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Chapter 11
The COUNTREG Procedure

(Experimental)
Overview

The COUNTREG (Count Regression) procedure analyzes regression models in
which the dependent variable takes nonnegative integer or count values. The depen-
dent variable is usually an event count, which refers to the number of times an event
occurs. For example, an event count might represent the number of ship accidents
per year for a given fleet. In count regression, the conditional mean of the dependent
variable, y, is assumed to be a function of a vector of covariates, x.

PROC COUNTREG supports the following models for count data:

• Poisson regression

• negative binomial regression with quadratic (NEGBIN2) and linear
(NEGBIN1) variance functions (Cameron and Trivedi 1986)

• zero-inflated Poisson (ZIP) model (Lambert 1992)

• zero-inflated negative binomial (ZINB) model

In recent years, count data models have been used extensively in economics, political
science, and sociology. For example, Hausman, Hall, and Griliches (1984) examine
the effects of R&D expenditures on the number of patents received by U.S. compa-
nies. Cameron and Trivedi (1986) study factors affecting the number of doctor visits.
Greene (1994) studies the number of derogatory reports to a credit reporting agency
for a group of credit card applicants. As a final example, Long (1997) analyzes the
number of doctoral publications in the final three years of Ph.D. studies.

The COUNTREG procedure uses maximum likelihood estimation. When a model
with a dependent count variable is estimated using linear ordinary least squares (OLS)
regression, the count nature of the dependent variable is ignored. This leads to pa-
rameter estimates with undesirable properties in terms of efficiency, consistency, and
unbiasedness unless the mean of the counts is high, in which case the Gaussian ap-
proximation and linear regression may be satisfactory. The Poisson (log-linear) re-
gression model is the most basic model that explicitly takes into account the nonneg-
ative integer-valued aspect of the outcome. With this model, the probability of an
event count is determined by a Poisson distribution, where the conditional mean of
the distribution is a function of a vector of covariates. However, the basic Poisson
regression model is limited because it forces the conditional mean of the outcome,
y, to equal the conditional variance. This assumption is often violated in real-life
data. Negative binomial regression is an extension of Poisson regression in which the
conditional variance may exceed the conditional mean. Also, an often encountered



characteristic of count data is that the number of zeros in the sample exceeds the
number of zeros predicted by either the Poisson or negative binomial models. Zero-
inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models explicitly
model the production of zero counts to account for excess zeros and also allow the
conditional variance of the outcome to differ from the conditional mean.

Getting Started
The COUNTREG procedure is similar in use to other regression model procedures
in the SAS System. For example, the following statements are used to estimate a
Poisson regression model:

proc countreg data=one type=poisson;
model y = x1 ;

run;

The response variable y is numeric and has nonnegative integer values. You can also
specify the negative binomial model as follows:

proc countreg data=one type=negbin;

The following example illustrates the use of PROC COUNTREG. The data are taken
from Long (1997). This study examines how factors such as gender, marital status,
number of young children, prestige of the graduate program, and the number of arti-
cles published by a scientist’s mentor affect the number of articles published by the
scientist.

data one;
input fem ment phd mar kid5 art lnart;
datalines;

... data lines are omitted ...
;

The first 10 observations are shown in Figure 11.1.

Obs art fem mar kid5 phd ment

1 3 0 1 2 1.38000 8.0000
2 0 0 0 0 4.29000 7.0000
3 4 0 0 0 3.85000 47.0000
4 1 0 1 1 3.59000 19.0000
5 1 0 1 0 1.81000 0.0000
6 1 0 1 1 3.59000 6.0000
7 0 0 1 1 2.12000 10.0000
8 0 0 1 0 4.29000 2.0000
9 3 0 1 2 2.58000 2.0000
10 3 0 1 1 1.80000 4.0000

Figure 11.1. Article Count Data

The following SAS statements estimate the Poisson regression model:
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Getting Started

proc countreg data=one type=poisson method=qn;
model art = fem mar kid5 phd ment ;

run;

The fit summary table is listed in Figure 11.2. First, PROC COUNTREG lists the
estimation summary table. By default, the COUNTREG procedure uses the Newton-
Raphson optimization technique. This table shows the maximum log-likelihood
value as well as two information measures: Akaike’s information criterion (AIC)
and Schwarz’s Bayesian information criterion (SBC).

The COUNTREG Procedure

Poisson Regression Estimates

Model Fit Summary

Dependent Variable art
Number of Observations 915
Log Likelihood -1651
Maximum Absolute Gradient 2.40759E-7
Number of Iterations 7
Optimization Method Newton-Raphson
AIC 3314
Schwarz Criterion 3343

Figure 11.2. Estimation Summary Table for a Poisson Regression

The parameter estimates and standard errors are shown in Figure 11.3.

