Contents

Using This Book ... v
What's New ... vii
Accessibility ... xi

Chapter 1 • Getting Started .. 1
 Orientation ... 1
 Adding Users ... 3
 Operating Servers .. 6

Chapter 2 • Loading Data .. 9
 About Loading Data .. 10
 Get Table Information ... 12
 Administer LASR Tables ... 13
 Administrator Load .. 15
 Self-Service Import .. 16
 Reload-on-Start ... 18
 Autoload ... 21

Chapter 3 • Security .. 33
 Permissions ... 34
 Access to In-Memory Data .. 39
 Row-Level Security .. 42
 Key Actions Auditing .. 46
 Locked-Down Servers .. 53
 Access to SAS Mobile BI .. 53
 Authentication .. 57
 Encryption ... 58

Chapter 4 • Fine-Tuning ... 67
 Administering the Home Page .. 68
 Supporting Guest Access .. 68
 Supporting Text Analytics ... 69
 Supporting Geographic Maps ... 69
 Supporting Stored Processes ... 71
 Supporting Report Distribution ... 72
 Supporting User-Defined Formats 73
 Managing Alerts and Notifications 74
 Supporting the Monitoring Features 75
 Adjusting the Logging Configuration 76
 Making More Fonts Available on UNIX 78
 Using Multiple SAS Application Servers 79
 Setting User Preferences ... 80

Chapter 5 • SAS LASR Analytic Server 83
 About SAS LASR Analytic Server 84
 LASR-Related Metadata ... 84
 In-Memory LASR Names .. 85
 Add a SAS LASR Analytic Server 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a LASR Library</td>
<td>87</td>
</tr>
<tr>
<td>Limit Space for Tables</td>
<td>89</td>
</tr>
<tr>
<td>Extended Attributes: SAS LASR Analytic Server</td>
<td>90</td>
</tr>
<tr>
<td>Advanced Options: SAS LASR Analytic Server</td>
<td>91</td>
</tr>
<tr>
<td>Distributed Server: Monitoring</td>
<td>93</td>
</tr>
<tr>
<td>Distributed Server: Parallel Load</td>
<td>96</td>
</tr>
<tr>
<td>Distributed Server: Co-located HDFS</td>
<td>99</td>
</tr>
<tr>
<td>Distributed Server: Legacy Co-located Providers</td>
<td>105</td>
</tr>
<tr>
<td>Distributed Server: High-Volume Access to Smaller Tables</td>
<td>105</td>
</tr>
</tbody>
</table>

Chapter 6 • Reports for Administrators 109

- About the Predefined Reports 109
- How to Provide Administrative Data 111

Appendix 1 • Reference 115

- Software Components 115
- Roles and Capabilities 117
- Configuration Properties 123
- High-Cardinality Constraints 132
- Predefined LASR Libraries 136

Appendix 2 • Troubleshooting 141

- Troubleshooting: SAS Visual Analytics 141
- Troubleshooting: SAS Mobile BI 146
- Permission Origins 147

Glossary 151

Index 153
Using This Book

Audience

This book documents administration of SAS Visual Analytics in a traditional on-premises deployment.

Documentation Conventions

SAS Configuration Directory

The phrase SAS configuration directory refers to a host path that includes a configuration name and level.

UNIX example: /opt/sas/config/Lev1

Windows example: C:\sas\Config\Lev1

For more information, see Overview of the Configuration Directory Structure in the SAS Intelligence Platform: System Administration Guide.

Note: For directory paths that are identical on UNIX and Windows, this book uses UNIX style path delimiters (/ instead of \).

Short Forms and Labels

The following table documents short-form terminology that is used in this book.

<table>
<thead>
<tr>
<th>Long Form</th>
<th>Short Form</th>
<th>User Interface Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS Visual Analytics Administrator</td>
<td>the administrator</td>
<td>Administrator (Manage Environment)</td>
</tr>
<tr>
<td>SAS Visual Analytics Explorer**</td>
<td>the explorer</td>
<td>Data Explorer (Create Exploration)</td>
</tr>
<tr>
<td>SAS Visual Analytics Designer</td>
<td>the designer</td>
<td>Report Designer (Create Report)</td>
</tr>
<tr>
<td>Long Form</td>
<td>Short Form</td>
<td>User Interface Labels*</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>SAS Visual Analytics Graph Builder</td>
<td>the graph builder</td>
<td>Custom Graph Builder</td>
</tr>
<tr>
<td>SAS Visual Analytics Viewer</td>
<td>the web viewer</td>
<td>Report Viewer</td>
</tr>
<tr>
<td>SAS Visual Analytics Transport Service</td>
<td>transport service</td>
<td>-</td>
</tr>
<tr>
<td>SAS Visual Data Builder</td>
<td>the data builder</td>
<td>Data Preparation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Prepare Data)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Create Data Query)</td>
</tr>
<tr>
<td>distributed SAS LASR Analytic Server</td>
<td>distributed server</td>
<td>-</td>
</tr>
<tr>
<td>non-distributed SAS LASR Analytic Server</td>
<td>non-distributed server</td>
<td>-</td>
</tr>
<tr>
<td>SAS LASR Analytic Server library</td>
<td>LASR library</td>
<td>-</td>
</tr>
<tr>
<td>SAS LASR Analytic Server table</td>
<td>LASR table</td>
<td>-</td>
</tr>
<tr>
<td>Hadoop Distributed File System</td>
<td>HDFS</td>
<td>-</td>
</tr>
<tr>
<td>library that uses the SASHDAT engine</td>
<td>SASHDAT library</td>
<td>-</td>
</tr>
<tr>
<td>library of the type SAS Data in HDFS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Labels in parentheses are used only in the classic (Flash) presentation mode.

** Not all SAS Visual Analytics orders include the explorer.
What’s New

General Administration

- An additional predefined administrative report is available. See Chapter 6, "Reports for Administrators," on page 109.

- The scope of key actions auditing is expanded to include audit records from the administrator and the explorer. See "Key Actions Auditing" on page 46.

- Data queries (VisualDataQuery objects) and explorations (VisualExploration objects) participate in the relationship service. See Using the Batch Relationship Reporting Tools in the SAS Intelligence Platform: System Administration Guide.

