
C H A P T E R

1Performance, Efficiency, and Tuning
Introduction 1

Performance and Efficiency Overview 2

Advantages of Efficient Applications 4

The Tuning Cycle 8

Summary 20

Introduction
So, how are your SAS applications performing under MVS? Are SAS batch
jobs completing on time and consuming a minimum amount of systems
resources? Are SAS interactive applications receiving good response time?
Are the computer usage charges for your group’s SAS applications high or
low? Have recent changes to SAS code or to data affected the performance
of your applications?

If you don’t know the answers to these questions, do not worry; you are
hardly alone. Traditionally, SAS applications programmers work at supply-
ing management with relevant business information. They automate manual
processes, reduce and summarize data, and perform statistical analysis.
They create reports and charts and graphs characterizing metrics of interest
to the organization. They focus on how they can use the SAS language to
process the data and on what the data reveals. Issues of performance and
efficiency, while interesting, are not their main concern.

However, the success of the SAS System for information delivery within
organizations is changing the way SAS programmers look at performance.
While the SAS System is an excellent tool for data exploration and ad hoc
reports, more and more organizations are using it as a full-blown applica-
tions development language. This means that scores of batch applications
are being developed in the SAS language and implemented into produc-
tion. Interactive SAS applications are being written for groups of end-users
who navigate large SAS data sets as if they were data bases. The portability
of the SAS System among different computer platforms has made organiza-
tions embrace it as an enterprise-wide tool. As the volume of SAS applica-
tions grows within an organization, the cost of those applications to the
organization usually gains higher visibility.

More and more often, SAS programmers are being asked to improve the
efficiency of their programs. The batch windows in which their SAS applica-
tions run are shrinking. Their end-users are demanding quicker turnaround
time for reports. Users of online applications need and expect faster response
time. Computer costs are climbing for SAS applications, and end-users are
becoming very cost conscious. These, and other, factors are putting pres-
sures on SAS programmers to look at the performance and efficiency of
their applications and to tune them. But, what exactly is “performance” or
“efficiency” or an “application”? And, how do you tune an application?

2 C h a p t e r 1 Performance, Efficiency, and Tuning

This chapter is divided into two sections. The first section, “Performance
and Efficiency Overview,” discusses the basic concepts of SAS program per-
formance and efficiency. It also examines the advantages of efficient SAS
applications to programmers, end-users, and the organization. The second
section, “The Tuning Cycle,” outlines a specific methodology for tuning
SAS applications in a controlled, step-wise manner. It begins by providing
an overview of the basic tuning cycle and a discussion of setting applica-
tion performance standards. Then it details how to implement the tuning
cycle to tune real-world SAS applications at the task, program, and applica-
tion levels. This section continues with a discussion on how to create an
application performance “snapshot”. The final pages of the chapter are
devoted to three sample tuning worksheets.

Performance and Efficiency Overview

What Is a SAS Application?
The word application, as used in this book, is defined as one or more related
SAS language programs that perform a specific function for an organization
on a cyclic basis. An application can be as simple as a single SAS program
executed in batch mode that reads data from a tape and creates a report. It
can be as complex as a dozen batch jobs executing scores of SAS programs
to process the payroll for an organization. Similarly, an application can be a
group of SAS/AF programs used by hundreds of sales personnel to deter-
mine product availability. Whether simple or complex, an application is
executed on a predictable basis: continuously, hourly, daily, weekly, monthly,
quarterly, or yearly.

There is a distinction between SAS applications and SAS ad hoc programs.
Ad hoc programs are created as one-time efforts to reduce, analyze, and
present data. Requests for their creation and execution are generally un-
predictable. Ad hoc programs differ from SAS applications, which run in a
production mode on a predictable, cyclic, basis. Though the focus of this
book is on SAS applications, the performance of SAS ad hoc programs is
also considered important. The efficiency techniques discussed in the fol-
lowing chapters apply to all SAS programs run in the MVS environment.

Understanding Efficiency
The first step in discussing the efficiency of SAS applications is to define
the word efficient. An efficient SAS program is one that uses the minimum
amount of computer resources possible to complete its task. Therefore, an
efficient SAS application is one in which all of the component programs are
efficient. Efficiency is the degree to which programs are efficient. Efficiency is
tied directly to the consumption of MVS computer resources. (See Chapter 2
for a discussion of important MVS resources.) If a SAS application cannot
be modified so that computer overhead is further reduced, then the applica-
tion is efficient.

Remember that it will always take some amount of computer resources to
execute a SAS program. There is a point at which the computer overhead
expended for a given task cannot be reduced if the task is to be completed.
An efficient program runs at this point. In an efficient SAS program, the

3

ratio of overhead to output cannot be reduced any further without affecting
the output.

A program is not necessarily inefficient because it consumes a lot of com-
puter resources. It is not the volume of expended computer overhead that
determines efficiency. Rather, efficiency is determined by whether the over-
head of a program can be reduced and the same output still be achieved. If
the answer is “no” for a specific program, then it is an efficient program.

Figure 1.1 Examples of program efficiency.

Figure 1.1 illustrates program efficiency. In the first example, programs A
and B read the same data set from the same SAS data library and create
identical reports. Yet, program A consumes 50 CPU seconds, while program
B consumes 100 CPU seconds. Program A is more efficient than program B
because its ratio of overhead to output is lower for the exact same task.

