
                        Least Squares Means

      METAL          PRES       Std Err     Pr > |T|   LSMEAN
                   LSMEAN        LSMEAN   H0:LSMEAN=0   Number

      c        70.1857143     1.2172327        0.0001     1
      i        75.9000000     1.2172327        0.0001     2
      n        71.1000000     1.2172327        0.0001     3

                  Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

                       i/j     1       2       3
                       1   .      0.0061  0.6050
                       2  0.0061   .      0.0164
                       3  0.6050  0.0164   .

NOTE: To ensure overall protection level, only probabilities
      associated with pre-planned comparisons should be used.

                  General Linear Models Procedure

Source      Type III Expected Mean Square

INGOT       Var(Error) + 3 Var(INGOT)

METAL       Var(Error) + Q(METAL)

Contrast               Contrast Expected Mean Square

copper vs iron         Var(Error) + Q(METAL)

                  General Linear Models Procedure

Dependent Variable: PRES

Contrast                DF       Contrast SS    F Value     Pr > F

copper vs iron           1      114.28571429      11.02     0.0061

                               T for H0:    Pr > |T|   Std Error of
Parameter         Estimate    Parameter=0                Estimate

copper vs iron  -5.7142857          -3.32     0.0061     1.72142692
nickel mean     71.1000000          58.41     0.0001     1.21723265

Interpretation
Following is a comparison of syntax and output for PROC GLM and  PROC MIXED

statements:

C  First, both procedures use the same CLASS statements;  if a variable is a classification
variable in PROC GLM, then so it is with PROC MIXED.

C  You see that the MODEL statements of PROC MIXED and PROC GLM are not
exactly the same.  This is a very important distinction between the procedures:  In
PROC MIXED, you list only the fixed effects in the right-hand side of the MODEL
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statement.  But in PROC GLM you list all effects, both fixed and random, although
PROC GLM does not really treat the random effects as random.  The options in PROC
GLM for inference accommodating random effects are adaptations of the fixed effect
computations for this procedure.  PROC MIXED, on the other hand, was conceived
from the outset for mixed models.  The distinction between MODEL statements in
PROC MIXED and PROC GLM carries over to the output from the two procedures.  In
Output 1.6, from PROC GLM, you see an ANOVA table listing all the terms in the
MODEL statement, with no distinction between fixed and random.  But in Output 1.2,
from PROC MIXED, the list of Tests of Fixed Effects contains only terms in the
MODEL statement. 

C The LSMEANS statements for the two procedures are essentially the same, except that
you need the STDERR option in the LSMEANS statement for PROC GLM.  Here is
another important distinction between the procedures:  In comparing Output 1.3 with
Output 1.4, you see that the LSMEANS estimates are the same for the two procedures,
but their standard errors are not the same.  This is due to the inherent fixed-effect nature
of PROC GLM.  The standard errors for the LSMEANS computed by PROC GLM are
(ˆ /7) , which would be appropriate if INGOT (the blocks) were fixed.  Recall from2 1/2

section 1.3.1 that PROC MIXED performed correct computations for the LSMEAN
standard errors with INGOT random.

C Syntax for ESTIMATE statements is the same in PROC GLM as in PROC MIXED for
estimating linear combinations of  fixed effects.  The remarks comparing standard errors
of  LSMEANS estimates from PROC MIXED and PROC GLM also hold pertaining to
ESTIMATE statements.  You see in Output 1.5 from PROC GLM that the standard
error of the estimate of the nickel mean is the same as for the nickel LSMEAN, which
previously was stated to be incorrect.

Estimates, their standard errors and tests of the difference between the COPPER and
IRON means are the same for PROC GLM (Output 1.4) and PROC MIXED (Outputs
1.2 and 1.3).  This is true for the present example, but not for all mixed model data sets,
as you will see in the case of an incomplete block design in subsection 1.5.2.

C The RANDOM statements for PROC MIXED and PROC GLM represent another major
distinction between the two procedures although they have the same appearance for the
present example.  In PROC MIXED, listing INGOT in the RANDOM statement causes
all standard errors and test statistics to incorporate the information that the effect is
random.  This is not true in PROC GLM.  The RANDOM statement in PROC GLM (as
used here) merely computes expected mean squares for terms in the MODEL statement
and for linear combinations in the CONTRAST statement.  You must then digest the
information in the expected means squares table and formulate appropriate tests.  (The
TEST option in the PROC GLM RANDOM statement will do this automatically for
terms in the MODEL statement, but not for CONTRAST statements.)  In the RCBD
example, the default tests computed by PROC GLM are correct, so no modification is
needed for the test of differences from the MODEL and CONTRAST statements.

These comparisons of PROC MIXED and PROC GLM are summarized in Table 1.3 in
the next section.

1.3.4 Comparison of PROC VARCOMP  with PROC MIXED and PROC GLM for the RCBD Data
Program

The VARCOMP procedure is used to obtain estimates of the variance components in a
mixed model.  For the RCBD data, submit the statements

proc varcomp method=reml data=rcb;
   class ingot metal;
   model pres=metal ingot/fixed=1;
run;
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PROC VARCOMP uses the same CLASS statement as PROC GLM and PROC MIXED. 
The MODEL statement in PROC VARCOMP contains a list of all fixed-effect variables
followed by all random-effect variables.  The designation FIXED=1 tells VARCOMP how
many of the variables are fixed.  Only classification variables are allowed in the MODEL
statement of PROC VARCOMP.  Results appear in Output 1.5.