- You can encrypt data at rest in the following contexts:
 - For files in a reload-on-start backing store, you can use a metadata-bound library to provide AES encryption. See “On-Disk Encryption of Reload-on-Start Files” on page 58.
 - For SASHDAT files, you can use the SASHDAT engine and the SAS LASR Authorization Service to provide AES encryption. See “On-Disk Encryption of SASHDAT Files” on page 61.

 Note: In the metadata layer, the Read permission is enforced for interactions with an encrypted SASHDAT library. See “On-Disk Encryption of SASHDAT Files” on page 61.

- You can optimize high-volume access to small tables on a distributed SAS LASR Analytic Server. See “Distributed Server: High-Volume Access to Smaller Tables” on page 105.

- You can control how long cached data is available in SAS Mobile BI.
 - A new property sets the time limit. See “viewerservices.offline.limit.days” on page 130.
 - A new capability determines which users are subject to the time limit. See “Limit Duration of Offline Access” on page 121.

- On UNIX, you can use Fontconfig to make additional fonts available when reports or explorations are printed to PDF. See “Making More Fonts Available on UNIX” on page 78.
Administrator User Interface

- The LASR Tables and LASR Servers tabs are enhanced as follows:
 - Changes that you make to column order and width are saved.
 - Initially, some columns are hidden. To show or hide a column, right-click on any column heading, and select the column.
 - If one or more requested actions do not succeed, the display of results indicates which actions failed or were not processed.

- The LASR Tables tab does not include a Compression column. In the Status column, ☑️ indicates a compressed table. To view the original size of a compressed table, place your mouse pointer over the table’s Size cell. See “Data Compression” on page 11.

- Initially, the Folders pane is collapsed. To access the Folders pane, select View ➤ Folders from the main menu.

- In deployments that support memory mapping, the LASR Tables tab includes two additional columns, Mapped Memory and Unmapped Memory. The additional columns are initially hidden. See “Get Table Information” on page 12.

- In deployments that use co-located HDFS, the HDFS tab indicates the compression status and encryption status for each SASHDAT table. See “Distributed Server: Co-located HDFS” on page 99.

Administrative Data Loading

- You can interactively reload SAS data sets that are imported from a server, tables that are output from data queries, and tables that are output from LASR star schemas.

- You can reload-on-start data that is imported from Google Analytics and Facebook.

- You can autoload tab-delimited files (TAB and TSV).

- You can autoload XLSB and XLSM spreadsheets (on Windows only).

- You can specify how many rows autoload scans to determine data types and column lengths in import actions. See “VA.AutoLoad.Import.RowsToScan” on page 30.
New capabilities affect the availability of new self-service import actions.

A new library-level extended attribute enables you to optimize high-volume access to small tables on a distributed SAS LASR Analytic Server. See “VA.TableFullCopies” on page 106.

A new server-level extended attribute enables you to specify a custom directory for monitoring artifacts for a particular SAS LASR Analytic Server. See “VA.MonitoringPath” on page 90.

A new suite-level property specifies the machine name and port for the process that monitors a distributed SAS LASR Analytic Server. See “va.LASRMonitor.HostPort” on page 126.

A new suite-level property enables you to set a maximum limit on the combined size of attachments in a report distribution email. See “va.distribution.email.aggregate.attachments.mb” on page 125.

A new suite-level property enables you to set the maximum number of rows for an import action from Google Analytics. See “va.SelfService.ImportGoogleRowLimit” on page 126.

A new web viewer property enables an administrator to force the use of a specified presentation mode for the web viewer. See “vav.ui.mode” on page 131.

In a new deployment that offers guest access, the property App.AllowGuest is set on individual software components rather than at the suite level. See “App.AllowGuest” on page 123.

SAS Visual Statistics has been visually and functionally integrated with the explorer. (SAS Visual Statistics is still licensed separately).

- The SAS Visual Statistics capability Build Analytical Model is in the Visual Analytics Explorer category.
- The SAS Visual Statistics high-cardinality properties have names that begin with vae.modeling.

The home page is independent from the SAS Visual Analytics suite. Home page administration is documented in the SAS Intelligence Platform: Web Application Administration Guide.

- The Visual Analytics Data Administrators group is a member of the new Home: Administration role.
- The property va.supportSharedThumbnails must be managed on two separate nodes: Visual Analytics Hub and Visual Analytics. See “va.supportSharedThumbnails” on page 127.
What's New
Accessibility

For information about the accessibility of any of the products mentioned in this document, see the usage documentation for that product.
What's New
Orientation

Tasks

Get familiar with the software architecture. See “Software Components” on page 115.

Register users. See “Adding Users” on page 3.

Make data available. See “About Loading Data” on page 10.

Ensure that backups occur. See About Backups and Restores in the SAS Intelligence Platform: System Administration Guide.
Tools

The Administrator

Most tasks are performed in the administrator, a SAS Visual Analytics web application. To open the administrator, select Administrator or Manage Environment from the side panel, banner, or home page.

Direct URLs are listed in the file SAS-configuration-directory/Documents/Instructions.html on the middle-tier machine.

UNIX example: /opt/sas/config/Lev1/Documents/Instructions.html

Windows example: C:\sas\Config\Lev1\Documents\Instructions.html

Troubleshooting

Issue: Neither URL is available. You are redirected from the administrator’s direct URL to the home page.

Resolution: Make sure that you have the required capabilities. In the standard configuration, members of the Visual Analytics Data Administrators group can access the administrator. See the instructions for the Groups and Roles tab in “How to Add a User” on page 3.

SAS Management Console

Some tasks are performed in SAS Management Console, a desktop application for platform and metadata administration. To open SAS Management Console, use one of the following instructions:

UNIX example: From /install/SASServer/SASHome/SASMgmtConsole/9.4, run ./sasmc.

Windows example: From the Start button, select All Programs SAS SAS Management Console.

For more information, see Administering SAS Management Console in the SAS Intelligence Platform: Desktop Application Administration Guide.

Other Administrative Tools

See Overview of the Administration Tools in the SAS Intelligence Platform: System Administration Guide.
About Adding Users

The following instructions document one way to register a user. For alternatives, see About User Administration in the SAS Intelligence Platform: Security Administration Guide.

TIP If guest access is enabled, you do not have to register users who need only limited, anonymous access. See “Supporting Guest Access” on page 68.