In the second example, program C reads data from a different SAS data
library and creates a different report. Program C consumes 500 CPU seconds.
This is significantly higher than either program A or B; is program C effi-
cient? The answer is “yes” if program C cannot be tuned any further and
still produce the same report. The answer is “no” if some aspect of program
C can be modified so that it produces the same report with less computer
overhead.

Understanding Performance
Performance is directly related to efficiency. Performance is defined as a
judgement of the relative overall efficiency of a SAS program or applica-
tion. This judgement is made by measuring the resource consumption of a
program and comparing it to other measurements. The other measurements
could be from previous runs of the same program or from similar programs
that perform like functions.

The performance of an individual SAS program is either good, bad, or un-
known. Programs that have been tuned to their optimal efficiency are said
to have good performance. Programs that waste computer resources and are
inefficient have bad performance. A program’s performance is unknown if it
has not been measured or if there is nothing against which to compare a
particular measurement.

SAS
Data

Library

Program A

Program B

Program C

50 CPU Sec

100 CPU Sec

500 CPU Sec

Output 1

Output 1

Output 2
SAS
Data

Library

4 C h a p t e r 1 Performance, Efficiency, and Tuning

The idea of what constitutes good performance can vary among organiza-
tions. This variance is due to different organizations having different main-
frame computer resources that are in short supply. For instance, one or-
ganization may consider applications that use a lot of CPU time to be bad
performers, while another might consider applications that consume a lot
of EXCPs to be bad performers. (CPU time, EXCP count, and other MVS
performance metrics used to gauge the performance of SAS applications are
thoroughly discussed in Chapter 2.) Both outlooks are correct if the applica-
tions use unnecessary amounts of these resources to perform their tasks.
Therefore, performance is generally tied to the perspective and needs of an
organization.

An application’s performance should not be judged by the absolute volume
of computer resources that it uses. It is not the volume of resources con-
sumed by an application that makes it either a good or a bad performer.
Rather, it is the amount of unnecessarily expended resources that is the criterion
for judging application performance. If a particular application consumes a
large amount of critical systems resources, but is executing as efficiently as
is possible, it is a good performer.

Advantages of Efficient Applications
The preceding discussions of program efficiency are not designed to help
you achieve some sort of esoteric, textbook realization of program purity. In
this age of corporate downsizing, data center outsourcing, increased fiscal
tightness, and business reengineering there are many real-world advan-
tages to reducing the overhead of SAS applications. Some advantages are
for you, the programmer, some are for the end-user, and some are for the
organization.

Advantages for the Programmer
Whether you are a beginning, intermediate, or expert programmer, you can
appreciate the flexibility of the SAS programming language. As your level
of SAS experience grows, you are consistently challenged to find new ways
to process and present data. This inevitably brings you into contact with the
many procedures, functions, options, and other elements of the SAS lan-
guage. As you encounter elements that are new to you, you move from dis-
covery to mastery of them. Mastering program efficiency will add great
value to your SAS programming skill set.

Mastering the ability to write efficient SAS applications makes you a more
professional programmer. It enhances your skills by enabling you to deliver
a streamlined product to your end-users. Not only can you deliver the re-
quired output to your users, but you can do it with the minimum computer
resources needed. This makes you a more valuable programmer within
your group and within your organization.

Writing efficient SAS applications makes you a more competitive and
sought-after programmer. Let’s take the simple sports analogy of profes-
sional runners running a one-mile race. The runners all know they will
complete the race; that fact is not in question. It is the speed and efficiency
of their individual efforts that set them apart. The same is true for SAS

5

applications programming. Most programmers can write the SAS code that
produces the required output. However, a programmer who can produce
the output quickly and efficiently has a competitive advantage over pro-
grammers who cannot.

Advantages for the End-user
Whether you are a staff member of an organization or a contracting consul-
tant, it is important that you create efficient applications for your end-user.
The word end-user is used in this book to describe the recipient of the end
product of the SAS applications you are creating and running. In that sense,
the end-user could vary from a nontechnical end-user who executes a
SAS/AF application, to an information systems executive who receives a
graph. No matter who the end-users are, there are some definite advantages
to making their applications as efficient as possible.

One advantage of efficient SAS batch applications is that they generally
have reduced run time. Reducing batch run time allows end-users to get
their reports, graphs, or charts in a more timely manner. It limits the likeli-
hood that batch jobs will be interrupted by external factors such as con-
tention for systems resources or interruption by higher priority tasks. Many
organizations have shrinking or congested batch windows, so the sooner a
job can be initiated and completed, the better. End-users benefit by receiv-
ing quicker batch turnaround and getting their output faster.

Online response time can also be reduced by efficient SAS applications.
Exposure to personal computer applications has created a generation of
more demanding online users. They expect sub-second response time from
their SAS applications running on the mainframe computers. Creating effi-
cient online SAS applications helps end-users get to the data they need as
quickly as possible so they can concentrate on the data and not on the
delivery system. Efficient SAS online applications allow end-users to do
their jobs more effectively.

