

Technical Paper

SAS® 360 Match

Request Application Programming Interface

Updated April 6, 2021

i

Contents

Request Application Programming Interface ...1

Web Server Ad Call Directives ..1

Ad Request Responses ...1

Cookies ..2

LSERVER Redirect ..2

Defaults ..2

Error Responses ...2

Ad Tag Parameters ...3

Considerations for Developing an Ad Call ...5

Caching and Cache Busting ...5

Cache-Busting Techniques ..5

Companion Ads ...6

Clash Management ...6

Maximum Request Length ..7

Video Ads ...7

Security Headers ...8

Directive and Tag Aliasing ...8

Cross Origin Resource Sharing ...9

Trusted Domains .. 9

Cross-Domain Applications .. 9

Default Creative Format .. 10

CNAMEs ... 10

Spoofing Geotargeting Data ... 11

Using the POST Directive ... 11

Ad Call Methods ... 12

Building an Ad Call Using Client-Side JavaScript 14

ii

iserver Ad Call ... 14

hserver Ad Call .. 15

jserver Ad Call ... 16

bserver Ad Call .. 17

Building an Ad Call for Email Delivery ... 20

iserver Ad Call ... 20

Building an Ad Call Using Krux PostScribe ... 21

iframe Example .. 21

Counting Directives .. 23

Count .. 23

Adclick ... 24

Mobile .. 25

SDKs .. 25

AMP-Enabled Pages ... 25

Spider Filtering ... 26

Fraud Detection ... 26

Elements of an Ad Request ... 26

Tags .. 26

Directives ... 27

Parameters ... 27

1

Request Application Programming Interface
SAS® 360 Match is a flexible advertising delivery platform able to serve online display, video,
and mobile advertising channels. This Application Programming Interface (API) contains
directives, protocols, and methods for working with and requesting ads with SAS® 360 Match.

Web Server Ad Call Directives
As a special-purpose web server, the SAS® 360 Match ad server responds to HTTP requests
from any client. It uses path information to determine which creative to serve. The method in
this path contains the directive that tells the server how to return the creative, as in the following
example:

http://shortname-ads.aimatch.com/{shortname}/hserver/site=A/size=728x90

There are multiple server directives that you can use to develop ad calls that are appropriate for
your server model. In this case, the directive hserver determines the HTTP content type that
the server returns. In the case of hserver, it is text/html. The jserver directive returns
application/x-javascript.

Ad Request Responses
HTTP requests sent to the request API receive an HTTP 200 OK response, unless otherwise
noted. The following HTTP headers are in the response:

Header Value

Cache-Control no-cache, no-store, max-age=0, must-revalidate
Connection keep-alive
Content-Encoding gzip
Content-Length <varies>
Content-Security-Policy default-src 'self'
Content-Type <varies>
Date <varies>
Expires -1
Pragma no-cache
Server <varies>
Set-Cookie <varies>, Secure, and HttpOnly flags optional.
Strict-Transport-Security max-age=31536000; includeSubDomains
X-Content-Type-Options nosniff
X-XSS-Protection 1; mode=block

Note: The Content-Type header value is dependent on the ad request method and, when
using the TSERVER directive, the MIME type specified for the creative format.

If the request is a CORS (cross-origin resource sharing) type, CORS headers are sent in
response:

Header Value

Access-Control-Allow-Credentials true

2

Access-Control-Allow-Headers X-Requested-With, origin, content-type, accept, accept-encoding, accept-
language, cache-control, dnt

Access-Control-Allow-Methods GET, OPTIONS
Access-Control-Allow-Origin <varies>
Access-Control-Max-Age 600

Cookies

Each request sent to SAS® 360 Match is checked for a MID cookie. The MID cookie uniquely
identifies each visitor and establishes a visitor session that many ad-serving features rely on.
The MID cookie can be renamed.

The MID cookie supports HttpOnly and Secure flags. Contact SAS Technical Support at
support@sas.com to configure the cookie, rename the cookie, or enable the flags.

Cookie exchange can be disabled. See the section on Disabling Cookies in the Advanced
Features Guide at http://support.sas.com/documentation/prod-p/iap/default/en/PDF/
Advanced_Features_SASIA.pdf.

LSERVER Redirect

If an ad request does not contain a MID cookie in the HTTP headers, the response is a 302
Redirect to the initial request URL, except when lserver is prepended to the directive (for
example, lserver/hserver). The 302 Redirect response includes a Set-Cookie header with
the MID cookie defined. If the visitor responds to the LSERVER request with the MID cookie, no
future redirects are done. If the visitor does not respond with the MID cookie, the next ad
request follows the same pattern by redirecting to LSERVER. In both situations, ads are
returned as normal.

If any other type of request does not contain a MID cookie in the HTTP headers, the response
contains a Set-Cookie header with the MID cookie, but no redirect is done.

Defaults

An engine default, or simply default, is a standard response provided by the server when it
does not find a matching flight creative to serve after evaluating the ad queue. A default
consists of an HTTP 200 OK response with the following in the response body:

<a href="http://shortname-ads.aimatch.com/shortname/adclick/FCID=-4/<targeting
path info>" target="_top"><img src="http://content.aimatch.com/default.gif" alt=""
border="0" >

Defaults are indicated by an FCID value of “-4” in the response.

Contact SAS Technical Support to customize the URLs for the anchor HREF value and image
source.

Error Responses

Here are some common error responses and their definitions:

• 404 Invalid Job ID when the specified job ID does not exist.

mailto:support@sas.com
http://support.sas.com/documentation/prod-p/iap/default/en/PDF/Advanced_Features_SASIA.pdf
http://support.sas.com/documentation/prod-p/iap/default/en/PDF/Advanced_Features_SASIA.pdf

3

• 408 Request Timeout when the engine fails to respond in time to a request.

• 429 Too Many Requests when the server receives too many requests from a visitor.
The response is sent until the condition subsides.

• 500 Internal Server Error when there is an uncategorized error.

Ad Tag Parameters
The following ad tag parameters enable you to change simple functionality without revising your
creatives. Note that ad tag parameters are not case sensitive (for example, /AREA=4 is the
same as /area=4).

The following ad call parameters are key-value pairs that the engine uses to select ads:

area

passes in the area value for targeting.

custom tag name

can be included in your ad calls for logging or targeting if you have created custom tags and
associated values. Pass in the exact tag name and value. For example, if you have designated
a tag called "position" that has three values (top, middle and bottom), the ad tag might contain
/position=top/.

duration

specifies the maximum time duration, in seconds, to be filled with multiple ads in a dserver ad
request.

keyword

specifies one or more keywords used in targeting. Separate multiple keywords with a space or
comma.

latitude and longitude

specifies the latitude and longitude, in degrees, for proximity targeting.

The latitude and longitude geographic lookup can update the location information for a visitor
and replace geo tags such as GEO_CITY, GEO_COUNTRY, GEO_METRO_CODE, and
GEO_REGION based on the latitude and longitude of the visitor. This feature is disabled by
default. Contact SAS Technical Support to enable the latitude and longitude geo lookup feature.

The visitor’s IP address establishes an initial value for geo tags when the session starts.
Subsequent ad calls that specify latitude and longitude coordinates,
/LATITUDE=X/LONGITUDE=Y, can change the geo tag values. The value for
GEO_ZIP_CODE_TEXT does not change because that data is not associated with a
geographic location.

4

When latitude and longitude geo lookup is enabled, an ad call that contains the latitude and
longitude coordinates does the following:

• If the coordinate is less than the default distance of 1 km from the previous coordinate
used for lookup, no lookup is done. Contact SAS Technical Support to change the
default distance.

• If the distance from the previous lookup is large enough or if no previous lookup has
occurred, the lookup happens.

• The lookup finds geographic data with the coordinate that is closest to the coordinate in
the ad call.

• If the distance from the data point’s coordinate is farther than the default distance of 50
km, the data is not used and the lookup has no effect. This likely indicates the data is
insufficient in that area. Contact SAS Technical Support to change the default distance.

• If the distance is short enough, the GEO_CITY, GEO_COUNTRY,
GEO_METRO_CODE, and GEO_REGION values for that data point override whatever
values are held with the visitor already.

• These geo tags become the new values for the visitor for the session. They take the
place of the previously known values until another coordinate is introduced. Subsequent
ad calls do not need to include coordinates if the geo tags do not change. Ad calls
continue to use the geo tags produced by the previous coordinate lookup.

nocompanion

prevents selection of a companion flight during an ad call. The tag can occur anywhere in the
URL after the ad call method directive, such as hserver or bserver, and must be surrounded by
forward slashes (/). For example,

http://serve.adserver.com/client/hserver/site=X/area=1/size=300x250/NOCOMPANION/

Ad calls on a page should contain the /NOCOMPANION/ tag if a flight with a loose policy
setting can deliver to the page and if the desired behavior is to prevent companion ads from
delivering to any ad calls on the page. If the /NOCOMPANION/ tag is present in the first ad call
on a page, a flight with a strict policy will not deliver to any ad calls on the page. The term page
refers to a sequential set of ad calls with the same view ID.

pbfcid

used in passbacks.

random

prevents the caching of creatives, especially to third-party servers.

saspb

used in passbacks.

5

shortname

a unique string used to identify each SAS® 360 Match customer. The specific shortname
value to be used for your implementation of the SAS® 360 Match ad tag is provided by the SAS
Implementation Manager.

site

specifies an available site value for targeting. Ads can respond to a call that contains the
specified site name if they have been targeted to that site or if there is no site value specified.

size

specifies an available ad size value for targeting. Separate multiple sizes in an ad call with a
comma. For example, size=300x250,160x600 means that ads with the size of either 300x250
or 160x600 can serve to the ad call.

viewid

notifies the system about which ad requests belong together.

Considerations for Developing an Ad Call
Choosing the best ad call for your situation depends on the targeting schema that you have
created, the nature of your web pages, and the creative you are serving to the pages. Carefully
consider these factors before choosing an ad call:

Caching and Cache Busting

Web browsers often save a local copy of files that they have requested and displayed to display
them more quickly the next time it is requested. The saved version is used instead of re-
requesting the file from its server. Some internet service providers (ISPs), network proxy
servers, or other network components might use the same process. The process is known as
caching and it is normally a positive enhancement to the web-browsing experience.

When an online advertisement is cached and then viewed, the ad server is not able to count the
impression. To prevent this problem, each instance of a given ad call should contain a unique
random number. The unique number causes the browser or proxy server to see it as a unique
object and therefore make a fresh request for it from the ad server. The result is proper
impression counts and revenue allocation. This process is known as cache busting, and there
are several ways to effectively implement it. It is very important that cache-busting techniques
be used properly.

Cache-Busting Techniques

SAS® 360 Match uses a specific ad call parameter designed to receive the random cache-
busting number (/random=), although any unique variation in the ad-tag string can provide
effective cache busting. The advantage of using the /random= parameter is that it can be
referenced in several ways by objects that are downstream from the ad request.

The parameter can be used to provide cache busting within the source code of rich media or
third-party advertisements without a separate, unique-number generation process. The random

6

number can be generated by a server-side process and dynamically inserted into the ad call, or
it can be generated using a client-side script that generates the entire ad call dynamically.
Caching can lead to major discrepancies between SAS® 360 Match counts and those of third-
party ad servers or site publishers.

The parameter prevents the caching of creatives, especially to third-party servers. You can
prevent caching to maximize impression counts (rather than using a cached version of the ad
from the browser or a proxy server). Any value passed in with the random ad call parameter is
also used to populate the %%RANDOM%% token within ads that contain it.

Each ad call on a page should have a unique random value. If two or more ad calls on the page
have the same targeting values and random values, the first ad delivered for rendering could be
cached in the other ad call positions. In addition, the random value should be a different value
for each page or page refresh. This is typically done dynamically using JavaScript. For
example:

http://shortname-ads.aimatch.com/{shortname}/hserver/site=x/area=y/size=728x90
/pos=top/random=345678/

Companion Ads

The /viewid= tag is required if you are going to use companion ads (also called roadblock
ads). The viewid parameter notifies the system which ad requests belong together. Using the
same viewid value in a set of ad calls enables the system to treat the set of ad calls as a
single page. The number specified as the viewid must be the same for each ad call in a group,
which identifies a set of ad calls as existing on one page of a website. Also, the number must
be unique to that service of the group (or page). This is typically accomplished dynamically,
using JavaScript.

Specify viewid if you want to use tier settings to suppress duplicate flights or advertisers
appearing on the same page. You can also use viewid if you want to suppress delivery of
creatives from different advertisers appearing on the same page (according to their defined
categories). For example:

http://shortname-ads.aimatch.com/{shortname}/hserver/site=x/area=y/viewid=
438943894343/size=728x90/pos=top/

Clash Management

You can communicate ad category clashes with a third party and gather data about categories
the third party is providing in fulfilling ad breaks.

When an ad call includes EXCLUDE=category ID,category ID,category ID..., any flight
having any of the specified categories is excluded from consideration during the call. A viewid
is not necessary. If a viewid is present, the normal advertiser-based exclusions that might
already be present on the page are still applied, and the explicit list supplements them. The
EXCLUDE categories are applied only in the ad call in which they appear; they do not
automatically carry over to later ad calls.

Using EXCLUDEP=category ID,category ID,category ID... allows exclusions to occur in
the ad call in which it appears, as well as carry over into all subsequent calls with the same
viewid. This exclusion happens even when those subsequent calls do not include the EXCLUDE

7

or EXCLUDEP tags. When an ad call containing EXCLUDEP is received with no viewid, it behaves
like the EXCLUDE token and affects only the ad call in which it appears.

When the exclusion tokens setting is enabled, the token %%EXCLUSIONS%% is available for
substitution in creative content. The EXCLUSIONS token produces a comma-delimited list of
category IDs that have served the viewid in the ad call. The list includes any categories
associated with the flight served by that call and any EXCLUDE categories that are expressed in
the call. If no viewid is in the call, the %%EXCLUSIONS%% token contains only the EXCLUDE
categories that are expressed in the call. Contact SAS Technical Support to enable this setting.

SAS® 360 Match currently allows entry of categories containing commas, spaces, and other
punctuation. However, categories containing spaces cannot be expressed in the EXCLUDE
values, nor are they distinguishable when appearing in the EXCLUSIONS token values.

Maximum Request Length

The maximum size of a request is 32767 bytes. Anything longer is truncated. There are no
additional limits on the path info, query string, or header portions of the ad call.

Video Ads

Ad call methods can be used to call VAST ads. Determine the VAST-compliant video player
that you are using to make the ad request.

When you serve VAST video ads directly from SAS® 360 Match, use the following VAST
creative format:

VAST version="2.0">
 <Ad id="aiMatchdirect_%%FCID%%_%%X_AD_SYSTEM%%">
 <InLine>
 <AdSystem>%%X_AD_SYSTEM%%</AdSystem>
 <AdTitle>%%X_AD_TITLE%%</AdTitle>
 <Description>%%X_AD_DESCRIPTION%%</Description>
 <Impression id="aimatch">
 <![CDATA[%%BEACONURL%%]]>
 </Impression>
 <Creatives>
 <Creative>
 <Linear>
 <Duration>%%X_DURATION%%</Duration>
 <TrackingEvents>
 <Tracking event="AdComplete">
 <![CDATA[]]>
 </Tracking>
 </TrackingEvents>
 <MediaFiles>

<MediaFile delivery="progressive" bitrate="500"
width="%%X_WIDTH%%" height="%%X_HEIGHT%%" type="%%X_VIDEO_TYPE%%">

 <![CDATA[%%MEDIA%%]]>
 </MediaFile>
 </MediaFiles>
 </Linear>
 </Creative>
 </Creatives>
 </InLine>
 </Ad>
</VAST>

8

The following data fields are available in the creative format: AD_SYSTEM, AD_TITLE,
AD_DESCRIPTION, ERROR_URL, DURATION, and VIDEO_TYPE, which is a required field.
Possible values for VIDEO_TYPE are video/x-flv or video/mp4.

The MIME type for this creative format is application/xml.

When you serve third-party video ads, use the following VAST wrapper creative format:

<VAST version="2.0">
 <Ad id="aiMatchwrapper_%%FCID%%_%%X_AD_SYSTEM%%">
 <Wrapper>
 <AdSystem>%%X_AD_SYSTEM%%</AdSystem>
 <VASTAdTagURI>
 <![CDATA[%%X_AD_URL%%]]>
 </VASTAdTagURI>
 <Impression>
 <![CDATA[%%BEACONURL%%]]>
 </Impression>
 <Creatives>
 <Creative AdID="%%FCID%%_aiMatch_creative_id">
 <Linear>
 <TrackingEvents>
 <Tracking event="AdComplete">
 <![CDATA[]]>
 </Tracking>
 </TrackingEvents>
 </Linear>
 </Creative>
 </Creatives>
 </Wrapper>
 </Ad>
</VAST>

The following data fields are available in the creative format:

• AD_SYSTEM: Define the advertiser or third-party system that the wrapper is pointing to.

• AD_URL: Specify the URL for the third-party VAST ad.

The MIME type for this creative format is application/xml.

Security Headers

If you need additional XSS or other security headers, you can have HTTP response headers
set for every response from the ad server. The setting tells SAS® 360 Match which file to
include for headers. The file can contain template variables that are substituted just as they are
for template creatives or creative formats. Some headers might prevent inclusion of content
served from SAS® 360 Match on third-party websites. Contact Technical Support at
support@sas.com for more information.

Directive and Tag Aliasing

Engine directives and tag names can be aliased to maintain URL consistency or to circumvent
ad-blocking software. Any engine directive and tag name can be aliased and be assigned
multiple aliases.

mailto:support@sas.com

9

Assigning multiple aliases allows for migration to new aliases over time without requiring all ad
requests to adopt the new alias immediately.

For example, the HSERVER directive could be assigned an alias of HTML. A request using this
alias might look like this:

When an alias is defined, directives or tag names in responses from SAS® 360 Match will
include aliases. For example, if the tag SITE is assigned an alias of SECTION and the directive
ADCLICK is assigned an alias of CLICKED, the request might look like this:

<iframe src="https://shortname-ads.aimatch.com/{shortname}/HSERVER/
SECTION=x/area=y/size=728x90/pos=top/random=345678"></iframe>

The response would include:

<a href="https://shortname-ads.aimatch.com/{shortname}/CLICKED/SECTION=x/area=y/
size=728x90/pos=top/random=345678">

Aliases are confined to requests and responses from SAS® 360 Match. Reporting data, targets,
tokens, and supertag definitions still use the names that are not aliased.

To enable aliasing, contact SAS Technical Support.

Cross Origin Resource Sharing

Cross Origin Resource Sharing (CORS) policies define how a website controls reading
responses or data access requests from other websites.

Trusted Domains

To protect against malicious attacks from external sources, websites should grant access only
to trusted domains. The list of allowed external domains should be carefully selected and
revalidated regularly to prevent unauthorized data access via third-party security breaches.

You can define a list of acceptable origin header values that enable CORS headers to be
included in the response. This list should consist of domain names only, without the http://
or https:// prefixes. CORS headers are added only to requests with an Origin header
matching one defined in the list. Contact SAS Technical support to configure this option.

Cross-Domain Applications

A CORS cross-domain policy allows a user to control whether a web client can handle data
across domains. For more information, see https://www.adobe.com/devnet/adobe-media-
server/articles/cross-domain-xml-for-streaming.html.

You can customize the body of the crossdomain.xml response by defining a custom creative
format in the SAS® 360 Match user interface. The format must be named crossdomain-xml,
with a hyphen instead of a period in the name. The content is entered either by as text or
uploaded in a file. The MIME type must be application/xml.

https://shortname-ads.aimatch.com/{shortname}/HTML/site=x/area=y/size=728x90/
pos=top/random=345678

https://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-xml-for-streaming.html
https://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-xml-for-streaming.html

10

When a call is made to SAS® 360 Match to fetch crossdomain.xml, and the customer has
created a crossdomain-xml format, the text of that format is returned as the response.

If the customer has not defined a crossdomain-xml format, then the standard crossdomain.xml
is returned, which is:

<cross-domain-policy>
<allow-access-from domain="*" to-ports="*" />
</cross-domain-policy>

Default Creative Format

Use the DEFAULT=anydefaultname tag to specify a default creative format to serve if an ad
engine times out, where anydefaultname is the name for your default creative format. When
an ad request includes this tag in the targeting path information and the ad engine takes too
long to respond, the creative format named anydefaultname is selected to serve.

If the anydefaultname creative format is found, its content is returned as the response. If
anydefaultname is not found, the ad server looks for a format named default. If the
default creative format found, its content is returned. If default is not found, the default
pixel is returned.

Define the default creative format with content that is appropriate for its context. For example, if
the caller expects XML, the default creative format should contain XML. You can also include
beacon calls to SAS® 360 Match to record when the default creative format is served and add
the ability to handle clicks on the default content.

Different default creative formats can be defined with different sizes, depending on the context
of the page in which they might appear. Ensure that there is a unique default creative format
defined for each of these cases and reference the appropriate format name as the value for the
DEFAULT tag.

NOTE: You can use any name in place of anydefaultname for your default creative format.
However, you must use the name default for the creative format that SAS® 360 Match serves
if your named format is not found or if no DEFAULT tag is in the ad call.

CNAMEs

Customers can obscure third-party requests like ad requests on their websites to make the
content appear to originate from their domain. Canonical name, or CNAME, records allow a
customer to use their first-party domain, such as ads.customer.com, for their ad request domain
instead of the default sas.com domain.

A CNAME is a type of DNS record that maps, or aliases, one domain name to another.
CNAMEs can also be used to circumvent ad blocking and privacy protection tools.

CNAMEs are supported for the ad request domain and the content distribution network, or
CDN, domain. The default ad request domain is shortname-ads.aimatch.com, and the default
CDN domain is content.aimatch.com.

When using a CNAME for the ad request domain, Amazon issues and manages a TLS
certificate for the CNAME. For CDN CNAMEs, the CNAME is added to an Akamai SAN
(Subject Alternative Name) TLS certificate.

11

To begin using CNAMEs, contact SAS Technical Support.

Spoofing Geotargeting Data

You can spoof geotargeting data using various parameters in an ad call. These parameters
override certain values that are passed in via the HTTP request header, such as the IP address
and cookie value. The parameters can be used to spoof geographic locations other than the
actual location of the visitor, as determined by a lookup of the IP address to resolve its
geographic location.

In the table below, the left column lists the geotargeting items. The middle column lists the tag
name to use in SAS® 360 Match and in the ad call when you spoof geotargeting. Some
targeting items, such as metro codes, are shown as codes rather than strings in the SAS® 360
Match target builder. Links to files that map codes to the values that they represent are in the
third column.

Targeting Item Targeting and Ad Call Tag Designated Code

City geo_city City codes
Metro code (for U.S., Great Britain, and France only) geo_metro_code Metro codes
Country geo_country Country codes
Region (state or province) geo_region Region codes
IP address geo_ip
Postal code (ZIP code) geo_zip_code_text
Connection speed geo_conn_speed

The geotargeting lookup for a visitor’s IP address occurs on a visitor’s first request and remains
in the system memory for the duration of the session. Therefore, delivery and troubleshooting
can go awry if a visitor makes an initial ad request from their actual geographic location and
then spoofs geotargeting tags during the same session. This change causes misleading results
because SAS® 360 Match uses the geotargeting data from the initial request, not from the
subsequent spoofing requests. To avoid this, you can add a unique cookie value for each
request, thus guaranteeing a new session each time. The default cookie name in SAS® 360
Match is mid. Use the appropriate cookie name for your ad server domain if it is something
other than the default.

In this example, a flight exists with a target of state=AZ for Arizona and the trafficker’s IP
address resolves to New York. To confirm that visitors from Arizona are receiving the flight, the
trafficker would spoof their location. The troubleshooting ad call would look something like this:

http://view.adserver.com/clientid/hserver/size=300x250/mid={some-
number}/geo_region=AZ

In the ad call above, {some-number} is a different value each time.

In SAS® 360 Match, you can configure these tags in Targeting > Targets and in Traffic >
Debug Ad Request.

Using the POST Directive

You can use the POST directive to communicate with the ad API. This mechanism enables
BSERVER and SETSV calls to include more information than can be contained in a URL, which
is limited to 2,000 characters.

https://support.sas.com/kb/53/addl/fusion_53604_1_geo_city_codes.zip
https://support.sas.com/kb/53/addl/fusion_53339_1_geo_metro_codes.csv
https://support.sas.com/kb/53/addl/fusion_53309_1_geo_country_codes.csv
https://support.sas.com/kb/53/addl/fusion_53305_2_region_codes_jan_18_2019.csv

12

The POST body must be in JSON format. Any type of request can be issued using POST. If an
element named path_info is found, it is extracted and appended to the path information in the
URL, automatically adding a slash between them if needed.

The resulting combined path information is used in the same way as the path information data
that is in the URL. Therefore, any type of request is supported.

For example, a POST to https://shortname-ads.aimatch.com/tenant/hserver/mid=1234 with
{"path_info": "site=abc/area=xyz"} is treated like a GET from https://shortname-
ads.aimatch.com/tenant/hserver/mid=1234/site=abc/area=xyz.

The POST data can include the entire path information, including tenant and type of ad call. For
example, a POST to https://shortname-ads.aimatch.com with {"path_info":
"tenant/hserver/mid=1234/site=abc/area=xyz"} provides the same results as the
example above.

Any query string in the URL is unchanged while the path information is combined with POST
data. For example, a POST to https://shortname-ads.aimatch.com?search=dog&result=10 with
{"path_info": "tenant/hserver/mid=1234/site=abc/area=xyz"} generates
https://shortname-
ads.aimatch.com/tenant/hserver/mid=1234/site=abc/area=xyz?search=dog&result=10.

There is one important difference between POST calls and GET calls. When a GET call arrives
without a MID cookie, Match redirects the call to itself with LSERVER as the directive and
attempts to set a new MID cookie to establish the visitor’s identity. POST calls cannot do this.

Therefore, make POST calls only when the value of the MID cookie (or other appropriate ID
that has been configured for visitor identity) is included explicitly in either the call’s URL or
POST data. Without such an identifier, the request is processed using a phantom MID value.

Ad Call Methods
iserver

returns a 302 RELOCATE response and the image source URL. This call is designed to be
served to the tag. For example, you could insert the iserver URL into the src
attribute of the tag. For example:

<img src="http://shortname-
ads.aimatch.com/{shortname}/iserver/site=x/area=y/viewid=438943/random=948576789/s
ize=728x90" width=728 height=90 border=0>

hserver

returns the text source of a creative with the tokens replaced as defined in SAS® 360 Match.
This call is designed to be served to the SRC attribute of the <iframe> tag. For example:

<iframe src="http://shortname-
ads.aimatch.com/{shortname}/hserver/site=x/area=y/viewid=438943/random=1827473656/
size=728x90">

13

jserver

returns JavaScript that dynamically writes the advertisement into the web page that called it.
This call is designed to be served to the SRC attribute of the <script> tag. For example:

<script src="http://shortname-ads.aimatch.com/{shortname}/jserver/site=x/area=y/
viewid=438943/random=102958674/size=728x90">

bserver

is a special-purpose ad call that returns a bundle of advertisements with a single call. The
system parses out the ad call parameters for each ad in the bundle, and then returns
JavaScript code that contains the HTML code necessary for all the ads. This code presents the
ads as a group of numbered JavaScript variable strings. For example:

<script src="http://shortname-ads.aimatch.com/{shortname}/bserver/ball/site=x/
area=y/viewid=43892143/random=09874756/b1/size=728x90/b2/size=728x90">

A bserverj ad request directive operates similarly to a bserver call except that it returns a
JSON array of creatives in the response.

dserver

requests zero or more ads whose combined duration is less than or equal to the value specified
in the DURATION tag. As with other directives involving the DURATION tag, only creatives
having their duration field set are eligible for serving. To fulfill serving this directive, the Engine
internally makes a series of ad selections. Each of the selections starts at the top of the ad
queue. Tier and flight settings operate as usual on every selection. After each selection, it
reduces the remaining duration by the duration value of the creative just selected and makes
another selection attempt. The series of selections ends when a default ad is selected. The
default is not returned in the response.

SAS® 360 Match uses the same tags passed in with the ad call on every selection. One
additional tag (ADPOS) is synthesized on each selection and its value varies with the order of
the selection. The first selection is made with ADPOS=01, the second with ADPOS=LAST, and
the remaining ones with ADPOS=02, 03, 04, and so on. In this way, ads can be targeted to
specified selection positions. Because SAS® 360 Match cannot know ahead of time how many
ads will be selected, it forces the second selection to be tagged as LAST, which then allows for
targeting this special position.

The system does not presently create the ADPOS tag itself or its values, so they are not
available in the user interface. If you want to use ADPOS, you must manually create it in the
user interface with the values of 01, 02, and so on, and LAST, to match the values
synthesized by SAS® 360 Match.

A viewid must be specified if certain ad selection features are desired, such as competitive
exclusion, eliminate duplicates, companion ads, and so on, as usual. That is, no viewid is
synthesized automatically for the request bundle.

The response consists of a simple concatenation of all creatives. The second ad selected
(tagged as LAST) is forced to be at the end of the response. The MIME type provided is that of
the first creative. If no ads are selected, the response body is empty. No default is returned.
tserver

14

returns the text source of a creative with the tokens replaced as defined in SAS® 360 Match.
The MIME type of the ad response is defined by the creative format. This call is most often
used with video players when serving VAST XML content. For example:

http://crtl.aimatch.com/{shortname}/tserver/site=x/area=y/viewid=438943/random=390
583034/size=728x90

Building an Ad Call Using Client-Side JavaScript
Because modern browsers ordinarily parse JavaScript, you can create dynamic ad calls on the
page for each of the methods described in the Ad Call Methods section above. All examples
here are shown using client-side JavaScript to build the ad call dynamically. Comparable ad
calls can be created using server-side dynamic solutions such as ASP, ColdFusion, PHP, and
so on.

iserver Ad Call

The iserver ad call method is used to return a 302 RELOCATE response and a relocation URL
to an element on the page. This ad call is often used in email newsletters as most
email readers do not accept the hserver | jserver | bserver methods.

Strengths

• Simplicity

• Enables ad delivery into email newsletters

Weaknesses
• Does not support rich media creatives; supports static image creatives only.
• Does not allow the insertion of a unique identification number for the creative, or FCID.

The FCID positively correlates clicks into the URL at any time after the
creative has been served. Omitting an FCID can result in incorrect click-throughs. Email
newsletter content management systems typically allow the use of variable tokens such
that a unique mid value can be placed in the and URLs.

Example

Notes:

• Replace {path to your ad server} with the correct ad server domain URL, including
your specific {clientid} value.

• Replace {ad call targeting} with the correct targeting parameters for each ad
instance.

• Replace the width= and height= values with the correct sizes.

<img
src="http://{path to your ad server}/iserver/{ad call targeting}" width={width}
height={height} border=0>

15

Email Example

Notes:

• To avoid encoding issues with some email readers, insert the targeting values in the
query string using an ampersand (&) as the delimiter between each key=value pair.

• The publisher’s content management system that generates the email needs to
generate two sets of values for SAS® 360 Match to accurately pair the ad image with the
click-through. These values are mid={value} and pid={value}.

• For multiple ad calls in each newsletter, the mid value should remain the same for all ad
calls, and the pid value should be unique for each set of <a href> and
tags.

<a href="http://{path to your ad server}/adclick?site=x&area=y&size=728x90
&mid=1234&pid=5678"><img src="http://{path to your ad server}/iserver?
site=x&area=y&size=728x90&mid=1234&pid=5678" width={width} height={height}
border=0>

hserver Ad Call

The hserver ad call method is used to return content to an <iframe src> element on the page.
The iframe is defined in the parent document but is configured to reference SAS® 360 Match
(with the appropriate ad call parameters) for its content. The system returns the advertisement
as a complete document.

Strengths

• Enables the insertion of rich media (file-based advertisements).

• Not likely to delay the rendering of the page content because modern browsers usually
render iframes asynchronously.

• Enables the insertion of a unique identification number (FCID) that positively correlates
clicks at any time after the creative has been served. There is no expiration on click
functionality.

• Supports all creatives that can function in the browser.

Weaknesses

• Does not support creatives that resize themselves or modify their position on the page
without additional coding on the page.

• Can cause issues with creative that are designed to open in the parent page and not as
a new document.

Example

Notes:

16

• Replace {path to your ad server} with the correct ad server domain URL, including
your specific {clientid} value.

• Replace {ad call targeting} with the correct targeting parameters for each ad
instance.

• Replace the iframe width= and height= values with the correct sizes.

• If you are using Minify JavaScript remove all HTML comments beginning with <!—.

<script type="text/javascript" language="JavaScript">
<!-- Hide from old browsers
// Modify to reflect site specifics
ad server = "http://{path to your ad server}";
target = "/{ad call targeting}";

// Cache-busting and view ID values
random = Math.round(Math.random() * 100000000);
if (!pageNum) var pageNum = Math.round(Math.random() * 100000000);

document.write('<iframe src="'+ad server+'/hserver/random='+random + target +
'/viewid=' + pageNum + '"');
document.write(' noresize scrolling=no hspace=0 vspace=0 frameborder=0
marginheight=0 marginwidth=0 width ={width} height={height}
allowTransparency="true">');
document.write('</iframe>');
// End Hide -->
</script>

jserver Ad Call

The jserver ad call method is used to return content to a <script src> element on the page.
The <script src> ad call with is made and the system returns the selected ad wrapped in
JavaScript, which is then written dynamically into the page and parsed.

Strengths

• Enables the insertion of rich media (file-based advertisements).

• Enables the insertion of a unique identification number (FCID) that positively correlates
clicks at any time after the creative has been served. There is no expiration on click
functionality.

• Supports all creatives that can function in the browser.

Weaknesses

• JavaScript could delay the rendering of the rest of the content if the response of the ad
server is degraded. See Building an Ad Call Using Krux PostScribe for more
information.

• Poorly written or malformed advertisements might interfere with or (in extreme cases)
break page content.

17

Example

Notes:

• Replace {path to your ad server} with the correct ad server domain URL, including
your specific {clientid} value.

• Replace {ad call targeting} with the correct targeting parameters for each ad
instance.

• Replace the iframe width= and height= values with the correct sizes.

• If you are using Minify JavaScript, remove all HTML comments beginning with <!—.

• Creative content URLs that are protocol neutral (meaning that the URL begins with //
rather than http: or https:) do not render because the URL after the // is treated as
a comment by the browser's JavaScript parser. Prefacing // with the %HTTP% token
prepends the ad request URL's protocol, whether it is http: or https: so that the
URL is properly parsed.

• The jserver method wraps each line of code with document.write() or
document.writeln(). If required, this can be suppressed for one or more lines of the
creative's code by wrapping the statements with '<!--Begin JSERVER Skip-->
{code} <!--End JSERVER Skip-->'.

<script type="text/javascript" language="JavaScript">
<!-- Hide from old browsers
// Modify to reflect site specifics
ad server = "http://{path to your ad server}";
target = "/{ad call targeting}";

// Cache-busting and view ID values
random = Math.round(Math.random() * 100000000);
if (!pageNum) var pageNum = Math.round(Math.random() * 100000000);

document.write('<scr'); document.write('ipt src="' + ad server +
'/jserver/random=' + random + target + "/viewid=" + pageNum + '">');
document.write('</scr');
document.write('ipt>');
// End Hide -->
</script>

bserver Ad Call

The bserver ad call is the most efficient ad call. It has the smallest code footprint for multiple ad
calls on a page and requires only one request to the system to get all ad content for the page.
The single request aspect of the ad call also eliminates a race condition that can occur when
multiple ad calls are made from the page simultaneously. A race condition can impair
companion ad serving or sequential ad delivery.

The ad call construction shown below is required on the page only once, although you can use
multiple bserver calls if you want to use multiple viewid values on a single page. The code to
render each ad (also shown below) is inserted at each ad position on the page.

18

By default, bserver ad requests leave comments and newline characters in place so that text-
based creatives appear as they are designed. If you want bserver ad calls to automatically
remove comments and newline characters, contact SAS Technical Support.

Strengths

• Most efficient method of delivering multiple ads to a page.

• Enables the insertion of rich media (file-based advertisements).

• Enables the insertion of a unique identification number (FCID). The FCID positively
correlates clicks at any time after the creative has been served, so there is no expiration
on click functionality.

• Prevents a race condition from occurring.

Weaknesses
• JavaScript could delay the rendering of the rest of the content if the response of the ad

server is degraded. See Building an Ad Call Using Krux PostScribe for more
information.

• Poorly written or malformed advertisement code might interfere with or (in extreme
cases) break page content.

Example

Notes:
• Replace {path to your ad server} with the correct ad server domain URL, including

your specific {clientid} value.
• Replace {ad call targeting} with the correct targeting parameters for each ad

instance.
• If you are using Minify JavaScript, remove all HTML comments that begin with <!—.

• Creative content URLs that are protocol neutral (meaning that the URL begins with //
rather than http: or https:) do not render because the URL after the // is treated as
a comment by the browser's JavaScript parser. Prefacing // with the %HTTP% token
prepends the ad request URL's protocol, whether it is http: or https: so that the
URL is properly parsed.

• Add the adx JavaScript variable and its accompanying /bx/ string for each ad instance
on the page, replacing the x with an incremented number.

• For each adx variable created, add an adx + string in the section of JavaScript, which
builds the script src bserver ad call (shown below).

• Edit the rendering code to replace x with the correct /bx/ value that was referenced in
the ad call.

Note: The initial value of x cannot be zero (0).

• The resulting bserver URL path information (the ad call request itself, not the JavaScript
used to create it) cannot exceed 2048 characters.

19

• /ball/ strings are appended to each /bx/ ad request section of the bserver URL. This
enables you to insert global ad call data into each ad request while defining it only once.

• Typically, this would be used for random and viewed values, but it can also include
targeting tags (for example, if all ad calls on the page use the same SITE and AREA
values). The /ball/ string should appear after bserver in the ad call, but before any
/bx/ strings. If the ad call is not set up correctly, the system will not fail, but it might
include extraneous strings in the ad requests.

• If the number of document.writeln(bx) calls on the page do not match the number of
/bx/ ads defined in the bserver script src call, the impressions are logged, even
though the ads are not rendered. Make sure that the bx() calls match the /bx/ ads
defined in the bserver script src call.

• You can add multiple bserver calls can on a page but do not duplicate /bx/ values
between the calls.

• The /ball/ string contains a /random= value that is appended to each /bx/ ad
request. Therefore, multiple ad requests to the same third-party ad server within the
same bserver ad call contain identical /random= cache-busting values. The identical
values might affect the third-party ad server’s impression counts. One alternative is to
use multiple bserver ad calls on the page.

• The ad call below uses the aimRnd variable value for both the /random= and /viewid=
values.

• Rich media file-based ads should be stripped of all comment strings.

• There are known issues with Google ads when multiple Google ads are served to the
same bserver call. Test the multiple Google ads with the bserver ad call in a test
campaign and test environment before going live.

<head><script language="javascript" type="text/javascript"
><!--
var b1 = "";
var b2 = "";
var b3 = "";
var b4 = "";
//-->
</script>
<head>
<body>
<script type="text/javascript" language="Javascript">
<!-- Hide from old browsers
// Cache-busting and view ID value
var aimRnd = Math.round(Math.random() * 100000000);

// ad server URL
adserver = "http://{path to your ad server}/bserver";

// Ad tag targeting values that will be appended to each ad request section in the
bserver ad call
allAdTags = "/ball/random=" + aimRnd + "/viewid=" + aimRnd;

// Individual tags for each ad request - increment the adx variable name and the
‘/bx/’ parameter.

20

ad1 = "/b1/{ad call targeting}";
ad2 = "/b2/{ad call targeting}";
ad3 = "/b3/{ad call targeting}";
ad4 = "/b4/{ad call targeting}";

// bserver ad call – insert the adx variables
document.write('<scr' + 'ipt src="' + adserver + allAdTags + ad1 + ad2 + ad3 + ad4
+ '?" type="text/JavaScript" language="JavaScript">');
document.write('</scr' + 'ipt>');
// End Hide -->
</script>

At the ad locations, insert the following JavaScript (edit “bx” to reference the appropriate ad by
number):

<script type="text/javascript" language="JavaScript">document.writeln(bx);

Building an Ad Call for Email Delivery
Here is an example of using an iserver ad call method to build an ad call for email delivery.

iserver Ad Call

The iserver ad call method is used to return a 302 RELOCATE response and a relocation URL
to an element on the page. This ad call is often used in email newsletters as most
email readers do not accept the hserver | jserver | bserver methods.

Strengths

• Simplicity

• Enables ad delivery into email newsletters

Weaknesses

• Does not support rich media creatives; supports static image creatives only.

• Does not allow the insertion of a unique identification number for the creative ("FCID").
The FCID positively correlates clicks into the URL at any time after the
creative has been served. Omitting an FCID can result in incorrect click throughs.
Content management systems for email newsletters typically allow the use of variable
tokens so that a unique mid value can be placed in the and
URLs.

Example

Notes:

• Replace {path to your ad server} with the correct ad server domain URL, including
your specific {clientid} value.

21

• Replace {ad call targeting} with the correct targeting parameters for each ad
instance.

• Replace the width= and height= values with the correct sizes.

<img
src="http://{path to your ad server}/iserver/{ad call targeting}" width={width}
height={height} border=0>

Email Example

Notes:

• To avoid encoding issues with some email readers, insert the targeting values in the
query string using an ampersand (&) as the delimiter between each key=value pair.

• The publisher’s content management system that generates the email needs to
generate two sets of values for SAS® 360 Match to accurately pair the ad image with the
click-through. These values are mid={value} and pid={value}.

• For multiple ad calls in each newsletter, the mid value should remain the same for all ad
calls, and the pid value should be unique for each set of <a href> and
tags.

<a href="http://{path to your ad server}/{shortname}/adclick?site=x&area=y&
size=728x90&mid=1234&pid=5678"><img src="http://{path to your ad server}/
{shortname}/iserver?site=x&area=y&size=728x90&mid=1234&pid=5678" width={width}
height={height} border=0>

Building an Ad Call Using Krux PostScribe
Remote scripts, especially ads, can block a page from doing anything else while they load.
They can contribute to load times, which affects your bottom line. Asynchronous ads do not
block the page and can be delivered after core content. However, asynchronous ads might
contain calls to document.write, which expects to be handled synchronously.

PostScribe enables you to deliver a synchronous ad asynchronously without modifying the ad
code. PostScribe uses DOM Proxies, which is a way to ensure that content is written similar to
the way a browser would write content with document.write/innerHTML. Therefore, it
behaves as the browser would, without complex parsing or hacks.

iframe Example

The following example uses iframe and merely demonstrates a simple way to use the
PostScribe functionality. Feel free to use other patterns to create your ad call.

Notes:

• aimRnd is defined as a random number to prevent browser caching.

• ad server is defined as the base URL of all the request on the page. Replace ad
server to match your account specifics.

http://devnet.kentico.com/Blogs/Thomas-Robbins/September-2012/How-loading-time-affects-your-bottom-line-Infograp.aspx

22

• Replace {path to your ad server} with the correct ad server domain URL, including
your specific {clientid} value.

• The variable allAdTags is defined as a variable to hold the common parameters that all
the ad requests on this page use.

• In this example, the full ad call DOM object is built as an iframe and stored as a string in
a variable. Previously declared variables are used while building the string.

• At each place in the content where you want an ad, use a div tag as the container
object. Inside the tag is where the PostScribe library is called, the div id is passed, and
the ad call identified. Ensure that the div id matches the first parameter in the
PostScript call.

• You can download htmlParser.js and postscribe.js from the krux/postscribe
GitHub site at https://github.com/krux/postscribe.

<html>
<head>
<script src="http://{path to your ad server}/path/to/htmlParser.js"></script>
<script src="http://{ path to your ad server}/path/to/postscribe.js"></script>

<script>
var aimRnd = Math.round(Math.random() * 100000000);

// ad server URL
adserver = "http://{your domain}/path/to/hserver";

// Ad tag targeting values that will be appended to each ad request section in the
bserver ad call

allAdTags = "site=testpages/area=async/random=" + aimRnd + "/viewid=" + aimRnd;

b1 = '<iframe src="' + adserver + '/' + allAdTags + '/size=728x90?" width="728"
height="90" scrolling="no"></iframe>';
b2 = '<iframe src="' + adserver + '/' + allAdTags + '/size=300x250?" width="300"
height="250" scrolling="no"></iframe>';
b3 = '<iframe src="' + adserver + '/' + allAdTags + '/size=160x600?" width="160"
height="600" scrolling="no"></iframe>';
b4 = '<iframe src="' + adserver + '/' + allAdTags + '/size=728x90?" width="728"
height="90" scrolling="no"></iframe>';
</script>
</head>
<body>

<div id='ad1'>
<h5>Advertisement</h5>
</br>
<script language="javascript" type="text/javascript">
 postscribe("#ad1", b1);
</script>

</div><div id='ad2'>
<h5>Advertisement</h5>
</br>
<script language="javascript" type="text/javascript">

https://github.com/krux/postscribe

23

 postscribe("#ad2", b2);
</script>
</div>

<div id='ad3'>
<h5>Advertisement</h5>
</br>
<script language="javascript" type="text/javascript">
 postscribe("#ad3", b3);
</script>
</div>

<div id='ad4'>
<h5>Advertisement</h5>
</br>
<script language="javascript" type="text/javascript">
 postscribe("#ad4", b4);
</script>
</div>
</body>
</html>

You can enable PostScribe tracking when ads are delivered by PostScribe by using a 3-
argument form of the postscribe call. The third argument is a callback, and must be (or included
in) a call to SASIA.ViewTracker.trackAdViews.
For example:

postscribe('#[dom-id]', '<script src="[js ad call url]"></scr'+'ipt>',
SASIA.ViewTracker.trackAdViews);

SASIA.ViewTracker.trackAdViews is a function that, when called, notifies the tracker that one or
more new ads are in the DOM (Document Object Model) for it to track (likely after the
ready/load events). This callback must be included for each PostScribe ad call on the page.

The top-level view-track.js script still needs to be included directly on the page. It is a static file
served over s3.

Counting Directives
Requests can be made to alter an FCID’s impression, click, action, and view counts.

Count
A request to SAS® 360 Match with the count directive increments or decrements a metric for a
specified FCID. For example:

http://<shortname>-ads.aimatch.com/<shortname>/count/FCID=123/act=1/inc=1<html>

The FCID parameter is required. A count request can also contain targeting path information.
This associates the count request with the included tag values. The following optional
parameters can be used with this directive:

24

act

specifies the type of metric to count. The possible values are:
Value Metric type

1 Impression
2 Click (when specified, a click is counted but the request is not redirected to the

FCID’s click URL)
3 Action (see the SAS® 360 Match Advanced Features Guide for usage instructions)
4 View

When no act value is specified, a value of 1 is assumed.

inc

specifies the number of counts to increment for the given metric and FCID. A positive or
negative value can be specified. When no inc value is specified, a value of 1 is assumed.

Adclick

A request to SAS® 360 Match with the adclick directive increments a click count for a
specified FCID, then redirect the request to the creative’s click URL, if one exists. For example,
when SAS® 360 Match receives the following request:

http://<shortname>-ads.aimatch.com/<shortname>/adclick/FCID=123/

the click count for FCID 123 increases by 1. The response to the request is an HTTP 302
Redirect to the click URL specified for the creative. If no click URL is specified, the response is
an HTTP 302 Redirect to the engine default image.

Adclick requests can also contain targeting path information that associate the click count with
the included tag values. Adclick requests are automatically generated by using the
%%CLICKURL%% token in a creative format.

The following optional parameter can be used with this directive:

relocate

redirects the visitor to a URL specified in the request. For example, when SAS® 360 Match
receives the following request:

http://<shortname>-ads.aimatch.com/<shortname>/adclick/
FCID=123/relocate=http://www.sas.com

the click count for FCID 123 increases by 1. The response to the request is an HTTP 302
Redirect to http://www.sas.com. This parameter enables a third-party ad server to use its click
URL as the value for this parameter to ensure that a click is counted by both parties.

The %%PRECLICKURL%% token generates an adclick URL that includes the relocate=
parameter.

http://support.sas.com/documentation/prod-p/iap/default/en/PDF/Advanced_Features_SASIA.pdf

25

Mobile
SAS® 360 Match provides several ways to control and optimize serving ads to mobile devices.

SDKs

Any mobile application or device can request and serve ads delivered by SAS® 360 Match if it
uses a supported request method. SAS® 360 Match provides SDKs to create UI elements that
can render SAS® 360 Match ads in iOS and Android mobile applications.

The SAS® 360 Match SDK API provides functions that are similar to Apple’s iAd Framework
and Google’s AdMob/DoubleClick API. The SDK supports version 2.0 of the MRAID
specification for rich media advertisements for the Interactive Advertising Bureau, or IAB.
MRAID-compliant ads can expand up to a full screen, provide two-part creatives, respond to
changes in the visibility of the ad, control screen orientation, and engage with other device
functions.

Contact SAS Technical Support to download the SAS® 360 Match SDK and related
documentation.

AMP-Enabled Pages

Accelerated mobile pages, or AMP, is an open-source library developed by Google to reduce
page load times. On AMP-enabled pages, an AMP ad tag can be used to generate an ad
request to SAS® 360 Match.

<amp-ad
 width="<width>"
 height="<height>"
 type="sas"
 layout="fixed"
 data-customer-name="<short name>"
 data-ad-host="<ad request hostname>"
 data-size="<size>"
 data-area="<area>"
 data-site="<site>"
 data-tags='{"TAGNAME1":"TAGVALUE1","TAGNAME2":"TAGVALUE2"}'>
</amp-ad>

The AMP framework translates this tag into a jserver ad call inside an iframe element on the
page.

The type and layout attributes are required by the framework, and their values are always
sas and fixed.

The width and height attributes specify the size of the iframe element rendered on the page.

The required data-customer-name attribute contains the customer short name. The data-
ad-host attribute sets the ad request host name. The data-size, data-site, and data-
area attributes define the size, site, and area values, respectively, for the ad request to SAS®

26

360 Match. The data-tags attribute is a JSON Blob with keys and values that are tag names
and tag values. Make sure the single and double quotation marks in this attribute match the
example provided.

Spider Filtering
SAS® 360 Match uses definition files from the IAB to determine whether a visitor’s request
originates from a spider, crawler, or bot. The evaluation is based on the user agent string
provided in the request. The user agent string must match an entry in the allowlist, and must
not match an entry in the denylist, be considered a legitimate request. If the request does not
pass this evaluation, ads are returned as normal in the response but no counting metrics are
incremented.

Fraud Detection

SAS® 360 Match uses a behavioral model to detect fraudulent visitors that were not identified
by spider filtering. This model is based on the frequency of a given visitor’s requests compared
to the overall number of requests for a customer. Furthermore, the requests are evaluated
separately by type: impressions, or clicks, actions, or views.

A visitor’s requests are identified by their unique MID value. By default, if a visitor’s MID value
appears in impression requests more than 100 times in the past 1,000 impression requests, the
visitor is considered fraudulent. If a MID value appears in click, action, or view requests 10 or
more times in the past 200 requests, the visitor is also considered fraudulent.

Once a visitor is considered fraudulent, any request regardless of type is no longer counted for
that visitor. Ads are still delivered as normal in responses.

Contact SAS Technical Support to configure the threshold levels for fraud detection.

Elements of an Ad Request
You can use tags, directives, and parameters to build an ad request. The following tags,
directives, and parameters are supported by SAS® 360 Match.

Tags

A tag is used as a key-value pair in targeting path information. Values are optional for all tags.
Tag Definition

area Area tag
dev_<name> Device tags
geo_<name> Geotargeting tags
keyword Keyword tag
latitude Latitude tag
longitude Longitude tag
site Site tag
size Size tag

27

Directives

A directive is a command to execute.
Directive Definition

adclick Increments a click count for the specified or inferred FCID and redirects visitor to the click
URL specified for the creative, if one exists.

bserver Bundled ad request directive.
bserverj Bundled ad request directive with response in JSON format.
count Directive that increments or decrements a count of a metric as defined by the act and inc

parameters.
dserver Duration ad request directive.
hserver Ad request directive that returns unaltered creative code with text/html MIME type.
iserver Image ad request directive.
jserver JavaScript ad request directive.
lserver Used in conjunction with ad request directives to assign cookies to visitors with no cookies.
saspb Passback directive.
setid Provides a cookie named “EXTERNAL” in a response containing the value specified.
setsv Manipulates the state vector data for a visitor.
tserver Text ad request directive. Uses any custom MIME type specified on a creative format.

Parameters

A parameter defines additional information, or settings, for a directive. For more information
about some of these parameters, see the SAS® 360 Match Advanced Features Guide.

Parameter Definition Value Required

act Used in conjunction with the count parameter. Defines the
type of metric.

Yes

actid ID of custom action. Use either actid or
actname

actname Name of custom action. Use either actid or
actname

advid ID of advertiser for action tracking. Yes
append Appends the specified tag values to the state vector or cookie.

Used with setsv.
Not applicable

duration Duration in seconds. Yes
event Used with setsv. Specifies the name of an event. Not applicable
exclude Categories to be excluded in an ad request. Yes
excludep Categories to be excluded persistently in ad requests. Yes
external Used with setid. Specifies the cookie name. Yes
fcid Process the request for the specified flight creative ID. Yes
flightid Serve a flight creative from the specified flight ID. Used with an

ad request directive.
Yes

inc Increments a metric by the specified amount. Used with ACT
parameter.

Optional, default value is
1

mergefrom Merges two different state vector identities. Not applicable
mid Alphanumeric visitor identification string. Yes
nocompanion Restricts companion flights from serving to the ad request. Not applicable

http://support.sas.com/documentation/prod-p/iap/default/en/PDF/Advanced_Features_SASIA.pdf

28

Parameter Definition Value Required

nolog Prevents the request from being logged as an impression, click,
action, or view.

Not applicable

pbfcid Used in passbacks. Yes
pid Distinguishes multiple ad requests in an email. Used with the

iserver ad request directive.
Yes

random A randomly generated value used for cache busting. Yes
supertag Specifies the supertag value. Yes
trace Debug ad request output. Yes
ttl Time-to-live value. Used in multiple directives. Yes
value Specifies the cookie value. Used with setid. Yes
viewid A randomly generated value typically the same for all ad

requests on a page that changes every page view or refresh.
Yes

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration. Other brand and product names are trademarks of their respective companies. Copyright © 2015, SAS Institute Inc. All rights reserved.

	Request Application Programming Interface 1
	Web Server Ad Call Directives 1
	Ad Request Responses 1
	Cookies 2
	LSERVER Redirect 2
	Defaults 2
	Error Responses 2

	Ad Tag Parameters 3
	Considerations for Developing an Ad Call 5
	Caching and Cache Busting 5
	Cache-Busting Techniques 5
	Companion Ads 6
	Clash Management 6
	Maximum Request Length 7
	Video Ads 7
	Security Headers 8
	Directive and Tag Aliasing 8
	Cross Origin Resource Sharing 9
	Trusted Domains 9
	Cross-Domain Applications 9

	Default Creative Format 10
	CNAMEs 10
	Spoofing Geotargeting Data 11
	Using the POST Directive 11

	Ad Call Methods 12
	Building an Ad Call Using Client-Side JavaScript 14
	iserver Ad Call 14
	hserver Ad Call 15
	jserver Ad Call 16
	bserver Ad Call 17

	Building an Ad Call for Email Delivery 20
	iserver Ad Call 20

	Building an Ad Call Using Krux PostScribe 21
	iframe Example 21

	Counting Directives 23
	Count 23
	Adclick 24

	Mobile 25
	SDKs 25
	AMP-Enabled Pages 25

	Spider Filtering 26
	Fraud Detection 26

	Elements of an Ad Request 26
	Tags 26
	Directives 27
	Parameters 27

	Request Application Programming Interface
	Web Server Ad Call Directives
	Ad Request Responses
	Cookies
	LSERVER Redirect
	Defaults
	Error Responses

	Ad Tag Parameters
	Considerations for Developing an Ad Call
	Caching and Cache Busting
	Cache-Busting Techniques
	Companion Ads
	Clash Management
	Maximum Request Length
	Video Ads
	Security Headers
	Directive and Tag Aliasing
	Cross Origin Resource Sharing
	Trusted Domains
	Cross-Domain Applications

	Default Creative Format
	CNAMEs
	Spoofing Geotargeting Data
	Using the POST Directive

	Ad Call Methods
	Building an Ad Call Using Client-Side JavaScript
	iserver Ad Call
	hserver Ad Call
	jserver Ad Call
	bserver Ad Call

	Building an Ad Call for Email Delivery
	iserver Ad Call

	Building an Ad Call Using Krux PostScribe
	iframe Example

	Counting Directives
	Count
	Adclick

	Mobile
	SDKs
	AMP-Enabled Pages

	Spider Filtering
	Fraud Detection

	Elements of an Ad Request
	Tags
	Directives
	Parameters