How to Add a User

1 Identify or create an account with which the user can access the SAS Metadata Server.

 Note: In the simplest case, accounts are known to the metadata server’s host. A metadata server on Windows usually authenticates users against Active Directory. A metadata server on UNIX might authenticate users against LDAP.

 Note: If the user imports data, loads data, or starts and stops servers, make sure that the user’s account has the necessary privileges. See “Host Account Privileges” on page 5.

2 Log on to SAS Management Console as an administrator (for example, sasadm@saspw).

3 On the Plug-ins tab, right-click User Manager, and select New ▶ User.

4 On the General tab, enter a name for the user.
On the **Groups and Roles** tab, add direct memberships for the new user:

- If the user does not perform administrative tasks, move the **Visual Analytics Users** group to the **Member of** list.

- If the user performs administrative tasks, move one or more of the following groups to the **Member of** list:
 - **Visual Analytics Data Administrators** (for suite-level administrative tasks)
 - **Visual Data Builder Administrators** (for data preparation tasks)
 - **SAS Administrators** (for platform-level administrative tasks)

TIP Unless you know you want to create a limited administrator, move all three groups to the **Member of** list.

On the **Accounts** tab, click **New** to add a login.

- Enter the user ID for the account from step 1. It is not necessary to store a password.

 Windows Specifics: Enter the user ID in a fully qualified format (*userID@domain.extension*, *domain userID*, or *machine userID*).

- Select the **DefaultAuth** authentication domain. Click **OK**.

 Note: If you know that web authentication has been set up, select the **web** authentication domain instead.

In the New User Properties window, click **OK**.
Host Account Privileges

Introduction
The requirements in this section apply to accounts that are used to import data, load data, or start and stop a SAS LASR Analytic Server. The requirements do not apply to users who only design reports, explore data, and view reports.

Host Directories
The account must be able to write to the signature files directory, the va.lastActionLogPath directory, and the PIDs directory that is beneath the va.monitoringPath directory. See “Signature Files”, “va.monitoringPath”, and “va.lastActionLogPath”.

TIP The standard configuration provides the necessary access.

SAS LASR Analytic Server
The account must be able to authenticate to the SAS LASR Analytic Server’s host.
- For a non-distributed server, in most cases, no action is necessary. The credentials with which a user initially signs in are reused for authentication to the SAS LASR Analytic Server. For more complex environments, see “Authentication” on page 57.
- For a distributed server, give the account passwordless SSH access to all of the machines in the cluster. See Passwordless SSH in the SAS LASR Analytic Server: Reference Guide.

For context, see “Distributed or Non-distributed?” on page 84.

Windows Compute Tier
To use a workspace server that runs on Windows, the account must have the local security policy Log on as a batch job. In a multi-machine deployment, set the policy on the compute tier (the machine that hosts the workspace server).

If an operating system group (such as SAS Server Users) has this policy, add the user’s account to that group. Otherwise, see Windows Privileges in the SAS Intelligence Platform: Security Administration Guide.

Access Management
For registered users who have appropriate memberships, no access-related changes are required. To set up custom access patterns or troubleshoot any problems, see “Permissions” on page 34, “About Capabilities” on page 117, and “Access to SAS Mobile BI” on page 53.

Results
To validate a registration, ask the user to sign in to the home page (http://host/SASVisualAnalyticsHub), and verify that the expected functionality is available.
For troubleshooting, see "Access Issues" on page 141.

Operating Servers

Operate a SAS LASR Analytic Server

Get Server Information

To get status and other information for a SAS LASR Analytic Server:

1. From the main menu in the administrator, select LASR ➤ Manage Servers.
2. Select a server, right-click, and select Get Status.

<table>
<thead>
<tr>
<th>Server</th>
<th>Status</th>
<th>Tables Memory (MB)</th>
<th>Tables Limit (MB)</th>
<th>Host</th>
<th>Port</th>
<th>Started By</th>
<th>Description</th>
<th>Started</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASR Analytic Server</td>
<td></td>
<td>4.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAS LASR Analytic service</td>
<td>12/21/14 03:15 AM</td>
</tr>
<tr>
<td>Public LASR Analytic Server</td>
<td></td>
<td>3.416.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Virtual Analytics Public Service</td>
<td>12/21/14 03:00 AM</td>
</tr>
</tbody>
</table>

Here are some details:

- The **Status** column indicates whether the server is running ●, stopped ■, or over capacity ▲.

 Note: A server is over capacity when its tables memory value equals or exceeds its tables limit value. A server that is over capacity accepts requests for activities such as data retrieval and analysis, but rejects requests to load, import, append, or reload tables.

- The **Tables Limit** column can constrain the amount of memory that the server can use to host tables. By default, the cells in this column are blank, so no constraints are in effect. See "Limit Space for Tables" on page 89.

- For a distributed server, a **Virtual Memory** column (not depicted) indicates how much of the total cluster memory is currently in use by each server process. See "Distributed Server: Monitoring" on page 93.

- To get status and other information for multiple servers, select check boxes, and then click in the tab toolbar.

- To show or hide a column, right-click on any column heading, and select the column.

Start or Stop a Server

1. From the main menu in the administrator, select LASR ➤ Manage Servers.
2. Select a server, right-click, and select Start or Stop.

Here are some details:

- If you click in the tab toolbar, all servers that have a selected (checked) check box are started.
If you click □ in the tab toolbar, all servers that have a selected (checked) check box are stopped.

Starting a server reloads only those tables that participate in reload-on-start. See “Reload-on-Start” on page 18.

Stopping a server unloads all of its tables. By default, a SAS LASR Analytic Server runs forever. See “Server lifetime” on page 92.

Results

To view a log for the most recent interactive action on a server, right-click on the server, and select **Last Action Log**.

For troubleshooting, see “Server Operation Issues” on page 143.

Autostart

A SAS LASR Analytic Server can start on demand if one or more of the server’s LASR libraries enable autostart. Requests to an autostart-enabled LASR library start the associated SAS LASR Analytic Server if all of the following conditions are met:

- The server is not already running.
- The requesting user has the necessary privileges.
- The request is for a load or import action. Requests to open a data source, read data, or run a data query do not trigger autostart.