Results
Output 1.5 Variance Component Estimation Procedure

              Variance Components Estimation Procedure
                      Class Level Information

                  Class    Levels    Values

                  INGOT         7    1 2 3 4 5 6 7

                  METAL         3    c i n

              Number of observations in data set = 21

           REML Variance Components Estimation Procedure

Dependent Variable: PRES

    Iteration        Objective       Var(INGOT)       Var(Error)

        0          50.87068437      11.44777778      10.37158730
        1          50.87068437      11.44777778      10.37158730

                     Convergence criteria met.

            Asymptotic Covariance Matrix of Estimates

                             Var(INGOT)        Var(Error)

           Var(INGOT)       76.04477922       -5.97610129
           Var(Error)       -5.97610129       17.92830386

Interpretation
You see iterative computations toward estimation of the variance components  and . b

2 2

The estimates are 11.45 and 10.37.  These are the same estimates produced by PROC
MIXED.  The “Asymptotic Covariance Matrix of Estimates” contains estimates of the large
sample variances and covariances of the variance component estimates.  The variance
estimate of the INGOT variance component estimate is 76.04; its square root of 8.72 is the
standard error of the variance component estimate printed by PROC MIXED in Output 1.1. 
Likewise, the variance estimate of the ERROR variance component estimate is 17.93, and its
square root of 4.23 is the standard error of the variance component estimate labeled Residual
in Output 1.1.  The estimate of the covariance between the variance component estimates is
!5.98.
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Comparisons of PROC VARCOMP, PROC GLM, and PROC MIXED for the RCBD
data are summarized in Table 1.3.

Table 1.3  Summary Comparison of Syntax and Output for PROC GLM, PROC MIXED,
and PROC VARCOMP

Statement PROC MIXED PROC GLM PROC VARCOMP

CLASS list classification variables same same

MODEL specify dependent specify dependent specify dependent

RANDOM specify random effects obtain table of expected not applicable

variable and list fixed variable and list all terms variable and list all
effect in model terms in model, fixed

mean squares

effects preceding
random

LSMEANS estimate means for fixed estimate means for fixed not applicable
effect factors effect factors

ESTIMATE estimate linear estimate linear not applicable
combination of model combination of model
terms terms

CONTRAST test set of linear test set of linear not applicable
combinations of model combination of model
terms terms

1.4 Introduction to the Theory of Linear Models 

You have seen an application of PROC MIXED to the RCBD data set.  Before
introducing other example data sets, a brief introduction to mixed model theory is presented
to help you understand the basis for applications.  Also, this introduction to theory helps you
understand the differences between results produced by PROC MIXED and PROC GLM. 
This is a very brief and incomplete presentation of mixed model theory.  Complete results 
are presented in Appendix 1.  The use of matrix notation makes the results more concise and
easily comprehensible than the use of summation notation.  

1.4.1 Some Basic Theory Results
You are probably already familiar with the standard linear regression model in matrix

notation,

Y = X  + e (1.10)

where

Y is the vector of observations
X is the matrix of values of independent variables

 is the vector of regression parameters
e is a vector of errors.
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Ordinary least squares (OLS) estimates of the parameters in  are given by solving the
normal equations

X’X  = X’Y (1.11)

A solution is given by 

(1.12)

where (X'X )  is a generalized inverse of X'X .&

Notice that we have not made any assumptions about the probability distribution of the
vector e of errors.  The estimator  is an OLS estimator of  regardless of the distribution of
e.  Now assume that the errors are independently and normally distributed with common
variance .  Then the covariance matrix of  is (X'X ) .  Also,  is the best estimate of 2 2 &

in the following sense: if K  is a vector of coefficients such that the linear combination K'  is
estimable, then the best linear unbiased estimate (BLUE) of K'  is K' .  These results
provide the foundation for statistical inference about linear combinations of the parameter
vector .

The regression model is a special case of the general linear mixed model (GLMM), which
has the equation

Y = X  + Zu + e             (1.13)

In this equation u is distributed multivariate normal with mean vector 0 and covariance
matrix G (which we denote MVN(0,G )), and e is distributed MVN(0,R ).  The only
requirement of the matrices G and R is that they be positive definite (that is, they are
covariance matrices).  Then the covariance matrix of Y is

V(Y) = ZGZ’ + R                                     (1.14)

The RANDOM  statement in PROC MIXED defines G, and the REPEATED statement,
which will be introduced in Chapter 4, defines R.

It follows that Y is distributed MVN(X ,ZGZ' + R ).  Thus the generalized least squares
(GLS) estimate of  is

                                                                    (1.15)

where V = V(Y) = ZGZ' + R .  Also, 

            (1.16)

If K'  is estimable, then the BLUE of K'  is K' , and the variance of 
K'  is K' (X'V X ) K .&1 &

Analogous to the regression model, the preceding results provide the foundation for
statistical inference about linear combinations of the parameter vector .  That is, they can be
used to test hypotheses and to construct confidence intervals about linear combinations of
parameters.  These are some of the basic theoretical results used by PROC MIXED.