In addition, efficient applications can reduce end-user computer processing
charges. Today, many organizations use computer chargeback systems to
manage and control information system expenditures. A computer charge-
back system is an in-house accounting software package that charges end-
user groups for the amount of computer resources their applications con-
sume. The money that pays for the computer charges typically comes from
the end-user group’s operating budget. This motivates end-users to review
the costs of running their applications and to try to keep the costs low.
Efficient SAS applications do not waste computer overhead, thus ensuring
that computer charges are kept as low as possible.

Well-tuned SAS applications give end-user groups credibility in an Elec-
tronic Data Processing (EDP) audit. Some organizations have their data
processing functions audited on a cyclic basis. This audit may come from
an EDP audit group within the organization or from a regulatory agency.
The goal of an EDP audit is to determine if an end-user group is processing
data in a manner that conforms to organizational or governmental stan-
dards. End-user groups that build efficiency into their SAS applications will
be able to show EDP auditors that they have given their applications added

6 C h a p t e r 1 Performance, Efficiency, and Tuning

value. This should help their overall standing when the auditors rank the
groups within the organization.

Finally, efficient applications give a group competitive advantage within an
organization. Most organizations are divided into groups based on the busi-
ness functions they perform. (For example, a manufacturing organization
might be composed of a personnel group, a payroll group, a sales group, a
manufacturing group, and a distribution group.) The groups within an
organization usually compete with each other for annual budgetary dollars.
Groups that run efficient applications can reduce their data processing expen-
ditures. They can either spend the money they save on nondata processing
goods and services or run more applications for their usual data processing
allotment. This makes the group more competitive within the enterprise.
And, it shows the organization that the group’s management and staff are
fulfilling the groups mission in an exemplary fashion.

Advantages for the Organization
Efficient SAS applications offer many advantages to the entire organization.
Whether the organization is an insurance company, a government agency,
a bank, or a pharmaceutical company, it is still important to keep overhead
expenditures low. The net effect of all SAS programmers’ striving to keep
their programs as efficient as possible is that the overall processing over-
head of the organization is reduced. This has important consequences for
the entire organization by helping to minimize the amount of money it has
to spend on data processing services.

Efficient applications help the organization to better manage valuable com-
puter resources. The amount of processing power in a mainframe computer
is finite. An organization must get all of its data processing work done
within the limits of the amount of resources available on its computers.
Efficient SAS applications complete their work with the minimum possible
expenditure of computer overhead. This means they are not wasting valu-
able processing power that can be used by other applications. The organiza-
tion can schedule other applications to use the resources freed by well-
tuned SAS applications.

Figure 1.2 illustrates the overall capacity of an organization’s computer
system. Figure 1.2A shows a system that is 100% utilized and has work
waiting. The unnecessary overhead of inefficient applications has inflated
resource usage and delayed other work from being processed. Figure 1.2B
shows the same system after the unnecessary overhead has been eliminated
through application tuning. Now, all of the organization’s work gets
completed.

7

Figure 1.2 Total capacity of the computer system.

Efficient SAS applications reduce competition for systems resources. Compe-
tition among applications for processor time, data sets, work space, tape
drives, etc., is reduced when the applications are efficient. The quicker an
application can complete its task, the sooner it is out of the competition.
Tasks with unnecessary overhead stay in the system longer than they really
need to. Other applications wait for them to complete their usage of sys-
tems resources. If these errant applications were more efficient, they would
complete their work sooner and free resources for other applications to use.
The net effect of reducing contention for resources is that more applications
can be run on an organization’s computers in a given time frame. This is
especially helpful in the heavily utilized prime-time, 9:00 am to 5:00 pm shift.

Figure 1.3 illustrates the competition for system resources among applica-
tions. Figure 1.3A shows that for a given time interval only three applica-
tions can execute. Each of the three applications is inflated by unnecessary
overhead, forcing a fourth application, application D, to wait. Figure 1.3B
shows the same time interval with applications that have been tuned. Since
each application uses fewer systems resources, competition is reduced and
all four complete their tasks in the given time interval.

Work Executing Work Waiting

Productive
Work

Work Executing Work Waiting

100% Computer Capacity

Pending Work

Productive
Work

Unnecessary
Overhead

100% Computer Capacity

Figure 1.2A Figure 1.2B

8 C h a p t e r 1 Performance, Efficiency, and Tuning

Figure 1.3 Competition for systems resources among applications.

Efficient SAS applications reduce an organization’s need for a capital
expenditure on a larger mainframe computer. Today, the cost of a new
mainframe computer can run from several hundred thousand dollars to
tens of millions of dollars. So, it is in an organization’s best interest to delay
a computer upgrade for as long as possible. Inefficient applications inflate
an organization’s computer overhead and hasten the day an upgrade is
needed. An organization that can efficiently run all of its applications can
put off the day when a capital outlay for the new processor is needed.

The Tuning Cycle

The Need to Tune SAS Applications
It would be wonderful if every SAS application were executing at its peak
level of efficiency. But, many factors found in the typical work place make
this unlikely. Deadlines sometimes force applications to be written quickly
and hurried into production. Programmers with differing skill levels, expe-
riences, and programming styles create programs with varying levels of
efficiency. Data is often stored on different media, and frequently occurs in
a wide variety of formats and block sizes. Performance options and strate-
gies introduced in the latest releases of the SAS System may not be known
to, or understood by, all staff programmers.