In the standard configuration, autostart is enabled for the **Visual Analytics Public LASR** library. To enable autostart for another library:

1. In SAS Management Console, right-click on a LASR library, and select **Properties**.
2. On the **Extended Attributes** tab, set the value of the VA.AutoLoad.AutoStart property to **Yes**.

Operate Other Servers

In addition to the SAS LASR Analytic Server, SAS Visual Analytics uses metadata, middle-tier, and compute servers that are provided by the underlying platform. See “Software Components” on page 115.

Here are basic instructions for restarting the platform:

UNIX:

From your equivalent of `/opt/sas/config/Lev1`, run `. /sas.servers restart`.

Windows:

Restart the machine.

If you have multiple machines, complete the preceding basic instruction on each machine, beginning with the machine that hosts the metadata server. Make sure that the metadata server is running before you proceed to other machines.

For details, exceptions, and alternatives, see Operating Your Servers in the SAS Intelligence Platform: System Administration Guide.
About Loading Data

Introduction

SAS Visual Analytics uses data that is loaded to memory in a SAS LASR Analytic Server. Tables remain in memory until they are unloaded or the associated server stops. The following features can help keep data available for use:

Table 2.1 Convenience Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Trigger</th>
<th>Result (Automated Action)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoload</td>
<td>A time interval elapses</td>
<td>In-memory data synchronizes against a drop zone.</td>
</tr>
<tr>
<td>Autostart</td>
<td>A load or import is requested</td>
<td>The associated server starts.</td>
</tr>
<tr>
<td>Reload-on-start</td>
<td>A server starts</td>
<td>Participating tables reload.</td>
</tr>
</tbody>
</table>

Load Methods

Load methods vary by data source.

<table>
<thead>
<tr>
<th>Load Method</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spreadsheet or Delimited</td>
</tr>
<tr>
<td></td>
<td>SAS Data Set</td>
</tr>
<tr>
<td></td>
<td>Co-located HDFS*</td>
</tr>
<tr>
<td></td>
<td>DBMS or Hadoop</td>
</tr>
<tr>
<td></td>
<td>Other**</td>
</tr>
<tr>
<td>Interactive load</td>
<td>✓</td>
</tr>
<tr>
<td>Run a data query</td>
<td>✓</td>
</tr>
<tr>
<td>Import from server</td>
<td>✓</td>
</tr>
<tr>
<td>Import a local file</td>
<td>✓</td>
</tr>
<tr>
<td>Autoload</td>
<td>✓</td>
</tr>
</tbody>
</table>

* See “Distributed Server: Co-located HDFS” on page 99.

** Data from Twitter, Google Analytics, or Facebook.

Reload Methods

Reload methods depend on how a table was initially loaded.
Reload Method

<table>
<thead>
<tr>
<th>Method</th>
<th>Eligible LASR Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive reload</td>
<td>- Tables that were interactively loaded.</td>
</tr>
<tr>
<td></td>
<td>- Output from data queries.</td>
</tr>
<tr>
<td></td>
<td>- Output from LASR star schemas.</td>
</tr>
<tr>
<td></td>
<td>- SAS data sets that were imported from a server.</td>
</tr>
<tr>
<td>Reload-on-start</td>
<td>- Participating tables from imports of local files.</td>
</tr>
<tr>
<td></td>
<td>- Participating tables from imports of Google Analytics, Facebook, or Twitter data.</td>
</tr>
</tbody>
</table>

* Any input LASR tables must be available (loaded).

Reloading data requires access to either the current source data or a backing store copy of the original source data.

- Interactive reload runs against the current source data (using a job or query that was created by the initial load).

 Note: Any appended data is not included in the reload.

- Reload-on-start runs against a copy of the original source data (using a data provider library that functions as a backing store).

To make a table that is not reloadable available:

- If the table was autoloaded, wait for the next run of the scheduled task.
- Otherwise, repeat the action that initially loaded (or imported) the data.

Data Compression

Effects of Compression

There is a trade-off between compression and performance. Compressing data conserves memory. However, it might take longer to retrieve data from a table that is compressed. See Data Compression in the SAS LASR Analytic Server: Reference Guide.

Support for Compression

Here is a summary of when compression occurs:

- Administrators and data builders can request compression when they load a table.

 Note: If you load a SASHDAT file, you cannot request compression. The compression setting that already exists in the source SASHDAT file is honored. An exception is that an encrypted SASHDAT file is always uncompressed when it is loaded. See “On-Disk Encryption of SASHDAT Files” on page 61.

- Administrators and data builders can request compression when they add a table to co-located HDFS.

- Administrators can request or remove compression for a LASR table, by using the Change Source action. See “Replace a Source Table” on page 14.
Data builders can request compression when they import a table or run a data query that outputs to LASR or co-located HDFS.

Users who have access to the Advanced panel (in the designer or explorer) can request compression when they import a table. See the “Build Data” capability.

Administrators can use an extended attribute to request compression of autoloaded data. See “VA.AutoLoad.Compress.Enabled” on page 29.

In reload-on-start, compression is used for tables that were compressed when they were initially loaded.

Compression does not occur for small tables.

Compression does not occur for tables that are loaded from encrypted SASHDAT files.

Table and Column Names

In general, names can include spaces and special characters. Exceptions include the following:

- For interactions with third-party data sources and operating systems, third-party name limitations apply.
- For LASR table names, the period character (.) is not supported. If you load a SAS data set that has a period in its name, the period is replaced with an underscore (_).

Note: When data is imported as a local file or autoloaded, any character that is not supported by SAS is replaced with an underscore.

Get Table Information

To get information about a LASR table:

1. From the main menu in the administrator, select LASR › Manage Tables.
2. Select a table, right-click, and select Get Status.

Here are some details:

- To make sure you are seeing the most current information, repeat the get status action.
To get information about multiple tables, select check boxes, and then click in the tab toolbar.

Some columns are initially hidden. To show or hide a column, right-click on any column heading, and select the column.

The Status column can contain the following icons:

- Loaded
- Loaded and compressed
- Loaded, with additional full copies
- Loaded, with additional full copies and compressed
- Unloaded

The Size column displays the in-memory size of each loaded table. If the table is compressed or loaded with additional full copies, a tooltip in the Size column provides details.