In reality, the covariance matrices G and R are usually functions of unknown
parameters, which must be estimated.  Typically, the parameters are variance components
or correlation parameters.  PROC MIXED uses either ML or REML to estimate the
parameters of  G and R (ML and REML are described in Appendix 1). Then these estimates
are substituted in place of the true parameters values in G and R to compute estimates of 
and V( ).  Also, the matrix X'V X  typically is singular so that a generalized inverse is used.&1
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1.4.2 The RCBD Model in Matrix Notation
The RCBD model in equation (1.1) can be written in matrix notation.  In explicit detail,

the model equation is

                                                     
                                      (1.17)

with terms defined following equation (1.1).  In more compact matrix notation the equation
is

Y = X  + Zu + e (1.18)

where
Y is the vector of observations
X is the treatment design matrix
 is the vector of treatment fixed effect parameters

Z is the block design matrix
u is the vector of random block effects
e is the vector of experimental errors.

The equation states that the vector Y of observations can be expressed as a sum of fixed
treatment effects X , random block effects Zu, and random experimental errors e.  The X
portion is defined by the MODEL statement, and the Zu portion is defined by the RANDOM
statement.  It is not necessary in this example to define the experimental errors e.

For the RCBD model in matrix notation, the random vector u has a multivariate normal
distribution with mean vector 0 and covariance matrix I  (V is distributed MVN(0, I ) ),b r b r

2 2

and the random vector e is distributed MVN(0, I ).2
tr

The variance of the observation vector Y is

V = V(Y) = ZGZ’ + R 
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where V  = J  + I  is the covariance matrix of all the observations in a particular block,b b r r
2 2

 is an r×r matrix of zeros, and J  is an r×r matrix of 1's.r r

The matrix X'V X is singular, so a generalized inverse must be used to obtain a GLS-1

estimate  of the fixed effect parameter vector.  But the treatment means and differences
between treatment means are estimable parameters. Thus, no matter what generalized inverse
is used, there will be a K vector for which K’  is equal to a mean or a difference between
means.  For example, choosing K'=(1,1,0,...,0) gives K’ = µ +  = µ .  Then the general1 1

theory gives V(K’ )=( + )/r.  Likewise, K'=(0,1,!1,0...,0) gives K’ =µ  ! µ , andb 1 2
2 2

V(K’ )=2( )/r.  These are the expressions presented in section 1.2.1.2

In the case of a relatively simple, balanced design such as an RCBD, the variance

expressions can be derived directly from the model as was done in subsection 1.2.1.  But in
more complicated unbalanced situations, the general theoretical results must be invoked.  In
this subsection, we have illustrated the general results in the RCBD setting to confirm their
validity and to assist you in becoming more comfortable in using the general linear mixed
model.
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1.5 Example of an Unbalanced Two-way Mixed Model: Incomplete
Block Design

In some applications of blocking there are not enough experimental units in each block to
accommodate all treatments.  Incomplete block designs are designs in which only a subset
of the treatments are applied in each block.  The treatments that go into each block should be
selected in order to provide the most information relative to the objectives of the experiment.

Two types of incomplete block designs are the so-called balanced incomplete block
design (BIBD) and the partially balanced incomplete block design (PBIBD).  This does not
mean “balanced” in the more common sense of the word, in which each treatment appears
the same number of times in each block.  In fact, any incomplete block design is
“unbalanced” by the common definition.

The BIB and PBIB designs result in all treatments having the same variance (and hence
the same standard error).  Also, the variances of differences between two treatment means
are the same for all pairs of treatments with BIBDs and for sets of treatments with PBIBDs. 
As you may suspect, it is not possible to construct BIB or PBIB designs for all possible
numbers of treatments and blocks.  Discovery of numbers of blocks and treatments for which
BIBDs and PBIBDs can be constructed was once an active area of statistical research.  With
the advent of fast computers and good statistical software, the existence of BIBDs and
PBIBDs for given numbers of blocks and treatments has become a less important problem. 
Mead (1988) has an excellent discussion of this issue.

This section presents analyses for a PBIBD using PROC GLM and PROC MIXED to
further illustrate some of the similarities and differences between the two procedures.  You
can see some distinctions between PROC MIXED and PROC GLM that did not occur in the
analyses of the RCB design.  Although the example is a PBIBD, data analysis methods of
this section apply to incomplete block designs in general.

Model
The equation for the model of an incomplete blocks design is the same as for an RCBD. 

That is, the response Y  that results from applying treatment i in block j is assumed to beij

equal to a treatment mean µ  = µ +  plus a block effect b , plus experimental error e .  Thusi i j ij

the equation

Y  = µ +  + b  + e (1.19)ij i j ij

where the block effects b  are iid N(0, ), the experimental errors e  are iid N(0, ), and thej b ij
2 2

b are independent of the e .  An analysis of variance table for an incomplete blocks design isj ij

shown in Table 1.4.

Table 1.4  Analysis of Variance Table for Incomplete Blocks Design

Source of
Variation df F

Blocks r-1
Treatments
  (adjusted for blocks) t-1 MS(Trts adj.)/MS(Error)
Error N-r-t+1
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In the table, r is the number of blocks, t is the number of treatments, and N is the total
number of observations.  Notice that the Treatments source of variation is adjusted for
blocks.  The Treatments cannot be compared simply on the basis of the usual sum of squared
differences between treatment means because this would contain effects of blocks as well as
treatment differences.  Instead, a sum of squared differences must be computed between
treatment means that have been adjusted to remove the block effects.

Analyses of BIBD and PBIBD data that are presented in most statistics textbooks are
called intra-block analyses because treatments are compared on the basis of differences
computed within blocks.  You can perform this type of analysis with PROC GLM.  It is
discussed first in subsection 1.5.1 because this is the analysis with which you are most likely
familiar.  In subsection 1.5.2, an analysis is presented using PROC MIXED that utilizes
information about treatment means contained in differences between blocks.  This type of
analysis combines intra- and inter-block information.