SAS programmers can do a lot to create efficient applications. They can use
the good programming practices detailed in the SAS documentation. They
can keep their knowledge of the SAS language current by attending local
and national SAS Users Group meetings, and by reading papers published
in the annual SAS Users Group International (SUGI) proceedings. They can
follow discussions in SAS periodicals such as SAS Communications and
Observations. These practices help SAS programmers to write applications
that generally perform well. But, to ensure that their applications are run-
ning as efficiently as possible, programmers must actively tune them.

Application
B

Application
D

Executing Applications

Waiting Applications

Total Time Interval

Executing Applications

Waiting Applications

Total Time Interval

Figure 1.3A Figure 1.3B

Application
A

Application
C

Application
D

Application
B

Application
C

Application
A

9

Tuning Cycle Overview
The best place to begin a discussion of the tuning cycle is with a definition
of the word tuning. Tuning, as referred to in this book, is the act of modify-
ing SAS programs, data, or system options to reduce processor overhead.
Tuning is a conscious effort a programmer undertakes to create a more effi-
cient program or application. As discussed previously, an application with
component programs that have been tuned to their greatest efficiency is a
good performer.

The tuning cycle begins with the assumption that a particular SAS applica-
tion is not performing at its optimal level. This basic hypothesis is tested
and evaluated in a series of specific events carefully orchestrated by the
programmer. The completion of these events in a structured, step-wise
manner results in an application tuned to its greatest efficiency.

The tuning cycle is composed of three steps: measurement, evaluation, and
modification. Each step is executed in sequence to advance the performance
goals of the programmer. Using this cycle, the programmer has a struc-
tured, scientific framework for evaluating and reducing the overhead of an
application. Figure 1.4 illustrates the flow of the tuning cycle. Each of the
three major steps is examined in the following sections.

10 C h a p t e r 1 Performance, Efficiency, and Tuning

Figure 1.4 The tuning cycle.

START

Measurement

Is this a
Baseline

Measurement
?

Do You
Want to

Tune
?

Evaluation

Are Further
Modifications

Possible
?

Modification

No

Yes

Tuning
Goals
Met
?

No

Yes

Yes

Yes

No

No

STOP

11

Measurement
Measurement is the basic element of the tuning cycle upon which every-
thing else is based. There is an old saying that “what you do not measure
you cannot control.” This is essentially true for tuning the performance
of SAS applications. Without measurement, you cannot know the resource
overhead of an application. Without measurement, you cannot judge the
performance ranking of one application relative to another. Without mea-
surement, you cannot judge whether changes made to an application have
affected its performance either favorably or adversely. Measurement pro-
vides the frame of reference for observing and evaluating the past, present,
and future performance of SAS applications.

There are several specific metrics in the MVS environment that are mea-
sured and recorded for the tuning cycle. Chapter 2 discusses the metrics in
detail, so they will be briefly mentioned here. CPU time, EXCP count, and
Memory utilization must all be measured for the SAS application being
tuned. This means direct action must be taken to activate the measurements
and to record the values of the metrics. (Chapter 3 discusses how to activate
the metrics and where to find their values.)

The measurement taken at the very beginning of a tuning cycle is called the
baseline measurement, or simply the baseline. This is the first measurement of
an application, against which future measurements will be compared. It is
important to accurately record a baseline for all of the programs that are
likely to be modified during the tuning cycle. Failure to do so will give you
nothing to compare the results of future modifications to.

The measurement taken during subsequent iterations of a specific tuning
cycle must also be accurately recorded. The volume and type of data run
through an application on subsequent tuning cycle iterations should be
very close to those that were run for the baseline. If an application is in the
development phase of its lifecycle, it is an easy matter to run the same test
data through the application for each measurement. Test data offers the
tightest control over measurement by guaranteeing that each iteration will
have the same data characteristics. This ensures the measurement is not
affected by variances in data, but rather by variances in the application’s
programs.

Evaluation
Evaluation is the analytical step of the tuning cycle. In this step, the current
measurement is compared against previous measurements or against ex-
pected values. The individual statistics of the two measurements are care-
fully compared and the differences analyzed. If you determine that your
tuning goals have been met, then the tuning cycle is completed. If not, you
may continue on to modification, the next step of the tuning cycle.

Evaluation is applied to both baseline and subsequent (secondary) mea-
surements. When a baseline is being evaluated, the measurement is ana-
lyzed to see if the values appear to be reasonable. Reasonable means that
values fall within an expected range and that they do not violate your orga-
nization’s performance standards. If the measurement statistics are reason-
able, then there is no need to continue with the tuning cycle. In this case,

12 C h a p t e r 1 Performance, Efficiency, and Tuning

you should file the measurement away for future reference and continue
on to other tasks.

When subsequent measurements are evaluated, the latest measurement
statistics are compared against the baseline statistics or against some other
premodification measurement. If a modification has brought about a re-
duction in system overhead, the change is deemed successful. When this
happens, you must decide if there are other tuning opportunities available
or if it is time to stop the tuning cycle. If system overhead increases or re-
mains static, the modification has not been effective. When this occurs, you
should discard the errant modification and evaluate other tuning possibili-
ties.