The Loaded column indicates when each table was initially loaded.

The Modified column indicates when each table was most recently updated (for example, appended to, reloaded, or refreshed by autoload).

The Loaded By column displays the user ID that loaded a table (for a distributed server) or started the server (for a non-distributed server).

The LASR Name column displays table names in the in-memory format server-tag.table-name. See Figure 5.2 on page 85.

The Mapped Memory column indicates how much memory is mapped to disk. The Unmapped Memory column indicates how much memory is in use.

Note: The Mapped Memory column and Unmapped Memory column are initially hidden. These columns are included only in deployments where a distributed server can use highly efficient paging to read SASHDAT files. See Memory Management in the SAS LASR Analytic Server: Reference Guide.

Administer LASR Tables

Unload, Reload, or Delete a Table

1. From the main menu in the administrator, select LASR » Manage Tables.
2. On the LASR Tables tab, right-click on a table, and select an action.
 - If most actions are disabled, select Get Status, and then right-click on the table again.
 - To delete or reload a table that is loaded, begin by unloading the table.
Replace a Source Table

To replace a source table, right-click on a LASR table, and select Change Source. You might use the change source action if an original source table is missing, or if you want to add or remove compression for a table.

Note: Not all tables support the change source action.

Note: If the replacement table differs from the original table in a way that affects a permission condition, data access problems can occur. To provide access, remove the permission condition from the LASR table. See “Set a Row-Level Permission Condition” on page 37.

Results

To view a log for the most recent interactive action on a table, open the LASR Tables tab, right-click on the table, and select Last Action Log.

TIP Not all actions generate a last action log. To determine which action generated a log, examine the log’s task summary and timestamp.

For troubleshooting, see “Load, Reload, and Import Issues” on page 145.

Additional Considerations

- Not all tables can be reloaded. See “Reload Methods” on page 10.

 Note: When you use the Load a Table action, a job object (named source-table-Load Job) is created to support reloading of the table. To deploy a job for scheduling, see Scheduling in SAS. If you edit a job, SAS Visual Analytics might not be able to use the job. In this circumstance, a new job is created when you reload the table.

- The Unload action removes a table from memory, but it does not delete the corresponding metadata object. The Delete action deletes the metadata object that represents an in-memory table.

- Most of the tab toolbar buttons affect only tables that have a selected (checked) check box.

- Clicking on the cell that is next to a check box toggles the state of that check box. Before you use a tab toolbar button, make sure only the appropriate check boxes are selected. To clear all check boxes, click ✗ in the tab toolbar.

- To perform an action on multiple tables, select check boxes, and then click an icon in the tab toolbar. To cancel all remaining actions in a multi-table operation, click Cancel in the tab toolbar.
Administrator Load

Preparation

Register Source Tables

In the administrator, only registered tables can be loaded to memory, added to co-located HDFS, or added to a data server. For alternative methods for making data available, see "Autoload" on page 21 and "Self-Service Import" on page 16.

1 In the Folders pane, right-click on a library, and select Register and Update Tables.

 TIP To display the Folders pane, select View > Folders from the main menu.

 Note: To add a library, use SAS Management Console's Data Library Manager plug-in. See the SAS Intelligence Platform: Data Administration Guide.

2 In the Select Tables window, select the tables that you want to register. Click OK.

3 In the Register Tables window, make any necessary adjustments. Click OK.

 Note: If you register a table that already exists in the specified metadata folder, that table's metadata is updated.

Stage a Registered Table

Note: This task is applicable if you stage data to a SASHDAT library (or a legacy co-located provider) before loading the data to a distributed SAS LASR Analytic Server.

1 In the Folders pane, right-click on a table, and select Add to HDFS or Add to Data Server.

 TIP To display the Folders pane, select View > Folders from the main menu.

2 In the Add Table window, make any necessary adjustments.

 Note: Specify a table name that will also be appropriate as the LASR table name. (When you later load the staged table, the LASR table name will be the same as the name of the staged table.)

3 Click OK.
Load a Table

1. From the main menu in the administrator, select LASR ▶ Manage Tables.
2. In the tab toolbar, click 🔍.
3. In the Load a Table window:
 a. Click Browse, and select a source table. For example, to load a sample table, navigate to /Shared Data/SASHelp, and select the CARS table.
 b. In the LASR Table section, make any necessary adjustments.
 Note: The location that you select affects access to the loaded table. Each table inherits permissions from its parent folder.
 c. Click OK.

TIP You can also load a new table from the Folders pane (right-click on a table) or from the LASR Servers tab (right-click on a server).

Self-Service Import

Introduction

Data imports that are performed in the designer, the explorer, or the data builder are referred to as self-service imports. This topic provides information to help an administrator support self-service imports. For user instructions, see the SAS Visual Analytics: User’s Guide.

Requirement: User Privileges

- Individual data source-specific capabilities affect the availability of all self-service import actions. In the designer and the explorer, the Import and Load Data capability is a prerequisite for all self-service imports. For example, users who perform self-service imports from Oracle should have both of the following capabilities:
 - Import and Load Data
 - Import from Oracle
- Self-service import actions load data to memory, so users must have appropriate metadata-layer access to the target LASR library, server, and folder. See Table 3.1 on page 35.
- Self-service import actions use a workspace server and a SAS LASR Analytic Server, so users must have appropriate host-layer access. See "Host Account Privileges" on page 5.

Note: Self-service imports require a workspace server that supports the job execution service. See “Using Multiple SAS Application Servers” on page 79.
Requirement: SAS/ACCESS

For most data sources, a SAS/ACCESS engine must be licensed, installed, and configured on the workspace server machine. For example, to perform a self-service import from Oracle, SAS/ACCESS Interface to Oracle is required.

TIP After you renew or add a license, you must update the SAS installation data file in metadata. See Usage Note 49750.

If a SAS/ACCESS license for a data source is required but not available, that data source is not listed in the **Import Data** pane. This deployment-level exclusion affects all users, regardless of their capabilities.

Note: Imports from Salesforce use SAS/ACCESS Interface to ODBC and the Salesforce driver.

How to Protect Imported Data

User access to each data source is controlled by that data source’s authorization system.

