
A SAS White Paper

Implementing Site Policies for SAS® Scheduling with
Platform JobScheduler

This paper was co-authored by Allen Tran, Software Development Manager, Platform Computing
Inc. and Randy Williams, Principle Systems Developer, SAS Institute.

i

Table of Contents

Introduction.. 1
The SAS Scheduling Solution .. 1
Using esub to Validate, Modify, or Reject Job Submissions.................................... 2

Understanding Environment Variables to Bridge esub and Platform LSF 3
Understanding General esub Logic... 6
Rejecting Jobs.. 6
Validating Job Submission Parameters ... 7
Modifying Job-Submission Parameters ... 7

Examples .. 8
Example 1 Setting the Priority of Jobs Based on the User ... 8
Example 2 Implementing a dev/test/prod Environment....................................... 9

Summary... 11

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

1

Introduction

There are many factors that can affect job scheduling efficiency within an enterprise. For
example, usually, the people who create the jobs are not the people who administer and control
the resource usage. In addition, the jobs that are created might have different priorities.
Although most of the people who create the jobs want them to run on the biggest and fastest
machines and have the highest priorities, this might not be in the best interest of the enterprise.
Relying on the job-scheduling administrator to coordinate the jobs and assign the resources can,
at best, be tedious and error-prone. Many enterprises find it difficult to overcome these
challenges because policies have not been implemented for scheduled job submission to help
control the resources that are used by various individuals or groups. These enterprises need a
way to configure their systems to automatically set the resources and control job execution based
on known criteria.
SAS Institute has partnered with Platform Computing Inc. to provide a robust scheduling solution.
This paper explains how to modify the configuration of Platform JobScheduler and Platform LSF,
both offered by Platform Computing, in a SAS environment to automatically assign the proper
resource to all jobs in a flow submission. How to change and validate the configuration is also
discussed, and two common user scenarios show how it all works.

This paper is written for job-scheduling administrators and applications developers who build
scheduled jobs. It is assumed that the reader has a basic understanding of scheduling servers
and how to use the SAS Management Console Schedule Manager plug-in.

The SAS Scheduling Solution

An effective scheduling solution consists of three major groups of components that enable an
enterprise to configure and set up their environment, create jobs and schedule flows, and then
execute the flows. The following components are required in order to take advantage of the
scheduling capabilities of the SAS Scheduling Solution.

• SAS configuration is handled by SAS Management Console and stored in the SAS
Metadata Server. Metadata for servers, flows, and jobs that are deployed from SAS
applications is captured in the metadata server. The scheduling and batch servers are
defined in the Server Manager, which is a SAS Management Console plug-in. The
scheduling servers are third-party software applications; the batch servers are templates
to command-line interfaces to SAS applications. The current types of batch servers are
the SAS DATA Step Batch Server, the SAS Java Batch Server, and the SAS Generic
Batch Server.

• Flow creation and management is handled by the Schedule Manager plug-in component
in SAS Management Console, along with Scheduling Integrated SAS Applications such
as SAS ETL Studio and SAS Marketing Automation Campaign Manager.

A flow contains one or more jobs that are deployed for scheduling by the Scheduling
Integrated SAS Applications. Flows are created and maintained in Schedule Manager.
A deployed job is associated to a batch server.

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

2

• Flow execution is handled by scheduling servers. In SAS 9.1, the only scheduling server
that is available is Platform JobScheduler, which includes Platform LSF as part of the
installation and configuration of the scheduling server.

To schedule SAS jobs, as used by SAS applications, the jobs must be deployed to a SAS batch
server in a scheduling-participating SAS application. A batch submission flow using the batch
submission (bsub) command is shown in Figure 1.

Figure 1. Batch Submission Flow

The SAS Management Console Schedule Manager plug-in gets metadata about the flow from the
metadata server, converts that metadata to metadata that the underlying scheduler (Platform
JobScheduler) understands, and submits the information to the scheduling server. Each job can
have combinations of time, other jobs, or file dependencies. (Dependencies are the criteria that
must be met so that the job will run.) After dependencies are defined for each job, the jobs in the
flow can be executed. Platform JobScheduler executes the jobs in a flow by issuing a bsub
command to Platform LSF.