Evaluation is the decision-making middle step of the tuning cycle. This step
is the point at which the decision to continue or to stop the tuning cycle is
made. If tuning goals have been met or if modifications are not reducing
computer overhead, you may decide to terminate the tuning cycle. If signif-
icant resource reductions are being realized or if further tuning possibilities
are available, you may decide to continue on to the next step: modification.

Modification
Modification is the action step of the tuning cycle. In this step, some as-
pect of the SAS application’s program(s) or data is deliberately changed.
The goal of the modification step is to effect a gain in the application’s per-
formance the next time it is run. Exactly what should be modified in this
step is the main subject of this book and is covered in great detail in other
chapters.

Modifications to programs or data should be made one at a time. This en-
sures that the full impact of a single modification can be accurately mea-
sured. If two or more changes are made, and computer overhead is re-
duced, there is no way to tell which change was actually responsible.
If a single change is made, its exact effect can be measured and evaluated.
Making one modification at a time ensures there is no ambiguity about
whether a specific change makes an application more efficient.

This book provides an arsenal of possible modifications that can be imple-
mented to reduce processor overhead. It is up to you to decide which
changes are candidates for the application you are tuning. You may decide to
override a SAS system option, change the block size of a data set, add an
index, or make some other change. Your decision on modification candi-
dates will be based on the characteristics of the application’s data and pro-
gram(s), the type of processor overhead you hope to reduce, and your own
knowledge of tuning.

The modification that you think will make the greatest difference should be
made first. Then rerun the application and measure and evaluate its perfor-
mance. If the modification is successful, you may move on to the next
change and repeat the tuning cycle. If not, you should remove the modifica-
tion, implement the next candidate modification, and continue with the
tuning cycle.

13

Tuning Cycle Example
This section presents a case study of a tuning cycle. In the case study, the
simple SAS program being tuned reads a single SAS data set and creates
a report.

Event One

Measurement: CPU time: 60 SECS, EXCP count: 15,000.

Evaluation: The measurement is a baseline, and the programmer decides
to try to reduce CPU time and EXCP count.

Modification: An index is created for the SAS data set accessed by the
program and the application is rerun.

Event Two

Measurement: CPU time: 45 SECS, EXCP count: 1,000.

Evaluation: These are good results, but the programmer would like to
see a greater improvement.

Modification: The programmer uses Data Set Compression to compress
the SAS data set.

Event Three

Measurement: CPU time: 75 SECS, EXCP count: 850.

Evaluation: Although significant, the drop in EXCP count is not enough
to justify the rise in CPU time.

Modification: Compression is de-implemented for the SAS data set.

Event Four

Measurement: CPU time: 45 SECS, EXCP count: 1,000

Evaluation: The programmer is satisfied with the results, so the tuning
cycle is completed.

Modification: No modifications are made.

A tuning cycle is completed when no further changes will make an appre-
ciable difference in the performance of an application. In the example, the
programmer realized great efficiency with the first modification, and ques-
tionable efficiency with the second. The second change was deemed unsuc-
cessful because CPU time is very valuable in the example programmer’s
environment. The modest reduction of EXCPs did not justify the rise in
CPU time, so the second modification was deleted. No further changes
were proposed, so the tuning cycle was complete.

14 C h a p t e r 1 Performance, Efficiency, and Tuning

Common sense has to be used when evaluating whether or not to run a
tuning cycle. If the computer resources used by an application are already
low, then it may be unnecessary to tune it. Similarly, ad hoc reports and
programs that are one-time runs against modest amounts of data usually
do not warrant tuning. Indeed, the time-criticality of many ad hoc reports
would make it impractical to put the programs through the tuning cycle.

On the other hand, applications that use large amounts of the system re-
sources that are in short supply in your organization make good tuning tar-
gets. You should compile a list of your applications and the critical system
resources that they consume over a specified period of time, such as a week
or a month. Arrange the list in descending order of the most critical system
resource. (For instance, if CPU time is the most important resource, the
applications would be listed in order of descending CPU time.) Now you
have a prioritized list of applications that you can tune. If you are success-
ful in your tuning efforts, then you will have freed valuable system
resources for other applications to use.

Performance Goals
To effectively implement the tuning cycle, an organization needs some spe-
cific performance goals or standards. Without performance goals or stan-
dards, programmers do not have a basis from which to judge whether or
not to tune an application. Or, as Lewis Carol so aptly stated, “If you do not
know where you are going, any road will lead you there.”

Performance goals and standards can take on many different forms. They
can be as simple as “reduce CPU time as much as possible.” Conversely,
they can be as complicated as a multipage publication of SAS language pro-
gramming standards. Performance standards may be set by the organiza-
tion, by the group, or even by the user. There may be different performance
standards in effect for different groups within the same organization.

Here is an example of some possible performance standards:

■ CPU time is very valuable and should be reduced as much as possible.

■ WHERE clauses shall be used instead of subsetting IF statements.

■ SAS data set BLKSIZE shall be set to 1/2 or 1/3 track for all SAS
data sets.

■ Indexes will be built and used on all large SAS data sets.

■ Extracts of external files shall be stored as SAS data sets and not as
flat files.