Each self-service import action loads a source table to memory. The in-memory copy of the data is not subject to access controls from the original data source’s authorization system. Instead, access to in-memory data is controlled by metadata-layer permissions. Unless permissions are set directly on a LASR table, permissions on the LASR table’s parent folder determine access.

The following guidelines apply:

- Users who have privileged access to source data should import that data to only a location that has appropriate metadata-layer protections.

- Users who have fine-grained, identity-based access to source data should import that data to only a private location. For example, if UserA imports a source table that has salary information, and the source table has row-level controls that enable UserA to see only his salary, the in-memory version of the imported table contains only information about UserA.

If your deployment supports self-service import of sensitive data, use the following measures:

- Give self-service import capabilities to only users who understand and can conform to the preceding guidelines.

- Set up an appropriately protected output location (metadata folder) for each distinct level of access. Ensure that users who have self-service import capabilities load data to the appropriate location.

TIP In the initial configuration, self-service import actions load data to a general-purpose location. Users can instead select a private location (My Folder). Only users who have the Build Data capability can select other locations.
How to Limit Import Size

Row Limit

To prevent users from importing extremely large DBMS tables, you can set a maximum number of rows for self-service imports of DBMS tables. If the number of rows in a DBMS source table exceeds the limit, no data is imported. In the initial configuration, no limit is imposed. See “va.SelfService.ImportRowsHardCap” on page 127.

You can set a warning threshold for self-service import actions. If a user attempts to import a DBMS table that exceeds a specified number of rows (and does not exceed the maximum number of rows that can be imported), a warning message informs the user that the import might take a long time. The user can either continue the import or cancel the action. In the initial configuration, no limit is imposed. See “va.SelfService.ImportRowsSoftCap” on page 127.

File Size Limit

To set the maximum file size (in megabytes) that a user can import, see “va.SelfServe.MaxUploadSizeInMegabytes” on page 126.

Tables Limit

To limit the total amount of space that a SAS LASR Analytic Server can use to host tables, see “Limit Space for Tables” on page 89.

Reload-on-Start

Introduction

Reload-on-start returns participating tables to memory each time a server is started by autoload or an interactive user action in SAS Visual Analytics.

How Reload-on-Start Works

Here is an example of how reload-on-start works:

1. In the explorer, a user initiates an import of an XLS file.
2. SAS places a data set copy of the source data in the data provider library that is the designated backing store for the target LASR library.
3. SAS loads the data and creates a corresponding LASR table object.
4. The server stops, so the table is unloaded.
5. The server is started from the LASR Servers tab. The data is reloaded from the backing store.

Note: The reload is driven by the LASR table object’s association to a LASR library that supports reload-on-start. That LASR library must be associated
with a data provider library that contains a backing store copy of the original source data.

How to Enable Reload-on-Start

1. In SAS Management Console, right-click on a LASR library, and select Properties.

2. On the Options tab, in the Data provider library field, specify a Base SAS library. The specified library functions as the backing store for user imports from local files, Twitter, Google Analytics, and Facebook.

3. On the Extended Attributes tab, set properties as follows:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA.ReloadOnStart.Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>VA.ReloadOnStart.TableDefault</td>
<td>Yes</td>
</tr>
<tr>
<td>VA.ReloadOnStart.Method</td>
<td>Selective</td>
</tr>
</tbody>
</table>

4. (Optional) To selectively exclude a LASR table from participation, set the VA.ReloadOnStart.Enabled property to No on that table’s Extended Attributes tab.

Additional Considerations

- Not all tables can participate in reload-on-start. See “Reload Methods” on page 10.

- A table that can participate in reload-on-start is reloaded only if all of the following additional requirements are met:
 - The table is not in a My Folder metadata location. Or, the table is in the My Folder metadata location that belongs to the identity who starts the server.
 - Note: Even an administrator who has access to another user’s My Folder metadata location cannot reload a table to that location using reload-on-start.
 - The identity that starts the server has metadata-layer access to the table, its parent folder, and its parent library. See “Permissions by Task” on page 35.
 - The identity that starts the server has host access to the table (in the associated data provider library).

- Reload-on-start occurs after the SAS LASR Analytic Server is started by autoload, by an explicit start request in the administrator, or by a user action that triggers autostart.

- Only a Base SAS library can be used as a designated backing store for reload-on-start.
If you enable reload-on-start for a library that contains sensitive data, you must protect the corresponding data provider library against unauthorized access.

To increase protection of files in the backing store, see "On-Disk Encryption of Reload-on-Start Files" on page 58.

Reference

Logs and Process IDs

The directory `va.monitoringPath/Logs` contains logs of reload actions.

The directory `va.monitoringPath/PIDs` contains text files that document process IDs.

See "va.monitoringPath" on page 126.

Library-Level Attributes for Reload-on-Start

`VA.ReloadOnStart.Enabled` (`No` | `Yes`) specifies whether a LASR library supports reload-on-start. A `No` value for a library prevents participation by all of the library’s tables, regardless of any `Yes` values on the tables. For a new library, the value is `No`.

`VA.ReloadOnStart.TableDefault` (`No` | `Yes`) specifies whether tables that neither explicitly enable nor explicitly disable reload-on-start participate. For a new library, the value is `No`. Therefore, a table for which the extended attribute `VA.ReloadOnStart.Enabled` is not specified does not participate.

`VA.ReloadOnStart.Method` (`All` | `Selective`) affects table participation in reload-on-start.

- `All` causes all eligible tables to participate, regardless of any contradictory table-level settings.
- `Selective` causes any table-level settings (of `VA.ReloadOnStart.Enabled`) to be honored.

For a new library, the value is `All`.

Table-Level Attributes for Reload-on-Start

`VA.ReloadOnStart.Enabled` (`No` | `Yes`) affects whether the table participates in reload-on-start. For a new table, this attribute does not exist. Instead, table participation is determined by the library-level setting for `VA.ReloadOnStart.TableDefault`. If necessary, you can manually add the `VA.ReloadOnStart.Enabled` attribute to a table object.

This table-level setting is effective only if both of the following conditions are met:

- reload-on-start is enabled for the parent library
- the parent library’s `VA.ReloadOnStart.Method` is set to `Selective`
Autoload

Introduction
You can use autoload to keep a set of source tables in memory. Users or processes place source tables in a specified host location (a drop zone). Corresponding in-memory data is periodically updated to reflect the contents of the drop zone.