The COUNTREG Procedure

Poisson Regression Estimates

Parameter Estimates

Standard Approx
Parameter DF Estimate Error t Value Pr > |t| Gradient

Intercept 1 0.3046 0.1030 2.96 0.0031 -5.25E-9
fem 1 -0.2246 0.0546 -4.11 <.0001 -1.04E-9
mar 1 0.1552 0.0614 2.53 0.0114 -4.25E-9
kid5 1 -0.1849 0.0401 -4.61 <.0001 -4.2E-9
phd 1 0.0128 0.0264 0.49 0.6271 -1.68E-8
ment 1 0.0255 0.002006 12.73 <.0001 -2.41E-7

Figure 11.3. Parameter Estimates of Poisson Regression

The negative binomial regression model is more general than the Poisson regression
model. Whereas the Poisson regression model requires that the conditional mean
and conditional variance be equal, the negative binomial regression model allows for
overdispersion; that is, the conditional variance may exceed the conditional mean.
The following statements fit the negative binomial regression model:
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proc countreg data=one type=negbin method=qn;
model art = fem mar kid5 phd ment ;

run;

The fit summary is shown in Figure 11.4, and parameter estimates are listed in Figure
11.5.

The COUNTREG Procedure

Negative Binomial Regression Estimates

Model Fit Summary

Dependent Variable art
Number of Observations 915
Log Likelihood -1561
Maximum Absolute Gradient 0.0002304
Number of Iterations 9
Optimization Method Newton-Raphson
AIC 3136
Schwarz Criterion 3170

Figure 11.4. Estimation Summary Table for a Negative Binomial Regression

The COUNTREG Procedure

Negative Binomial Regression Estimates

Parameter Estimates

Standard Approx
Parameter DF Estimate Error t Value Pr > |t| Gradient

Intercept 1 0.2561 0.1386 1.85 0.0645 0.000038
fem 1 -0.2164 0.0727 -2.98 0.0029 9.695E-6
mar 1 0.1505 0.0821 1.83 0.0668 5.834E-7
kid5 1 -0.1764 0.0531 -3.32 0.0009 0.000017
phd 1 0.0153 0.0360 0.42 0.6718 0.000115
ment 1 0.0291 0.003470 8.38 <.0001 0.00023
ALPHA 1 0.4416 0.0530 8.34 <.0001 -0.00004

Figure 11.5. Parameter Estimates of Negative Binomial Regression

The parameter estimate for –Alpha of 0.4416 is an estimate of the dispersion pa-
rameter in the negative binomial distribution. A likelihood ratio test of H0 : α = 0
can be carried out: −2(LP − LNB) = −2(−1651 + 1561) = 180, which is highly
significant. Thus, there is strong evidence of overdispersion.
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Syntax

Syntax
The COUNTREG procedure is controlled by the following statements:

PROC COUNTREG options ;
BOUNDS bound1 [ , bound2 . . . ] ;
BY variables ;
INIT initvalue1 [ , initvalue2 . . . ] ;
MODEL dependent variables = regressors / options ;
RESTRICT options ;

Functional Summary

The statements and options used with the COUNTREG procedure are summarized in
the following table:

Description Statement Option

Data Set Options
specify the input data set COUNTREG DATA=
write parameter estimates to an output data set COUNTREG OUTEST=

Declaring the Role of Variables
specify BY-group processing BY

Printing Control Options
print the correlation matrix of the estimates COUNTREG CORRB
print the covariance matrix of the estimates COUNTREG COVB
print a summary iteration listing COUNTREG ITPRINT
suppress the normal printed output COUNTREG NOPRINT
request all printing options COUNTREG PRINTALL

Options to Control the Optimization Process
specify the maximum number of iterations allowed COUNTREG MAXITER=
select the iterative minimization method to use COUNTREG METHOD=
set boundary restrictions on parameters BOUNDS
set initial values for parameters INIT
set linear restrictions on parameters RESTRICT

Model Estimation Options
specify the type of model COUNTREG TYPE=
specify the type of covariance matrix COUNTREG COVEST=
suppress the intercept parameter MODEL NOINT
specify the offset variable MODEL OFFSET=
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Description Statement Option

specify the P–OBS variable (probability of an event
being observed, given that it occurred)

MODEL P–OBS=

specify options specific to zero-inflated count re-
gression

MODEL ZI()

Output Control Options
include covariances in the OUTEST= data set COUNTREG COVOUT

PROC COUNTREG Statement

PROC COUNTREG options ;

The following options can be used in the PROC COUNTREG statement:

Data Set Options

DATA= SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC
COUNTREG uses the most recently created SAS data set.

Output Data Set Options

OUTEST= SAS-data-set
writes the parameter estimates to an output data set.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set.
This option is valid only if the OUTEST= option is specified.

Printing Options

CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

ITPRINT
prints the objective function and parameter estimates at each iteration. The objective
function is the negative log-likelihood function.

NOPRINT
suppresses all printed output.
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Syntax

PRINTALL
requests all printing options.

