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1. Introduction 
 
This user’s guide defines syntax and illustrates use of SAS macros that perform Local Control 
(LC) patient clustering, a new approach to analysis of observational studies, retrospective 
databases, patient registry data or poorly randomized (chaotic) studies.  The SAS macros 
described here implement an analysis strategy that can be described as post hoc blocking of 
patients.  Any of the traditional “unsupervised learning” algorithms implemented in SAS/STAT 
can be used to hierarchically cluster patients in the, say, Euclidean space defined by their 
baseline X-characteristics.  Of course, other clustering algorithms or patient dissimilarity metrics 
could also be used in LC analyses; see Kaufman and Rousseeuw (1990). 
 
The LC macros make some assumptions that are different from those generally made by other 
methods currently being implemented for OMOP evaluation and comparison.  Specifically, the 
LC macros assume that the objective of the analysis of observational data is to compare two 
treatments head-to-head in a fair and objective way that adjusts for not only possible treatment 
selection bias (i.e. treatment cohort imbalance) but also for confounding of patient X-
characteristics.  Thus the LC macros assume that each subject in the subset of the data currently 
being analyzed has received only one of two alternative treatments for a single disease or 
condition.  For example, in the two datasets used here to illustrate LC analyses, all patients have 
either received a PCI cardiovascular procedure (with treatments “usual care alone” or “usual care 
augmented with a blood thinner”) or else took one of two hypothetical statins.  Finally, the 
treatment indicator is assumed here to be a single, binary variable with the two treatments coded 
as 0 and 1, and at least one numerical, baseline patient X-characteristic (measure of disease 
severity or patient frailty) is contained in the dataset to at least partially reveal the potential 
extent of treatment imbalance (selection bias) and/or confounding. 
 
The fundamental LC analysis strategy is to make treatment comparisons only within X-space 
clusters of relatively well-matched patients. The primary LC “sensitivity analysis” tactic 
implemented in the LC macros is to steadily increase the number of clusters, thereby forcing 
clusters to become small, compact and numerous.  In this process, some clusters may ultimately 
become “pure” and “uninformative” in the sense that they contain only treatment = 1 patients or 
only treatment = 0 patients.  An objective in LC analysis is thus to reach a compromise where 
not only [1] all clusters are small enough that the patients within each cluster can be considered 
well-matched in X-space but also [2] most clusters are large enough that a high percentage of 
patients (say, 95% or 90%) are in informative clusters (i.e. clusters that contain at least one 
treatment = 1 patient as well as at least one treatment = 0 patient.)  A useful upper bound on the 
total number of clusters considered is that the overall average number of patients per cluster 
should be at least 10 to 12.  For example, no more than about 900 clusters should be formed 
given data on 10,000 patients.  
 
The statistic used for making within cluster treatment comparisons is the Local Treatment 
Difference in Y-outcomes: 

: Treatment ControlLTD Y Y . 
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It is intuitively clear from first principles that the LTD, being a simple difference in mean 
values within a cluster, is unbiased even when the number of treatment = 1 patients within a 
cluster is different from the number of treatment = 0 patients.  In fact, it is easily shown that the 
LTD statistic is a local Inverse Probability Weighted (IPW) estimate, where the probabilities 
are the observed local propensities to receive treatment or control, respectively; see Robins, 
Hernan and Brumback (2000) or Lunceford and Davidian (2004) for IPW concepts and 
Rosenbaum and Rubin (1983, 1984) for propensity scoring fundamentals.  Finally, the LTD 
statistic is also identical to the local “doubly robust” estimate, Bang and Robins (2005), for a 
simple Nested ANOVA model (treatment within cluster.) 

For users wishing to learn much more LC, the primary published reference is “The Local Control 
Approach using JMP” …which is Chapter 7 of the SAS Press book: Analysis of Observational 
Health Care Data Using SAS,  Faries, Leon, Haro and Obenchain, eds. (2010.)  While the SAS 
macros described here have similar basic functionality as my JMP scripts, the macros tend to be 
not only less intuitive and easy-to-use but also produce visualizations will less immediate impact. 

Overall LC analysis strategy is divided into four tactical phases. 

Phase One: Explore 
Use the LC_NCreq macro procedure to request a large number of non-hierarchical clusters or, 
alternatively, use the LC_Cluster, LC_LTDdist and LC_UnBias macro procedures to 
systematically increase the number of clusters within a given hierarchy.  Note how the mean of 
the LTD distribution changes as the number of clusters is increased when treatment selection 
bias and/or confounding are/is present. 

Phase Two: Confirm 
Use the LC_Salient macro to confirm that a potential (candidate) clustering of patients on their 
baseline X-characteristics makes a “real” (clearly visible) difference in the observed LTD 
distribution when compared with the “artificial” LTD distribution resulting from purely random 
patient clustering. 

Phase Three: Agonize 
Use the LC macros to perform “systematic sensitivity analyses” and to identify LTD 
distributions that are most typical and stable   Literally redo Phase One and Two analyses in 
several alternative ways …say, using only subsets of the available patient baseline X-
characteristics and/or different analysis options for SAS proc CLUSTER ( §3.07) and proc 
STANDARDIZE (§3.08.) 

Phase Four: Realize 
Use the SAS Stat procedures of your choice to (try to) predict patient-level LTD estimates from 
their baseline X-characteristics.  This activity is postponed until last because it is frequently quite 
frustrating …due to absence of law-like relationships between patient outcomes and their 
observed X-characteristics.  In fact, it’s actually “OK” if this final phase of analysis essentially 
fails (e.g. yields low model R-squares.)  After all, the observed LTD distribution has already 
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been shown to be “salient” …i.e. it has been meaningfully adjusted for treatment selection bias 
and confounding. 

 

2. Local Control (LC) Macro Procedures 
 

Five macro procedures are documented here for performing Local Control analyses. 
 
Phase One LC tactics are usually implemented via: 
 

[1a] a single invocation of macro procedure “LC_Cluster” to construct the dendrogram 
“tree” for a hierarchical clustering of all patients in X-space, followed by 
 
[1b] multiple invocations of macro procedure “LC_LTDdist” for a single Y-outcome 
variable named by “LC_Yvar” with ever increasing values for “NCreq” = number of 
clusters requested, and ending with 
 
[1c] a single invocation of macro procedure “LC_UBtrace,” which sorts the LC summary 
dataset named by the “LC_UnBias” macro variable (on variable _FREQ_ = NCreq) and 
then both plots and tabulates these LC summary statistics in a PDF output file.  

 
Unfortunately, this default approach to LC Phase One does not scale up well to very large 
numbers of patients …say, when there are more than 100,000 subjects embedded in a Euclidean 
X-space of more than a single dimension.  However, an alternative LC Phase One computing 
strategy using SAS procedure FASTCLUS (method = K-means, non-hierarchical) may still be 
practical when the observed patient X-vectors contain many exact matches to only a limited 
number of distinct patterns. 
 
For example, the “statin1m” dataset distributed with the LC macros contains one million 
patients, but all 7 patient X-characteristics are binary.  Thus there cannot be more than 2^7 = 128 
possible X-patterns!  In fact, only 96 different X-patterns are actually expressed in these data, 
and 94 of these 96 X-space clusters turn out to be informative about LTDs. 
 