Benefits of autoload include the following:
- You do not have to start the server. If a SAS LASR Analytic Server stops, the next run of autoload starts the server and loads data from the drop zone.
- You do not have to register the source tables in metadata.
- Browser-based constraints on the size of locally imported files do not apply to autoload.

For limitations of autoload, see "Additional Considerations" on page 26.

How Autoload Works

Here is a summary of how autoload works:

1. Autoload periodically scans the contents of a drop zone, which is referred to as the autoload data directory.

2. After each scan, autoload synchronizes in-memory data against source tables in the autoload data directory as follows:
 - For each delimited file and spreadsheet, a corresponding source table (SAS data set) is created. For a delimited file or spreadsheet that already has a newer corresponding source table, this step is omitted.
 - Source tables that are not already in memory are loaded.
 - Source tables that are newer than their corresponding in-memory tables are refreshed (unloaded and then reloaded).
 - Source tables that are in the Unload subdirectory and in memory when a run of autoload begins are unloaded in that run.
 - Source tables that are in the Append subdirectory and newer than their corresponding in-memory tables are appended to their corresponding in-memory tables. If a table in the Append subdirectory has no corresponding in-memory table, it is loaded as a new table.
 - Each Append table is also appended to its corresponding table in the autoload data directory. If no corresponding table exists, a new table is added to the autoload data directory.
 - To prevent redundant append actions, data in the Append subdirectory is compared to corresponding data in the autoload data directory. The append action is performed on only data in the Append subdirectory that is newer than its corresponding data in the autoload data directory.
To ensure that refresh and append actions occur for only source tables that are newer than their corresponding in-memory tables, autoload compares file timestamps of source tables to load timestamps of corresponding in-memory tables.

The Autoload Directories

Autoload Data Directory (Drop Zone)

In the standard configuration, autoload data directories are in the AppData branch of the SAS configuration directory:

/AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/AutoLoad

Each autoload data directory has four required subdirectories (Append, Formats, Logs, and Unload).

Note: The scheduler account and anyone who places tables in these directories must have Read and Write access to these directories.

Autoload Scripts Directory

In the standard configuration, autoload scripts directories are in the Applications branch of the SAS configuration directory:

/Applications/SASVisualAnalytics/VisualAnalyticsAdministrator/

Note: The scheduler account must have Read and Write access to the autoload scripts directory and its contents.

Timing of Autoload

Autoload runs as a periodic scheduled task. In the standard configuration, a new run of autoload is started every 15 minutes. The timing is controlled by a setting in the schedule script (schedule.sh or schedule.bat in the autoload scripts directory).

Here are some additional details:

- A new run of autoload starts only after the previous run is complete.
- Starting the associated SAS LASR Analytic Server does not trigger an immediate run of autoload.
- Stopping the associated SAS LASR Analytic Server does not stop autoload activity. If the server is down when a run of autoload begins, autoload starts the server.

UNIX Specifics: The interval clock starts on the hour. For example, if the interval is 15 minutes, then autoload runs on the hour and at 15, 30, and 45 minutes after the hour.

Windows Specifics: The interval clock starts when autoload is scheduled. For example, if the interval is 15 minutes, then autoload runs 15 minutes after the schedule script is invoked, and every 15 minutes thereafter.
How to Start Autoload

To start scheduled runs for an implementation of autoload:

1. On the machine that hosts the implementation, identify or create a scheduler account.
 - Give the account the host-layer privileges that are required to start the associated SAS LASR Analytic Server and load data. See “Host Account Privileges” on page 5.
 - On UNIX, enable the account to run cron jobs.
 - In the SAS configuration directory, give the account Read and Write access to the autoload directories and their contents. For the public implementation of autoload, the locations are as follows:

<table>
<thead>
<tr>
<th>Data:</th>
<th>/AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/AutoLoad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scripts:</td>
<td>/Applications/SASVisualAnalytics/VisualAnalyticsAdministrator</td>
</tr>
</tbody>
</table>

 Note: For the public implementation, access to subdirectories for other implementations (for example, EVDMLA and VALIBLA) is not required.

2. In the metadata, create a corresponding individual metadata identity. (For the public implementation, the new identity does not need any explicit group memberships.) See “How to Add a User” on page 3.

 Note: This requirement reflects the standard configuration. See “Metadata Server Connection” on page 28.

 Make sure the scheduler account’s metadata identity has the required metadata-layer permissions on the target server, library, and folder.

 For the public implementation, all registered users have sufficient access, so no adjustments are required. Here are the details:

<table>
<thead>
<tr>
<th>Server:</th>
<th>Public LASR Analytic Server</th>
<th>RM, WM, A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library:</td>
<td>Visual Analytics Public LASR</td>
<td>RM, R, WM, A</td>
</tr>
<tr>
<td>Folder:</td>
<td>/Shared Data/SAS Visual Analytics/Public/LASR</td>
<td>RM, R, WMM, W</td>
</tr>
</tbody>
</table>

3. Log on to the host as the scheduler account, navigate to the implementation’s scripts directory, and invoke schedule.sh (or schedule.bat).

 TIP You can change the schedule interval by editing the schedule script. For validation, an interval of 2 minutes is suggested.

4. Verify that the scheduled task is running.

Windows Specifics: Access the Task Scheduler (for example, select Start ▶ Control Panel ▶ Administrative Tools ▶ Task Scheduler). Locate the
task in the **Task Scheduler Library** (for example, **Visual Analyt Hi-Perf Cfg - Auto Load Scheduler**).

UNIX Specifics: Run the command: `crontab -l`

5 If necessary, edit the schedule script to adjust the interval. The standard interval is 15 minutes.

6 (Optional) Verify that files that are placed in the autoload data directory are processed as described in “How Autoload Works” on page 21.

For example, place a CSV file or a SAS data set in the autoload data directory. After 15 minutes, use the **LASR Tables** tab to verify that the data is loaded. See “Get Table Information” on page 12.

How to Stop Autoload

To stop the scheduled task, use the scheduler account to invoke unschedule.sh or unschedule.bat. Stopping autoload does not stop the associated SAS LASR Analytic Server.

How to Add an Implementation

Each LASR library that supports autoload must have its own implementation of autoload. For details about the predefined implementations, see “Predefined LASR Libraries” on page 136.