Check with your management to determine what the performance stan-
dards are for your organization. Commit your organization’s performance
standards to paper in a simple one-sentence-per-point list, as illustrated
above. Have the list in a handy place so that you can consult it whenever
you are programming. This will enable you to write and tune applications
that conform to your organization’s specific performance standards.

15

If you work in an organization whose performance standards are either
nonexistent or unclear, you should create your own. Generally, this is not
too hard to do. Standard methods of processing data with the SAS System
should be examined, embraced as standards, and written down. The stan-
dards should be based on the efficiency techniques stated in SAS documen-
tation, published in user group papers, and stated in this book. Performance
standards should also reflect the performance constraints of your organiza-
tion’s mainframe computer(s). This effort will help to ensure that your
applications are written as efficiently as possible.

When to Tune Applications
Tuning New Applications
The best time to tune an application is when it is first written. Tuning at
this time usually has the minimum impact upon the end-user. During the
unit testing phase of development, you should run a representative amount
of data through the application and create a baseline. Then you should run
the application through the tuning cycle and tune it to its greatest efficiency.

Review the SAS programs comprising a new application before it is imple-
mented into production. During the review, SAS code that does not meet
the performance coding standards of the organization should be modified.
If the programmer used good programming techniques, the correct SAS
system options, and effective MVS parameters, the application should be
very efficient. A baseline measurement of the performance metrics of the
application should be made for future reference.

Tuning SAS programs when they are new is a good way to build perfor-
mance into applications. This allows you to move on to satisfying your
users’ needs for other information without having to worry about the per-
formance of old applications. The best way to avoid performance problems
is to start off with performance built into the applications.

Tuning Existing Applications
A mature organization with an embedded SAS culture is likely to have a
large number of SAS applications in production. These applications may
have been written by various programmers with different levels of experi-
ence. Some applications may have originally been written in early versions
of the SAS System (prior to Version 6.) They may have been converted
directly to Release 6.06 without being rewritten, when the organization
changed releases of the SAS System. Some applications may have been cre-
ated quickly and hurried into production with the emphasis on getting the
information to the client as soon as possible.

Although time always seems to be short, it is worth the effort to reexamine
existing applications and tune them. Once performance standards are in
place, you have a guideline to use to tune existing applications. You can be
proactive and examine your group’s applications for tuning possibilities.
Then you can establish benchmarks and engage in the tuning cycle. When
you have completed tuning, you can report performance gains to your
management as savings for the group and for the organization.

16 C h a p t e r 1 Performance, Efficiency, and Tuning

Keep in mind that some tuning possibilities do not reveal themselves when
a program is first written. Things change. The quantities and types of data
change, data access patterns change, sort keys change, the number of fields
in observations sometimes change. Some tuning strategies work better with
large volumes of data. Thus, a well-tuned application may need to be reex-
amined for tuning possibilities after it has been in production for a while.

You should examine existing applications for tuning possibilities on a cyclic
basis. The more volatile the application, the more often its performance
should be checked. Statistics should be kept on the main MVS performance
metrics of all applications on monthly, quarterly, biannual, or yearly basis.
This will leave an audit trail of how the application is performing.

A good time to audit the performance of existing applications is when a
new release of the SAS System is installed. New releases usually enrich the
SAS System with greater functionality and with performance upgrades.
For example, Release 6.06 introduced indexing, data compression, the
Stored Program Facility, and other enhancements. Release 6.07 produced
the WHERE expression’s expanded functionality and introduced the
SORTEDBY= data set option. Programs that were written in Release 5.18
and that were not audited and rewritten to take advantage of these tools do
not reap the performance benefits. You should obtain the latest “Changes
and Enhancements” technical report for base SAS software and the most
recent edition of the SAS Companion for the MVS Environment to determine
which enhancements you can exploit.

Implementing the Tuning Cycle
It is very important that you approach the tuning cycle in a methodic,
structured manner. To do this, you need to make several decisions before
you begin to tune. Those decisions will help you to set clear-cut goals for
your tuning effort, keep your tuning cycle focused, and ensure that the
results are unambiguous. The three major issues you have to decide upon
before enacting the tuning cycle are

■ The scope of the tuning cycle

■ What to use for the baseline

■ What program modifications to make.

Each of these three issues is discussed, in turn, below.

Determine the Scope of the Tuning Cycle
When you tune SAS applications, the first decision you need to make is to
determine the scope of the tuning cycle. That is, will your tuning efforts be
directed toward a specific SAS task, an entire SAS program, or a complete
SAS application? Answering this question helps you to focus in on the level
of measurement and the efficiency tools that you need. It allows you to
center on a specific facet of one of your SAS applications and concentrate
your tuning efforts. The resources you bring to bear upon tuning at each of
these levels can be as different as the levels themselves.

17

Task-level tuning involves implementing the tuning cycle for a specific
SAS task within a SAS program. The goal of this effort is to tune the par-
ticular SAS task to its greatest efficiency. WHERE clauses, DROP and KEEP
statements, and the Stored Program Facility are some of the performance
tools that may be used at the task level. When you are tuning an individual
task, it is important that SAS processing statistics be turned on at the task
level. This facilitates the measurement of the tuning changes made to the
particular task. The SAS processing statistics, written to the SAS LOG, can
help you to determine the success of your tuning decisions.