This alternative, non-hierarchical approach also provides a strategy for implementing an 
“approximate” LC analysis with a very large dataset (more than 100,000 patients) containing 
continuous X-variable(s), which are unlikely to provide “exact” matches among patients.  A 
preliminary step is then needed in which the user must recode all continuous X-variables into a 
small number of levels (say, 5 levels.)  These recoded X-variables are then used instead of the 
original, continuous X-variables in LC analyzes as follows: 
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[1’] Invoke the alternative LC Phase One macro procedure “LC_NCreq” using a 
numerical value for “NCreq” = (number of clusters requested) that is large enough that 
all clusters will contain only exact matches on recoded Xs.  In fact, you can specify a 
value of “NCreq” that is much too large because macro procedure “LC_NCreq” will 
automatically reset the numerical value of “NCreq” to the number of distinct clusters 
actually found.  Because the LC Phase One summary dataset (named as specified by the 
“LC_UnBias” macro variable) will contain only a single row in this case, plotting this 
single “point” with macro procedure “LC_UBtrace” is unlikely to be worthwhile.  
 

Finally, macro procedure “LC_Salient” implements LC Phase Two Tactics: 
 

[2] Generate the random, “artificial” LTD (or aLTD) distribution that corresponds to an 
observed LTD distribution with a previously specified value of “NCreq” = (number of 
clusters requested), and output a PDF that compares the aLTD and observed LTD 
distributions using both histograms and also overlaid empirical Cumulative Distribution 
Functions (eCDFs.)  When these two distributions are clearly different, the observed LTD 
distribution is said to be “salient” (meaningfully different from random.)  

WARNING: Creation of the overlaid eCDF graph requires SAS version 9.2.  The output 
PDF file will contain only histograms for the observed LTD and aLTD distributions (and 
the log file will contain an ERROR message) when the “LC_aLTDdist” macro procedure is 
run under SAS 9.1. 

 

3. Local Control Macro Variables 
 

All nineteen of the SAS macro variables that may be needed to specify LC analyzes are listed 
and explained in this section of the User’s Guide. 

 
3.01  Macro Variable LC_Path 
 

Variable “LC_Path” specifies a SAS libname for the location where the input dataset is 
stored. 
 
Example:                              LC_Path = pcidata, 

 
In SAS for Unix, the corresponding libname statement could be something like: 
 
    LIBNAME pcidata "/omop_home/bobenchain/dev"; 
 
In SAS for Windows, that libname statement could be simply: 
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    LIBNAME pcidata "D:\data"; 
 

 
3.02  Macro Variable LC_YTXdata 
 

Variable “LC_YTXdata” specifies the name of the SAS dataset that contains the Y-
outcome variable(s), the T-treatment binary (0-1) indicator, and the patient baseline X-
characteristic variables (as columns) and patients as observations (rows.) 
 
Example:                              LC_YTXdata = pci15k, 

 
Note that the SAS dataset filename extension [.sas7bdat] is not specified when the 
“LC_YTXdata” macro variable is created and/or reset to a new value. 
 
In a UNIX environment, all SAS datasets are stored with filenames that contain only 
digits and lower case letters.  Thus any upper case letters used to define the contents of 
the “LC_YTXdata” macro variable are ignored within the UNIX environment. 

 
 
3.03  Macro Variable LC_Yvar 
 

Variable “LC_Yvar” specifies the SAS variable name of the Y-outcome variable.  This 
name must correspond to an existing variable within the SAS dataset named by the 
“LC_YTXdata” macro variable.  
 

Example:               LC_Yvar = mort6mo, 
 
 

 
3.04  Macro Variable LC_T01var 
 

Variable “LC_T01var” specifies the SAS variable name of the T-treatment binary 
indicator.  This name must correspond to an existing variable within the SAS dataset 
named by the “LC_YTXdata” macro variable. 
 

Example:               LC_T01var = trtm, 
 
Note that level 1 usually denotes the new “treatment” while level 0 denotes the standard 
treatment or “control.”  In all cases, Local Treatment Differences (LTDs) are always 
computed as [mean Y-outcome for patients receiving treatment type 1] minus [mean Y-
outcome for patients receiving treatment type 0.]  
 

 
3.05  Macro Variable LC_Xvars 
 

Variable “LC_Xvars” specifies the SAS variable names of the patient baseline X-
characteristic variables.  These names must correspond to existing variables within the 
SAS dataset named by the “LC_YTXdata” macro variable. 
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Example:      LC_Xvars = stent height female diabetic 
                              acutemi ejfract ves1proc, 
 
The SAS X-variables may be of mixed types.  In the above example, variables stent, 
female, diabetic and acutemi are binary (1 => yes, 0 => no); variables height and ejfract 
are continuous; and variable ves1proc (number of vessels involved in the patient’s first 
PCI) is probably best viewed as being ordinal with 6 levels (0 to 5.)  However, when the 
default patient dissimilarity metric of Euclidean distance is used, the ves1proc variable 
would be interpreted as being a continuous (interval) measure. 
 
 

3.06  Macro Variable LC_PatID 
 

Variable “LC_PatID” specifies the SAS variable name of the Patient Identification 
variable that will be created or overwritten by macro LC_Cluster.  This “new” ID 
variable simply numbers patients sequentially. This macro variable only needs to be set 
when using hierarchical clustering in LC (i.e. when invoking macro procedures 
“LC_Cluster” and “LC_LTDdist”.) 

 

Example:               LC_PatID = sequen_id, 
 
 
3.07  Macro Variable LC_ClusMeth 
 

Variable “LC_ClusMeth” must specify a valid METHOD= argument for SAS proc 
CLUSTER.  This macro variable needs to be set only when using hierarchical 
clustering in LC (i.e. when using macro procedures “LC_Cluster”, “LC_LTDdist” and 
“LC_UBtrace”.) 
 

Example:               LC_ClusMeth = ward, 
 
The default method is WARD; viable alternatives include AVERAGE (AVE), 
CENTROID (CEN), COMPLETE (COM), FLEXIBLE with BETA=0.25 (FLE), 
MCQUITTY (MCQ) and MEDIAN (MED).  The SINGLE linkage method is not 
recommended for use in LC analysis, while the DENSITY, EML and TWOSTAGE 
clustering methods tend to be too slow for use in LC.  None of these hierarchical methods 
scale up well to very large numbers of patients (more than, say, 100,000). 
 
SAS proc FASTCLUS performs “K-means” clustering (non-hierarchical) and can work 
well with very large numbers of patients IFF the number of clusters requested is large 
enough (and the X-values are “coarse” enough) to identify exact X-matches. 
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3.08  Macro Variable LC_Stand 
 

Variable “LC_Stand” must specify a valid METHOD= argument for SAS proc STDIZE. 
This macro variable needs to be set only when using hierarchical clustering in LC (i.e. 
when using macro procedures “LC_Cluster”, “LC_LTDdist” and “LC_UBtrace”.) 
 