The Platform LSF configuration contains a cluster of machines that represents a virtual machine.
Within a cluster there can be multiple queues, and each queue has its own associated resources
and properties. Before you can validate, modify, or reject job submissions, you need to develop
the job-scheduling criteria that will be used at your site. Developing the criteria involves
understanding the current Platform LSF configuration, knowing what needs to be accomplished,
and identifying the available resources. The two examples given in the “Examples” section in this
paper explain how to set the priority of a job based on the user who submits the job, and how to
channel the job to the correct machine based on the stage of development.

Using esub to Validate, Modify, or Reject Job Submissions

The external submission (esub) command, enables an administrator to programmatically modify
the bsub command before submitting jobs to Platform LSF. A job submission flow using the
esub command is shown in Figure 2.

Platform
JobScheduler

SAS Management
Console

Scheduler Manager
Plug-in

batch submission
(bsub)

command

Platform LSF

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

3

Figure 2. Batch Submission Using an esub Command

An esub command is an administrator-written executable (binary or script) that can be used to
validate, modify, or reject jobs. The esub command is put into LSF_SERVERDIR1 where
Platform LSF checks for its existence when a job is submitted, re-started, or modified. If Platform
LSF finds an esub command, the command is run by Platform LSF. Whether the job is
submitted, modified, or rejected depends on the logic that’s built into the esub command.

Any messages that need to be sent to the user should be directed to the standard error (stderr)
stream and not the standard output (stdout) stream.

Understanding Environment Variables to Bridge esub and Platform LSF
Platform LSF provides the following environment variables in the esub execution environment.

LSB_SUB_PARM_FILE

points to a temporary file that contains the job parameters that the esub command reads
when the job is submitted. The submission parameters are name and value pairs on separate
lines specified in the form option_name=value. (Table 1 lists and describes the supported options.)

For example, if a user submits the following job:

% bsub -q normal -x -P my_project -R "r1m rusage[dummy=1]" -n 90 sleep 10

1 LSF_SERVERDIR is the machine-dependent directory that contains all the server daemon binaries, scripts,
and other utilities that are shared by all hosts of the same type. Usually, LSF_SERVERDIR is located in
"<LSF_TOP>/<version>/<arch>/etc", where <LSF_TOP> is the location of your Platform LSF installation,
<version> is the Platform LSF version number, and <arch> is the host's architecture. For example, if you
installed Platform LSF 5.1 on a Solaris 7 64-bit host under "/usr/share/lsf", LSF_SERVERDIR would be
"/usr/share/lsf/5.1/sparc-sol7-64/etc".
Note: You would have an LSF_SERVERDIR for every different machine architecture that you install,
although some machine architectures are similar enough to share the same binaries and, therefore, the same
LSF_SERVERDIR.

SAS Management
Console

Scheduler Manager
Plug-in

Platform LSF

Platform
JobScheduler

batch submission
(bsub)

command

external submission
(esub)

command

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

4

then the contents of the LSB_SUB_PARM_FILE will be:

LSB_SUB_QUEUE="normal"

LSB_SUB_EXCLUSIVE=Y

LSB_SUB_PROJECT_NAME="my_project"

LSB_SUB_RES_REQ="r1m rusage[dummy=1]"

LSB_SUB_NUM_PROCESSORS=90

LSB_SUB_MAX_NUM_PROCESSORS=90

LSB_SUB_COMMAND_LINE="sleep 10"

OPTION DESCRIPTION

LSB_SUB_COMMAND_LINE Job command

LSB_SUB_ERR_FILE Standard error filename

LSB_SUB_EXCLUSIVE Y specifies exclusive execution

LSB_SUB_HOST_SPEC Host specifier

LSB_SUB_HOSTS List of execution host names

LSB_SUB_IN_FILE Standard input filename

LSB_SUB_LOGIN_SHELL Login shell

LSB_SUB_MAIL_USER E-mail address used by Platform LSF for sending job
e-mail

LSB_SUB_MAX_NUM_PROCESSORS Maximum number of processors requested

LSB_SUB_NOTIFY_BEGIN Y specifies e-mail notification when job begins

LSB_SUB_NOTIFY_END Y specifies e-mail notification when job ends

LSB_SUB_NUM_PROCESSORS Minimum number of processors requested

LSB_SUB_OTHER_FILES Always SUB_RESET if defined to indicate that a bmod
command is being issued to re-set the number of files
to be transferred
Note: For more information about the bmod command,
see Platform LSF Reference.