Estimation Control Options

TYPE= value
specifies a type of model to be analyzed. The supported model types are as fol-
lows:

POISSON specifies a Poisson regression model

NEGATIVEBINOM1 | NEGBIN1 specifies a negative binomial regression model
with a linear variance function

NEGATIVEBINOM | NEGBIN specifies a negative binomial regression model with
a quadratic variance function

ZIPOISSON | ZIP specifies a zero-inflated Poisson regression

ZINEGBIN | ZINB specifies a zero-inflated negative binomial regression

COVEST=value
The COVEST= option specifies the type of covariance matrix. When COVEST=OP
is specified, the outer product matrix is used to compute the covariance matrix of
the parameter estimates. The COVEST=HESSIAN option produces the covariance
matrix using the Hessian matrix. The quasi-maximum likelihood estimates are com-
puted with COVEST=QML. The supported covariance types are as follows:

OP specifies covariance from outer product matrix

HESSIAN specifies covariance from Hessian matrix

QML specifies covariance from outer product and Hessian matrices

Options to Control the Optimization Process

The following options might be helpful when you experience a convergence problem:

MAXITER= number
sets the maximum number of iterations allowed. The default is MAXITER=100.

METHOD= value
specifies the iterative minimization method to use. METHOD=QN specifies the
quasi-Newton method, METHOD=NRA specifies the Newton-Raphson method, and
METHOD=TR specifies the trust region method. The default is METHOD=NRA.
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BOUNDS Statement

BOUNDS bound1 [, bound2 ... ] ;

The BOUNDS statement imposes simple boundary constraints on the parameter es-
timates. BOUNDS statement constraints refer to the parameters estimated by the
COUNTREG procedure. You can specify any number of BOUNDS statements.

Each bound is composed of variables, constants, and inequality operators:

item operator item [ operator item [ operator item . . . ] ]

Each item is a constant, the name of a regressor variable, or a list of regressor names.
Each operator is ’<’, ’>’, ’<=’, or ’>=’.

You can use both the BOUNDS statement and the RESTRICT statement to impose
boundary constraints; however, the BOUNDS statement provides a simpler syntax
for specifying these kinds of constraints. See the “RESTRICT Statement” section on
page 428 as well.

The following BOUNDS statement constrains the estimates of the coefficient of z to
be negative and the coefficients of x1 through x10 to be between zero and one. This
example illustrates the use of parameter lists to specify boundary constraints.

bounds z < 0,
0 < x1-x10 < 1;

BY Statement

BY variables ;

A BY statement can be used with PROC COUNTREG to obtain separate analyses on
observations in groups defined by the BY variables.

INIT Statement

INIT initvalue1 [ , initvalue2 . . . ] ;

The INIT statement is used to set initial values for parameters in the optimization.

Each initvalue is written as a parameter or parameter list, followed by an optional
equals sign (=), followed by a number:

parameter [=] number
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Syntax

MODEL Statement

MODEL dependent = regressors / options ;

The MODEL statement specifies the dependent variable and independent regressor
variables for the regression model.

The following options can be used in the MODEL statement after a slash (/).

NOINT
suppresses the intercept parameter.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. The offset
variable appears as a term in the link function with a coefficient of 1. In contrast,
the jth explanatory variable (regressor) of the ith observation appears as a term in
the link function with a coefficient of βj . Thus, the regression does not estimate a
coefficient for the offset variable; it is fixed at 1. The offset variable cannot be the
response variable, zero-inflation offset variable (if any), or one of the explanatory
variables.

P–OBS=variable
specifies a variable in the input data set that represents the probability of an event
being observed (or counted), once it has occurred. A P–OBS value of 1 means that
every event that occurred was also counted (observed). The P–OBS variable can
only take on values that are strictly greater than 0 and less than or equal to 1. If the
P–OBS= option is included on the model statement, and if an observation in the input
data set contains an invalid (or missing) P–OBS value, then that observation will be
excluded from the regression.

Zero-Inflated Count Data Regression Options

ZI(option-list)
specifies options that are used for zero-inflated Poisson and negative binomial mod-
els.

The following options can be used in the ZI() option. The options are listed within
parentheses and separated by commas.

LINK=value
specifies the distribution function used to compute probability of zeros. The sup-
ported distribution functions are as follows:

LOGISTIC specifies logistic distribution

NORMAL specifies standard normal distribution

OFFSET=variable
specifies a variable in the input data set to be used as a zero-inflated offset variable
(ZI offset variable). The ZI offset variable is included as a term, with coefficient 1,
in the equation that determines the probability (ϕi) of the observed count being zero.

427



The ZI offset variable cannot be the response variable, the offset variable (if any), or
one of the explanatory variables.

VAR=variables
specifies the zero-inflated explanatory variables (ZI explanatory variables) that are
used in the equation that determines the probability (ϕi) of the observed count being
zero. Each of these q variables, q ≥ 0, has a coefficient that must be estimated in the
regression. For example, let w′

i be the ith observation’s 1× q vector of values of the
q ZI explanatory variables. Then ϕi will be a function of w′

iγ, where γ is the q × 1
vector of coefficients to be estimated.

RESTRICT Statement

RESTRICT restriction1 [, restriction2 ... ] ;

The RESTRICT statement is used to impose linear restrictions on the parameter esti-
mates. You can specify any number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or
an inequality operator (<, >, <=, >=), followed by a second expression:

expression operator expression

The operator can be =, <, >, <=, or >=.

Restriction expressions can be composed of variable names, times (∗) and plus (+)
operators, and constants. Variables named in restriction expressions must be among
the variables estimated by the model. The restriction expressions must be a linear
function of the variables.