Example:              LC_Stand = STD, 
 
The default option here is STD, which causes all X-variables to be translated to have 
mean zero and rescaled to have variance one.  Alternative values useful in LC analyses 
include RANGE, MIDRANGE, MAXABS, IQR and MAD. 
 

 
3.09  Macro Variable LC_Tree 
 

Variable “LC_Tree” specifies the filename for the SAS permanent dataset describing the 
hierarchical “tree” structure that is output by proc CLUSTER. This macro variable needs 
to be set only when using hierarchical clustering in LC (i.e. when using macro 
procedures “LC_Cluster”, “LC_LTDdist” and “LC_UBtrace”.) 
 

Example:           LC_Tree = pcim15dendog, 
 
 

3.10  Macro Variable LC_LTDtable 
 

Variable “LC_LTDtable” specifies the filename for the SAS dataset containing summary 
statistics for each of the “NCreq” clusters created by invoking macro procedure 
“LC_LTDdist.” 
 

Example:   LC_LTDtable = pcim15tab12h, 
 
 

3.11  Macro Variable LC_LTDoutput 
 

Variable “LC_LTDoutput” specifies the filename for the (very large) SAS dataset 
resulting from merging relevant columns of the “LC_YTXdata” dataset with the 
“LC_LTDtable” dataset created by macro procedure “LC_LTDdist” …after both datasets 
have been sorted by cluster number.   
 

Example:   LC_LTDoutput = pcim15out12h, 
 
 
 
3.12  Macro Variable LC_UnBias 
 

Variable “LC_Unbias” specifies the filename of the SAS output dataset (containing 
summary statistics averaged across clusters) that is either created by (and later augmented 



SAS Macros for Local Control  Page 9 
 

by) calls to macro procedure “LC_LTDdist” (hierarchical case) or else created by macro 
procedure “LC_NCreq” (non-hierarchical case.) 
 

Example:               LC_UnBias = pcim15ubtr, 
 

3.13  Macro Variable LC_swidth 
 

Variable “LC_swidth” specifies the half-width (in “ltdsehom” units) for the confidence 
band around the TRACE display of “ltdavg” versus the logarithm of the number of 
clusters requested (NCreq.) 
 

Example:                  LC_swidth = 2.0, 
 

3.14  Macro Variable LC_pdftrace 
 

Variable “LC_pdftrace” specifies a quoted string specifying the Path, Filename, and 
“.pdf” extension for the output file created by invoking macro procedure “LC_UBtrace.” 
 
Example:   LC_pdftrace = "/omop_home/bobenchain/dev/pcimtrace.pdf", 
 
In SAS for Windows, the above example string could be: 
 
          LC_pdftrace = "D:\data\pcimtrace.pdf", 
 

 
3.15  Macro Variable LC_aLTDreps 
 

Variable “LC_aLTDreps” specifies the number of replications to be used to simulate the 
“artificial LTD distribution.”  In each such replication, all patients are assigned randomly 
to one of a fixed set of mutually exclusive and exhaustive clusters. 
 

Example:               LC_aLTDreps = 25, 
 
 
3.16  Macro Variable LC_seed 
 

Variable “LC_seed” specifies a numerical “initial seed” value for the SAS pseudo-
random number generator. 
 

Example:               LC_seed = 1234567, 
 
To reproduce the output from an earlier invocation of “LC_Salient”, it is essential to use 
the very same (positive) initial seed value.  To augment the output from an earlier 
invocation of “LC_Salient” (essentially performing “LC_aLTDreps” additional, 
independent replications), it is essential to use a different initial seed value.  A simple 
way to assure this is to specify a negative value for “LC_Seed” because this signals the 
SAS pseudo-random number generator to use a random (positive) initial seed value. 
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3.17  Macro Variable NCinform 
 

Variable “NCinform” contains the user specified value for “number of informative 
clusters” that result when “NCreq” clusters are requested.  This value is an input for 
macro procedure “LC_Salient” so that it can be displayed in the subtitle below the 
graphical display where the Observed LTD distribution and its corresponding aLTD 
distribution are to be visually compared.  The appropriate pairings of values for “NCreq” 
and “NCinform” are displayed in the LC Phase One output from macro procedure 
“LC_UBtrace.”  These pairings are also recorded in the SAS output dataset written by 
multiple invocations of macro procedure “LC_LTDdist”.  The name of this dataset is 
contained in the “LC_UnBias” macro variable; the corresponding variable names there 
are “_FREQ_” and “siclust”. 
 

Example:              NCinform = 1112, 
 
 
3.18  Macro Variable LC_aLTDdist 
 

Variable “LC_aLTDdist” specifies the name of the SAS dataset output by macro 
procedure “LC_Salient”. 
 

Example:            LC_aLTDdist = pcim15altd, 
 

3.19  Macro Variable LC_pdfaltdd 
 

Variable “LC_pdfaltdd” specifies a quoted string specifying the Path, Filename, and 
“.pdf” extension for the output file created by invoking macro procedure “LC_Salient.” 
 

Example:   LC_pdfaltdd = "/omop_home/bobenchain/dev/pcimaltdd.pdf", 
 
In SAS for Windows, the above example string could be: 
 
          LC_pdfaltdd = "D:\data\pcimaltdd.pdf", 

 
 
 
4. Local Control Output Datasets 

 
This section describes the permanent SAS datasets created by the LC macro procedures and 
defines the names and contents of the variables in those datasets. 
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4.01  LC Output Dataset with name specified by the “LC_Tree” Macro Variable 
 
This is a highly specialized permanent dataset output by SAS proc CLUSTER that describes the 
full hierarchical clustering tree (dendrogram) using the “LC_Xvars” variables for all patients in 
the “LC_YTXdata” dataset.  Invocations of macro procedure “LC_LTDdist” need this dataset to 
call SAS proc TREE to create the dataset that assigns individual patients to “NCreq” mutually 
exclusive and exhaustive clusters in X-space.  

4.02  LC Output Dataset with name specified by the “LC_UnBias” Macro Variable 
 
 This dataset contains LC summary statistics that are generated by multiple calls to the 
“LC_LTDdist” macro with the same values for the “LC_Yvar” and “LC_T01var” macro 
variables. 
 

 If a dataset with the name specified by the “LC_UnBias” macro variable does not exist 
when macro LC_LTDdist is invoked, a dataset with one observation (row) is created. 

 If the dataset named by the “LC_UnBias” macro does exist when macro LC_LTDdist is 
invoked, one observation (row) is appended to that existing dataset. 

 To start over accumulating summary statistics via invocations of the “LC_LTDdist” 
macro procedure, the user must first delete (or rename) the summary dataset named by 
the “LC_UnBias” macro variable.   

While this dataset contains a total of 18 variables (columns), the 5 most important (key) variables 
are as follows: 

_FREQ_ = The Number of Clusters Requested (NCreq value) used to generate the 
current row of summary statistics. 

siclust = number of Informative Clusters when “NCreq” clusters are requested. 

sicpats = total number of patients within all resulting, informative clusters. 

ltdavg = overall patient-weighted mean of the LTD distribution (treatment main-effect 
estimate.) 

ltdsehom = estimated standard error of ltdavg when variances are assumed to be 
homogeneous across both treatments and clusters. 