1.5.1 The Usual Intra-block Analysis of PBIB Data Using PROC GLM
Data Set 1.5.1, PBIB, in Appendix 4, “SAS Data Sets,” contains data from Cochran and

Cox (1957, p. 456).  The design is a PBIBD with fifteen blocks, fifteen treatments, and four
treatments per block.  Data are pounds of seed cotton per plot.  The block size is the number
of treatments per block. This PBIBD has a block size of four.  Each treatment appears in
four blocks.  Some pairs of treatments appear together in one block (e.g., treatments 1 and 2)
and others do not appear together in the same blocks (e.g., treatments 1 and 6).

Program
An intra-block analysis of the PBIBD data is obtained from submitting the statements

proc glm data=pbib;
   class blk treat;
   model response=blk treat;
   means treat;
   lsmeans treat / stderr pdiff;
   estimate ’treat 1 mean’ intercep 1 treat 1;
   estimate ’trt 1 mean’ intercep 15 treat 15
             blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 / divisor=15;
   estimate ’trt 1 blk 1’ intercep 1 treat 1 blk 1;
   estimate ’trt 1 vs trt 2’ treat 1 -1;
   contrast ’trt 1 vs trt 2’ treat 1 -1; 
   random block;
run;

Results appear in Output 1.6.
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Results
Output 1.6 Incomplete Blocks Design: PROC GLM Analysis

                  General Linear Models Procedure
                      Class Level Information

       Class    Levels    Values

       BLK          15    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

       TREAT        15    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

              Number of observations in data set = 60

                  General Linear Models Procedure

Dependent Variable: RESPONSE

Source                  DF    Sum of Squares    F Value     Pr > F

Model                   28        6.32855556       2.62     0.0050

Error                   31        2.67077778

Corrected Total         59        8.99933333

                  R-Square              C.V.         RESPONSE Mean

                  0.703225          10.72546            2.73666667

Source                  DF       Type III SS    F Value     Pr > F

BLK                     14        3.33422222       2.76     0.0090
TREAT                   14        1.48922222       1.23     0.3012

                  General Linear Models Procedure

            Level of       -----------RESPONSE----------
            TREAT      N       Mean              SD

            1          4     2.77500000       0.17078251
            2          4     2.40000000       0.21602469
            3          4     2.45000000       0.23804761
            4          4     2.95000000       0.36968455
            5          4     2.80000000       0.14142136
            6          4     2.92500000       0.80156098
            7          4     2.82500000       0.17078251
            8          4     2.72500000       0.34034296

            9          4     2.82500000       0.51881275
            10         4     2.45000000       0.12909944
            11         4     2.97500000       0.32015621
            12         4     3.12500000       0.29860788
            13         4     2.52500000       0.37749172
            14         4     2.42500000       0.05000000
            15         4     2.87500000       0.55000000
                  General Linear Models Procedure
                        Least Squares Means

      TREAT      RESPONSE       Std Err     Pr > |T|   LSMEAN
                   LSMEAN        LSMEAN   H0:LSMEAN=0   Number
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      1        2.84555556    0.16342514        0.0001     1
      2        2.41277778    0.16342514        0.0001     2
      3        2.45166667    0.16342514        0.0001     3
      4        2.68333333    0.16342514        0.0001     4
      5        2.80666667    0.16342514        0.0001     5
      6        2.90388889    0.16342514        0.0001     6
      7        2.77111111    0.16342514        0.0001     7
      8        2.81000000    0.16342514        0.0001     8
      9        2.93333333    0.16342514        0.0001     9
      10       2.51500000    0.16342514        0.0001    10
      11       2.85388889    0.16342514        0.0001    11
      12       3.01277778    0.16342514        0.0001    12
      13       2.66833333    0.16342514        0.0001    13
      14       2.53333333    0.16342514        0.0001    14
      15       2.84833333    0.16342514        0.0001    15

                  Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

   i/j     1       2       3       4       5       6       7       8
   1   .      0.0711  0.0989  0.4887  0.8677  0.8093  0.7500  0.8789
   2  0.0711   .      0.8677  0.2515  0.0989  0.0420  0.1450  0.0962
   3  0.0989  0.8677   .      0.3248  0.1354  0.0599  0.1776  0.1450
   4  0.4887  0.2515  0.3248   .      0.5981  0.3482  0.7072  0.5882
   5  0.8677  0.0989  0.1354  0.5981   .      0.6774  0.8789  0.9886
   6  0.8093  0.0420  0.0599  0.3482  0.6774   .      0.5705  0.6879
   7  0.7500  0.1450  0.1776  0.7072  0.8789  0.5705   .      0.8677
   8  0.8789  0.0962  0.1450  0.5882  0.9886  0.6879  0.8677   .
   9  0.7072  0.0318  0.0458  0.3049  0.5882  0.8996  0.4887  0.5981
  10  0.1634  0.6619  0.7863  0.4727  0.2328  0.1031  0.2772  0.2121
  11  0.9725  0.0661  0.0923  0.4669  0.8397  0.8361  0.7231  0.8509
  12  0.4756  0.0178  0.0214  0.1648  0.3802  0.6414  0.3211  0.3879
  13  0.4498  0.2782  0.3729  0.9488  0.5545  0.3168  0.6602  0.5587
  14  0.1873  0.6063  0.7267  0.5360  0.2468  0.1196  0.3124  0.2412
  15  0.9905  0.0694  0.0967  0.4814  0.8631  0.8120  0.7410  0.8696