Lagrange multipliers are reported for all the active linear constraints. In the displayed
output, the Lagrange multiplier estimates are identified with the names Restrict1,
Restrict2, and so forth. The probability of the Lagrange multipliers are computed
using a beta distribution (LaMotte 1994).

Details of Count Data Analysis

Poisson Regression

The most widely used model for count data analysis is Poisson regression. This
assumes that yi, given the vector of covariates xi, is independently Poisson distributed
with

P (Yi = yi|xi) =
e−µiµyi

i

yi!
, yi = 0, 1, 2, . . .

and the mean parameter, that is, the mean number of events per period, is given by

µi = exp(x′iβ)
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Details of Count Data Analysis

where β is a k × 1 parameter vector. Taking the exponential of x′iβ ensures that the
mean parameter µi is nonnegative. It can be shown that the conditional mean is given
by

E(yi|xi) = µi = exp(x′iβ)

The name log-linear model is also used for the Poisson regression model since the
logarithm of the conditional mean is linear in the parameters.

ln[E(yi|xi)] = ln(µi) = x′iβ

Note that the conditional variance of the count random variable is equal to the condi-
tional mean in the Poisson regression model.

V (yi|xi) = E(yi|xi) = µi

The equality of the conditional mean and variance of yi is known as equidispersion.

The marginal effect of a regressor is given by

∂E(yi|xi)
∂xji

= exp(x′iβ)β = E(yi|xi)βj

Thus, a one unit change in the jth regressor leads to a proportional change in the
conditional mean E(yi|xi) of βj .

The standard estimator for the Poisson model is the maximum likelihood estimator
(MLE). Since the observations are independent, the log-likelihood function is written

L =
N∑

i=1

(−µi + yi lnµi − ln yi!) =
N∑

i=1

(−ex′iβ + yix′iβ − ln yi!)

The gradient and the Hessian are

∂L
∂β

=
N∑

i=1

(yi − µi)xi =
N∑

i=1

(yi − ex′iβ)xi

∂2L
∂β∂β′ = −

N∑
i=1

µixixi
′ = −

N∑
i=1

ex′iβxix′i

The Poisson model has been criticized for its restrictive property that the condi-
tional variance equals the conditional mean. Real-life data are often characterized
by overdispersion, that is, the variance exceeds the mean. Allowing for overdis-
persion can improve model predictions since the Poisson restriction of equal mean
and variance results in the underprediction of zeros when overdispersion exists. The
most commonly used model that accounts for overdispersion is the negative binomial
model.
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Negative Binomial Regression
The Poisson regression model can be generalized by introducing an unobserved
heterogeneity term for observation i. Thus, the individuals are assumed to differ
randomly in a manner that is not fully accounted by the observed covariates. This is
formulated as

E(yi|xi, τi) = µiτi = ex′iβ+εi

where the unobserved heterogeneity term τi = eεi is independent of the vector of
regressors xi. Then the distribution of yi conditional on xi and τi is Poisson with
conditional mean and conditional variance µiτi:

f(yi|xi, τi) =
exp(−µiτi)(µiτi)yi

yi!

Let g(τi) be the probability density function of τi. Then, the distribution f(yi|xi) (no
longer conditional on τi) is obtained by integrating f(yi|xi, τi) with respect to τi:

f(yi|xi) =
∫ ∞

0
f(yi|xi, τi)g(τi)dτi

An analytical solution to this integral exists when τi is assumed to follow a gamma
distribution. This solution is the negative binomial distribution. When the model
contains a constant term, it is necessary to assume that E(eεi) = E(τi) = 1, in
order to identify the mean of the distribution. Thus, it is assumed that τi follows a
gamma(θ, θ) distribution with E(τi) = 1 and V (τi) = 1/θ:

g(τi) =
θθ

Γ(θ)
τ θ−1
i exp(−θτi)

where Γ(x) =
∫∞
0 zx−1 exp(−z)dz is the gamma function and θ is a positive param-

eter. Then, the density of yi given xi is derived as

f(yi|xi) =
∫ ∞

0
f(yi|xi, τi)g(τi)dτi

=
θθµyi

i

yi!Γ(θ)

∫ ∞

0
e−(µi+θ)τiτ θ+yi−1

i dτi

=
θθµyi

i Γ(yi + θ)
yi!Γ(θ)(θ + µi)θ+yi

=
Γ(yi + θ)
yi!Γ(θ)

(
θ

θ + µi

)θ (
µi

θ + µi

)yi

Making the substitution α = 1
θ (α > 0), the negative binomial distribution can then

be rewritten as

f(yi|xi) =
Γ(yi + α−1)
yi!Γ(α−1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)yi

, yi = 0, 1, 2, . . .
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Details of Count Data Analysis

Thus, the negative binomial distribution is derived as a gamma mixture of Poisson
random variables. It has conditional mean

E(yi|xi) = µi = ex′iβ

and conditional variance

V (yi|xi) = µi[1 +
1
θ
µi] = µi[1 + αµi] > E(yi|xi)

The conditional variance of the negative binomial distribution exceeds the conditional
mean. Overdispersion results from neglected unobserved heterogeneity. The negative
binomial model with variance function V (yi|xi) = µi + αµ2

i that is quadratic in
the mean is referred to as the NEGBIN2 model (Cameron and Trivedi 1986). (To
estimate this model with the COUNTREG procedure, you must indicate the option
TYPE=NEGBIN on the PROC COUNTREG statement.) The Poisson distribution
is a special case of the negative binomial distribution where α = 0. A test of the
Poisson distribution can be carried out by testing the hypothesis that α = 1

θi
= 0

using the Wald or likelihood ratio test.