The 13 additional (secondary) variables contained in the dataset named by the “LC_UnBias” 
macro are: 

_TYPE_ = always set to 0 

svrhom = sum of variance estimator numerator terms assuming homoscedasticity. 
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svrden = sum of variance estimator denominator terms …sum of (n0 + n1). 

late = overall average Local Average Treatment Effect.  (Note that his summary statistic 
does not vary when NCreq changes; all clusters are informative about local late 
effects.) 

sn0 = overall number of patients taking trtm = 0.  (Also does not vary with NCreq.) 

sis0 = number of clusters that are informative about variability in outcome when taking 
trtm = 0 (i.e. number of clusters containing at least 2 trtm = 0 patients.) 

ssos0 = sum of within cluster adjusted sum-of-squares for trtm = 0 outcomes. 

sn1 = overall number of patients taking trtm = 1.  (Also does not vary with NCreq.) 

sis1 = number of clusters that are informative about variability in outcome when taking 
trtm = 1 (i.e. number of clusters containing at least 2 trtm = 1 patients.) 

ssos1 = sum of within cluster adjusted sum-of-squares for trtm = 1 outcomes. 

sigma = overall estimate of the standard deviation in observed outcomes when variances 
are assumed to be homogeneous across both treatments and clusters. 

sigma0 = estimated standard deviation in trtm = 0 observed outcomes when variances are 
assumed to be homogeneous across clusters. 

sigma1 = estimated standard deviation in trtm = 1 observed outcomes when variances are 
assumed to be homogeneous across clusters. 

 
4.03  LC Output Dataset with name specified by the “LC_LTDtable” Macro Variable 
 
While this dataset also contains a total of 18 variables (columns), the 4 most important (key) 
variables are as follows: 

CLUSTER = cluster number between 1 and the value of “NCreq” specified when macro 
procedure “LC_LTDdist” was invoked. 

ltd = Local Treatment Difference (difference in within-cluster outcomes, trtm = 1 minus 
trtm = 0) for a cluster. 

1 0LTD: y y
 

late = Local Average Treatment Effect (average within-cluster outcome disregarding 
treatment choice) within a cluster. 
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ltdvrhom = estimated variance of the ltd when variances are assumed to be 
homogeneous across both treatments and clusters. 

ltdsehet = estimated standard error of the ltd when variances are assumed to be 
homogeneous across clusters but different for the two treatment cohorts. 

The 14 additional (secondary) variables contained in the dataset named by the “LC_LTDtable” 
macro variable are: 

n1 = number of trtm = 1 patients contained in cluster. 

ybar1 = average Y-outcome for trtm = 1 patients within cluster. 

var1 = variance of the Y-outcomes of trtm = 1 patients within cluster. 

vbar1 = variance of ybar1 for the trtm = 1 patients within cluster. 

n0 = number of trtm = 0 patients contained in cluster. 

ybar0 = average Y-outcome for trtm = 0 patients within cluster. 

var0 = variance of the Y-outcomes of trtm = 0 patients within cluster. 

vbar0 = variance of ybar0 for the trtm = 0 patients within cluster. 

sos0 = adjusted sum-of-squares for the Y-outcomes of trtm = 0 patients within cluster. 

is0 = 0-1 flag indicating whether this cluster is informative about Y-outcome variability 
for trtm = 0 within the cluster (i.e. n0 > 1.) 

sos1= adjusted sum-of-squares for the Y-outcomes of trtm = 1 patients within cluster. 

is1 = 0-1 flag indicating whether this cluster is informative about Y-outcome variability 
for trtm = 1 within the cluster (i.e. n1 > 1.) 

iclust = 0-1 flag indicating whether this cluster is informative about the ltd (i.e. n1 > 0 
and n0 > 0.) 

ltdvrden = ltd variance denominator assuming homoscedasticity = n1 + n0. 
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4.04  LC Output Dataset with name specified by the “LC_aLTDdist” Macro Variable 
 

This SAS dataset contains the sample LTD outcomes that characterize the full “artificial” LTD 
distribution simulated by macro procedure “LC_Salient”.  This dataset will always contain two 
variables (named “ltd” and “freq”) and the number of observations (rows) will equal 
“LC_aLTDreps” times “NCinform” = Number of Informative Clusters when “NCreq” clusters 
are requested.  (Variable “siclust” in the SAS dataset named in the “LC_UnBias” macro, 
described in Section §4.02, also contains the NCinform values corresponding to all values of 
_FREQ_ = NCreq.) 

 

5. Example Use of LC macros for Hierarchical Clustering 

Example dataset “pci15k.sas7bdat” contains simulated data for 15,487 patients who underwent a 
PCI cardiovascular procedure and were treated with either “usual care alone” (trtm = 0) or else 
with “usual care augmented with a hypothetical blood thinner” (trtm = 1).  This “benchmark” 
pseudo-dataset may be freely distributed for use in research and training on methods of analysis 
of observational data. 

The ten variables contained in this dataset consist of two Y-outcome variables, a treatment 
indicator variable and seven patient X-characteristic variables: 

Y1:    mort6mo =  Binary 6-month mortality indicator. 

Y2:    cardcost =  Cumulative 6-month cardiac related charges. 

T:       trtm = Binary indicator (1 => treated, 0 => control). 

X1:    stent = Binary indicator (1 => coronary stent deployment, 0 => no) 

X2:    height = Patient height rounded to the nearest centimeter. 

X3:    female = Binary sex indicator (1 => yes, 0 => male.) 

X4:    diabetic = Binary indicator (1 => diabetes mellitus, 0 => no.) 

X5:    acutemi = Binary indicator (1 => acute myocardial infarction within the previous 7 
days, 0 => no.) 

X6:    ejecfrac = Left ejection fraction % rounded to integer. 

X7:      ves1proc = Number of vessels involved in initial PCI. 
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Acknowledgement:  This simulation was motivated by the dataset used by Kereiakes et al. 
(2000).  That dataset contained patient registry data and follow-up outcomes for 997 patients 
who received their initial PCI in 1997 or 1998 from an Interventionist associated with the 
Lindner Center in Cincinnati, OH.  I mimicked the observed confounding among the seven 
patient X-characteristic variables and the treatment selection imbalance from that data in this 
simulation.  
 