                  Pr > |T| H0: LSMEAN(i)=LSMEAN(j)

   i/j     9      10      11      12      13      14      15
   1  0.7072  0.1634  0.9725  0.4756  0.4498  0.1873  0.9905
   2  0.0318  0.6619  0.0661  0.0178  0.2782  0.6063  0.0694
   3  0.0458  0.7863  0.0923  0.0214  0.3729  0.7267  0.0967
   4  0.3049  0.4727  0.4669  0.1648  0.9488  0.5360  0.4814

   5  0.5882  0.2328  0.8397  0.3802  0.5545  0.2468  0.8631
   6  0.8996  0.1031  0.8361  0.6414  0.3168  0.1196  0.8120
   7  0.4887  0.2772  0.7231  0.3211  0.6602  0.3124  0.7410
   8  0.5981  0.2121  0.8509  0.3879  0.5587  0.2412  0.8696
   9   .      0.0805  0.7338  0.7338  0.2612  0.1052  0.7160
  10  0.0805   .      0.1533  0.0395  0.5127  0.9374  0.1742
  11  0.7338  0.1533   .      0.4977  0.4290  0.1761  0.9810
  12  0.7338  0.0395  0.4977   .      0.1469  0.0468  0.4829
  13  0.2612  0.5127  0.4290  0.1469   .      0.5641  0.4428
  14  0.1052  0.9374  0.1761  0.0468  0.5641   .      0.1835
  15  0.7160  0.1742  0.9810  0.4829  0.4428  0.1835   .

NOTE: To ensure overall protection level, only probabilities
      associated with pre-planned comparisons should be used.

                  General Linear Models Procedure

Source      Type III Expected Mean Square

BLK         Var(Error) + 3.2143 Var(BLK)
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TREAT       Var(Error) + Q(TREAT)

Contrast               Contrast Expected Mean Square

trt1 vs trt2           Var(Error) + Q(TREAT)

                  General Linear Models Procedure

Dependent Variable: RESPONSE

Contrast                DF       Contrast SS    F Value     Pr > F

trt1 vs trt2             1        0.30101240       3.49     0.0711

                               T for H0:    Pr > |T|   Std Error of
Parameter         Estimate    Parameter=0                Estimate

treat 1 mean    2.84555556          17.41     0.0001     0.16342514
trt 1 mean      2.84555556          17.41     0.0001     0.16342514
trt 1 blk 1     2.39666667          11.74     0.0001     0.20406165
trt 1 vs trt 2  0.43277778           1.87     0.0711     0.23153188

From Output 1.6, you can construct the analysis of variance table, as shown in Table 1.5.
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Table 1.5  Analysis of Variance Table for Incomplete Blocks Design from Cochran and Cox
(1957)

Source of
Variation df SS MS F p

Blocks 14 3.334 0.238
Treatments
  (adjusted for blocks) 14 1.489 0.106 2.62 0.3012
Error 31 2.671 0.086

Interpretation
The F-test for differences  between (adjusted) treatment differences has a significance

probability of p=0.3012, which presents no evidence of differences between treatments.  In
agreement with this conclusion, the table of significance probabilities for the lsmeans shows
only six (out of 120) p-values less that 0.05. You would expect that many by chance.

Least squares means, obtained from the LSMEANS statement, are usually called
adjusted means in standard textbooks.  These means and their standard errors come from
the OLS estimation of the treatment means.  Thus, they do not take into account the fact that
blocks are random.  The adjustment of treatment means to remove block effects is a
computation that treats blocks simply as another fixed effect.  This analysis of variance,
along with adjusted treatment means and differences between them and their standard errors,
comprise the so-called intra-block analysis of PBIBD data.

In the PROC GLM statements following the LSMEANS statement, you see three
ESTIMATE statements and a CONTRAST statement.  The first ESTIMATE statement (with
the label “treat1 mean”) specifies coefficients for the INTERCEPT and the TREAT 1
parameter.  By default, PROC GLM averages across the BLK parameters to form the linear
combination of model terms.  The second ESTIMATE statement (with the label “trt 1
mean”) explicitly specifies the same linear combination of model terms; that is, it specifies
coefficients 1/15 for each of the BLK terms.  The results of these two ESTIMATE
statements are identical, including their standard errors. Moreover, they duplicate the
LSMEAN for TREAT 1 and its standard error.  These standard errors do not take into
account the random block effects.  Subsection 1.5.2 shows analogous ESTIMATE
statements in PROC MIXED that produce different results.  This is the purpose for showing
these first two ESTIMATE statements.  The fourth ESTIMATE statement (with label “trt 1
vs trt 2”) simply computes the difference between the lsmeans for TREAT 1 and TREAT 2. 
The CONTRAST statement with the label “trt 1 vs trt 2” computes an F-test that is
equivalent to the t-test from the ESTIMATE statement with the same label.