The log-likelihood function of the negative binomial regression model (NEGBIN2)
is given by

L =
N∑

i=1

{
yi−1∑
j=0

ln(j + α−1)− ln(yi!)

−(yi + α−1) ln(1 + α exp(x′iβ)) + yi ln(α) + yix′iβ

}

where use of the following fact is made:

Γ(y + a)/Γ(a) =
y−1∏
j=0

(j + a)

if y is an integer.

The gradient is

∂L
∂β

=
N∑

i=1

yi − µi

1 + αµi
xi

and

∂L
∂α

=
N∑

i=1

−α−2
yi−1∑
j=0

1
(j + α−1)

+ α−2 ln(1 + αµi) +
yi − µi

α(1 + αµi)
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Cameron and Trivedi (1986) consider a general class of negative binomial models
with mean µi and variance function µi + αµp

i . The NEGBIN2 model, with p = 2, is
the standard formulation of the negative binomial model. (To estimate this model with
the COUNTREG procedure, you must indicate the option TYPE=NEGBIN on the
PROC COUNTREG statement.) Models with other values of p have the same density
f(yi|xi) except that α−1 is replaced everywhere by α−1µ2−p. The negative binomial
model, NEGBIN1, which sets p = 1, has variance function V (yi|xi) = µi + αµi,
which is linear in the mean. (To estimate this model with the COUNTREG proce-
dure, you must indicate the option TYPE=NEGBIN1 on the PROC COUNTREG
statement.)

The log-likelihood function of the NEGBIN1 regression model is given by

L =
N∑

i=1

{
yi−1∑
j=0

ln
(
j + α−1 exp(x′iβ)

)
− ln(yi!)−

(
yi + α−1 exp(x′iβ)

)
ln(1 + α) + yi ln(α)

}

The gradient is

∂L
∂β

=
N∑

i=1


yi−1∑

j=0

µi

(jα + µi)

xi − α−1 ln(1 + α)µixi


and

∂L
∂α

=
N∑

i=1

−

yi−1∑
j=0

α−1µi

(jα + µi)

− α−2µi ln(1 + α)− (yi + α−1µi)
1 + α

+
yi

α


Zero-Inflated Count Regression Models

The main motivation for zero-inflated count models is that real-life data frequently
display overdispersion and excess zeros. Zero-inflated count models provide a way
of modeling the excess zeros as well as allowing for overdispersion. In particular,
for each time period, there are two possible data generation processes. The result
of a Bernoulli trial is used to determine which of the two processes is used. For
time period i, Process 1 is chosen with probability ϕi and Process 2 with probability
1− ϕi. Process 1 generates only zero counts. Process 2 generates counts from either
a Poisson or a negative binomial model. The proportion probability ϕi is defined
shortly. In general:

yi ∼
{

0 with probability ϕi

g(yi) with probability 1− ϕi
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Details of Count Data Analysis

Therefore, the probability of {Yi = yi} can be described as

P (yi = 0|xi) = ϕi + (1− ϕi)g(0)
P (yi|xi) = (1− ϕi)g(yi), yi > 0

where g(yi) follows either the Poisson or the negative binomial distribution.

When the proportion probability ϕi depends on the characteristics of the time period
i, ϕi is written as a function of w′

iγ, where w′
i is the 1 × q vector of zero-inflated

covariates and γ is the q × 1 vector of zero-inflated coefficients to be estimated. The
function F relating the product w′

iγ (which is a scalar) to the proportion probability
ϕi is called the zero-inflated link function.

ϕi = Fi = F (w′
iγ)

In the COUNTREG procedure, the zero-inflated covariates are indicated on
the MODEL statement, within the ZI() option list, by using the VAR= option.
Furthermore, the zero-inflated link function F can be specified as either the logistic
function:

F (w′
iγ) = Λ(w′

iγ) =
exp(w′

iγ)
1 + exp(w′

iγ)

or the standard normal distribution function (also called the probit function):

F (w′
iγ) = Φ(w′

iγ) =
∫ w′

iγ

0

1√
2π

exp(−u2/2)du

In the COUNTREG procedure, the zero-inflated link function is indicated on the
MODEL statement, within the ZI() option list, by using the LINK= option.

