
C H A P T E R 1
Introduction to Code-free Design
Problems in the application development cycle 1

Principles of code-free design 1

The role of the SAS System in code-free design 3

Summary 14

Problems in the application development cycle

Today’s business world increasingly demands quality applications. How can an
application meet future needs when the business situation constantly changes? How
fast can new conditions be met? What is the cost of any change in the application?
The answers to these questions depend on application development technology,
which determines the quality of the application.

Here are some problems that technology must solve to improve application quality:

■ Many people must be involved in the construction of a complex application, and
regular communication becomes impossible because it consumes too much time.

■ The useful life of an application begins when it is delivered to the user. From this
point , application modifications are often required. These modifications may
consume a great deal of effort in recoding and even redesigning.

■ Generally, the better an application, the longer its life. Modifications and
maintenance of the application are usually performed by people other than the
original implementers. This problem is very difficult to solve because the
application internals cannot be easily understood.

The code-free approach described in this book addresses these problems. Generally,
the code-free approach addresses the most fundamental problems of existing
application development technologies–the failure to recognize users’ true needs and
the inability to develop applications quickly to meet these needs.

Principles of code-free design

The massive proliferation of the SAS System has created new opportunities and new
challenges for application designers to deliver graphical, event-driven, client/server
database applications. Application user expectations for new applications include
short delivery lead-times, ease of use, and increased flexibility. In response to these
challenges, application designers are adopting rapid application development

1

techniques. Code-free design is one of these techniques. Code-free design lets the
application designer describe applications visually, in terms of their functionality, and
permits the development of mission-critical applications without programming.

The main principles of code-free design are

■ Application design is perceived as data and nothing but data. This means that the
application design is defined in a set of specially structured tables and is stored,
updated, and managed in the same way as ordinary data.

■ Application activities are stated in terms of what must be done but not how to do
it . An application activity can be imagined as a definition of states and messages
allowing transition from one state to another. Of course, the states and messages
are stored, updated, and managed as ordinary data. The application designer
defines full application functionality by use of its states and messages.

■ The application is managed from a single control point .

How code-free design can automate application development

Automating an application development process from beginning to end means that:

■ requirements feed seamlessly into design

■ design automatically writes code

■ code is deployed automatically into production

■ maintenance changes automatically rewrite code.

Code-free design can realize this dream of end-to-end automation through the table-
driven environment.

The table-driven environment is the most fundamental aspect of the code-free
approach. The heart of this environment is the set of specially structured tables
forming the data dictionary. The data dictionary contains a variety of information
concerning application objects and operations, such as data structures, application
activities, and so on. In other words, the data dictionary contains the application
design, and the data dictionary programs transform it into appropriate, functional
working applications. The data dictionary also provides modifications to the
application according to changes in application design. Different structures of data
dictionaries can be defined. The designer is a person who defines the data dictionary
structure. Chapter 2 describes the data dictionary in detail.

The table-driven environment is the software tool created by the programmer. This
tool supports the data dictionary architecture and provides the designer with a
convenient and reliable environment for code-free application design. The table-
driven environment provides the capability to determine quickly the impact of
requested modifications, which can be made by the designer, programmer, or

2 Introduction to Code-free Design ■ Chapter 1

Chapter 1 ■ Introduction to Code-free Design 3

application users. This ability enhances communication among designers,
programmers, and application users and increases their productivity. This is very
important because productivity depends on these people.

The role of the SAS System in code-free design

The SAS System is ideally suited to implement the code-free approach to application
development.

First , SAS stores data in data sets that are very similar to tables. In turn, it can operate
with tables rather than records and can implement the relational data model easily.

Second, SAS supplies tools for creating any application facility and capability that we
may have envisioned, such as:

■ data access and management

■ powerful analysis and computation tools with distributed computing capability

■ cross-platform data transfer capabilities and transparent access to files and to
different databases

■ client/server capabilities

■ data entry and retrieval facility, along with concurrent multi-user updates to
remote data

■ high-resolution graphics tools.

Third, SAS is a continuously developing system that follows up-to-date achievements
in hardware and software technology so that any SAS application keeps pace with
advances in the computer world.

Different views on an application

The application user, application designer, and SAS programmer are all involved in
the process of an application’s “birth.”

In order to visualize the code-free approach to application development , we have
created a sample application that will be developed throughout the book. It is a
database client/server application that supports clinical experiments in the
pharmaceutical industry.

4 Introduction to Code-free Design ■ Chapter 1

How a user imagines an application

Here are three types of users of the clinical experiments application:

1. The pharmaceutical chemist , who creates the new drug and wants to test it
thoroughly.

2. The physician, who uses the new drug to treat patients.

3. The manager of clinical experiments, who defines treatment policy and
requirements for data and analysis results quality.