Program-level tuning involves implementing the tuning cycle for all of
the SAS tasks within a SAS program. The purpose of program-level tuning
is to reduce the computer overhead of the entire program. In its simplest
implementation, this may involve the tuning of two or more existing SAS
task. In its most complex form, it may involve the addition and deletion
of SAS tasks, the restructuring of SAS data sets, or, possibly, a complete re-
write of the entire program. When you are tuning at the program level, pro-
cessing statistics in either the SAS LOG or the MVS job log may be used to
measure performance. If the SAS LOG is used, processing statistics such as
CPU time and EXCP count for all of the SAS tasks within the program must
be combined. The aggregate of the individual SAS tasks’ processing statis-
tics provides the true measure of the program’s overall efficiency.

Application-level tuning entails implementing the tuning cycle for two
or more of the programs that comprise the application. The objective of
application level tuning is to reduce the overall computer overhead of the
complete application. This may involve tuning individual tasks in specific
programs, writing new programs, rewriting old programs, or restructuring
SAS data sets. Tuning at this more global level requires that SAS or MVS
processing statistics be recorded at the individual program level. The aggre-
gate of the program-level measurements yields the application’s processing
statistics totals. These totals can be used to measure the success of your
efforts to tune the entire application.

Determine What to Use for the Baseline
Once you have decided upon the scope of the tuning cycle, you must deter-
mine if baseline measurements currently exist. Baseline measurements are
the processing statistics recorded at the beginning of a tuning cycle, before
any program changes are made. The baseline acts as a “before” measure-
ment, against which future, “after” measurements are compared. The base-
line metrics you need are normally recorded in the SAS LOG or the MVS
job log. (Refer to Chapters 2 and 3 for important SAS metrics and where to
find them.) It is vital to have an accurate baseline so that you can determine
the merits of your tuning endeavors.

Baseline measurements must be available for the level at which you intend
to tune. For instance, if you are tuning a SAS task, you need a baseline for
that task. If you are tuning a program, you need a baseline either for the
entire program, or for all of the tasks that compose the program. For an
application, you need a baseline for either the application, all of the applica-
tion’s programs, or all of the application’s tasks.

18 C h a p t e r 1 Performance, Efficiency, and Tuning

If no baseline exists, then you must act to have one created before you be-
gin to tune. Enable the SAS processing statistics for the next run of the SAS
task, program, or application that you intend to tune. Modifying SAS code
for efficiency’s sake without a baseline measurement cannot seriously be
called tuning. Without a baseline, you cannot prove that any real change
has taken place, either positively or negatively in your SAS task, program,
or application. Consequently, no tuning can begin until you have secured a
valid baseline measurement.

Perhaps you have already enabled the SAS processing statistics in all of
your SAS applications. Doing this ensures that the information you need
for tuning is always available. This eliminates the necessity for having to
overtly enable the SAS processing statistics and wait for the next run of a
particular program. With the SAS processing statistics enabled, you can
simply review the SAS LOG of the latest program execution to establish
your baseline.

Remember that the baseline should be current and should contain the
same volume of input data as will be run thought the modified program.
This is necessary to eliminate false tuning results that can occur because
of disparate data volumes. Obviously, larger volumes of data require more
processing overhead. A baseline taken for a program processing millions
of observations is not adequate if subsequent runs of the program process
a few thousand observations. The ideal situation is to make the baseline
and subsequent program runs using the same data. This can be controlled
in a testing or development environment, but is often difficult in a produc-
tion system.

Determine What Program Modifications to Make
The last thing you need to decide on, before beginning the tuning cycle, is
exactly what modifications you intend to make to your SAS program. List
the modifications on paper. Order them in descending order of which ones
you expect will effect the biggest performance gains. This is the order in
which you should actually make the modifications. By listing them in this
order you may shorten your tuning cycle process. If the first or second
modification allows your application to reach its tuning goals, then there is
no essential requirement for continuing to tune. So, listing your modifica-
tions by order of importance may actually save you time during the tuning
cycle.

Each modification on your list should be made separately, and evaluated,
before the next change is made. In this way, the outcome of the change
can be fully evaluated on its own merit. This can not be stressed strongly
enough! If several performance-oriented modifications are made at the
same time to the same task, the results of each individual change is ob-
scured. You can not determine exactly which one effected the change in
program efficiency. Perhaps you can conjecture that one change “must
have” had a more profound impact than another. But, that is just an educat-
ed guess. Without serializing the modifications in an incremental fashion,
you can never really verify exactly which change made the difference in
performance.

19

Run the Tuning Cycle
Once you have prepared for the tuning cycle by making the decisions
above, it is fairly easy to enact it. Simply follow the three basic steps of the
tuning cycle as outlined in the earlier sections of this chapter. The process is
straightforward, and you will probably find it fairly simple after you have
done it a couple of times.

While tuning, it is very important that you keep track of all of your modifi-
cations and the results of having made them. To help you to do this, some
worksheets have been included at the end of this chapter. There are sepa-
rate worksheets for tuning SAS tasks, SAS programs, and SAS applications.
Each worksheet can be used to record modifications and the measurements
made before and after modifications. You may decide to save them for
future reference.