Zero-Inflated Poisson Regression Model

In the zero-inflated Poisson (ZIP) regression model, the data generation process re-
ferred to as Process 2 is

g(yi) =
exp(−µi)µ

yi
i

yi!

where µi = ex′iβ. Thus the ZIP model is defined as

P (yi = 0|xi,wi) = Fi + (1− Fi) exp(−µi)

P (yi|xi,wi) = (1− Fi)
exp(−µi)µ

yi
i

yi!
, yi > 0

The conditional expectation and conditional variance of yi is given by

E(yi|xi,wi) = µi(1− Fi)
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V (yi|xi,wi) = E(yi|xi,wi)(1 + µiFi)

Note that the ZIP model (as well as the ZINB model) exhibits overdispersion since
V (yi|xi,wi) > E(yi|xi,wi).

In general, the log-likelihood function of the ZIP model is

L =
N∑

i=1

ln [P (yi|xi,wi)]

Once a specific link function (either logistic or standard normal) for the propor-
tion probability is chosen, it is possible to write the exact expressions for the log-
likelihood function and the gradient.

ZIP Model with Logistic Link Function

First, consider the ZIP model in which the proportion probability is expressed with a
logistic link function, namely

ϕi =
exp(w′

iγ)
1 + exp(w′

iγ)

The log-likelihood function is

L =
∑

{i:yi=0}

ln
[
exp(w′

iγ) + exp(− exp(x′iβ))
]

+
∑

{i:yi>0}

[
yix′iβ − exp(x′iβ)−

yi∑
k=2

ln(k)

]

−
N∑

i=1

ln
[
1 + exp(w′

iγ)
]

The gradient for this model is given by

∂L
∂γ

=
∑

{i:yi=0}

[
exp(w′

iγ)
exp(w′

iγ) + exp(− exp(x′iβ))

]
wi −

N∑
i=1

[
exp(w′

iγ)
1 + exp(w′

iγ)

]
wi

∂L
∂β

=
∑

{i:yi=0}

[
− exp(x′iβ) exp(− exp(x′iβ))
exp(w′

iγ) + exp(− exp(x′iβ))

]
xi +

∑
{i:yi>0}

[
yi − exp(x′iβ)

]
xi
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ZIP Model with Standard Normal Link Function

Next, consider the ZIP model in which the proportion probability is expressed with a
standard normal link function: ϕi = Φ(w′

iγ). The log-likelihood function is

L =
∑

{i:yi=0}

ln
{
Φ(w′

iγ) +
[
1− Φ(w′

iγ)
]
exp(− exp(x′iβ))

}
+

∑
{i:yi>0}

{
ln

[(
1− Φ(w′

iγ)
)]
− exp(x′iβ) + yix′iβ −

yi∑
k=2

ln(k)

}

The gradient for this model is given by

∂L
∂γ

=
∑

{i:yi=0}

φ(w′
iγ) [1− exp(− exp(x′iβ))]

Φ(w′
iγ) + [1− Φ(w′

iγ)] exp(− exp(x′iβ))
wi

−
∑

{i:yi>0}

φ(w′
iγ)

[1− Φ(w′
iγ)]

wi

∂L
∂β

=
∑

{i:yi=0}

− [1− Φ(w′
iγ)] exp(x′iβ) exp(− exp(x′iβ))

Φ(w′
iγ) + [1− Φ(w′

iγ)] exp(− exp(x′iβ))
xi

+
∑

{i:yi>0}

[
yi − exp(x′iβ)

]
xi

Zero-Inflated Negative Binomial Regression Model

The zero-inflated negative binomial (ZINB) model is obtained by specifying a nega-
tive binomial distribution for the data generation process called Process 2:

g(yi) =
Γ(yi + α−1)
yi!Γ(α−1)

(
α−1

α−1 + µi

)α−1 (
µi

α−1 + µi

)yi

Thus the ZINB model is defined to be

P (yi = 0|xi,wi) = Fi + (1− Fi) (1 + αµi)−α−1

P (yi|xi,wi) = (1− Fi)
Γ(yi + α−1)
yi!Γ(α−1)

(
α−1

α−1 + µi

)α−1

×
(

µi

α−1 + µi

)yi

, yi > 0

In this case, the conditional expectation and conditional variance of yi are

E(yi|xi,wi) = µi(1− Fi)
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V (yi|xi,wi) = E(yi|xi,wi) [1 + µi(Fi + α)]

Note: The ZINB model described here, like the ZIP model, exhibits overdispersion,
because the conditional variance exceeds the conditional mean.

ZINB Model with Logistic Link Function

In this model, the proportion probability ϕi is given by the logistic function, namely

ϕi =
exp(w′

iγ)
1 + exp(w′

iγ)

The log-likelihood function is

L =
∑

{i:yi=0}

ln
[
exp(w′

iγ) + (1 + α exp(x′iβ))−α−1
]

+
∑

{i:yi>0}

yi−1∑
j=0

ln(j + α−1)

+
∑

{i:yi>0}

{
− ln(yi!)− (yi + α−1) ln(1 + α exp(x′iβ)) + yi ln(α) + yix′iβ

}
−

N∑
i=1

ln
[
1 + exp(w′

iγ)
]

The gradient for this model is given by

∂L
∂γ

=
∑

{i:yi=0}

[
exp(w′

iγ)
exp(w′

iγ) + (1 + α exp(x′iβ))−α−1

]
wi

−
N∑

i=1

[
exp(w′

iγ)
1 + exp(w′

iγ)