These users may generate the following requirements for the application:

Pharmaceutical chemist

■ The pharmaceutical chemist analyzes data, and this analysis must produce
reliable results. The analysis results in such an application are very sensitive to the
quality of the data. The pharmaceutical chemist wants to be able to define new
and different tests of data validation and correctness each time data are updated
and/or analyzed.

■ The pharmaceutical chemist analyzes data from clinical experiments through
several steps:
a. Pre-analysis: This step shows data outliers.
b. Outliers processing: This step submits correct data for the next step.
c. Main analysis: An interpretation of the results of the main analysis may lead

to additional analyses.

■ Each clinical experiment requires specific analysis methods for each step.
Moreover, the pharmaceutical chemist may wish to change an analysis method
while an experiment is in progress.

■ The pharmaceutical chemist needs access to all data for analysis purposes or to
present the results of analysis to the manager.

Physician

■ The physician needs a distributed, networked data entry facility so that several
physicians involved in the clinical experiment can enter data simultaneously from
different remote work places.

■ The physician needs to be sure that any data entered are correct in terms of
values and relationship to other data.

Manager

■ The manager needs a very advanced reporting facility, a feature that is especially
important for such an application. Because the professional’s decision about a
drug must be well-explained and proven, the reporting facility must have unlimited
ability to generate reports (both tabular and graphic).

■ The manager needs to define what kind of relationships will appear in graphical
or tabular reports and must be able to change the reports’ appearance and
presentation of information at any time. This requirement is very important for
the manager because correct and flexible data presentation can often
demonstrate previously invisible data features.

To summarize the users’ requirements for this application, it is a client/server
application with a distributed database and with a high degree of flexibility in
application features definition.

Organization of the clinical experiment

How will the clinical experiment be organized?

■ The physician has to select patients for the clinical experiment. Each patient has
unique characteristics (for example, identification number, etc.).

■ The physician has to classify the patients according to characteristics that seem to
be relevant for the drug checking (for example, age, sex, etc.)

■ The manager has to define conditions of drug acceptance (for example, dosage,
time intervals, and so on) for each group of patients according to their
characteristics. The manager must define the type and frequency of medical trials
to be done and how the treatment policy will change depending on the results of
the medical trials.

How a designer defines an application

The designer’s task is to design an application for clinical experiments that supports
changing application requirements. Everyone who has worked with application
development knows that it is an iterative process, in which requirements are constantly
being refined and made more precise. To design the right application, the designer
must define the application objects and operations that satisfy the requirements.

Defining objects

The main objects of our sample application are

1. patient

2. medicine

3. trial

4. result

Chapter 1 ■ Introduction to Code-free Design 5

These objects are described below.

The patient object

The patient object is represented by the Patient and Group tables. The Patient table
lists patients who participate in the clinical experiment. Each row in the table is
uniquely identified by a patient identification number so that we can access
immediately each of the patients by his or her unique identification number. In
addition, the table contains patient first names, addresses, and other related
information. The columns of the Patient table are defined as follows:

Columns of the Patient table

Column name Type Length Description

PATIENT Numeric 8 Patient identification number

NAME Character 20 First name

SURNAME Character 20 Last name

SEX Character 1 Sex

BIRTH Character 10 Birth date

ADDRESS Character 80 Address

PHONEHOM Numeric 8 Phone number at home

PHONEWRK Numeric 8 Phone number at work

During a clinical experiment , the Patient table is filled in with information about
patients, as in the following example:

Patient table

PATIENT NAME SURNAME SEX BIRTH ADDRESS PHONEHOM PHONEWRK

10001 Tanya Green f 09FEB1963 14/26 Red str. 9196004252 9196004254

10002 Samuel Brown m 25APR1956 26/15 Green str. 9196723678 9196795487

10003 Lisa Howell f 22MAY1961 14/27 Red str. 9196004567 9196004253

10004 John West m 21APR1951 14/67 Red str. 9196906756 9196004255

10005 Nancy David f 12DEC1968 26/18 Green str. 9196907876 9196790389

10006 Anne Brown f 11NOV1955 14/18 Red str. 9197806786 9196789078

10007 Rick Weeks m 12JAN1971 22/12 Green str. 9196789567 9198905678

6 Introduction to Code-free Design ■ Chapter 1

The Group table collects the patients into groups, so that each patient is a member of
only one group. The columns of the Group table are defined as follows:

Columns of the Group table

Column name Type Length Description

GROUP Numeric 8 Group identification number

ORDERNO Numeric 8 Order number of the patient in the
group

PATIENT Numeric 8 Patient identification number

During a clinical experiment , the Group table is filled in with information about
patient groups, such as:

Group table

GROUP ORDERNO PATIENT

1 1 10001

1 2 10002

2 1 10003

2 2 10004

The medicine object

The medicine object is represented by the Medicine and Dose tables. The Medicine
table lists the medicines that are used in the clinical experiment. Each row in the
table is uniquely identified by a medicine identification number so that we can
immediately access each medicine by its unique identification number.