Table 5.1:  Example Invocation of LC Macros for Hierarchical  Clustering 
 
*********************************************************************************** 
Example Dataset:  15,487 PCI patients with or without a hypothetical blood thinner. 
Local Control Phase One:  Invoke macro "LC_Cluster, then make a sequence of calls 
to "LC_LTDdist” for LC_Yvar = mort6mo and increasing numbers of clusters. 
Finally, finish LC Phase One by invoking macro “LC_UBtrace. 
Local Control Phase Two:  Invoke macro "LC_Salient" for NCreq = 1200. 
***********************************************************************************; 
*** Copyright (c) 2009 Foundation for the National Institutes of Health (FNIH). 
***********************************************************************************; 
 
LIBNAME pcidata  "/omop_home/bobenchain/dev"; 
LIBNAME pdftrace "/omop_home/bobenchain/dev/pcimtrace.pdf"; 
LIBNAME pdfaltdd "/omop_home/bobenchain/dev/pcimaltdd.pdf"; 
OPTIONS sasautos = ("/omop_home/bobenchain/dev/SAS" sasautos) mautosource; 
 
*** Local Control Phase One (EXPLORE) **********; 
 
%LC_Cluster(LC_Path = pcidata, LC_YTXdata = pci15k, LC_Tree = pcitree, 
          LC_ClusMeth = ward, LC_Stand = STD, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id) 
 
%LC_LTDdist(NCreq = 1, LC_LTDtable = pcimtab3h, LC_LTDoutput = pcimout3h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
*** Overwrite pcimtab3h and pcimout3h datasets until NCreq reaches 300 *****; 
 
%LC_LTDdist(NCreq = 10, LC_LTDtable = pcimtab3h, LC_LTDoutput = pcimout3h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
%LC_LTDdist(NCreq = 50, LC_LTDtable = pcimtab3h, LC_LTDoutput = pcimout3h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
%LC_LTDdist(NCreq = 100, LC_LTDtable = pcimtab3h, LC_LTDoutput = pcimout3h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
%LC_LTDdist(NCreq = 300, LC_LTDtable = pcimtab3h, LC_LTDoutput = pcimout3h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
%LC_LTDdist(NCreq = 600, LC_LTDtable = pcimtab6h, LC_LTDoutput = pcimout6h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 



SAS Macros for Local Control  Page 16 
 

          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
%LC_LTDdist(NCreq = 900, LC_LTDtable = pcimtab9h, LC_LTDoutput = pcimout9h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
%LC_LTDdist(NCreq = 1200, LC_LTDtable = pcimtab12h, LC_LTDoutput = pcimout12h, 
          LC_Path = pcidata, LC_Tree = pcitree, LC_YTXdata = pci15k, 
          LC_Yvar = mort6mo, LC_T01var = trtm, LC_Xvars = stent height female diabetic 
          acutemi ejfract ves1proc, LC_PatID = sequen_id, LC_UnBias = pcimubtr) 
 
%LC_UBtrace(LC_Path = pcidata, LC_UnBias = pcimubtr, LC_swidth = 2.0, 
          LC_pdftrace = “/omop_home/bobenchain/dev/pdftrace.pdf”) 
 
*** Local Control Phase Two (CONFIRM) **********; 
 
%LC_Salient(LC_Path = pcidata, LC_LTDoutput = pcimout12h, LC_Yvar = mort6mo, 
          LC_T01var = trtm, LC_aLTDreps = 25, LC_seed = 1234567, 
          LC_aLTDdist = pcimaltd12h, NCinform = 1112, 
          LC_pdftrace = “/omop_home/bobenchain/dev/pdfaltdd.pdf”) 
 
********************* END *********************************************************; 

The PDF output files generated by the above invocations of LC macro procedures 
“LC_UBtrace” and “LC_Salient” when “NCreq” = 1200 for outcome “LC_Yvar” = 
mort6mo are collected together at the end of this User Guide.  The corresponding outputs 
for outcome “LC_Yvar” = cardcost are also collected there for completeness. 

A summary of the findings from these analyzes is as follows: 

When problems with treatment cohort imbalance and X-covariate confounding within this 
dataset are ignored, the rate of mortality within 6 months for patients receiving trtm = 1 
(hypothetical blood thinner) is 2.5% lower than that for patients receiving trtm = 0 (usual care 
alone.)  On the other hand, the accumulated cardiac related costs within 6 months appear to be 
more than $500 higher for trtm = 1 than for trtm = 0. 

After LC adjustment for treatment cohort imbalance and X-covariate confounding, the 6 month 
mortality rate for trtm = 1 (hypothetical blood thinner) is seen to actually be 3.9% to 4.1% lower 
than that of trtm = 0 (usual care alone.)  Furthermore, the accumulated cardiac related costs 
within 6 months are actually $60 to $150 lower for trtm = 1 than for trtm = 0.  In other words, 
LC adjustment for treatment cohort imbalance and X-covariate confounding consistently yields 
outcome comparisons that are more favorable to trtm = 1 than before adjustment.  

 The observed LTD distributions for “NCreq” = 1200 are also clearly salient.  In other words, 
making comparisons only within clusters of patients who are relatively well-matched on seven 
baseline X-covariates (stent, height, female, diabetic, acutemi, ejfract and ves1proc) has been 
shown to be “meaningful”; the comparisons resulting from this clustering are clearly different 
(less biased) from those resulting from random clusterings. 
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Notes:  There is no need to invoke “LC_Cluster” a second time to analyze a second Y-outcome 
(cardcost) associated with the same baseline X-covariates on the same patients as the first Y-
outcome (mort6mo.)  One simply makes multiple invocations of macro procedure 
“LC_LTDdist” with the new value of “LC_Yvar” and increasing values of “NCreq”.  Unless 
there are missing values in the two Y-outcome variables, the same numbers of informative 
clusters will result.  Upon invoking macro procedure “LC_UBtrace”, the new PDF output may 
show (as here) that the Unbiasing Trace has different “volatility” for intermediate values of 
“NCreq”, but the trace should still ultimately “stabilize” at roughly the same (larger) values of 
“NCreq” as before. 

Table 5.2  Comparison of eCDFs by Importing SAS Output into JMP. 

Obs. LTD and aLTD distributions of mort6mo 

 

The Observed LTD distribution for 
mort6mo has a slightly thinner upper 
(right-hand) tail of outcomes 
unfavorable to trtm = 1 than does the 
artificial LTD distribution.  The 
Observed LTD distribution also has a 
(mostly) thicker lower (left-hand) tail of 
outcomes favorable to trtm = 1 than 
does the artificial LTD distribution.  
The only exception here is the small 
area of negative LTDs before the two 
eCDFs cross again at LTD = 0.083.  In 
both distributions, the probability of an 
exactly zero LTD is quite large, at least 
0.65.   

 
Obs. LTD and aLTD distributions of cardcost

 
 
While the Observed LTD distribution 
for cardcost has a smaller mean value 
than does the artificial LTD 
distribution, that relationship is difficult 
to “see” in the eCDFs at left. 
 
What is quite easy to see here is that the 
Observed LTD distribution of cardcost 
has much lower variance than does the 
artificial LTD distribution.   
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WARNING:  On different computing platforms, SAS proc CLUSTER may give different 
clusters …i.e. clusters of different sizes, patient constitution or treatment fractions.  For 
example, when NCreq = 1200 for the above pci15k dataset, SAS 9.1 for Unix produces 1112 
informative clusters, while SAS 9.1 for Windows produces only 1106. 

6.     Example of Use of the LC_NCreq macro for non-hierarchical Clustering 
 
The simulated dataset “statin1m.sas7bdat” contains 1 million patients supposedly taking one of 
two hypothetical statins.  This “benchmark” pseudo-dataset may be freely distributed for use in 
research and training on methods of analysis of observational data. 
 