The RANDOM statement in GLM, as already mentioned, causes only expected mean
squares to be computed.  The expected mean squares table in Output 1.7 shows that the
correct denominator for the F-test for TREAT is MS(Error).
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1.5.2 The Combined Intra- and Inter-block Analysis of PBIB Data Using PROC MIXED
Program

When blocks are treated as random, the result is then combined intra- and inter-block
analysis. You can obtain this using PROC  MIXED by submitting the statements:

proc mixed data=pbib;
   class blk treat;
   model response=treat;
   random block;
   lsmeans treat / pdiff;
   estimate ’treat 1 mean’ intercept 1 treat 1;
   estimate ’trt 1 mean’ intercept 15 treat 15 |
             blk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 / divisor=15;
   estimate ’trt 1 blk 1’ intercept 1 treat 1 | blk 1;
   estimate ’trt 1 vs trt 2’ treat 1 -1;
   contrast ’trt 1 vs trt 2’ treat 1 -1; 
run;

Results appear in Output 1.7 for the combined intra- and inter-block analysis.

Results
Output 1.7 Incomplete Block Design: PROC MIXED Analysis

                        The MIXED Procedure

                      Class Level Information

          Class     Levels  Values

          BLK           15  1 2 3 4 5 6 7 8 9 10 11 12 13
                            14 15
          TREAT         15  1 2 3 4 5 6 7 8 9 10 11 12 13
                            14 15

                 REML Estimation Iteration History

         Iteration  Evaluations     Objective     Criterion

                 0            1  -24.83873612
                 1            3  -30.71608590    0.00022046
                 2            1  -30.71956742    0.00000043
                 3            1  -30.71957397    0.00000000

                     Convergence criteria met.

                Covariance Parameter Estimates (REML)

    Cov Parm          Ratio      Estimate     Std Error       Z  Pr > |Z|

    BLK          0.54373914    0.04652189    0.02795193    1.66    0.0960
    Residual     1.00000000    0.08555921    0.02157637    3.97    0.0001

               Model Fitting Information for RESPONSE

              Description                        Value

              Observations                     60.0000
              Variance Estimate                 0.0856
              Standard Deviation Estimate       0.2925
              REML Log Likelihood             -25.9924
              Akaike’s Information Criterion  -27.9924
              Schwarz’s Bayesian Criterion    -29.7991
              -2 REML Log Likelihood           51.9849
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                      Tests of Fixed Effects

             Source      NDF   DDF  Type III F  Pr > F

             TREAT        14    31        1.53  0.1576

                     ESTIMATE Statement Results

   Parameter              Estimate     Std Error   DDF       T   Pr > |T|

   treat 1 mean         2.81752245    0.16641271    31   16.93     0.0001
   trt 1 mean           2.81752245    0.15681751    31   17.97     0.0001
   trt 1 blk 1          2.52880832    0.18454599    31   13.70     0.0001
   trt 1 vs trt 2       0.41220751    0.22206087    31    1.86     0.0729

                    CONTRAST Statement Results

          Source                 NDF   DDF       F  Pr > F

          trt 1 vs trt 2           1    31    3.45  0.0729

                        Least Squares Means

   Level            LSMEAN     Std Error   DDF       T  Pr > |T|

   TREAT 1      2.81752245    0.16641271    31   16.93    0.0001
   TREAT 2      2.40531494    0.16641271    31   14.45    0.0001
   TREAT 3      2.45494317    0.16641271    31   14.75    0.0001
   TREAT 4      2.78383061    0.16641271    31   16.73    0.0001
   TREAT 5      2.80489797    0.16641271    31   16.86    0.0001
   TREAT 6      2.91069390    0.16641271    31   17.49    0.0001
   TREAT 7      2.78898509    0.16641271    31   16.76    0.0001
   TREAT 8      2.78160548    0.16641271    31   16.72    0.0001
   TREAT 9      2.89131103    0.16641271    31   17.37    0.0001
   TREAT 10     2.49106159    0.16641271    31   14.97    0.0001
   TREAT 11     2.89869913    0.16641271    31   17.42    0.0001
   TREAT 12     3.05282147    0.16641271    31   18.34    0.0001
   TREAT 13     2.61776910    0.16641271    31   15.73    0.0001
   TREAT 14     2.49131103    0.16641271    31   14.97    0.0001
   TREAT 15     2.85923304    0.16641271    31   17.18    0.0001

                 Differences of Least Squares Means

   Level 1    Level 2      Difference     Std Error   DDF       T

   TREAT 1    TREAT 2      0.41220751    0.22206087    31    1.86
   TREAT 1    TREAT 3      0.36257929    0.22206087    31    1.63
   TREAT 1    TREAT 4      0.03369184    0.22206087    31    0.15
   TREAT 1    TREAT 5      0.01262448    0.22206087    31    0.06
   TREAT 1    TREAT 6     -0.09317145    0.22720031    31   -0.41
   TREAT 1    TREAT 7      0.02853736    0.22206087    31    0.13
   TREAT 1    TREAT 8      0.03591697    0.22206087    31    0.16
   TREAT 1    TREAT 9     -0.07378858    0.22206087    31   -0.33
   TREAT 1    TREAT 10     0.32646086    0.22206087    31    1.47
   TREAT 1    TREAT 11    -0.08117667    0.22720031    31   -0.36
   TREAT 1    TREAT 12    -0.23529902    0.22206087    31   -1.06
   TREAT 1    TREAT 13     0.19975335    0.22206087    31    0.90
   TREAT 1    TREAT 14     0.32621142    0.22206087    31    1.47
   TREAT 1    TREAT 15    -0.04171059    0.22206087    31   -0.19
   TREAT 2    TREAT 3     -0.04962822    0.22206087    31   -0.22
   TREAT 2    TREAT 4     -0.37851567    0.22206087    31   -1.70
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   TREAT 2    TREAT 5     -0.39958303    0.22206087    31   -1.80
   TREAT 2    TREAT 6     -0.50537896    0.22206087    31   -2.28
   TREAT 2    TREAT 7     -0.38367015    0.22720031    31   -1.69
   TREAT 2    TREAT 8     -0.37629054    0.22206087    31   -1.69
   TREAT 2    TREAT 9     -0.48599609    0.22206087    31   -2.19
   TREAT 2    TREAT 10    -0.08574665    0.22206087    31   -0.39
   TREAT 2    TREAT 11    -0.49338418    0.22206087    31   -2.22