]
wi

∂L
∂β

=
∑

{i:yi=0}

[
− exp(x′iβ)(1 + α exp(x′iβ))−α−1−1

exp(w′
iγ) + (1 + α exp(x′iβ))−α−1

]
xi

+
∑

{i:yi>0}

[
yi − exp(x′iβ)
1 + α exp(x′iβ)

]
xi

∂L
∂α

=
∑

{i:yi=0}

α−2 [(1 + α exp(x′iβ)) ln(1 + α exp(x′iβ))− α exp(x′iβ)]
exp(w′

iγ)(1 + α exp(x′iβ))(1+α)/α + (1 + α exp(x′iβ))
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+
∑

{i:yi>0}

−α−2
yi−1∑
j=0

1
(j + α−1)

+ α−2 ln(1 + α exp(x′iβ)) +
yi − exp(x′iβ)

α(1 + α exp(x′iβ))


ZINB Model with Standard Normal Link Function

For this model, the proportion probability is specified with the probit function: ϕi =
Φ(w′

iγ). The log-likelihood function is

L =
∑

{i:yi=0}

ln
{

Φ(w′
iγ) +

[
1− Φ(w′

iγ)
]
(1 + α exp(x′iβ))−α−1

}
+

∑
{i:yi>0}

ln
[
1− Φ(w′

iγ)
]

+
∑

{i:yi>0}

yi−1∑
j=0

{
ln(j + α−1)

}
−

∑
{i:yi>0}

ln(yi!)

−
∑

{i:yi>0}

(yi + α−1) ln(1 + α exp(x′iβ))

+
∑

{i:yi>0}

yi ln(α)

+
∑

{i:yi>0}

yix′iβ

The gradient for this model is given by

∂L
∂γ

=
∑

{i:yi=0}

 φ(w′
iγ)

[
1− (1 + α exp(x′iβ))−α−1

]
Φ(w′

iγ) + [1− Φ(w′
iγ)] (1 + α exp(x′iβ))−α−1

wi

−
∑

{i:yi>0}

[
φ(w′

iγ)
1− Φ(w′

iγ)

]
wi

∂L
∂β

=
∑

{i:yi=0}

− [1− Φ(w′
iγ)] exp(x′iβ)(1 + α exp(x′iβ))−(1+α)/α

Φ(w′
iγ) + [1− Φ(w′

iγ)] (1 + α exp(x′iβ))−α−1 xi

+
∑

{i:yi>0}

[
yi − exp(x′iβ)
1 + α exp(x′iβ)

]
xi
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∂L
∂α

=
∑

{i:yi=0}

[1− Φ(w′
iγ)]α−2 [(1 + α exp(x′iβ)) ln(1 + α exp(x′iβ))− α exp(x′iβ)]

Φ(w′
iγ)(1 + α exp(x′iβ))(1+α)/α + [1− Φ(w′

iγ)] (1 + α exp(x′iβ))

+
∑

{i:yi>0}

−α−2
yi−1∑
j=0

1
(j + α−1)

+ α−2 ln(1 + α exp(x′iβ)) +
yi − exp(x′iβ)

α(1 + α exp(x′iβ))
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Examples

Example 1: ZIP and ZINB Models for Data Exhibiting Extra
Zeros

In the study by Long (1997) of the number of published articles by scientists (see
the “Getting Started” section), the observed proportion of scientists publishing no
articles is 0.3005. PROC COUNTEG is used to fit poisson and negative binomial
models to these data. For each model, the predicted proportion of zero articles can
be calculated as the average predicted probability of zero articles across all scientists.
Under the poisson model, the predicted proportion of zero articles is 0.2092 which
considerably underestimates the observed proportion. The negative binomial more
closely estimates the proportion of zeros (0.3036). Also, the test of the dispersion
parameter, –Alpha, in the negative binomial model indicates significant overdisper-
sion in the poisson model (p < .0001). As a result, the negative binomial model is
preferred to the poisson model.

Another way to account for the large number of zeros in these data is to fit a zero-
inflated poisson (ZIP) or a zero-inflated negative binomial (ZINB) model. The fol-
lowing statements fit the ZIP model. The TYPE=ZIP option requests the ZIP model.
The ZI option in the MODEL statement allows you to specify how the proportion
probability, psi, is modeled. By default, a logistic model is used for psi. This can
be changed using the LINK= option within the ZI option. The VAR= option within
the ZI option specifies the linear predictor portion of the model for psi. In this ZIP
model, all variables used to model the article counts are also used to model psi.

proc countreg data=one type=zip;
model art = fem mar kid5 phd ment /

zi(var=fem mar kid5 phd ment);
run;

The parameters of the ZIP model are displayed below. The first set of parameters
gives the estimates of beta in the model for the poisson mean. Parameters with the
prefix “Inf–” are the estimates of gamma in the logistic model for psi.
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Output 1: Parameter estimates of the ZIP model