LSB_SUB_OTHER_FILES_ A value is the specified file transfer expression. For
example, for bsub -f "a > b" -f "c < d", the following is
defined:

LSB_SUB_OTHER_FILES_0="a > b"

LSB_SUB_OTHER_FILES_1="c < d"

LSB_SUB_OUT_FILE Standard output filename

LSB_SUB_PRE_EXEC Pre-execution command

 continued

Table 1. Supported Option Names for Job Parameters

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

5

OPTION DESCRIPTION

LSB_SUB_PROJECT_NAME Project name

LSB_SUB_QUEUE Submission queue name

LSB_SUB_RERUNNABLE Y specifies the job is rerunnable

LSB_SUB_RES_REQ Resource requirement string

LSB_SUB_RLIMIT_CORE Core file-size limit

LSB_SUB_RLIMIT_CPU CPU limit

LSB_SUB_RLIMIT_DATA Data-size limit

LSB_SUB_RLIMIT_FSIZE File-size limit

LSB_SUB_RLIMIT_RSS Resident-size limit

LSB_SUB_RLIMIT_RUN Wall-clock run limit

LSB_SUB_RLIMIT_STACK Stack-size limit

LSB_SUB_USER_GROUP User group name

Table 1 (continued). Supported Option Names for Job Parameters

LSB_SUB_ABORT_VALUE

specifies the exit code value that esub should return if Platform LSF is to reject the job
submission.

LSB_SUB_MODIFY_ENVFILE

specifies the file that the esub command should write any job environment variables changes
to. The variables that will be modified should be written to this file in the same format that is used
in LSB_SUB_PARM_FILE. The order of the variables does not matter. After esub runs, Platform
LSF checks LSB_SUB_MODIFY_ENVFILE for changes. If changes are found, Platform LSF
applies them to the job’s environment variables.

LSB_SUB_MODIFY_FILE

specifies the file that the esub command should write any submission parameter changes
to. The job options that will be modified should be written to this file in the same format that is
used in LSB_SUB_PARM_FILE. The order of the options does not matter. After esub runs,
Platform LSF checks LSB_SUB_MODIFY_FILE for changes. If changes are found, Platform LSF
applies them to the job.

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

6

Understanding General esub Logic
After the esub command is issued, Platform LSF runs the following checks (see Figure 3).

Figure 3. Platform LSF esub Command Logic Flow

Rejecting Jobs
Depending on your site policies, you can choose to reject a job. To reject a job, your esub
command should return with LSB_SUB_ABORT_VALUE. If a job is rejected, the esub command
should not write to either LSB_SUB_MODIFY_FILE or LSB_SUB_MODIFY_ENVFILE.
For example, the following Bourne shell esub command rejects all job submissions by returning
LSB_SUB_ABORT_VALUE.

#!/bin/sh

redirect stdout to stderr so echo can be used for
error messages
exec 1>&2

reject the submission

echo "LSF is rejecting your job submission..."
exit $LSB_SUB_ABORT_VALUE

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

7

Validating Job Submission Parameters
Validation can be used to support project-based accounting. This means that the user may
request that the resources that are used by a job be charged to a specific project. Because
projects are associated with a job at the time the job is submitted, Platform LSF accepts any
arbitrary string for a project name. An esub command can be used to ensure that only valid
projects are entered, and that the user is authorized to charge to that project.
For example, the following Bourne shell esub command validates the job-submission parameters.

#!/bin/sh
. $LSB_SUB_PARM_FILE

redirect stdout to stderr so that echo can be used for
error messages
exec 1>&2

check valid projects
if [“$LSB_SUB_PROJECT_NAME” != "proj1" -a
“$LSB_SUB_PROJECT_NAME” != "proj2"];
then
 echo "Incorrect project name specified."
 exit $LSB_SUB_ABORT_VALUE
fi

if [“$LSB_SUB_PROJECT_NAME” = "proj1"];
then
 # only user1 and user2 can charge to proj1
 if [“$USER” != "user1" -a “$USER” != "user2"];
 then
 echo "You are not allowed to charge to this project."
 exit $LSB_SUB_ABORT_VALUE
 fi
fi

Modifying Job-Submission Parameters
An esub command can be used to modify the job-submission parameters and the job
environment variables before the job is actually submitted. The next example writes modifications
to LSB_SUB_MODIFY_FILE for the parameters LSB_SUB_QUEUE and SHELL.