Columns of the Medicine table

Column name Type Length Description

MEDICINE Numeric 8 Medicine identification number

MEDNAME Character 80 Medicine name

The Medicine table, with information filled in, looks like this:

Medicine table

MEDICINE MEDNAME

1 Paracetamol

2 Bricalin

3 Histafed

4 Pramin

Chapter 1 ■ Introduction to Code-free Design 7

The Dose table contains assignments of the medicines according to groups of
patients so that each medicine has a specified dose for each group.

Columns of the Dose table

Column name Type Length Description

MEDICINE Numeric 8 Medicine identification number

GROUP Numeric 8 Group identification number

L_DOSE Numeric 8 Lowest daily dose of the medicine for
the patients’ group

H_DOSE Numeric 8 Highest daily dose of the medicine for
the patients’ group

The Dose table, with information filled in, looks like this:

Dose table

MEDICINE GROUP L_DOSE H_DOSE

1 1 200 500

1 2 250 450

2 1 7 8

2 2 6 9

3 1 12.5 12.8

4 1 1200 1300

The trial object

The trial object is represented by the Trial and Monitor tables. The Trial table
describes the trials that are applied in the clinical experiment. It contains the names
and tolerance levels of the trials’ results, according to trial identification number, so
that we can immediately access each of the of the table rows by its unique trial
identification number.

Columns of the Trial table

Column name Type Length Description

TRIAL Numeric 8 Trial identification number

TRIALNAM Character 10 Trial name

L_NORMAL Numeric 8 The lowest normal value of the test’s
result

H_NORMAL Numeric 8 The highest normal value of the test’s
result

8 Introduction to Code-free Design ■ Chapter 1

Columns of the Trial table (continued)

L_WARN Numeric 8 The lowest warning value of the test’s result; it is
still normal

H_WARN Numeric 8 The highest warning value of the test’s result; it
is still normal

The Trial table, with information filled in, looks like this:

Trial table

TRIAL TRIALNAM L_NORMAL H_NORMAL L_WARN H_WARN

1 WBC 0.08 0.35 0.1 0.3

2 HRF 18.8 32.2 20.1 30.1

3 HLC 0.0 1.0 0.001 0.008

56 HGB 11.7 17.3 13.2 15.5

63 HCT 35.0 49.0 39.0 45.0

88 RBC 3.8 5.7 4.3 5.1

93 MCV 76.0 120.0 80.0 100.0

The Monitor table defines the trial policy for each patient’s group. Every row in the
table is uniquely identified by group and trial identification numbers.

Columns of the Monitor table

Column name Type Length Description

GROUP Numeric 8 Group identification number

TRIAL Numeric 8 Trial identification number

REPEAT Numeric 8 Time interval in days; it is
recommended to repeat this test
with the same interval for this
patient’s group

Chapter 1 ■ Introduction to Code-free Design 9

During a clinical experiment , the Monitor table is filled in with information about
performing trials, such as:

Monitor table

GROUP TRIAL REPEAT

1 1 12

1 56 10

1 63 5

2 2 8

2 56 8

2 63 5

The result object

The result object is represented by the Result table. It contains trial results for each
patient . The result is uniquely identified by patient and trial identification numbers
and the date when the trial was performed.

Columns of the Result table

Column name Type Length Description

PATIENT Numeric 8 Patient identification number

TRIAL Numeric 8 Trial identification number

DATE Character 10 Date of trial

RESULT Numeric 8 Trial result

10 Introduction to Code-free Design ■ Chapter 1

During a clinical experiment , the Result table is filled in with information about trial
results, such as:

Result table

PATIENT TRIAL DATE RESULT

10001 1 10MAY1994 8.12

10002 1 10MAY1994 10.00

10003 1 10MAY1994 8.04

10001 1 17MAY1994 7.54

10002 1 17MAY1994 7.58

10003 2 23MAY1994 11.2

10004 2 23MAY1994 13.2

10005 2 22MAY1994 11.5

10001 3 12JUN1994 20.1

10002 3 12JUN1994 23.5

The objects, described above, constitute the core of the application.

Defining operations

Besides the application object’s definitions, the designer needs to define operations
that are allowed with the objects. For example, the Patient table lists all legal values
for the PATIENT column in any other table. It will be used, for instance, for validation
of the values of the PATIENT column from the Result table. We can also validate the
value of the RESULT column from the Result table versus the values of the L_WARN
and H_WARN columns from the Trial table. The set of such operations, together with
the objects themselves, constitutes the initial pass of the application design.