   TREAT 2    TREAT 12    -0.64750653    0.22720031    31   -2.85
   TREAT 2    TREAT 13    -0.21245416    0.22206087    31   -0.96
   TREAT 2    TREAT 14    -0.08599609    0.22206087    31   -0.39
   TREAT 2    TREAT 15    -0.45391810    0.22206087    31   -2.04
   TREAT 3    TREAT 4     -0.32888744    0.22206087    31   -1.48
   TREAT 3    TREAT 5     -0.34995480    0.22206087    31   -1.58
   TREAT 3    TREAT 6     -0.45575074    0.22206087    31   -2.05
   TREAT 3    TREAT 7     -0.33404192    0.22206087    31   -1.50
   TREAT 3    TREAT 8     -0.32666232    0.22720031    31   -1.44
   TREAT 3    TREAT 9     -0.43636786    0.22206087    31   -1.97
   TREAT 3    TREAT 10    -0.03611842    0.22206087    31   -0.16
   TREAT 3    TREAT 11    -0.44375596    0.22206087    31   -2.00
   TREAT 3    TREAT 12    -0.59787830    0.22206087    31   -2.69
   TREAT 3    TREAT 13    -0.16282594    0.22720031    31   -0.72
   TREAT 3    TREAT 14    -0.03636786    0.22206087    31   -0.16
   TREAT 3    TREAT 15    -0.40428988    0.22206087    31   -1.82
   TREAT 4    TREAT 5     -0.02106736    0.22206087    31   -0.09
   TREAT 4    TREAT 6     -0.12686330    0.22206087    31   -0.57
   TREAT 4    TREAT 7     -0.00515448    0.22206087    31   -0.02
   TREAT 4    TREAT 8      0.00222513    0.22206087    31    0.01
   TREAT 4    TREAT 9     -0.10748042    0.22720031    31   -0.47
   TREAT 4    TREAT 10     0.29276902    0.22206087    31    1.32
   TREAT 4    TREAT 11    -0.11486852    0.22206087    31   -0.52
   TREAT 4    TREAT 12    -0.26899086    0.22206087    31   -1.21
   TREAT 4    TREAT 13     0.16606150    0.22206087    31    0.75
   TREAT 4    TREAT 14     0.29251958    0.22720031    31    1.29
   TREAT 4    TREAT 15    -0.07540244    0.22206087    31   -0.34
   TREAT 5    TREAT 6     -0.10579594    0.22206087    31   -0.48
   TREAT 5    TREAT 7      0.01591288    0.22206087    31    0.07
   TREAT 5    TREAT 8      0.02329249    0.22206087    31    0.10
   TREAT 5    TREAT 9     -0.08641306    0.22206087    31   -0.39
   TREAT 5    TREAT 10     0.31383638    0.22720031    31    1.38
   TREAT 5    TREAT 11    -0.09380116    0.22206087    31   -0.42
   TREAT 5    TREAT 12    -0.24792350    0.22206087    31   -1.12
   TREAT 5    TREAT 13     0.18712887    0.22206087    31    0.84
   TREAT 5    TREAT 14     0.31358694    0.22206087    31    1.41
   TREAT 5    TREAT 15    -0.05433507    0.22720031    31   -0.24
   TREAT 6    TREAT 7      0.12170882    0.22206087    31    0.55
   TREAT 6    TREAT 8      0.12908842    0.22206087    31    0.58
   TREAT 6    TREAT 9      0.01938288    0.22206087    31    0.09
   TREAT 6    TREAT 10     0.41963231    0.22206087    31    1.89
   TREAT 6    TREAT 11     0.01199478    0.22720031    31    0.05
   TREAT 6    TREAT 12    -0.14212756    0.22206087    31   -0.64
   TREAT 6    TREAT 13     0.29292480    0.22206087    31    1.32
   TREAT 6    TREAT 14     0.41938288    0.22206087    31    1.89
   TREAT 6    TREAT 15     0.05146086    0.22206087    31    0.23
   TREAT 7    TREAT 8      0.00737961    0.22206087    31    0.03
   TREAT 7    TREAT 9     -0.10232594    0.22206087    31   -0.46
   TREAT 7    TREAT 10     0.29792350    0.22206087    31    1.34
   TREAT 7    TREAT 11    -0.10971404    0.22206087    31   -0.49
   TREAT 7    TREAT 12    -0.26383638    0.22720031    31   -1.16
   TREAT 7    TREAT 13     0.17121599    0.22206087    31    0.77
   TREAT 7    TREAT 14     0.29767406    0.22206087    31    1.34
   TREAT 7    TREAT 15    -0.07024795    0.22206087    31   -0.32
   TREAT 8    TREAT 9     -0.10970555    0.22206087    31   -0.49