In this example, user “userA“ can submit jobs only to the queue “queueA”; user “userB” must
use Bourne shell (/bin/sh); and user “userC” has no authority to submit a job.

#!/bin/sh
. $LSB_SUB_PARM_FILE

redirect stderr to stdout so echo can be used
for error messages
exec 1>&2
#Note: In this example, queueA must exist or be added to the
lsb.queue file.

ensure userA is using the correct queue, that is, queueA
if [“$USER” = "userA" -a “$LSB_SUB_QUEUE” != "queueA"];
then
 echo "UserA has submitted a job to an incorrect queue."
 echo "...submitting to queueA"
 echo 'LSB_SUB_QUEUE = "queueA"' > $LSB_SUB_MODIFY_FILE
fi

ensure userB is using the correct shell (/bin/sh)
if [“$USER” = "userB" -a “$SHELL” != "/bin/sh"];
then

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

8

 echo "UserB has submitted a job using $SHELL."
 echo "...using /bin/sh instead"
 echo 'SHELL = "/bin/sh"' > $LSB_SUB_MODIFY_ENVFILE
fi

deny userC the ability to submit a job
if [“$USER” = "userC"];
then
 echo "You are not permitted to submit a job."
 exit $LSB_SUB_ABORT_VALUE
fi

Examples

Example 1 Setting the Priority of Jobs Based on the User

In this example, the jobs in the work environment are given different priorities based on the user
who initiates the job. User1 and user2 have the same level of priority. User3 and user4 have the
same level of priority, but their level of priority is higher than that of user1 and user2. User5 has
the highest priority, and this user’s jobs should execute before any other jobs. No other users
should be allowed to execute jobs on the cluster.
Step 1. Define three queues that have different priorities.

In your cluster's lsb.queues file (defined in $LSB_CONFDIR/<cluster_name>/configdir),2 set up
three distinct queues. Define a different level of priority for each queue. For example:

Begin Queue
QUEUE_NAME = highpriority
PRIORITY = 40
DESCRIPTION = for high priority users
End Queue

Begin Queue
QUEUE_NAME = medpriority
PRIORITY = 30
DESCRIPTION = for medium priority users
End Queue

Begin Queue
QUEUE_NAME = lowpriority
PRIORITY = 20
DESCRIPTION = for low priority users
End Queue

Remember to reconfigure your cluster after making these changes (badmin reconfig).
Step 2. Define an esub command to change to the appropriate queue based on the user.
Place the esub command in your $LSF_SERVERDIR.1

#!/bin/sh

source in the parameter file so that they can be treated as
environment variables
. $LSB_SUB_PARM_FILE

2 LSB_CONFDIR is the directory that contains all the batch configuration files (such as details about the
hosts, queues, and batch parameters in your cluster). Usually, this directory is located in
“<LSF_TOP>/conf/lsbatch” where <LSF_TOP> is the location of your Platform LSF installation.

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

9

redirect stdout to stderr so echo can be used for error
messages
exec 1>&2

 if [“$USER” = "user1" -o “$USER” = "user2"];
 then
 # "user1" and "user2" jobs run on the low priority queue
 if ["$LSB_SUB_QUEUE" != "lowpriority"];
 then
 # let the user know the queue has been changed
 echo "Changing from queue <$LSB_SUB_QUEUE> to
 <lowpriority>."
 echo 'LSB_SUB_QUEUE = "lowpriority"' >
 $LSB_SUB_MODIFY_FILE
 fi

elif [“$USER” = "user3" -o “$USER” = "user4"];
then
 # "user3" and "user4" jobs run on the medium priority queue
 if ["$LSB_SUB_QUEUE" != "medpriority"];
 then
 # let the user know the queue has been changed
 echo "Changing from queue <$LSB_SUB_QUEUE> to
 <medpriority>."
 echo 'LSB_SUB_QUEUE = "medpriority"' >
 $LSB_SUB_MODIFY_FILE
 fi

elif [“$USER” = "user5"];
then
 # "user5" jobs run on the high priority queue
 if ["$LSB_SUB_QUEUE" != "highpriority"];
 then
 # let the user know the queue has been changed
 echo "Changing from queue <$LSB_SUB_QUEUE> to
 <highpriority>."
 echo 'LSB_SUB_QUEUE = "highpriority"' >
 $LSB_SUB_MODIFY_FILE
 fi

 else
 # unknown user. reject job for this reason
 echo "Unknown user $USER."
 exit $LSB_SUB_ABORT_VALUE
fi

Example 2 Implementing a dev/test/prod Environment

Usually, users develop, test, and then run their flows in production. Therefore, three different
environments must be supported: development, testing, and production. For example, at the
development stage, only host1 should be used. For the testing and production stages, host2,
host3, and host4 may be used, but jobs that run in the production stage should always have
higher priority. Because users progress at their own pace, it’s up to the user to specify what stage
they are at.