The LC Phase One macros that perform conventional hierarchical clustering with SAS proc 
CLUSTER (e.g. Ward's method) have no hope of scaling up to a dataset with this many patients.  
On the other hand, this dataset consisting of only binary (0-1) variables is ideal for use of SAS 
proc FASTCLUS as long as the number of clusters requested is large enough.  Because all 7 of 
the patient X-characteristics in this dataset are binary, at most 2^7 = 128 X-space clusters are 
possible.  Requesting this many clusters assures that each non-empty cluster will contain only 
exact X-matches! 
 
Dataset Location:  /omop_home/bobenchain/dev/statin1m.sas7bdat 

Role 
Played by 
Variable 

 

Name  of 
Variable  

 
Definition of Variable 

Y-outcome: CVE = Cardiovascular Event (0=No, 1=Yes) after starting on a Statin. 
 

Treatment 
Indicator: 

 
TRTM      where  

 
0 => Newer Statin (~210K patients), 
1 => Established Statin (~790K patients) 

 
X1: 

 
AGE60 = Age at least 60 years, where 0 => No and 1 => Yes 

X2: FEMALE, where 0 => No and 1 => Yes 
X3: HYPN  = Hypertension, where 0 => No and 1 => Yes 
X4: DIAB = Diabetes, where 0 => No, 1 => Yes 
X5: APLAT = on an Antiplatlet drug, where 0 => No and 1 => Yes 
X6: CVPR = Prior CVE (before statin), where 0 => No and 1 => Yes 
X7: MIPR = Prior Miocardial Infarction, where 0 => No, 1 => Yes (and CVPR = 1.) 

 
Note:  The statin1m dataset actually contains only 96 non-empty clusters because MIPR = 1 is 
only possible when CVPR = 1.  Furthermore, 94 of these 96 clusters is “informative” about a 
Local Treatment Difference (LTD) in the sense that each contains at least one patient taking 
TRTM = 1 as well as at least one patient taking TRTM = 0. 
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Acknowledgement:  This simulation was motivated by the dataset used by Michael Gaffney and 
Jack Mardekian of Pfizer in their talk “Propensity Scores in Observational Studies,” given at the 
Joint Statistical Meetings in Washington, DC, on August 2, 2009.  Their dataset contained 
retrospective data on 83 thousand patients, and I mimicked the observed confounding among the 
seven patient X-characteristic variables and the treatment selection imbalance from that data in 
this simulation.  
 
Table 6.1:  Example Invocation of the LC Macros in a UNIX Environment 
 
*********************************************************************************** 
Local Control Phase One:  Invoke macro "LC_NCreq" for non-hierarchical clustering. 
Local Control Phase Two:  Invoke macro "LC_Salient" 
***********************************************************************************; 
*** Copyright (c) 2009 Foundation for the National Institutes of Health (FNIH). 
***********************************************************************************; 
 
LIBNAME st1mdata "/omop_home/bobenchain/dev"; 
OPTIONS sasautos = ("/omop_home/bobenchain/dev/SAS" sasautos) mautosource; 
 
%LC_NCreq(LC_Path = st1mdata, LC_YTXdata = statin1m, LC_LTDoutput = st1mout, 
          LC_T01var = TRTM, LC_Yvar = CVE, LC_Xvars = AGE60 FEMALE HYPN DIAB APLAT 
          CVPR MIPR, LC_LTDtable = st1mtab, LC_Unbias = st1mubtr, NCreq = 128) 
 
proc print data = st1mdata.st1mubtr; 
  title "LC Summary Statistics"; 
run; 
 
%LC_Salient(LC_Path = st1mdata, LC_LTDoutput = st1mout, LC_T01var = TRTM, 
          LC_Yvar = CVE, LC_aLTDreps = 5, LC_seed = 33, LC_aLTDdist = st1maltd94, 
          NCinform = 94, LC_pdfaltdd = "/omop_home/bobenchain/dev/st1maltdd.pdf") 
 
********************* END *********************************************************; 

Table 6.2  Comparison of eCDFs by Importing SAS Output into JMP. 

It is easy to see here that LC 
adjustment for treatment 
cohort imbalance and X-
covariate confounding  has 
essentially shifted the 
Observed LTD distribution 
of CVE to the right relative 
to the (unadjusted) artificial 
LTD distribution.  This shift 
makes it rather clear that 
there are no meaningful 
differences in 
cardiovascular (adverse) 
event rates between these 
two hypothetical statins.   
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7.   Summary: Advantages of Local Control over Traditional Modeling 

 
The Local Control (LC) approach follows Arnold Zellner’s (1991) “KISS” principle: 

 

Keep It Sophisticatedly Simple. 
 

7.1  The LC approach is not esoteric or mysterious; it is easy to explain and illustrate 
(graphically) to nontechnical audiences. 

 
The overall LC strategy is to use well-established clustering methodologies to identify 
subgroups of patients who are relatively well matched on their baseline x-characteristics 
and to make treatment y-outcome comparisons only “within” these clusters. In the limit 
as clusters become small, compact and numerous, the “LC Trace” display shows (rather 
dramatically) that treatment comparisons thereby become less biased and more and more 
“fair” (objective, scientific.) 

 
 
7.2  The LC approach reveals and quantifies the full distribution of patient differential 
response to treatment. 
 

Estimation of only treatment “main effects” is a woefully inadequate strategy when so 
much more information is badly needed for comparative effectiveness analyses, targeted 
therapeutics, and practice of evidence based medicine.  Almost no patients are “average” 
in all senses relevant to their health.  Health care providers must start asking themselves: 
“Which treatment is better for THIS patient?”  See Kent and Hayward (2007a, 2007b.) 
Fortunately, LC strategy provides some new “steps” in this important “direction!” 
 
The LTD distribution of outcome differences due to treatment can be used and 
interpreted much like a Bayesian posterior distribution. 

 
 
7.3  LC results are demonstrably more robust than those from traditional global, over-
smooth parametric models. 
 

An observed LTD distribution resulting from small, compact, and numerous clusters is 
comprised of many, many estimates from a simple Nested ANOVA model (treatment 
within cluster.)  This statistical model makes so few assumptions, all of which are 
frequently reasonable or even realistic, that an LC analysis essentially ends up being non-
parametric. 
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Oscar Kempthorne (197?):  Analysis of Variance (ANOVA) is a Scientific Method; 
Analysis of Covariance (a General Linear Model) is NOT …due to too 
many, too strong assumptions about continuous predictor variables. 

George Box (1979):  All models are WRONG; some (robust models) are USEFUL. 
 
 
7.4 Final Notes 
 
The LC method of adjustment for treatment selection bias (patient channeling) and confounding 
in human health care studies is based upon patient clustering (unsupervised learning.)  This is a 
form of “post hoc blocking” that makes treatment comparisons only among relatively well-
matched patients. 
 
The theoretical basis for LC is that cluster membership is guaranteed to become a “balancing 
score” that is finer (more detailed) than the unknown true propensity score in the limit as clusters 
become small, compact and numerous. 
 
The dual overall strategies of the LC approach are (a) to use systematic sensitivity analyses to 
validate the observed Local (within cluster) Treatment Difference (LTD) distribution and (b) to 
use resampling (simulation) methods to show that this LTD distribution is “salient” (clearly 
different from what results from purely random patient clustering.) 
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9. Appendix: The Patient-Weighted Average LTD and its 
Variance. 

This Appendix will use the following notation: 

ytjk = Observed outcome on treatment t (0 or 1) for the kth patient within cluster j. 

n.j = Total number of patients within cluster  j  =  n1j + n0j . 

j  =  j
th

 Local Treatment Difference (LTD) =   1 0j jy y  

       =  difference in outcome mean values ( t = 1 minus t = 0.) 

(A1)

 

Note that this LTD is not well defined unless n1j and n0j are both at least one.  In this case, the 

jth cluster is said to be informative.  Let the number of informative clusters be denoted by the 

symbol I, while the total number of clusters is denoted by the symbol K (which is  I.) 

This appendix will treat only the case where observed outcomes are assumed to be independent 
and have constant variance (homoscedasticity) within each treatment cohort of patients (t = 1 or t 

= 0.)  These two variances will be denoted here by 1
2 and 0

2, respectively, and are assumed to 
be estimated “locally” …i.e. measuring only variability about local mean outcomes within both 

clusters and treatment cohorts.  In other words, ntj needs to be at least 2 to provide information 

about t
2.  Furthermore, outcome variability information can be provided by clusters un-

informative about LTDs.  As a result, the total number of degrees-of-freedom for estimation of 

1
2 will be at least  n1j   K while the degrees-of-freedom for estimation of 0

2 will be at least 

 n0j   K.  Finally, when 1
2 and 0

2, are assumed to be equal, their estimators can be pooled to 

provide an estimate of the common variance, 2.  This combined estimator would have degrees-

of-freedom equal to ( total number of patients  K  I.) 

Using the above notation, the variance of the jth LTD can be written as: 
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j j
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         …assuming common cohort variances. 
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Since the remainder of our discussion here concerns combining information from only 
informative clusters, the range of the j subscript can be assumed, without loss of generality, to be  
j = 1, 2, …, I. 

The ordinary, unweighted mean if the LTDs is rarely of interest because informative clusters 
can be of very different sizes.  However, we give the following expression for the common 
cohort variances case here, simply for completeness: 

2
1 0

2
1 0

( Unweighted Mean ) j j

j j

n n
V

I n n

  
     

  

If all informative clusters had n1j = n0j = n, the above variance would be 22/(I×n). 

The following weighted, across-cluster mean of the LTDs is the most appropriate LC estimate of 
the “Main Effect of Treatment.”  Again, because informative clusters can be of very 

different sizes, this estimate treats the total number of patients in a cluster, n1j  + n0j , as the 
frequency of the LTD estimate for that cluster in the overall LTD distribution. 

                          1 0 1 0/j j j j jn n n n      . 
(A3)

 

The corresponding variance for the common cohort variances case is then: 
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(A4)

 

Note that, if all informative clusters had n1j = n0j = n, this weighted variance would again 

reduce to 22/(I×n).  However, this case of equal cluster sizes with a fixed 1:1 ratio of t = 1 

and t = 0 patients within each cluster is  highly unlikely to occur in actual practice. 
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Obs NCreq siclust sicpats sicppct ltdavg lolim uplim ltdsehom

1 1 1 15487 100.000 -0.025251 -0.030382 -0.020121 .002565305

2 10 10 15487 100.000 -0.033501 -0.038915 -0.028087 .002707121

3 50 50 15487 100.000 -0.037568 -0.043109 -0.032026 .002770952

4 100 100 15487 100.000 -0.039017 -0.044595 -0.033439 .002788902

5 300 299 15470 99.890 -0.041062 -0.046813 -0.035312 .002875078

6 600 592 15385 99.341 -0.041785 -0.047617 -0.035952 .002916156

7 900 873 15221 98.282 -0.040587 -0.046437 -0.034736 .002925217

8 1200 1112 14857 95.932 -0.039199 -0.045023 -0.033376 .002911735
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The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = aLTD

Moments

N 371425 Sum Weights 371425

Mean -0.0249565 Sum Observations -9269.4573

Std Deviation 0.09830434 Variance 0.00966374

Skewness -1.2616013 Kurtosis 26.4275223

Uncorrected SS 3820.67921 Corrected SS 3589.34626

Coeff Variation -393.90321 Std Error Mean 0.0001613

Basic Statistical Measures

Location Variability

Mean -0.02496 Std Deviation 0.09830

Median 0.00000 Variance 0.00966

Mode 0.00000 Range 2.00000

Interquartile Range 0.04348

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t -154.72 Pr > |t| <.0001

Sign M -37327 Pr >= |M| <.0001

Signed Rank S -2.453E9 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.0000000

99% 0.2424242

95% 0.0769231

90% 0.0000000

75% Q3 0.0000000

50% Median 0.0000000

25% Q1 -0.0434783

10% -0.1250000

5% -0.1666667
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The UNIVARIATE Procedure
Variable:  ltd
Freq:  freq
oa = aLTD

Quantiles (Definition 5)

Quantile Estimate

1% -0.3333333

0% Min -1.0000000

Extreme Observations

Lowest Highest

Value Freq Obs Value Freq Obs

-1 9 42622 1 13 40242

-1 8 42604 1 12 40796

-1 5 42269 1 22 41221

-1 6 41880 1 11 41363

-1 2 41542 1 7 41825
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The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = obsLTD

Moments

N 14857 Sum Weights 14857

Mean -0.0391992 Sum Observations -582.3826

Std Deviation 0.13839181 Variance 0.01915229

Skewness -3.8805967 Kurtosis 21.7494339

Uncorrected SS 307.3554 Corrected SS 284.526464

Coeff Variation -353.04748 Std Error Mean 0.00113539

Basic Statistical Measures

Location Variability

Mean -0.03920 Std Deviation 0.13839

Median 0.00000 Variance 0.01915

Mode 0.00000 Range 1.50000

Interquartile Range 0

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t -34.5249 Pr > |t| <.0001

Sign M -1232.5 Pr >= |M| <.0001

Signed Rank S -3472192 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 0.500000

99% 0.200000

95% 0.062500

90% 0.000000

75% Q3 0.000000

50% Median 0.000000

25% Q1 0.000000

10% -0.142857

5% -0.250000
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The UNIVARIATE Procedure
Variable:  ltd
Freq:  freq

oa = obsLTD

Quantiles (Definition 5)

Quantile Estimate

1% -0.800000

0% Min -1.000000

Extreme Observations

Lowest Highest

Value Freq Obs Value Freq Obs

-1 1 14854 0.5 1 2721

-1 1 14853 0.5 1 2722

-1 1 14852 0.5 1 2723

-1 1 14851 0.5 1 2724

-1 1 14673 0.5 1 2725
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Obs NCreq siclust sicpats sicppct ltdavg lolim uplim ltdsehom

1 10 10 15487 100.000 698.832 352.743 1044.92 173.044

2 50 50 15487 100.000 -5.980 -344.543 332.58 169.281

3 100 100 15487 100.000 -6.671 -337.843 324.50 165.586

4 300 299 15470 99.890 -156.721 -482.334 168.89 162.807

5 600 592 15385 99.341 -149.067 -463.939 165.81 157.436

6 900 873 15221 98.282 -87.108 -401.120 226.90 157.006

7 1200 1112 14857 95.932 -67.474 -381.539 246.59 157.033



Number of Informative Clusters = 1112

Comparison of LTD Distributions 21:39 Monday, February 1, 2010 1

The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = aLTD

Number of Informative Clusters = 1112

Comparison of LTD Distributions 21:39 Monday, February 1, 2010 1

The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = aLTD

Moments

N 371425 Sum Weights 371425

Mean 526.730937 Sum Observations 195641038

Std Deviation 7016.05284 Variance 49224997.4

Skewness 2.90326867 Kurtosis 54.8534706

Uncorrected SS 1.83864E13 Corrected SS 1.82833E13

Coeff Variation 1331.99938 Std Error Mean 11.5121724

Basic Statistical Measures

Location Variability

Mean 526.73 Std Deviation 7016

Median 144.95 Variance 49224997

Mode -9718.19 Range 277360

Interquartile Range 5845

Note: The mode displayed is the smallest of 25 modes with a count of 59.

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t 45.75426 Pr > |t| <.0001

Sign M 5157.5 Pr >= |M| <.0001

Signed Rank S 1.8401E9 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 163424.600

99% 22162.964

95% 9955.339

90% 6753.265

75% Q3 3139.507

50% Median 144.954

25% Q1 -2705.888

10% -5734.612

5% -7936.579
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The UNIVARIATE Procedure
Variable:  ltd
Freq:  freq
oa = aLTD

Quantiles (Definition 5)

Quantile Estimate

1% -15049.049

0% Min -113935.348

Extreme Observations

Lowest Highest

Value Freq Obs Value Freq Obs

-113935.3 2 19302 155872 6 28127

-105643.3 9 41554 160532 7 37222

-102931.4 10 24005 161055 9 38377

-83781.0 4 41414 161864 4 39289

-76888.2 9 28904 163425 11 22703



Number of Informative Clusters = 1112

Comparison of LTD Distributions 21:39 Monday, February 1, 2010 3

The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = obsLTD

Number of Informative Clusters = 1112

Comparison of LTD Distributions 21:39 Monday, February 1, 2010 3

The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = obsLTD

Moments

N 14857 Sum Weights 14857

Mean -67.473793 Sum Observations -1002458.1

Std Deviation 5305.73807 Variance 28150856.5

Skewness 4.35279332 Kurtosis 74.3943759

Uncorrected SS 4.18277E11 Corrected SS 4.18209E11

Coeff Variation -7863.4057 Std Error Mean 43.5291558

Basic Statistical Measures

Location Variability

Mean -67.474 Std Deviation 5306

Median -192.911 Variance 28150857

Mode 112.675 Range 113537

Interquartile Range 2941

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t -1.55008 Pr > |t| 0.1211

Sign M -491.5 Pr >= |M| <.0001

Signed Rank S -5526493 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 77544.765

99% 14954.457

95% 5724.911

90% 2921.691

75% Q3 1217.166

50% Median -192.911

25% Q1 -1723.619

10% -3415.171

5% -5130.331
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The UNIVARIATE Procedure
Variable:  ltd
Freq:  freq

oa = obsLTD

Quantiles (Definition 5)

Quantile Estimate

1% -10625.692

0% Min -35992.286

Extreme Observations

Lowest Highest

Value Freq Obs Value Freq Obs

-35992.3 1 159 77544.8 1 76

-35992.3 1 158 77544.8 1 77

-35992.3 1 157 77544.8 1 78

-35992.3 1 156 77544.8 1 79

-35992.3 1 155 77544.8 1 80
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The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = aLTD

Moments

N 4999640 Sum Weights 4999640

Mean -0.0071887 Sum Observations -35941.076

Std Deviation 0.0027482 Variance 7.55259E-6

Skewness -1.3181951 Kurtosis 80.8260676

Uncorrected SS 296.131012 Corrected SS 37.7602144

Coeff Variation -38.229231 Std Error Mean 1.22908E-6

Basic Statistical Measures

Location Variability

Mean -0.00719 Std Deviation 0.00275

Median -0.00715 Variance 7.55259E-6

Mode -0.00888 Range 0.13889

Interquartile Range 0.00179

Note: The mode displayed is the smallest of 5 modes with a count of 212938.

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t -5848.89 Pr > |t| <.0001

Sign M -2432320 Pr >= |M| <.0001

Signed Rank S -6.15E12 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 0.05555556

99% 0.00175439

95% -0.00460200

90% -0.00534510

75% Q3 -0.00645311

50% Median -0.00714682

25% Q1 -0.00824140

10% -0.00914754

5% -0.00978416
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The UNIVARIATE Procedure
Variable:  ltd
Freq:  freq
oa = aLTD

Quantiles (Definition 5)

Quantile Estimate

1% -0.01443841

0% Min -0.08333333

Extreme Observations

Lowest Highest

Value Freq Obs Value Freq Obs

-0.0833333 120 1E6 0.0277778 48 1E6

-0.0833333 36 1E6 0.0347222 168 1E6

-0.0833333 72 1E6 0.0357143 120 1E6

-0.0833333 120 1E6 0.0416667 72 1E6

-0.0833333 36 1E6 0.0555556 48 999960
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The UNIVARIATE Procedure
Variable:  ltd

Freq:  freq
oa = obsLTD

Moments

N 999928 Sum Weights 999928

Mean -0.0011262 Sum Observations -1126.1422

Std Deviation 0.01575236 Variance 0.00024814

Skewness -5.1707701 Kurtosis 158.996017

Uncorrected SS 249.38697 Corrected SS 248.118682

Coeff Variation -1398.6888 Std Error Mean 0.00001575

Basic Statistical Measures

Location Variability

Mean -0.00113 Std Deviation 0.01575

Median -0.00063 Variance 0.0002481

Mode -0.00081 Range 0.76190

Interquartile Range 0.00244

Tests for Location: Mu0=0

Test Statistic p Value

Student's t t -71.493 Pr > |t| <.0001

Sign M -31349 Pr >= |M| <.0001

Signed Rank S -7.404E9 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 0.333333333

99% 0.052631579

95% 0.006226159

90% 0.002522870

75% Q3 0.001611419

50% Median -0.000631103

25% Q1 -0.000829438

10% -0.004349959

5% -0.008531678
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The UNIVARIATE Procedure
Variable:  ltd
Freq:  freq

oa = obsLTD

Quantiles (Definition 5)

Quantile Estimate

1% -0.055124892

0% Min -0.428571429

Extreme Observations

Lowest Highest

Value Freq Obs Value Freq Obs

-0.428571 1 57369 0.333333 1 56405

-0.428571 1 57368 0.333333 1 56406

-0.428571 1 57367 0.333333 1 56407

-0.428571 1 57366 0.333333 1 56408

-0.428571 1 57365 0.333333 1 56409