   TREAT 8    TREAT 10     0.29054389    0.22206087    31    1.31
   TREAT 8    TREAT 11    -0.11709364    0.22206087    31   -0.53
   TREAT 8    TREAT 12    -0.27121599    0.22206087    31   -1.22
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   TREAT 8    TREAT 13     0.16383638    0.22720031    31    0.72
   TREAT 8    TREAT 14     0.29029445    0.22206087    31    1.31
   TREAT 8    TREAT 15    -0.07762756    0.22206087    31   -0.35
   TREAT 9    TREAT 10     0.40024944    0.22206087    31    1.80
   TREAT 9    TREAT 11    -0.00738810    0.22206087    31   -0.03
   TREAT 9    TREAT 12    -0.16151044    0.22206087    31   -0.73

                 Differences of Least Squares Means

   Level 1    Level 2      Difference     Std Error   DDF       T

   TREAT 9    TREAT 13     0.27354192    0.22206087    31    1.23
   TREAT 9    TREAT 14     0.40000000    0.22720031    31    1.76
   TREAT 9    TREAT 15     0.03207798    0.22206087    31    0.14
   TREAT 10   TREAT 11    -0.40763754    0.22206087    31   -1.84
   TREAT 10   TREAT 12    -0.56175988    0.22206087    31   -2.53
   TREAT 10   TREAT 13    -0.12670751    0.22206087    31   -0.57
   TREAT 10   TREAT 14    -0.00024944    0.22206087    31   -0.00
   TREAT 10   TREAT 15    -0.36817145    0.22720031    31   -1.62
   TREAT 11   TREAT 12    -0.15412234    0.22206087    31   -0.69
   TREAT 11   TREAT 13     0.28093002    0.22206087    31    1.27
   TREAT 11   TREAT 14     0.40738810    0.22206087    31    1.83
   TREAT 11   TREAT 15     0.03946608    0.22206087    31    0.18
   TREAT 12   TREAT 13     0.43505236    0.22206087    31    1.96
   TREAT 12   TREAT 14     0.56151044    0.22206087    31    2.53
   TREAT 12   TREAT 15     0.19358842    0.22206087    31    0.87
   TREAT 13   TREAT 14     0.12645808    0.22206087    31    0.57
   TREAT 13   TREAT 15    -0.24146394    0.22206087    31   -1.09
   TREAT 14   TREAT 15    -0.36792202    0.22206087    31   -1.66

Interpretation
You will note several differences from the intra-block

analysis given by PROC GLM.
First of all, referring to the results of the first two

ESTIMATE statements (with labels “treat 1 mean” and “trt 1
mean”), the estimates of the treatment means are different. 
Granted, the differences are not major, but they are certainly
numerically different.  In other applications the distinction can
be dramatic.  The PROC MIXED estimate of the treatment 1
mean is 2.817, compared with the PROC GLM estimate of
2.846.   The distinction is that the PROC GLM estimate is OLS,
whereas the MIXED estimate is (estimated) GLS.  Theoretically,
the GLS estimate is superior.  PROC MIXED accounts for BLK
being random and computes the BLUE estimates accordingly.
Estimates of the variance components are used to compute V in
equation (1.15) because the true variance components are
unknown.  The standard errors in PROC MIXED likewise are
different from those in PROC GLM.  The standard error of the
OLS estimate is 0.163 from GLM.  This is not a valid estimate
of the true standard error of the OLS estimate for the same
reason that PROC GLM did not compute a valid standard error
estimate for a treatment mean for the RCBD data in subsection
1.1.1; the random effects of blocks were ignored.  You see
different standard errors for the “treat 1 mean” and “trt 1 mean”
estimates from PROC MIXED.  The ESTIMATE statement with
label “treat 1 mean” did not specify coefficients for the block
terms, whereas the ESTIMATE statement with label “trt 1
mean” did specify coefficients for blocks.  This made no
difference with PROC GLM, but it does with PROC MIXED. 
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The standard error from the ESTIMATE statement labeled “treat
1 mean” correctly estimates the standard error of the GLS
estimate considering blocks to be random.  Thus it can be used
to produce a confidence interval for the mean that would be
valid for inference across the population of blocks from which
those in the experiment were randomly drawn.  The standard
error from the ESTIMATE statement labelled “trt 1 mean,”
however, does not involve the block variance component.  Thus
a confidence interval based on this standard error is valid only
for the blocks in the experiment.  Standard errors of the
LSMEANS are the same as for the “treat 1 mean” estimate. The
“trt 1 mean” is an example of a best linear unbiased predictor
(BLUP), and linear combination of fixed and random effects.
BLUPs are unique to mixed model theory and are discussed in
Chapter 6.

1.6 Summary

Chapter 1 begins with an example of a randomized blocks
design with fixed treatments and random blocks.  The
importance of accounting for random effects in such a basic
situation as computing a variance for a treatment mean is
demonstrated.  The use of PROC MIXED is introduced with
explanations of how to set up the MODEL and RANDOM
statements.  The chapter continues with illustrations of
CONTRAST, ESTIMATE, and LSMEANS statements.  Then,
PROC GLM is applied to the same example to illustrate
similarities and differences of PROC GLM and PROC MIXED
and to emphasize what basic applications are handled correctly
by PROC MIXED and not by PROC GLM.  A brief explanation
of mixed model theory is presented in relation to the randomized
blocks design, including explicit descriptions of the matrices in
the general linear mixed model.  Then, an incomplete block
design is used to illustrate some of the issues confronted with
unbalanced mixed model data.
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