Step 1. Define three different queues to support the different stages.

In your cluster's lsb.queues file (defined in $LSB_CONFDIR/<cluster_name>/configdir)2, you must
set up

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

10

1. three queues: "dev", "test", "prod"

2. the hosts for each queue as described above

3. the "prod" queue to have a higher priority than the "test" queue

For example:

Begin Queue
QUEUE_NAME = prod
PRIORITY = 35
HOSTS = host2 host3 host4
DESCRIPTION = for production jobs
End Queue

Begin Queue
QUEUE_NAME = test
PRIORITY = 20
HOSTS = host2 host3 host4
DESCRIPTION = for testing jobs
End Queue

Begin Queue
QUEUE_NAME = dev
PRIORITY = 20
HOSTS = host1
DESCRIPTION = for development jobs
End Queue

Remember to reconfigure your cluster after making these changes (badmin reconfig).
Step 2. Define an esub command to detect which stage the user is at and submit the
jobs to the appropriate queue. Use a specific environment variable (for example,
USER_STAGE) with specific stage keywords that map back to the queue names: dev, test, and
prod.

#!/bin/sh

source in the parameter file so that they can be treated as
environment variables
. $LSB_SUB_PARM_FILE

redirect stdout to stderr so echo can be used for error
messages
exec 1>&2

if ["$USER_STAGE" = "dev" -o "$USER_STAGE" = "test" -o
"$USER_STAGE" = "prod"];
then
 # submit the job to the appropriate queue as specified by the
user
 echo "Executing job in the $USER_STAGE environment."
 echo "LSB_SUB_QUEUE = \"$USER_STAGE\" " >
$LSB_SUB_MODIFY_FILE
else
 # stage is not specified or unknown; assume production job
 echo "Executing job in the prod environment."
 echo 'LSB_SUB_QUEUE = "prod"' > $LSB_SUB_MODIFY_FILE
fi

Place the esub command in your $LSF_SERVERDIR.1

Implementing Site Policies for SAS® Scheduling with Platform JobScheduler

11

Step 3: Tell users to change their login scripts to set the USER_STAGE environment
variable to the appropriate stage. For example, if a user's login shell is C shell and the user is
in the development stage, this user should add the line "setenv USER_STAGE dev" to the .cshrc
file.

Note: When Platform JobScheduler submits the batch job to Platform LSF on behalf of a user,
Platform JobScheduler "logs in" as that user (which picks up the user's environment) and then
submits the job. By doing this, the job submission behaves as if the user logged into the Platform
JobScheduler server host and submitted the job to Platform LSF.

Summary

A site policy for scheduled job submission and use of resources varies from enterprise to
enterprise. The person who submits the jobs for scheduling might not be aware of the overall use
of resources and is usually not equipped to determine the start time, the machine, and the
external dependencies on input data. The IT Department is often understaffed and is looking for
ways to automate the workload and reduce manual intervention. Manually scheduling resources
is costly to the enterprise in terms of increased errors and increased workload for the IT staff.
Automation of site policies in scheduling is an integral part of SAS Scheduling with Platform
Computing scheduling services. The examples in this white paper show how to configure
Platform JobScheduler and Platform LSF in a SAS environment to automatically assign the proper
resource to all jobs in a flow submission. The examples and information in this paper can help
you leverage the flexibility of the SAS Scheduling Solution to your specific policies.

World Headquarters
and SAS Americas
SAS Campus Drive
Cary, NC 27513 USA
Tel: (919) 677 8000
Fax: (919) 677 4444
U.S. & Canada sales:
(800) 727 0025

SAS International
PO Box 10 53 40
Neuenheimer Landstr. 28-30
D-69043 Heidelberg, Germany
Tel: (49) 6221 4160
Fax: (49) 6221 474850

www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.
Copyright © 2002, SAS Institute Inc. All rights reserved. 28517US.904