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Intercept 0.640838 0.121306 5.28 <.0001
FEM -0.209145 0.063405 -3.30 0.0010
MAR 0.103751 0.071111 1.46 0.1446
KID5 -0.143320 0.047429 -3.02 0.0025
PHD -0.006166 0.031008 -0.20 0.8424
MENT 0.018098 0.002295 7.89 <.0001
Inf_Intercept -0.577060 0.509383 -1.13 0.2573
Inf_FEM 0.109747 0.280082 0.39 0.6952
Inf_MAR -0.354013 0.317611 -1.11 0.2650
Inf_KID5 0.217101 0.196481 1.10 0.2692
Inf_PHD 0.001272 0.145262 0.01 0.9930
Inf_MENT -0.134114 0.045244 -2.96 0.0030

The proportion of zeros predicted by the ZIP model is 0.2986 – much closer to the
observed proportion than the poisson model. But Output 3 shows that both models
deviate from the observed proportions at one, two, and three articles.

The ZINB model is specified by the TYPE=ZINB option. All variables are again used
to model both the number of articles and psi. The METHOD=QN option specifies
that the quasi-Newton method be used to fit the model rather than the default Newton-
Raphson method.

proc countreg data=one type=zinb method=qn;
model art = fem mar kid5 phd ment /

zi(var=fem mar kid5 phd ment);
run;

The estimated parameters of the ZINB model are shown below. The test for overdis-
persion again indicates a preference for the negative binomial version of the zero-
inflated model (p<.0001). The ZINB model also does a good job of estimating the
proportion of zeros (0.3119) and it follows the observed proportions well, though
possibly not as well as the negative binomial model.
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Output 2: Parameter estimates of the ZINB model

Parameter Estimates

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Intercept 0.416746 0.143596 2.90 0.0037
FEM -0.195506 0.075592 -2.59 0.0097
MAR 0.097582 0.084452 1.16 0.2479
KID5 -0.151732 0.054206 -2.80 0.0051
PHD -0.000700 0.036270 -0.02 0.9846
MENT 0.024786 0.003493 7.10 <.0001
Inf_Intercept -0.191716 1.322807 -0.14 0.8848
Inf_FEM 0.635957 0.848913 0.75 0.4538
Inf_MAR -1.499458 0.938655 -1.60 0.1102
Inf_KID5 0.628428 0.442780 1.42 0.1558
Inf_PHD -0.037710 0.308004 -0.12 0.9026
Inf_MENT -0.882298 0.316225 -2.79 0.0053
_Alpha 0.376681 0.051029 7.38 <.0001

For each of the four fitted models, the graph in Output 3 shows the average predicted
probability for each article count across all scientists. The poisson model clearly
underestimates the proportion of zero articles published while the other three model
are quite accurate at zero. All of the models do well at the larger number of articles.
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Output 3: Average predicted probabilities of article counts for poisson, negative
binomial, ZIP, and ZINB models

442



References
Abramowitz, M. and Stegun, A. (1970), Handbook of Mathematical Functions, New

York: Dover Press.

Amemiya, T. (1985), Advanced Econometrics, Cambridge: Harvard University Press.

Cameron, A. C. and Trivedi, P. K. (1986), “Econometric Models Based on Count
Data: Comparisons and Applications of Some Estimators and Some Tests,”
Journal of Applied Econometrics, 1, 29–53.

Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data,
Cambridge: Cambridge University Press.

Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Cambridge:
Cambridge University Press.

Greene, W. H. (1994), “Accounting for Excess Zeros and Sample Selection in
Poisson and Negative Binomial Regression Models,” Working Paper No. 94-
10, New York: Stern School of Business, Department of Economics, New York
University.

Greene, W. H. (2000), Econometric Analysis, Upper Saddle River, N.J.: Prentice
Hall.

Hausman, J. A., Hall, B. H., and Griliches, Z. (1984), “Econometric Models
for Count Data with an Application to the Patents-R&D Relationship,”
Econometrica, 52, 909–938.

King, G. (1989a), “A Seemingly Unrelated Poisson Regression Model,” Sociological
Methods & Research, 17, 235–255.

King, G. (1989b), Unifying Political Methodology: The Likelihood Theory and
Statistical Inference, Cambridge: Cambridge University Press.

Lambert, D. (1992), “Zero-inflated Poisson Regression with an Application to
Defects in Manufacturing,” Technometrics, 34, 1–14.

LaMotte, L. R. (1994), “A Note on the Role of Independence in t Statistics
Constructed from Linear Statistics in Regression Models,” The American
Statistician, 48, 238–240.

Long, J. S. (1997), Regression Models for Categorical and Limited Dependent
Variables, Thousand Oaks: Sage Publications, Inc.

Winkelmann, R. (2000), Econometric Analysis of Count Data, Berlin: Springer-
Verlag.



444


	Overview
	Getting Started
	Syntax
	Functional Summary
	PROC COUNTREG Statement
	BOUNDS Statement
	BY Statement
	INIT Statement
	MODEL Statement
	RESTRICT Statement

	Details of Count Data Analysis
	Poisson Regression
	Negative Binomial Regression
	Zero-Inflated Count Regression Models

	Examples
	Example 1: ZIP and ZINB Models for Data Exhibiting Extra Zeros

	References