Report Performance Gains
One of the best aspects of tuning your SAS applications is reporting the
performance gains to management. To accomplish this, you need to con-
trast the baseline measurement with the measurement taken after you have
enacted the program efficiency changes. The difference between the two
metrics, at the SAS task, program, or application level, is the amount of
computer resources you have saved your organization.

In reporting performance gains, you should characterize them in the best
terms that management understands. If management is cognizant of terms
such as EXCP count and CPU time, you can use them in your report. If they
only understand data processing expenses, and your organization has a DP
chargeback system, use dollars and cents to report your savings. For exam-
ple, consider how the resource savings in the tuning cycle example given
earlier in this chapter could be presented

■ Savings of 15 CPU seconds and 14,000 EXCPs

or

■ CPU time reduction of 25% and an EXCP count reduction of 93%

or

■ CPU time cost reduction of $7.50 and an EXCP count cost reduction of
$14.00. (Based on a CPU time charge of $.50 per CPU second and an
EXCP count charge of $1.00 per 1,000 EXCPs.)

If the performance savings from the modifications seem paltry, try charac-
terizing them over time. Perhaps when they are considered as weekly,
monthly, or yearly savings, they will appear more substantial. Portraying
them in such a way is not being deceptive. They actually are real processor
savings that your organization will enjoy. Management should be aware
that you have made changes that will save computer resources. By charac-
terizing them over time, you allow management to see their true long-term
value. An example of portraying the above savings for a weekly job is

20 C h a p t e r 1 Performance, Efficiency, and Tuning

■ The program tuning has resulted in a monthly savings of $86. This
savings is composed of a $30 saving in CPU time and a $56 savings in
EXCP count charges.

Figure 1.5, illustrates a memo written to describe the savings of having
tuned the SAS program in the tuning cycle example. In this instance, the
program ran once a week in batch job RELICS01. This environment had a
DP chargeback system that levied $.50 per CPU second and $1.00 per 1,000
EXCPs. The memo provides enough information for the department head
to understand the significance of the tuning effort.

Figure 1.5 Example of a memo to management characterizing the results of
tuning a SAS program.

Since your tuning endeavors, when successful, have value to your organi-
zation, you should not hesitate to publicize them. Be sure to write a memo
or an E-mail message that distinguishes the computer resource savings you
have achieved. Both your direct management and your end-users should be
aware that you are doing the most to make their applications as efficient as
possible. This gives them the full picture of your accomplishments and
enhances your reputation as a top SAS programmer.

Summary
Given the importance to your organization of efficient applications, it is
imperative that you create SAS programs that have good performance. To
accomplish this requires a certain shift in your focus. Looking at program
performance directs your attention away from the traditional end product
of a SAS program. Program efficiency is not concerned with a particular
report, graph, or chart. Rather, it is concerned with the SAS program
processes that produce the report, graph, or chart. The introspective re-
viewing of SAS program processes is central to creating efficient programs.

To: Dr. Arnold Layne
From: Michael A. Raithel
Date: April 27, 1995
Subject: Results of Tuning the Benefits System

This memo was written to notify you of the perfor-
mance savings that were realized by tuning the job
RELICS01 of the Benefits System. By implementing
and using an index to access the main SAS data set,
program CPU Time was reduced by 25% and the EXCP
Count was reduced by 93%. This translates to a
reduction in CPU charges of $7.50 and EXCP charges
of $14.00, per run. The total savings per run is
$21.50. Since the job is run weekly, we can expect
to save $86.00 per month, and $1,118.00 per year.

We are always looking for ways to improve the effi-
ciency of the Benefits System. We will keep you
informed of future tuning efforts.

21

By focusing on how you process data and arrive at your output, you can
create SAS programs that perform at their optimum level.

The tuning cycle is a methodology that you can utilize to tune the perfor-
mance of your SAS applications in a controlled, step-wise manner. The tun-
ing cycle is composed of three basic steps:

■ Measurement

■ Evaluation

■ Modification

When you implement the steps of the tuning cycle and make incremental
changes to your SAS programs, you can determine which tuning decisions
really do reduce computer overhead. You can implement the tuning cycle at
the SAS task, program, or application level. By doing so, you will guarantee
that your applications are running as efficiently as possible on your main-
frame computer.

SAS Task Tuning Worksheet

Application Name: __

Program Name: __

Task Identification: __

Programmer Name: __

Date: __

Page ______ of ______

22 C h a p t e r 1 Performance, Efficiency, and Tuning

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

Task Memory:

Total Memory:

What Was Modified:

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

Task Memory:

Total Memory:

What Was Modified:

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

Task Memory:

Total Memory:

What Was Modified:

23

SAS Program Tuning Worksheet

Application Name: __

Program Name: __

Programmer Name: __

Date: __

Page ______ of ______

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

24 C h a p t e r 1 Performance, Efficiency, and Tuning

SAS Application Tuning Worksheet

Application Name: __

Programmer Name: __

Date: __

Page ______ of ______

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

Modification Number: _____________

Baseline Modification Difference Between
Measurement Measurement Baseline & Modification

CPU Time:

EXCP Count:

What Was Modified:

