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Advanced Features 
SAS® 360 Match is a flexible advertising delivery platform able to serve online display, video, 
and mobile advertising channels. This document details some of the more advanced counting, 
tagging, targeting, and data manipulation features available in the software. 

Count Directives 
Beacons assist in understanding and monitoring customer behaviors and activity and are a 
convenient way of gathering statistics. The use of a beacon allows a site to record the actions 
of a user opening the page that contains the beacon and allows the event to be counted. 
SAS® 360 Match supports several types of beacons that can be used in different contexts.  

SAS® 360 Match has a generic event counting service that can deliver a response from a 
request based on the creative selected to be served. In SAS® 360 Match, actions are sent to 
the system using the count directive. For example:  

http://{SASIA ad server URL}/{customer short name}/{contenttype}/count/ 
fcid=1234/act=3/inc=1 

increments the action count for flight creative ID, or FCID, 1234 [the unique creative identifier] 
by 1.  

act=1 

denotes a beacon count URL.  

Example:  
http://shortname-ads.aimatch.com/{shortname}/count/act=1/fcid=57/site=x/area=y 

act=2 

denotes a click count URL. When using this instead of the adclick directive, the click count is 
incremented but the browser is not relocated to the click URL destination. 

act=3  

denotes a generic action count URL. For more information about standard and custom action 
tracking, refer to Action Tracking in this document.  

act=4  

denotes a viewed beacon URL.  

act=5  

supports optimization methods. This feature is not enabled by default.  

inc=X  

increments the count by X.  
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When act is missing, 1 is assumed. When inc is missing, 1 is assumed.  

Other targeting tags present in the URL (for example, site or area) are logged against when the 
URL is executed. The current version of action tracking is not cookie-based, hence the need for 
the FCID value to be present in the URL for correct counting. 

The following example increments the click count for FCID=57 and relocates to the click 
destination specified for that creative:  

http://shortname-ads.aimatch.com/{shortname}/adclick/fcid=57/site=x/area=y 

This example increments the click count for FCID=57 but does not relocate to the click 
destination:  

http://shortname-ads.aimatch.com/{shortname}/count/act=2/fcid=57/site=x/area=y 

Action Tracking 

Standard action tracking (for example, FCID, ADVID, ACTID) enables you to associate 
actions with a creative for the advertiser who owns the creative. The creative can be one that 
was recently seen or clicked by a visitor to the website. This feature is useful for monetizing 
behaviors such as leading a website visitor from an advertisement to a landing page where a 
transaction, such as a product purchase, subsequently occurs. Place the URL that tracks the 
action on the action success page, such as the landing or results page. When the visitor goes 
to the page, the URL can notify SAS® 360 Match to count it. Standard action tracking requires a 
value be entered in the Cost Per Action field in the Goals and Revenue section of the Edit 
Flight page in the software. 
The following example displays the syntax for an action-tracking URL associated with a viewed 
or clicked creative:  

http://{ad server domain}/{shortname}/count/act=3/fcid={FCID} 

where {FCID} is replaced with the creative's FCID value. The code /act=3 tells SAS® 360 
Match that this is a standard action-tracking, counting URL. The FCID value can be found in the 
user interface next to the name of the creative at the bottom of the Edit Flight page.  
The following example displays the syntax for an action-tracking URL associated with an 
advertiser whose creative has been seen or clicked:  

http://{ad server domain}/{shortname}/count/act=3/advid={ADVID} 

where {ADVID} is replaced with the advertiser's ADVID value. The ADVID value can be found 
in the URL of the Edit Advertiser page in the software. 

Site and area values are not needed in the action-tracking URL because they are captured at 
the time of the impression or during the click that preceded the action.  

For the default action (act=3), the ad server automatically tracks impressions and clicks for any 
flight that has a CPA set to a value > 0.00. Flights without a CPA or with CPA=0.0 are not 
tracked. The following action-tracking URL: 

http://{ad server domain}/{shortname}/count/act=3/advid=50 

examines the visitor's history of tracked flights for advertiser 50. The flight creative with the 
most recent click or impression is credited with the action. If a flight has multiple creatives with 
recent clicks or impressions, the one with the most recent click is credited. Clicks that are older 
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than 15 days are ignored. Impressions older than one day are ignored. If there are no flights 
with a qualifying click or impression, then the action is ignored.  

Custom action tracking enables you to create and track custom actions (for example, tracking 
whether a website visitor has viewed 50 percent of a video). Custom action tracking requires 
completion of the Action Policies section of the Edit Flight page in the software.  

Impressions are tracked for each flight with an action policy that covers impressions or clicks. 
Flights without an action policy are not tracked unless the action-tracking URL contains a valid 
FCID value. In such cases, the custom action is logged even without a Custom Action Policy 
enabled for the flight. The active period for impressions or clicks is controlled by the action 
policy that is set for each action on the flight. Each action has its own policy that governs 
impressions and clicks per flight.  

An action is triggered by a count directive that references an advertiser and a custom 
action. The custom action is referenced by ID or name. The flight creative that has the most 
recent active tracked impression or click is credited. If the flight has both a click and an 
impression, the more recent of the two determines which is credited. However, if the policy has 
the Allow Click to Trump Impression option set (in Campaigns), the click is credited 
regardless of which is more recent.  

Counts for custom actions are logged by date, FCID, action ID, attribution type, site, and area. 
Attribution type is either 0 (for impression) or 1 (for click). Site and area are logged as the 
original site and area that were associated with the credited impression or click when it 
occurred. Custom actions must be associated with the advertiser for the custom action to 
appear in the Action Policies drop-down menu in the Edit Flight screen in the software.  

The custom action URL can use either the custom action's actid value or its name 
(actname). If both actid and actname are present, then actname is ignored. To find the 
actid value for a custom action, edit the custom action and check the URL for the Edit Action 
page in the software. 

http://shortname-ads.aimatch.com/customer/count/advid=12/actid=4 

This URL searches the visitor's history for a flight associated with advertiser 12 that has the 
most recent click or impression. Only flights that have policies for the action with the actid=4 tag 
are considered. The act=3 tag is not required.  

http://shortname-ads.aimatch.com/customer/count/advid=13/actname=videostart 

This URL searches the visitor's history for a flight associated with advertiser 13 that has the 
most recent click or impression. Only flights that have policies for the action with the name 
videostart are considered.  

There are some predefined actions that are available in the user interface and you can create 
additional custom actions in the Custom Actions section under the Traffic tab in the software.  

Viewability 

Viewability is a count of how many times a creative has been in view on a browser or device. 
Being in view is determined by how much of the creative’s content is visible in the browser 
window, and how long it has been in view. Once those two thresholds have been met, the 
creative is considered viewed, and a viewed count is incremented for that flight creative. 

http://shortname-ads.aimatch.com/customer/count
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Implementing viewability requires changes to the web pages where the viewability-enabled 
creatives are being served as well as changes to the creative formats that the creatives use. 
Viewability tracking works only with jserver and bserver ad call methods. To enable the 
viewability feature, contact SAS Technical Support at support@sas.com.  

Implementing Viewability Support on Web Pages 

The following code snippet needs to be placed on every page where viewability tracking is 
desired: 

<script type="text/javascript"src= 
"https://content.aimatch.com/js/sasia/v1/sasia.min.js"></script> 

Debugging Constants 
window.SASIA_VIEWTRACKER_DEBUG = true; 
window.SASIA_VIEWTRACKER_ALLOW_BLURRED = true; 

Implementing Viewability Support in Creative Formats 

All system creative formats already contain the necessary code to implement viewability. The 
creative format code is not used unless the viewability code snippet above has been 
implemented on the page, Custom creative formats need to be modified to support viewability. 
Specifically, attributes and tokens need to be applied to the HTML elements displaying the 
actual creative content. These are:  

id="sasia-fcid-%%FCID%%" 
    class="_sasia_fcid" 

    data-sasia-view-time="%%VIEWABILITYTIME%%" 
    data-sasia-view-percent="%%VIEWABILITYPERCENT%%" 
    data-sasia-view-url="%%VIEWABILITYURL%%" 

 
IMG Elements 

Add the attributes directly to the IMG HTML tag:  
<a href="%%CLICKURL%%" target="_blank"><img src="%%MEDIA%%" alt="%%ALTTEXT%%" 
width="%%WIDTH%%" height="%%HEIGHT%%" border="0" %%ISMAP%% id="sasia-fcid-
%%FCID%%" class="_sasia_fcid" data-sasia-view-time="%%VIEWABILITYTIME%%" data-
sasia-view-percent="%%VIEWABILITYPERCENT%%" data-sasia-view-
url="%%VIEWABILITYURL%%"></a> 

 
IFRAME Elements 

Add the attributes directly to the IFRAME HTML tag:  

<iframe src="%%MEDIA%%?clickTag=%%PRECLICKURL%%" width="%%WIDTH%%" 
height="%%HEIGHT%%" scrolling="no" allowtransparency="true" marginwidth="0" 
marginheight="0" vspace="0" hspace="0" noresize="true" frameborder="0" 
align="left" style="border:0px none;padding: 0px ;margin:0px; float:none;" 
id="sasia-fcid-%%FCID%%" class="_sasia_fcid" data-sasia-view-
time="%%VIEWABILITYTIME%%" data-sasia-view-percent="%%VIEWABILITYPERCENT%%" data-
sasia-view-url="%%VIEWABILITYURL%%"></iframe> 

 

mailto:support@sas.com
https://content.aimatch.com/js/sasia/v1/sasia.min.js
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SCRIPT Elements 

Surround the JavaScript or SCRIPT HTML tag with a span tag containing the attributes:  

<span id="sasia-fcid-%%FCID%%" class="_sasia_fcid" data-sasia-view-
time="%%VIEWABILITYTIME%%" data-sasia-view-percent="%%VIEWABILITYPERCENT%%" data-
sasia-view-url="%%VIEWABILITYURL%%"> 
<script src="%%X_SCRIPT_SRC_URL%%&ncu=%%PRECLICKURL%%&ord=%%RANDOM%%"> 
</script> 
</span> 

Do the same for JavaScript that uses document.write() to construct a SCRIPT tag: 

<span id="sasia-fcid-%%FCID%%" class="sasia_fcid" data-sasia-view-
time="%%VIEWABILITYTIME%%" 
data-sasia-view-percent="%%VIEWABILITYPERCENT%%" data-sasia-view-
url="%%VIEWABILITYURL%%"> 
<script type="text/javascript"> 
      var type = "%%X_AD_TYPES%%"; 
      var skySource = "m=3&tp=7&d=j&t=n"; 
      var bannerSource = "m=1&tp=5&d=j&t=n"; 
      var rectSource = "m=6&tp=8&d=j&t=n"; 
      if (type == "sky") { _adTypeSource = skySource; } 
      if (type == "banner") { _adTypeSource = bannerSource; } 
      if (type == "rect") { _adTypeSource = rectSource; } 
      document.write('<scr' + 'ipt language="javascript" 
src="http://media.example.net/w/get.media?sid=%%X_SID%%&' + _adTypeSource + 
'&walsh=%%PRECLICKURL%%"></scr' + 'ipt>'); 
</script> 
</span> 

Lazy Loading 

When properly instrumented, ads rendered outside the browser viewport are  
not loaded on the initial document load. Only when ads are in or near the viewport is the actual 
ad call made. 

Installation 

Install the sasia.js library on your page: 

<script src="https://content.aimatch.com/js/sasia/v1/sasia.min.js"></script> 

To use lazy loading, you must also include the postscribe scripts separately. These two must 
be loaded before sasia.js on the page. 

<script src="/path/to/your/htmlParser.js"></script> 
<script src="/path/to/your/postscribe.min.js"></script> 

If postscribe is not available on the page before SAS® 360 Match is included, the lazy loading 
functionality will not be initialized. For more information about postscribe, refer to 
https://github.com/krux/postscribe. 

https://content.aimatch.com/js/sasia/v1/sasia.min.js
https://github.com/krux/postscribe
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Once initialized, the lazy loader starts scanning the page for ad calls that are not loaded. It 
loads ads that are in the viewport or within 200 pixels (default) of the viewport. Set your own 
distance threshold after the script has been loaded using the setDistanceThreshold method. 

SASIA.LazyLoader.setDistanceThreshold(100); 

To enable individual ad calls to be lazy loaded, the tags needs to be instrumented so that the 
LazyLoader can detect and load properly. You do this with a div or span tag that has a sasia-
lazy-ad class name. A tag with the sasia-lazy-ad must also have a data-lazy-ad-src 
attribute containing a JavaScript src ad call URL. For example:  

<span class="_sasia-lazy-ad" data-lazy-js="/path/to/js/ad/call"> </span> 

Define the ad space dimensions in advance to enable the page to be rendered correctly the first 
time and to not trigger another rendering of the page layout when the ad loads. In this way, 
when the ad loads lazily after the page has already finished loading, the layout of the page 
already has space for the ad. For example:  

<style> 
        .ad468x80 { 
            display: inline-block; 
            width: 468px; 
            height: 80px; 
        }    
        </style> 
    <span class="_sasia-lazy-ad ad468x80" data-lazy-
js="/path/to/your/468x80/js/ad/call/"> 

Lazy loading and view tracking will work together if the ad calls are tagged in this way, and if 
the rendered ad call text, after lazy loading, have the correct attributes on the tags to be 
detected. See the Viewability section for more information. 

Debugging 

There are variables that you can declare to cause SAS® 360 Match to emit some verbose 
debugging information to the console. This is not recommended in production but can be 
helpful in getting it set up correctly. Be sure to turn debugging off when it is verified to be 
working as expected.  

To enable debug info for view tracking, declare this anywhere on the page: 

window.SASIA_VIEWTRACKER_DEBUG = true; 

To enable debug info for the lazy ad loading, declare this anywhere on the page: 

window.SASIA_LAZYLOADER_DEBUG = true; 

You can enable one or both types of debugging. For example: 
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<!doctype html> 
    <html> 
    <head> 
        <meta charset="utf-8"> 
        <title>Lazy Loading and View Tracking Example</title> 
     
        <style> 
            .ad300x250 { 
                display: inline-block; 
                width: 300px; 
                height: 200px; 
            } 
     
            .above-the-fold { 
                width: 600px; 
                height: 800px; 
                padding: 24px; 
                margin-bottom: 24px; 
                border: 2px solid #0099ff; 
                background-color: #ffffe6; 
                color: #0099ff; 
            } 
        </style> 
     
        <script type="text/javascript"> 
            window.SASIA_VIEWTRACKER_DEBUG = true; 
            window.SASIA_LAZYLOADER_DEBUG = true; 
        </script> 
     
        <script src="/path/to/your/htmlParser.js" 
type="text/javascript"></script> 
        <script src="/path/to/your/postscribe.min.js" 
type="text/javascript"></script> 
        <script src="//content.aimatch.com/js/sasia/v1/sasia.min.js" 
type="text/javascript"></script> 
     
        <script type="text/javascript"> 
            SASIA.LazyLoader.setDistanceThreshold(100); 
        </script> 
        </head> 
    <body> 
         
    <h1>Lazy Loading and View Tracking Example</h1> 
     
    <div class='above-the-fold'> 
        <h4>This is a large block to push the add call down the page to 
demonstrate lazy loading<h4> 
    </div> 
         
    <h2> The Ad Call</h2> 
    <span class="_sasia-lazy-ad ad300x250" data-lazy-ad-
src="/javascripts/ad-call-img.js"> </span> 
    </body> 
    </html> 

Ad Passbacks 

During normal ad selection, the engine remembers the path information, the query string, and 
blocked advertisers of the last 10 ads that were served in the last five seconds, for each visitor. 
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The number of ads that are remembered for each customer can be configured by SAS 
Technical Support. All ads are treated as potential passbacks; no special trafficking or 
configuration is required. If the same FCID is served multiple times in a short time span, only 
the last ad served is kept. 

Passback behavior is typically triggered by a third party that redirects the request to SAS® 360 
Match with a tag that includes SASPB and the FCID of the original ad served (for example, 
.../hserver/SASPB/FCID=1234). If the FCID is absent, invalid, or exists for an ad that is not in 
the visitor's recent queue, then a default ad is served and no true passback is possible. The 
passback tag and corresponding FCID value can be found by selecting the green button beside 
the creative that is listed on the Edit Flight page in the software.  

The SASPB and FCID passback tags that are sent by the third party are ideally supplied by a 
template that creates them in response to the original ad served. Otherwise, they must be 
hardcoded in the trafficking of SAS® 360 Match passbacks by the third party itself, usually by 
size. 

If the passback FCID is for a valid ad recently served to the visitor, its associated path 
information, query string, and blocked advertisers are resurrected for the passback ad 
selection. The ad's advertiser is added to the blocked advertisers for this ad selection only. Ad 
selection starts at the top of the queue and blocks selecting any flight associated with the 
blocked advertisers. Appropriate trace messages are shown when encountering such flights. 

If the same FCID is passed back multiple times in a short time span, each passback is likely to 
generate the same set of tags for the ad because only the most recent details are retained. This 
is expected to occur infrequently, and only when a page has multiple ads of the same size. In 
such cases, the ad tags are not likely to be very different. If this becomes an issue, prudent use 
of frequency capping at the creative level can mitigate its effect. 

When serving an ad in response to a passback, the impression count for the original ad 
selection is decremented based on the ad’s timestamp, tags, and other information. This 
happens only for ads that are in a visitor’s queue. Frequency capping is ignored. No attempt is 
made to credit a capped creative-flight pair when this creative is uncounted. 

The ad served in response to a passback is counted normally, using its timestamp and the 
original ad's tags. A passback request can be modified to change the tag values from the 
original request or add new tag values. For example, 

Original request: /tagA=1/tagB=2/tagC=3/tagD=4 
Passback: /tagD=27/tagE=5 
Result: /tagA=1/tagB=2/tagC=3/tagD=27/tagE=5 

The passback request is logged and the count can be found in the Usage Report. 

The ad that is served in response to a passback is sampled normally and includes a column 
that references the FCID that is passed back. During a simulation, a sampled impression that 
was served in response to a passback is ignored because it is a duplicate of the sample record 
of the original impression. During unique visitor analysis of sample data, no attempt is made to 
reconcile passbacks with their original flights. So unique visitor results for a flight include all 
visitors who were served that flight, regardless whether all serves of that flight were passed 
back. 
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Advanced Tagging and Targeting 
SAS® 360 Match provides many ways to create, manage, and personalize digital content and 
settings.  

Supertags 

A SUPERTAG is a special tag that can be included in an ad call and expanded into one of any 
number of arbitrary collections of other tags and values. Supertags can be used to ease a 
customer's migration from other ad servers and provide a level of tag management to ad 
operations. Supertags provide a way of mapping a value to an arbitrary path info snippet. For 
example, a supertag value HOMETOP could be defined as follows: 

AREA=HOME/POSITION=TOP/SIZE=LEADERBOARD 

Then the following ad call: 
 

http://shortname-ads.aimatch.com/customer/hserver/supertag=hometop 
 
would be equivalent to this ad call: 
 

http://shortname-ads.aimatch.com/customer/hserver/area=home/position=top/ 
size=leaderboard 

Any number of supertag values can be created to pre-define multiple sets of tags and values. 
When an ad call includes SUPERTAG=supertagvalue, the tags in the corresponding path info 
are added to the ad request internally. The SUPERTAG tag name itself is not configurable. 

Each hserver or jserver ad call can reference SUPERTAG only once. If multiple references to 
SUPERTAG are present, the last one wins, as with other tags. For bserver, SUPERTAG can appear 
once in each numbered B section, assuming it did not also appear in the BALL section. Like 
other tags, if SUPERTAG appears in the BALL section, it becomes a tag for all ads. 

Multiple values can be supplied for SUPERTAG, separated by commas, similar to other tags. The 
resulting substitution yields the union of all the values’ definitions, where the most recent 
definitions take precedence. For example, a supertag value LOCALNEWS could be defined as 
SITE=NEWS/AREA=LOCAL. In combination with the HOMETOP definition from the above 
example, the following ad call: 
 

http://shortname-
ads.aimatch.com/customer/hserver/supertag=hometop,localnews 

 
would be equivalent to this: 
 

http://shortname-
ads.aimatch.com/customer/hserver/position=top/size=leaderboard/site=news/area=loc
al 

 
Because both supertag values included a substitution for AREA, the last supertag’s value was 
used. An ad call that reverses them: 
 

http://shortname-ads.aimatch.com/customer/hserver/supertag=hometop
http://shortname-ads.aimatch.com/customer/hserver/area=home
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http://shortname-
ads.aimatch.com/customer/hserver/supertag=localnews,hometop 

 
would be equivalent to this: 
 

http://shortname-ads.aimatch.com/customer/hserver/site=news/position=top 
/size=leaderboard/area=home 

An ad call with a supertag value can include other tags as well. The complete set of tags 
implied by that mix determines what ad is served. When a supertag value maps to path 
information that includes a tag that is included in the ad call, the explicit value from the ad call 
takes precedence. Using the HOMETOP example above, the following ad call: 
 

http://shortname-
ads.aimatch.com/customer/hserver/size=728x90 
/supertag=hometop 

results in requesting an ad with size 728x90, not LEADERBOARD. This is true regardless whether 
the supertag is expressed before or after the size tag in the ad call. 

For this and other reasons, the definition of a supertag value as a segment of path info cannot 
be taken too literally. The supertag value is not literally dropped into the ad call URL and 
processed as if it came in that way. For example, the path info definition cannot be used to alter 
the number of ads returned by a bserver call. 

The path info associated with a supertag value can include any type of tag used for ad 
targeting, including site, area, size, custom tags, duration, keyword, and even NOCOMPANION. In 
theory, it could also include VIEWID, PID, TRACE, and FCID, although the utility of such tags in 
supertags is suspect. 

Supertag path info can also include one nested SUPERTAG. In other words, one supertag value 
can reference another. Nesting can be to any level, although the mental complexity of 
managing such a configuration should realistically limit the user to 2 or 3 levels. The tags 
produced by higher levels take precedence over tags at the deeper levels, just as in the 
example above where the explicit tags in the ad call take precedence. In click responses, the 
CLICKURL returned includes the original SUPERTAG reference. This is also true for the beacon 
count sent for those ads. 

Supertag values are not case sensitive. They can contain all special characters except for pipes 
and commas. Special characters should be properly encoded to be included in a URL. This 
relaxation is to maximize compatibility when supertags are used to help with migration from 
other ad servers. 

There is no logging of supertag values. If you need a log, create another conventional custom 
tag and reference it from within each supertag value's path info. Supertags are not included in 
sample files, so redefinition of supertag values has no effect on simulations. 

Namespacing 

When a SUPERTAG value has an embedded dot (period, "."), the string in front of the dot defines 
a namespace for the value. Different namespaces can define the same value. For example, the 
following values can all be defined separately: 

http://shortname-ads.aimatch.com/customer/hserver/supertag=localnews,hometop
http://shortname-ads.aimatch.com/customer/hserver/supertag=localnews,hometop
http://shortname-ads.aimatch.com/customer/hserver/site=news/position=top/size=leaderboard/area=home
http://shortname-ads.aimatch.com/customer/hserver/site=news/position=top/size=leaderboard/area=home
http://shortname-ads.aimatch.com/customer/hserver/size=728x90/supertag=hometop
http://shortname-ads.aimatch.com/customer/hserver/size=728x90/supertag=hometop
http://shortname-ads.aimatch.com/customer/hserver/size=728x90/supertag=hometop
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• ABC defined as /AREA=XYZ 

• GENRE.MA defined as /KIDS=NO/THEME=ADULT 

• PROGID.ABC defined as /NAME=THISISAPROGRAM/GENRE=MA 

Supertag lookups are done in either of two ways: 

• The ad call includes SUPERTAG=value. 

o If the value includes a namespace, the lookup is done through that namespace. 
When the value does not include a namespace, the functionality is equivalent to 
the current supertag functionality. 

• The ad call includes namespace=value. 

o The lookup is done through the namespace using the value. This is equivalent to 
SUPERTAG=namespace.value. 

For example, both of the following result in the same lookup being done: 

• SUPERTAG=GENRE.MA 

• GENRE=MA 

Supertag lookups can be recursive. For example, using the above definitions, an ad call with 
PROGID=ABC results in an expansion of /NAME=THISISAPROGRAM/KIDS=NO/ THEME=ADULT. 
First, it expands to /NAME=THISISAPROGRAM/GENRE=MA, and then GENRE=MA gets expanded to 
/KIDS=NO/THEME=ADULT. A namespace is completely arbitrary and requires no configuration. It 
does not need to be a first-class targetable tag, but it could be, in which case it serves both its 
targeting function and a supertag expansion function. 

Supertag Use in Migrations 

Supertags can play an important role in easing migration from another ad server. Some require 
a publisher to tag pages referencing the name of an ad “slot” or “position”. On the back end, the 
ad servers know that a specific slot value maps to a certain ad size, page position, and in some 
cases, other supplemental targeting. 

You can minimize the work involved by defining a supertag value in SAS® 360 Match for each 
slot known by the previous system. The supertag value is set to the same name as the slot, and 
the path info is set to the equivalent set of tags and values in SAS® 360 Match. Most 
commonly, a slot maps to a specific site, area, and size. When retagging pages for SAS® 360 
Match, you can exchange references to your former server's slot names for SAS® 360 Match ad 
calls referencing SUPERTAG. In some cases, you can use JavaScript supplied by SAS to 
reference those names. 

Supertag Use for Tag Management 
Supertags also give you a means to change information in your ad calls without changing code 
on your web pages. For example, you can assign each unique ad and page combination a 
supertag value, and the ad call made for each would simply request 
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SUPERTAG=supertagvalue. You can control the appropriate size and targeting by defining the 
path info needed for each supertag value, and then change these freely over time. 

Persisted Supertags 

Use persisted supertags to load and use data within a single ad request. Persisted supertag 
data is uploaded to SAS® 360 Match using a data file similar to user registration data. Unlike 
user registration data, however, persisted supertag data does not remain in the visitor’s session 
once the data is loaded. Instead, persisted supertags are used only within a single ad request 
evaluation like traditional supertags.  

Like traditional supertags, data from a persisted supertag can be invoked directly by including 
IDNAME=IDVALUE in the ad call, or indirectly through other supertags (persisted or traditional), 
other user registration data, or state vector data. The data activated by persisted supertags can 
further invoke data for other supertags. 

Here are the differences between persisted and traditional supertags: 

• Persisted supertag data is provided through data uploads. Traditional supertags are 
defined through the SAS® 360 Match interface or its XML API. 

• Persisted supertags can be invoked only using the IDNAME=IDVALUE syntax. Only one 
value can be supplied for IDVALUE. If multiple values are provided, only the first one is 
used.  

Persisted supertags must have an ID column with a unique name, and one or more other 
columns representing tag data to be loaded when that ID is referenced. For bserver or bserverj 
calls, different values for the ID can be defined to activate different data, just like traditional 
supertags. 

For example, consider the following data upload for a persisted supertag with an ID name of 
PRODUCT_ID: 

PRODUCT_ID,CATEGORY,DESCRIPTION 
12982,Household,Waring Blender 
22829,Sports,Titleist Golf Balls 

An ad call that includes PRODUCT_ID=22829 adds CATEGORY=Sports/DESCRIPTION=Titleist 
Golf Balls to that request, and only that request. If the next request provides no value for 
PRODUCT_ID, then CATEGORY and DESCRIPTION are empty for that request. This is the key 
difference between persisted supertags and user registration data. 

For a bserver call with /B1/PRODUCT_ID=22829/B2/POS=TOP/B3/PRODUCT_ID=12982/, the first 
ad is evaluated with CATEGORY=Sports/DESCRIPTION=Titleist Golf Balls, the second with 
just POS=TOP, and the third with CATEGORY=Household/DESCRIPTION=Waring Blender. 

Contact SAS Technical Support to configure persisted supertags. 

Stacked Tags 
SAS® 360 Match supports stacked tag values. A stacked tag has multiple values that are taken 
one at a time in subsequent ad requests. Once the tag is set in this way, the first ad request 



  

13 

evaluated uses the first value (or values, if multivalued). The next ad request for the same 
visitor uses the second value, and so on.  
The stacked tags cycle indefinitely unless the visitor has a view ID. For each visitor, if the same 
view ID is sent in multiple requests, each ad request processes the next value until all the 
values in the stack have been shown for that view ID. After using the last value, subsequent ad 
requests use an empty value.  
If the view ID changes for the visitor, the ad request starts to evaluate the next value in the 
stack until all the values have been shown for the new view ID. This might mean starting to 
show a value from the middle of the stack and cycling back to the top.  
In addition, stacked tags that are invoked by a tag qualifier only advance if the creative 
supplying the qualifier value is the one that is chosen. 
In the following examples, the visitor and the view ID do not change. 
Any tag can be given stacked values by prefixing the values with "!” (exclamation mark) and 
separating them with more "!"s. For example: 

offer=!beer!soda!nuts 

results in the following: 

offer=beer in the first request, 
offer=soda in the second request, 
offer=nuts in the third request, and 
offer=<empty> in subsequent requests. 

Multiple values are supported for each place in the stack, as appropriate for whatever tag is 
involved, using commas to separate the multiple values, as normal. For example: 

offer=!beer,soda!nuts 

results in the following: 

offer=beer,soda in the first request, 
offer=nuts in the second request, and 
offer=<empty> in subsequent requests. 

An empty position in the stack can be expressed with multiple "!". For example: 
offer=!beer!!soda 

results in the following: 

offer=beer in the first request, 
offer=<empty> in the second request, 
offer=soda in the third request, and 
offer=<empty> in subsequent requests. 

Multiple tags can be given stacked values and they advance through their stacks together. For 
example: 

offer=!beer!soda!nuts/pos=!1!2!3 

results in the following: 
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offer=beer/pos=1 in the first request, 
offer=soda/pos=2 in the second request, 
offer=nuts/pos=3 in the third request, and 
offer=<empty>/pos=<empty> in subsequent requests. 

The stacked values persist with the visitor for the balance of the session. If the session expires 
before all values have been used, a subsequent session does not resume where the last one 
left off. If the start of a new visitor session causes the tag to again be set to stacked values, that 
stack starts being used from its beginning. 
Any existing method that is supported for setting tags is eligible to set a tag to stacked values, 
including user registration, SUPERTAG, or the ad request itself. 
When a tag has already been set to stacked values, an ad request can override it with an 
explicit value, much like an explicit value can temporarily override a geo lookup. The override 
does not affect the stack. If the next ad request does not include the tag, the next stacked value 
is used. 
When a tag that has already been set to stacked values is set again to another stack, the old 
stack is discarded and the new one is used, even when both stacks express the same values.  

The beacon (vericount) URL and click URL for an ad contain the stack value for each stacked 
tag that was part of that request. If the tag having the stack value is referenced from a token, 
the stack value is used for the replacement. When a passback occurs, if the original ad was 
served using a stack value, the new ad served uses the same value for that tag and does not 
disturb the stack. 

If a VIEWID remains constant throughout an entire cycle, the cycle stops and the tag is treated 
as if it has no value. When the VIEWID changes, the cycle resumes from the last used position 
in the stack. If no VIEWID is present, the values cycle indefinitely.  
It is possible to provide recommendations when a specific key is encountered. A visitor’s 
positions in multiple sets of stacked tags can be maintained. When a set of tags is read using 
the ID (for example, product ID), they are kept with the visitor under a PRODUCT_ID.VALUE 
qualification for the balance of the session. When the ID changes, if the visitor already has tags 
with that new value's qualification, they are used, rather than re-reading from the data store. 
And if they contain any stacked tag context, they will resume where they left off. 

The data import is the same as other ID-based data lookups. There must be a header row 
defining columns for the ID and each of the tags with associated data. For example:  

PRODUCT_ID,RECOMMENDATIONS,OTHERTAG 
54321,!2352!3262!6325,SOMEVALUE 
54322,!3523!6262!8629,ANOTHERVALUE 

Qualified Tags 

Qualified tags allow a tag to have any number of independent sets of values, selectable via a 
qualifier during ad evaluation. A tag qualifier column in the flight creatives table determines 
which qualified tags are temporarily switched into the evaluation context while evaluating that 
creative for serving. A check box for qualified tags appears in the SAS® 360 Match user 
interface when editing a flight creative in an active flight.  
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A qualified tag is expressed by prefixing the tag name with a qualifier string and dot (for 
example, CR18.SKU=!100!150!180 expresses three stacked values for a SKU tag qualified by 
CR18). The qualifier can be a string containing any characters that do not interfere with parsing 
path info contents (for example, / = ? &). The qualifier itself can include a dot. The last dotted 
portion of the qualified name is assumed to be the base tag name (for example, CR18.CTL.SKU 
has CR18.CTL as a qualifier for the SKU tag). Case is ignored. 
Qualified tag values can be supplied in the same contexts as regular, unqualified tags, 
including: 

• Ad call path info 
• SETSV, including being able to append or expire values 
• User registration 

A qualified tag can accept the same types of values as a regular tag (stacked, multivalued, and 
so on). 
Qualified tags are ignored during ad serving unless a creative specifically requests a 
qualification. When a flight creative with a tag qualifier is evaluated, all of the tags defined with 
that qualifier become the active values for the base tag when the creative is evaluated. The 
qualified tag values are used during evaluation of the creative's targeting, and in any token 
substitutions in network creatives. 
For example, consider a visitor with the following tags set: 

.../GENDER=M/CR18.SKU=123/CR19.SKU=124/CR34.SKU=89/CR19.PROD=2868/... 

When evaluating a creative with tag_qualifier="CR19", the engine treats the visitor as 
logically having these tags:  

.../GENDER=M/SKU=124/PROD=2868/... 

When evaluating a creative with tag_qualifier="CR34", the engine treats the visitor as 
logically having just:  

.../GENDER=M/SKU=89/...  

because there is no qualifying value for the PROD tag. 
If a creative with a tag qualifier is ultimately selected to serve, then all summary logging and 
sampling includes the values of any qualified tags involved in the decision. Also, all such tag 
values are sent back to the direct server, or dserver, to be use in token substitution. A qualified 
tag with stacked values is advanced to the next value in the stack only when the creative 
served is associated with the tag's qualifier. 
Note: By default, a dserver request returns a maximum of 100 creatives. To increase this value, 
contact SAS Technical Support.  