Changing objects or operations

Any time the designer changes or adds objects or operations, it can be done easily
with the table-driven environment. Any changes the designer makes in the design
through this environment produce immediate changes in the application without any
programming. This is the main principle of code-free design that ultimately provides
data independence, i.e., separation of code and information. This magic environment
contains a set of specially structured tables intended for the definition of application
objects and operations on the one hand and the software that processes the meta
data (definitions of objects and operations) from these tables on the other hand. The
designer has to define the structure of the tables of table-driven environment. The
same environment can be used to create different applications that can communicate
with each other.

Chapter 1 ■ Introduction to Code-free Design 11

In this book, we describe possible sets of tables that constitute the table-driven
environment. Consider the following example. The Location table, that belongs to
such a set , lists the tables of the patient object and their locations in SAS libraries.
The Location table looks like this:

Location table

TABLE LIBRARY

Patient patdb2

Group patappl

If we want to move the Patient table from the current library patdb2 to another library,
we just have to update this value in the LIBRARY column. The application will “know”
about this change and will invoke the suitable event-driven process for performing
this change. (Processes are discussed in Chapter 3.)

What the programmer does

Code-free design changes the role of the programmer. The programmer is no longer
responsible for implementation of the specific application, and he or she is
independent from any changes in the application’s requirements or application
design. Instead, the programmer builds an environment in which the specific
application will be generated. The programmer receives from the designer the strictly
defined architecture of the data dictionary. This architecture is described in terms of
the relational data model.

In order to implement the environment for application generation, programmers need
to know SAS language, SAS macro language, and many of the base SAS procedures,
such as PROC SQL, PROC FORMAT, and PROC PMENU. In addition to base SAS
software, programmers have to use at least the following SAS software products:

■ SAS/AF, SAS/FSP, and SAS Screen Control Language—for data entry facilities and
user interface generation

■ SAS/ACCESS—for transparent interfaces to databases and files not in SAS

■ SAS/CONNECT—for cooperative and distributed data processing

■ SAS/SHARE—for concurrent access to data

■ SAS/GRAPH—for graphical data presentation.

■ SAS/STAT, SAS/OR, SAS/QC, and SAS/ETS—for statistical analysis, operation
research and project management , quality control and improvement , time series
analysis, forecasting, econometrics, and business planning.

In this book, there are many working programming examples that support the table-
driven environment for application generation, such as data set generation, data
entry generation, report generation, and data processing generation.

12 Introduction to Code-free Design ■ Chapter 1

Chapter 1 ■ Introduction to Code-free Design 13

For example, the Library table, where the SAS library references are defined, can be
presented like this:

Library table

LIBRARY LOCATION

patdb2 c:\clinic\db2

patappl c:\clinic\appl

The %LIBREF maro, which belongs to the class of reusable programs, processes data
from the Library table and implements the SAS library reference definitions. This
macro looks like this:

/*

PROGRAM LIBREF.

DESCRIPTION Assigns SAS library references according to the Library table

meta data.

USAGE %libref(libname);

PARAMETERS libname - is the name of the library storing the library data

set.

REQUIRES The library data set corresponding to the Library table.

AUTHORS T.Kolosova and S.Berestizhevsky.

*/

%macro libref (libname) ;

/*

The following DATA step creates macro variables and fills them with data

from the library data set:

libs - contains the number of libraries, defined in the library data set

lib - is a series of macro variables containing names of the libraries

loc - is a series of macro variables containing physical locations of

these libraries.

*/

%let libs=0;

data _null_ ;

set &libname..Library ;

call symput(“libs”, _n_) ;

call symput(“lib” || left(_n_), trim(library)) ;

call symput(“loc” || left(_n_),trim(location)) ;

run ;

/*

The following loop generates required LIBNAME statements.

*/

%if &libs>0 %then

%do i = 1 %to &libs ;

libname &&lib&i “&&loc&i” ;

%end ;;

%mend libref ;

If the %LIBREF macro reads data from the Library table, the SAS System will see
these statements:

LIBNAME PATDB2 “C:\CLINIC\DB2”;
LIBNAME PATAPPL “C:\CLINIC\APPL”;

The %LIBREF macro is a very simple example of a program that converts data into
action. In this book the programmer will find many examples of programs that use
this power method.

Summary

This chapter has introduced the basic ideas of code-free design and its main features.
It has analyzed the application example and shown how the user imagines the
application, how the designer defines main objects of the application, and what the
programmer has to do to support the table-driven environment. Most of the
examples in this book use the application tables described in this chapter.

The next chapter focuses on the ideas and usage of the data dictionary, including:

■ For the designer—how to use relational technology to define an application data
model.

■ For the programmer—how to implement software tools that support the table-
driven environment.

■ For the user—how to cultivate an application data model through the table-driven
environment.

14 Introduction to Code-free Design ■ Chapter 1