BURST Tags 

Use the BURST tag in an ad request to allow a flight to act as top priority until a specific goal is 
met. Before the flight goal is achieved, a flight with this tag can serve without being paced. After 
the goal is achieved or exceeded, the flight follows its own pace settings.  

The BURST tag has an integer value between 0 and 100, which represents the percentage of 
the flight goal. Before a flight reaches the percentage of its goal, it is treated as top priority 
during the ad request. After a flight achieves that percentage of its goal, its normal pacing 
behavior is respected. 
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For example, consider Flight A that has served 63% of its goal and Flight B that has served 
82% of its goal. Both flights are in tiers that use schedule priority and both are slightly ahead of 
schedule. Neither flight is set to top priority. 

Consider several ad requests with different values for the BURST tag: 
BURST Tag Flight A Flight B Comment 

No BURST tag 
or BURST=0 

Cannot 
serve 

Cannot 
serve 

Both flights have served more than 0% of their goals. Because they 
are both ahead of schedule, neither can serve. 

BURST=60 Cannot 
serve 

Cannot 
serve 

Both flights have served more than 60% of their goals. Because they 
are both ahead of schedule, neither can serve. 

BURST=80 Can 
serve 

Cannot 
serve 

Flight A has served less than 80% of its goal. Therefore, the flight’s 
pacing is ignored, it is treated as top priority, and the flight can serve. 
Flight B has served more than 80% of its goal, so it follows its pace 
settings. 

BURST=85 Can 
serve 

Can serve Both flights have served less than 85% of their goals. Therefore, pace 
settings are ignored for both, they are treated as top priority, and the 
flights can serve. 

The value for percent of goal served is based on served impressions. The flight’s delivery 
patience, on-schedule percentage values, or current calculated priority do not affect how the 
BURST tag is used. However, these values are considered when a flight is not subject to a 
BURST override and must respect its pacing. 

Single Sign-On: Setting Up with the Identity Provider 
Single sign-on, also known as SSO, provides a way of authenticating users in SAS® 360 Match 
through a third-party identity provider, or IDP. The communication between SAS® 360 Match 
and the IDP uses Security Assertion Markup Language, or SAML. To configure single sign-on, 
you must set up the IDP and the service provider, or SP, to exchange required data. In this 
case, the SP is SAS® 360 Match. 

Here are the terms used for the SSO process:  

Identity Provider (IDP) 

Provides identities for users who need to interact with a system. The IDP is usually the host of 
the user information repository that handles authentication and password management. 

Security Assertion Markup Language (SAML) 

Enables "single sign on" by allowing a single-user authorization service (or identity provider) to 
grant access to any number of third-party or remote applications. For example, when SAML is 
set up and configured, the identity provider can provide credentials to log on to applications 
such as Airbrake, PagerDuty, or Slack. 
Service Provider (SP) 

Provides features or functionality to users. The IDP, rather than the SP, manages user 
authentication. 
User Agent 

Usually refers to a web browser. 
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Configure Single Sign-On with Okta 

To configure single sign-on with, you must set up the Identity Provider (IDP) (Okta) and the 
Service Provider (SP) (that is, SAS® 360 Match) to exchange required data. 

Setting Up Okta as IDP 

After logging in to Okta, select Add Applications in the Shortcut menu on the dashboard. 
Click Create New App. Then click Show Advanced Settings to display all the fields in the 
SAML Settings panel. 

IDP Data Required by SP 

The SP must receive the following information from the IDP: 

• the "IDP single sign on" URL to redirect users for authentication 

• the IPD issuer URL 

• a copy of the IDP X.509 certificate 

These values can be entered manually or provided by a metadata XML file to the SP.  

Also, the Security Assertion Markup Language (SAML) uses the Name ID Format value to 
enable the IDP and SP to exchange information about a user, and to identify the user. SAS® 
360 Match expects the Name ID to be Persistent. (The Name ID can be configured to have a 
transient value).  

SP Data Required by IDP 

The IDP must receive the following information from the SP: 

• The SP URL to post authentication information, that is, the SP "consumer" or "SP single 
sign on" URL. 

• The default SP landing page, that is, the "Audience URI" or "SP Entity ID". This is 
typically the home page for the website. 

• Authentication user payload information that is sent to the IDP in the format required by 
the SP. An SP defines the user attributes (that is, “Claims”) that are acceptable. For 
example, the attributes might be "login" instead of "username", "first_name" instead of 
"FirstName", or "email" instead of "email_address". If necessary, the IDP transforms its 
user data to the expected format before posting it to the SP consumer URL.  

Note: SAS® 360 Match expects to receive the following attributes from the IDP (case 
sensitive)  

o FirstName 

o LastName 
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o Email 

o Login 

• SAS® 360 Match requires the four attributes and the persistent name ID from the IDP 
when posting to the SSO consumer.  

• (Optional) Assertion encryption certificated generated by SAS® 360 Match. Configure 
the IDP to accept an encryption algorithm of AES-256-CBC and key transport algorithm 
of RSA-OAEP. 

Configuring SSO in SAS® 360 Match 

Note: The IDP configuration requires information from the SP, and the SP requires information 
from the IDP during setup. You might want to create an initial SSO configuration with only name 
and default role set and leave the URL fields blank before you configure the IDP. Configuring 
the SSO in this manner enables you to have the required information before you get started.  

The fields in the SSOs panel are automatically populated after metadata information is copied 
into the Metadata field that appears when you first select the SSOs panel on the Admin tab. 

During the initial setup, do not set the SSO configuration as the default until it is proven to work. 
Once the SSO configuration is set to be the default, navigating to the URL of the user interface 
will redirect you to the IDP's logon screen, if the user is not logged in. 

After logging in through the IDP, a new user account is created in SAS® 360 Match if the email 
address provided by the IDP for the user does not exist in SAS® 360 Match. If the email 
address does exist, the existing user account in SAS® 360 Match is converted to an SSO 
account and now must be used in conjunction with the SSO. In other words, a user account that 
has logged in through the SSO service can no longer log on to SAS® 360 Match in the 
traditional manner. 

As a result, it is important to create at least one user account with administrator access that is 
NOT used for SSO. Creating a user account with administration access ensures that if the IDP 
is down, at least one account is still able to log on. 

In SAS® 360 Match, SSO is configured in the SSO panel on the Admin tab.  

Here are the fields in the SSO panel: 
• Name: The unique name for the SAS® 360 Match installation. The name must be URL 

safe because the SSO name is part of the "SP single sign on URL" that is provided to 
the IDP. This field is read-only after you create the SSO.  

• Active :Select to indicate that users can authenticated with the SSO. 
• Default: Select to indicate that anonymous users are authenticated with this SSO by 

default instead of another SSO or the local application logon. 
• Default role: Specify the default role for new SAS® 360 Match users signing in from the 

SSO. Groups, roles, and permissions are not declared by the SSO and must be 
managed within SAS® 360 Match. 
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• Refresh duration: Specify the amount of time that SAS® 360 Match waits before re-
verifying the authentication information with the SSO. The minimum duration is 15 
minutes. 

• Idp sso target url: This information is provided by the IDP.  
• Idp issuer: This information is provided by the IDP 
• IDP Certificate: This information is provided by the IDP.  
• SP Certificate: This information is generated by SAS® 360 Match and can be provided 

to the IDP to enable assertion encryption. 
• Metadata: (Optional) The URL this is used to upload IDP information, if the SSO record 

was created by that method. 

Click Update after making desired changes. 

After the IDP and the SP are configured and enabled, authentication by the SSO starts 
automatically. 

Data Activation 
SAS® 360 Match provides many ways to work with visitor data via cookies or uploaded 
information.  

Disabling Cookies  

During the first visit to a site, each visitor is given a unique ID. This information is maintained 
across subsequent visits through the MID cookie for user ID.  

For example, when the visitor goes to a website, SAS® 360 Match creates and stores a cookie 
on the visitor’s browser. The cookie contains the visitor’s ID. You can override the cookie and 
pass a specific ID in the path information of an ad call. If no MID is specified in the path 
information, the ID in the cookie is used.  

For customers who want to disable cookies on their sites, SAS® 360 Match provides the ability 
to pass MID information in the path information. This allows the customer to control the ID 
exchange between the visitor and SAS® 360 Match. In a scenario without cookies, the 
customer must pass the ID with the ad call if they want to use any features that require an ID or 
a cookie. To do so, the customer generates the MID value and adds it in the form of 
/MID=<value>/ to the path information. Also, if it is configured, a state vector ID can be used in 
place of a MID value to identify the visitor.  

Contact SAS Technical Support if you want to disable cookies and still retain visitor ID 
functionality. 

SETID 

SAS® 360 Match can set a user cookie named 'external' that can be used to store keys and 
values. The key needs to be created as a tag in the UX with the proper values. When a 
KEY=VALUE pair is found in the external cookie, which also exists as a tag, the engine 
automatically uses it as if it is a tag in the path info of the request. 
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Flights can be targeted using TAG=VALUE pair once the tag and tag values are created to 
match the name and values in the external cookie. A simple URL request is needed to set keys 
and values in the external cookie for the visitor. The structure of the URL is:  

http://adcallURL/{shortname}/setid/external=RED/value=1 

In this example, RED is the tag name and the value is 1. After this request, the external cookie 
will have the following values: 

RED=1 
BLUE=2 
GREEN=3  

State Vector 
The state vector is a persistent set of data associated with a visitor and can be used for 
dynamic, real-time targeting of content. State vector consists of an ID to identify the visitor and 
a collection of tags and events. The state vector ID can be based on a defined ID name (for 
example, customerid or userid) or can implicitly use the SAS® 360 Match mid (cookie ID), 
depending on configuration. Once a state vector is active for a visitor, any calls to SAS® 360 
Match automatically consider the tags and events associated with that visitor in the ad selection 
logic. 

State Vector Tags 
Tags are set for a visitor either through an engine directive (SETSV) or via a batch process that 
loads from a flat file. You can use the SETSV directive to set a tag’s value or values for a visitor. 
You can also use SETSV to append additional values to an existing set of values for the tag. A 
TTL can be expressed to cause the set values to expire after a specified number of seconds, 
even during an active session. 
You can set tag values that are used only through a current session. When TTL=SESSION is 
present in the SETSV call, tag values set by that call are used only within the current visitor 
session. When the visitor's next session begins, these values are not present.  
For example, a visitor could be tagged with segment=homeowner,sportsfan after visiting a 
page with a SETSV call on it that could be set to expire after 3 days. If a flight were targeted to 
either of those “segment” values, this visitor would qualify to receive the flight. 

Authenticating SETSV Calls 
By default, users can perform any action using SETSV calls. However, you can require that a 
user provides an API key to process SETSV calls. You can also specify a list of allowed tags to 
enable SETSV calls without an API key. Contact SAS Technical Support to enable the API 
authentication feature or to configure your list of allowed tags. 
Include the API key in the path information for the SETSV call. 
 

/setsv/apikey=<API KEY> 

A SETSV call that includes any tags that are not on your list of allowed tags must contain an API 
key to be processed. If the path information contains a mix of tags that are and are not in the 
allowed list, the tags are processed only if the user includes an API key.  
If a SETSV call fails, subsequent calls, even if they contain a valid API key, continue to fail until 
the end of a time-out period, which is 60 seconds by default. Contact SAS Technical Support to 
change the time-out period.  
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A call is considered unauthorized if any of the following conditions are met: 
• The call requires an API key, but none is given in the path portion of the call. 
• The call requires an API key, but the keyword APIKEY is misspelled. 
• The call requires an API key, but the value of the API key is not valid.  
• Less than one minute has passed since the most recent unauthorized attempt to use 

SETSV. 
This authentication method also applies to GETSV. 

State Vector IDs 
By default, the state vector uses the visitor’s MID cookie value as their state vector visitor ID. 
Alternatively, the state vector can use a defined ID name instead of the MID cookie to identify 
visitors and store a collection of tags and events. With this configuration, the MID cookie is still 
used to identify and store information about visitors who are not associated with a state vector 
ID.  
You can also configure the MID cookie value to be set to the state vector ID, when it is 
provided. In this scenario, a MID cookie value is generated for unidentified visitors. Once a state 
vector ID is provided for the visitor, the MID cookie is set to the same value. This enables you to 
identify visitors in future sessions without having to supply a state vector ID for every visit. 
The state vector ID name and associated MID cookie behavior are configured by SAS Technical 
Support. Once they configured, values for the state vector name can be passed in with SETSV 
calls or through a batch process. 

Secondary State Vector IDs 

You can configure secondary state vector IDs to provide additional identity information about a 
user. Contact SAS Technical Support to enable this feature. 

When an ad call includes a secondary ID but not the primary ID, and the data lookup for the 
secondary ID does not produce a value for the primary ID, then the visitor’s state vector is 
defined by the value of the secondary ID. All state vector data is stored using the ID from the 
secondary ID. 

When an ad call includes a secondary ID and the data lookup for that ID produces a value for 
the primary ID, the value of the primary ID is used to store state vector data. Also, any state 
vector data that had previously been stored under the value for the secondary ID is merged into 
the primary ID’s state vector.  

However, any ID data that had been defined with the secondary ID value by the user 
registration process is retained with the secondary ID. Only data that is set in the secondary 
state vector ID using the SETSV API call is merged into the primary ID state vector. In this way, 
the secondary ID retains its user registration behavior, even when ad calls have an explicit 
primary ID value. 

Use the user registration data import process to enable a secondary ID value to identify the 
primary ID value. To do this, you must first configure the mapping between the primary ID value 
and the secondary ID value.  

This feature allows a client who knows only a secondary ID value to make ad calls and still 
engage with all the data for the visitor through the primary ID. Different calling clients can use 
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and contribute to a centralized data store for the visitor without themselves knowing the primary 
identifier of the visitor. 

For example, the following two files provide visitor data. The primary state vector ID (SVID in 
this case) contains the following information:  

SVID,TAG1 
1234,a1234 
1235,a1235 
1236,a1236 

The secondary state vector ID (TPID in this case) contains the following information: 
TPID,TAG2,SVID 
4567,b4567, 
4568,b4568,1235 
4569,b4569,1236 

This table shows the data that is activated by different ad calls and the state vector ID that is 
used by the session associated with each one: 

Ad Call Path 
Information 

Activated Data State Vector ID Comment 

.../SVID=1234/... /TAG1=a1234 SVID:1234 No TPID is involved, so normal SVID 
behavior is exhibited. 

.../TPID=4567/... /TAG2=b4567 TPID:SV:4567 This TPID provided no mapping to a SVID 
value in the data file, so it becomes its own 
state vector identification (as indicated by 
the ":SV" suffix on the name). 

.../TPID=4568/... /TAG1=a1235/TAG2=b4568 SVID:1235 This TPID provided a mapping to an SVID. 
Therefore, data from the TPID and SVID is 
activated, and the SVID is used for state 
vector identification. 

For consistency, the same ID should be included explicitly in all requests that are sent during a 
session. Otherwise, multiple sessions might be created for the same state vector. For example, 
if some requests are made with ".../TPID=4568/..." and others are made with ".../SVID=1235/..." 
within the same period, two different sessions could result. The exact behavior depends on 
customer settings and whether the calling device or browser accepts cookies. 

However, using different IDs is acceptable when requests vary across more time, such as when 
a user is using different devices or browsers at different times. For example, if a user is on a 
device that sends ".../TPID=4568/..." in the morning and uses a device that sends 
".../SVID=1235/..." in the afternoon, the data in both cases is collected under the SVID:1235 
identification. 

State Vector Events 
Within Events, an event name is associated with one or more timestamps corresponding to a 
visitor action (that is, visiting a certain page). Like tags, they can be recorded either through use 
of the SETSV directive or via a batch process. When set via the SETSV directive, the event is 
recorded as occurring “now”. A variation allows the exact time or times to be specified (for 
example, to express one or more historical events) although the batch process is more 
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appropriate for that purpose. Events are configured by clicking the Events section in the 
Targeting tab of the software or through the XML API.  

Setting Tags via SETSV 
To set tags, the SETSV parameters consist of one or more tags and values expressed in the 
conventional path info format. 

Using the Default MID Method for Visitor IDs 
https://domain.aimatch.com/customername/SETSV/tag1=value/tag2=value1,value2,… 

For example:  
https://domain.aimatch.com/customername/setsv/segment=homeowner,sportsfan/ 
gender=m 

Using a Defined State Vector ID Name 
https://domain.aimatch.com/customername/SETSV/svidname=id/tag1=value/tag2=value1,
value2,…  

For example: 
https://domain.aimatch.com/customername/setsv/customerid=1234/segment=homeowner,s
portsfan/gender=m 

Tags that are set via this command overwrite the existing values, if any, in the SV. Tags in the 
SV that are not expressed in the command remain. For example: If the visitor’s SV logically 
already contains: 

/segment=boatowner/senior=y 

Then the above example updates the SV to contain: 
/segment=homeowner,sportsfan/senior=y/gender=m 

An optional APPEND keyword causes existing tag values to be appended, rather than 
overwritten. For example: If the SETSV parameters are: 

…/SETSV/segment=homeowner,sportsfan/gender=m/append 

Then it updates the original SV to contain: 
/segment=boatowner,homeowner,sportsfan/senior=y/gender=m 

The only difference in this example is that the resulting “segment” tag has three values instead 
of two. 

An optional TTL parameter sets a time-to-live, in seconds, for the tag values set by the 
command. Without a TTL parameter, the values remain set indefinitely. For example: If the 
SETSV parameters are: 

…/SETSV/segment=homeowner,sportsfan/gender=m/append/ttl=86400 

Then it updates the original SV to contain the following: 
/segment=boatowner,homeowner,sportsfan/senior=y/gender=m 

But after one day (86440 seconds), it reverts to the following: 
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/segment=boatowner/senior=y 

If different APPEND or TTL options are needed for different tags being set, separate SETSV 
commands must be issued. 

Adding or Removing Tag Values and Events 

In a SETSV call, the path info can include "+=" and "-=" assignments for tags to add or remove 
values to a multivalued or stacked tag. A /TAG+=VALUE1 appends VALUE1 to any existing tag 
values for TAG. If TAG is multivalued and already has a VALUE1, another is not added. If TAG is a 
stacked tag, VALUE1 is added to the end of the tag's stacked values, and repeat values are 
possible. 
/TAG-=VALUE1 removes VALUE1 from any existing tag values for TAG. If TAG does not have a 
VALUE1, its values are not changed. If TAG is a stacked tag, all occurrences of VALUE1 are 
removed. 

The right-hand side can express multiple values, in which case those values are all added to or 
removed from the tag.  

Use the "+=" assignment to append events and the "-=" assignment to remove events with the 
EVENT.eventname tag. For example: 

.../EVENT.CONVERTED+=1534537253,1534537399/... 

adds two new event times to the CONVERTED event, subject to the event’s maximum count and 
time policy. 

.../EVENT.CONVERTED-=1534537253,1534537399/... 

removes two event times from the CONVERTED event, assuming they were there in the first 
place. Timestamps that are not in the visitor's event occurrence list are ignored. 

Recording Events via SETSV 

To record a new event, the SETSV parameters consist of an EVENT tag whose value is the name 
of the event: 

https://domain.aimatch.com/customername/SETSV/event=eventname 

For example: 
https://domain.aimatch.com/customername/SETSV/event=abandonedcart 

Multiple events can be recorded in the same call. 

For example: 
…/SETSV/event=abandonedcart,viewedcart 

The events are recorded as having occurred at the time the command was received. 

An alternative syntax allows one or more explicit timestamps to be specified for each event. 
The EVENT tag must be suffixed with the event name to the left of the equal symbol: 

…/SETSV/event.eventname=timestamp,timestamp,… 
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Each timestamp must be expressed as a UNIX epoch timestamp—the number of seconds that 
have elapsed since January 1, 1970 (midnight GMT). 

When explicit timestamps are specified, the APPEND keyword should be present to add them to 
previous event occurrences. Without the APPEND keyword, the explicit list of timestamps 
replaces all existing occurrences of the event. APPEND is assumed when an event is expressed 
without explicit timestamps: 

…/SETSV/event.abandonedcart=1440278686,1440341491/append 

adds two occurrences of the event abandonedcart to any existing set of occurrences. The 
times are for Sat, 22 Aug 2015 21:24:46 GMT and Sun, 23 Aug 2015 14:51:31 GMT. 

Without the APPEND option, this example replaces existing occurrences of the abandonedcart 
event with just these two. Similarly, all existing occurrences of abandonedcart can be removed 
using: 

…/SETSV/event.abandonedcart= 

Explicitly Merging State Vectors via SETSV 

When a configured state vector ID name is being used for the state vector (and not the MID 
value), SETSV can be used to explicitly merge two state vectors: 

…/SETSV/svidname=id1/mergefrom=id2 

where svidname is the configured SV ID name, id1 is the ID of the target state vector (the one 
to be merged into), and id2 is the ID of the source state vector (the one to be merged from). 

Tags from id2 are assumed to be newer than those from id1 and overwrite the same tags in 
id1. For events, id1 is updated to have the union of all events from id1 and id2. The merge 
operation not only updates id1’s state vector as described, but also clears out the state vector 
for id2. For example, if customerid is the configured SV ID, and the SV for ID 12345 is 
(logically): 

/segment=homeowner,sportsfan/gender=m/event.abandonedcart=1440278686 

And for ID 98765 is: 
/segment=boatowner/senior=y/event.abandonedcart=1440341491/ 
event.viewedcart=1440341491 

Then the SETSV command: 
…/SETSV/customerid=12345/mergefrom=98765 

results in the following updated SV for 12345: 
/segment= boatowner/senior=y/gender=m/ 
event.abandonedcart=1440341491,1440278686/event.viewedcart=1440341491 

When one state vector with no tag values is merged with another state vector with tag values, 
the merged state vector contains tag values from the state vector with values. However, there 
might be conflicts if both state vectors have values. 

Contact SAS Technical Support to specify one of the following behaviors if a merge conflict 
occurs when you combine tag values from two state vectors: 
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• Merge and retain the values from both state vectors. This is the default behavior. 

• Keep the current values and ignore the values from the MERGEFROM state vector.  

• Ignore the current values and keep the values from the MERGEFROM state vector. 

In addition, contact SAS Technical Support to define a list of predefined tag values to merge 
with the tag values from the state vectors. This list is empty by default and is ignored when you 
use the default behavior of merging and retaining values from both state vectors. 

Implicitly Merging State Vectors via SETSV 

When a visitor’s state vector accumulates data under its MID value, the expression of a state 
vector ID causes the MID-based data to be implicitly merged into the SV ID-based data. Tags in 
the MID-based data are regarded as newer, overwriting any existing values in the SV ID-based 
data. Events are merged as described above. 

Bulk Data Upload via SV  
Uploading bulk SV data into SAS® 360 Match allows customers to specify a set of targeting 
tags to use with the current visitor based on a specified ID. This feature is commonly used to 
import user registration data. It can also be used to import a set of tag values based on any 
type of ID, even an ID that is not necessarily visitor-specific, such as a program ID. IDs are not 
case sensitive.  

Data File Requirements 
You can use the bulk upload process to update SV and non-SV data. SV data includes tags 
and events, and requires an SV ID name (for example, customerid). Non-SV data can include 
only tags and also requires an ID. Contact SAS Technical Support to define the IDs.  
The uploaded file uses the CSV format, with the first line consisting of headers that define all 
the columns. Any double quotation marks around the column names are ignored. 
For SV uploads, the table must include one column for the state vector ID, which must be the 
first column that references an ID. The best practice is to make this the first column in the table. 
The column names are otherwise assumed to be tags or events.  
No APPEND option is assumed for tags or events. Column names in uploaded files can end with 
a “+” or “-” to indicate whether values in that column should be added to or removed from the 
corresponding tag, respectively. Without one of these suffixes, the data appearing for a tag or 
event are considered to represent all the values to be stored, replacing any prior values. 
For tag values, the TTL is configurable, but defaults to 6 months.  
You can configure the upload so that changes made to the SV through uploaded files become 
effective immediately for visitors with an active session. Files are processed in the order in 
which they are received. 
SAS® 360 Match supports two CSV formats for imported files, indicated by adding the fmt1 and 
fmt2 format codes to the file extension. Each format parses the uploaded data in a different 
way. 
The default format, noted by fmt1, supports multivalues and stacked values. This format uses 
commas to separate tag columns. You can stack values in tag data using the “!” symbol. 
Multivalues are separated by a URL-encoded comma (%2C). Alternatively, the entire column’s 
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data can be enclosed in double quotation marks, and commas can be used within the data to 
delimit multiple values. Event columns must be identified as EVENT.eventname. The values for 
events must be timestamps in the same format as SETSV. 
The second format, noted by fmt2, does not support multivalues, stacked values, or values 
with embedded line breaks. Like the default format, this format uses commas to separate 
columns. However, tag data is considered a single value. If the value includes a comma or 
double quotation marks, the entire column’s data must be enclosed in double quotation marks. 
If the data includes double quotation marks, it must be escaped with an additional double 
quotation mark. 
At the file level, the format code has to precede the .CSV or .CSV.gz suffix, such as 
filename.<formatcode>.csv. When no format code is present in the file name, the default 
format is used. 
At the column level, the format code can be added as a suffix to the column name, such as 
columnname:<formatcode>. When no format code suffix is present, the processing format to 
use is determined from the file name. The file name establishes a format for the file, and 
individual columns can override it. 
A file named data.csv with the header row id,tag1,tag2,tag3 parses all columns using the 
default format. 
A file named data.fmt2.csv with the header row id,tag1,tag2,tag3 parses all columns 
using the single-value format. 
A file named data.csv with the header row id,tag1,tag2:fmt1,tag3:fmt2 parses the id, 
tag1, and tag2 columns using the default format, and tag3 using the single-value format. 
A file named data.fmt2.csv with the header row id,tag1,tag2:fmt1,tag3:fmt2 parses the 
id, tag1, and tag3 columns using the single-value format, and tag2 using the default format. 

User Registration  
User registration enables customers of SAS® 360 Match to target specific visitors based on 
accumulated demographic data such as age or gender. This feature is used to indirectly specify 
a set of targeting tags to use with the current visitor based on a specified ID. Typically, the user 
registration feature is used to import user registration data. However, the feature can also be 
used to import a set of tag values based on any type of ID, even for an ID that is not visitor 
specific such as a program ID. 
To enable the user registration feature, the following items are required:  

• The customer must create the data file that contains unique identifiers for visitors and 
their associated demographic data.  

• For configuration purposes, provide SAS Technical Support with the string for the 
visitor's unique identifier such as /userid={some unique value}/ that will be passed 
in on the ad request URL path information. If this key=value pair is present in the 
request, the value is used as the ID of the visitor for user registration demographic data 
lookup.  

• The customer must create the custom tags and values that correspond to the 
demographic data column names in the user registration file.  

• The customer must build the ad request URLs so that the unique visitor identifier 
key=value pair is passed to SAS® 360 Match in the URLs.  

By default, items in the file expire six months after they are last updated. You can use an 
optional column named TTL to specify the lifetime, in seconds, of individual items in the file. For 
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example, if the TTL value is set to 600, the item is deleted after 10 minutes. If the TTL value is 
not set, is less than 0, or is not a numeric value, the default lifetime of six months after the last 
update is used.  
The user registration data file format is contained in a text file. The file is comma delimited, with 
one record per line. The first line is a header line that contains the names of the tags used for 
user data. The names of the header values must match the names of the tags in the SAS® 360 
Match database. The values in the record lines must match if logging is to work. Otherwise, the 
values can be used for targeting purposes with a LIKE operator.  
Here is an example of a file: 

userid,age,gender 
1,50,m 
2,80,f 
3,200,o 

The first line of the file is a header row that defines the unique user IDs and the keys or 
targeting values. The first column must be the unique visitor identifier. The demographic values 
are contained in each row. 
In this example, if the path information of the ad request URL includes userid=1, SAS® 360 
Match performs a lookup on this value on the initial request and returns age=50 and gender=m 
for this specific visitor for targeting. You can combine this information with corresponding 
custom tags in the UX to create targets that use this data. In this example, age and gender are 
the custom tags. 
Multiple trait values can be logged if the values are encased in quotation marks and separated 
by commas. For example: 
  

ID,hobby,job_title  
1,“hockey,music”,PM 

User registration data is stored under the value that is specified by the ID column in the text file. 
The values are case-insensitive. When comparing values, SAS® 360 Match converts characters 
to uppercase with the assumption that it is converting plain ASCII characters. This conversion 
might not occur or might occur incorrectly for non-ASCII characters. Therefore, SAS® 360 
Match might not be able to make proper comparisons for non-ASCII values. 

For example: 

ID,GENDER,REGION,FAVORITE 
123,Male,NorthEast,Thriller 
85tyk9,Female,Caribbean,Romance 

If the user registration data file is not properly formatted, the loading process fails and no user 
registration data is available for targeting. 

Uploading Data Files 

Data files should be uploaded through the REST API. However, SAS Technical Support can 
create a location for the files to be uploaded using Amazon S3. In this case, the file is moved to 
an archive directory after processing so that its absence from the upload location indicates 
processing is complete. The uploaded files can end with CSV or CSV.gz. The files must have 
one of those extensions. No other files are processed. If multiple files are present, they are all 
processed. File name conventions should follow Linux naming conventions. For more 



  

29 

information, see http://www.linfo.org/file_name.html. There is no limit to the number of rows in 
the files. If a new file has the same name as an existing file that has not yet been processed, 
and therefore not yet moved to the archive bucket, the new file overwrites the existing file. 
When importing the data, no characters are ignored. Whatever is found for a tag value is kept 
as is and presented to the engine. If the input contains characters that would ordinarily be 
disallowed when creating tag values, then it is, by definition, an unrecognized value and the 
engine will not match it to any targets. If duplicate user ID rows are present, SAS® 360 Match 
overrides the first entry's values with the latter entry's values. 
When processing the uploaded file, the only row-level issue that can occur is a failure or time-
out when attempting to insert new data for a visitor. In such a case, the new data is not inserted 
and the process continues with the next row. The import process fails if the user ID value is not 
found in the file header or if the field delimiter is not a comma. Once processed, the file is 
archived. Any archived user data files are purged after 30 days. 
If you want to null out a user’s data, you can upload the CSV with the user ID, and list 
segments (keys) with no data in the value field associated with them. If you are trying to add a 
new segment, you can upload the standard CSV with only that data in it (for example, user ID, 
key, value). For example: 
Case 1 
You would like to delete three users who no longer want to be profiled for advertising: 

userid, matchtype, barb, de, th 
qw41, email, a3.aa.ma.me, 56595, 6775 
we25, nonmatch, a3.w3.wo, 94489, 6647 
er47, nameemail, aa.hc.wa.wo, 76692, 6664 

Submit the CSV as follows: 
userid, matchtype, barb, de, th 
qw41, , , ,  
we25, , , ,  
er47, , , ,  

This eliminates all the fields associated with the users except their user ID. 
Case 2 
You would like to add new data to a user for additional targeting. Submit the following CSV to 
update the details: 

userid, matchtype, barb, de, th, tgt 
qw41, email, a3.aa.ma.me, 56595, 6775, sue 

Submit this CSV for the same result: 
userid, tgqwqw41, sue  

Case 3 
Same as Case 2 except instead of a new field, use an existing field: 

userid, matchtype, barb, de, th, 
qw41, email, a3.aa.ma.me, sue, 6775 

Submit this CSV for the same result: 
userid, de, 
qw41, sue 

http://www.linfo.org/file_name.html
http://a3.aa.ma.me/
http://a3.aa.ma.me/
http://a3.aa.ma.me/


  

30 

Duplicate Tags 
If the ad request contains tags that match those in the state vector data set, then the tag values 
on the request become the defaults for that visitor. If a request comes in without those tags, the 
state vector values are used. For example, if the ad call expresses GENDER, then it overrides the 
value for just that request, and its value is the one logged. If the next call comes in without 
GENDER, the state vector value is used again. 

Tokens 

Key=value pairs looked up by state vector are available to be tokenized using the standard 
%%TAG%% token format. 

Deleting Personally Identifiable Information  

When a SETSV call includes DELETEALL=1 or any nonzero integer value, the user ID record, 
user registration data, and all the information that is stored in the specified visitor’s state vector 
is deleted, including tags, events, exposure history, tracking history, and persistent creatives. 
Other tags in the same call are ignored and do not update the state vector. If DELETEALL is not 
present or if DELETEALL=0, normal SETSV processing occurs. 

All data can be deleted for a given ID by including a column named DELETEALL and using a 
nonzero integer value. If the value for that column is empty or “0”, then other columns are 
processed normally. 

These deletion mechanisms do not prevent new data from being set for visitors. For true do-
not-track behavior, you must also stop sending data updates for visitors’ state vector and in 
their user registration afterward. 

Identity Mapping 

The identity mapping feature complements the user registration and state vector features. This 
feature allows the upload of a file with user data that references an identity in another user data 
file. In this manner, it would be possible to identify a user on a site and load centralized data for 
that user automatically for use in targeting. For more information about identity integration, 
contact SAS Technical Support. 

Data Expiration 

Uploaded user data is purged after 6 months if the data has not been refreshed or overwritten 
in that time. This expiration time can be configured by SAS Technical Support.  

You can also use the REFRESHALL tag to reset the TTL for data that is associated with an active 
visitor. By default, the value for this tag is 0 and the TTL is not refreshed. Set the tag value to 1 
to refresh the visitor’s TTL. 

Use the SETSV directive to refresh data for a visitor: 
.../SETSV/customerid=12345/refreshall=1/...  

Provide a REFRESHALL value in a bulk file upload to refresh data for multiple visitors: 
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customerid,refreshall 
12345,1 
12389,1 
... 

Adding UI Extensions 

By default, the security framework for SAS 360 Match prevents you from adding extensions to 
the user interface. Contact SAS Technical Support if you want to add individual domains to a 
trusted list and enable your extensions. 
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