To add an implementation for sales data:

1 Create a new autoload data directory as follows:

   ```
   autoload-data-branch/VASALES
   autoload-data-branch/VASALES/Append
   autoload-data-branch/VASALES/Formats
   autoload-data-branch/VASALES/Logs
   autoload-data-branch/VASALES/Unload
   ```

2 Create a new autoload scripts directory.

 a Make a sibling copy of an existing autoload scripts directory. For this example, copy `autoload-scripts-branch/VALIBLA` (or your equivalent of that predefined existing scripts directory) to a new directory named `autoload-scripts-branch/VASALES`.

   ```
   Note: Creating the new scripts directory beneath the existing autoload scripts branch facilitates migration.
   ```

 b In the new `autoload-scripts-branch/VASALES/Logs` directory, delete any copied files.

3 In the new `autoload-scripts-branch/VASALES` directory, edit the copied files as follows:

   ```
   AutoLoad.sas
   Change the `%LET AL_META_LASRLIB=` value to the metadata name of the new implementation’s LASR library. For example:
   ```

   ```
   %LET AL_META_LASRLIB=SalesAutoload;
   ```
runsas.sh (or runsas.bat)

Edit the `AUTOLOAD_ROOT=` value to reference the new autoload scripts directory. For example:

```
AUTOLOAD_ROOT="autoload-scripts-branch/VASALES"
```

Verify that the appropriate configuration files are referenced. See "Configuration Files for Autoload" on page 28.

schedule.sh (or schedule.bat) and unschedule.sh (or unschedule.bat)

Edit the `RUNSAS_PATH=` value to reference the new implementation’s autoload scripts directory. For example:

```
RUNSAS_PATH="autoload-scripts-branch/VASALES/runsas.sh"
```

Windows Specifics: In the schedule.bat and unschedule.bat files, change the name of the scheduled task. For example, if you began by copying scripts from the public implementation of autoload, the task name in the copied files is initially **Visual Analyt Hi-Perf Cfg - Auto Load Scheduler**. Change that name to any different value, such as **Private Autoload Scheduler**. (The name change is necessary because the Windows Task Scheduler requires that each task name is unique.)

4 In SAS Management Console, identify or create a metadata folder for generated LASR table objects (in this example, `/Shared Data/SAS Visual Analytics/Autoload/SALES`).

5 In SAS Management Console, configure a LASR library to support autoload. (To create a new LASR library, see **Add a LASR Library** on page 87.)

- The library’s name must exactly match the value that you entered in the AutoLoad.sas file in step 3 (in this example, SalesAutoload).
- The library must be in a metadata folder that has appropriate permission settings (in this example, `/Shared Data/SAS Visual Analytics/Autoload/SALES`).

- Set the library’s **extended attributes** as follows:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA.AutoLoad.Location</td>
<td><code>autoload-data-branch/VASales</code></td>
</tr>
<tr>
<td>VA.Default.MetadataFolder</td>
<td><code>/Shared Data/SAS Visual Analytics/Autoload/SALES</code></td>
</tr>
<tr>
<td>VA.AutoLoad.AutoStart</td>
<td><code>Yes</code></td>
</tr>
<tr>
<td>VA.AutoLoad.Enabled</td>
<td><code>Yes</code></td>
</tr>
<tr>
<td>VA.AutoLoad.Sync.Action</td>
<td><code>Yes</code></td>
</tr>
<tr>
<td>VA.AutoLoad.Compress.Enabled</td>
<td><code>No</code> (or, to enable compression, <code>Yes</code>)</td>
</tr>
<tr>
<td>VA.AutoLoad.Debug.Enabled</td>
<td><code>No</code></td>
</tr>
<tr>
<td>VA.AutoLoad.ExpandChars.Enabled</td>
<td><code>No</code></td>
</tr>
<tr>
<td>VA.AutoLoad.Import.Delimiter.TXT</td>
<td><code>TAB</code></td>
</tr>
</tbody>
</table>
* Set all 6 of the **Sync** attributes (**Enabled**, **Import**, **Load**, **Refresh**, **Append**, **Unload**) to Yes.

TIP If a new library’s extended attributes are not visible, save and then reopen the library.

6. Invoke the new scheduled task (schedule.sh or schedule.bat).

The following image depicts the new autoload directories:

Figure 2.1 Example: VASALES Implementation of Autoload

In the preceding image, the new autoload data directory is above the new autoload scripts directory. Directories that are not essential to this example are omitted from the image.

Additional Considerations
- Not all tables can be autoloaded. See “Load Methods” on page 10.
Autoload is supported for both distributed and non-distributed servers. However, you cannot autoload data from co-located storage.

Autoload is not a simple mirroring of content from a physical directory to memory. Instead, autoload synchronization is driven by directory-based rules.

A new log file is generated for each run. The `autoload-scripts/Logs` directory must be periodically emptied.

You cannot interactively reload an autoloaded table. You can instead interactively unload the table, and then wait for the next run of the autoload scheduled task, which refreshes (unloads and then reloads) the table.

You cannot autoload multiple tables that have the same base name. For example, if the files `abc.xls` and `abc.xlsx` are placed in an autoload data directory, only one data set (`abc.sas7bdat`) is loaded.

In a multi-machine deployment, autoload-related files are on the machine that hosts the workspace server.

If you move a delimited file or spreadsheet from the autoload data directory to the Unload subdirectory, remember to also delete the file’s corresponding SAS data set (from the autoload data directory and, if applicable, from the Append subdirectory).

If a table exists in both the autoload data directory and the Unload subdirectory, the table is repeatedly loaded and unloaded by alternating runs of autoload.

If the metadata name of a LASR library that supports autoload includes UTF-8 characters, the corresponding AutoLoad.sas program must be saved in UTF-8 encoding. (In the AutoLoad.sas program, the `%LET AL_META_LASRLIB= parameter specifies the library’s metadata name.)

All synchronization actions create and update corresponding LASR table objects as needed. However, autoload does not delete LASR table objects.

Autoload runs a SAS session directly from SAS Foundation. To modify session behavior for autoload, set SAS options (such as MEMSIZE) in an appropriate location. See “Configuration Files for Autoload” on page 28.

Reference

Logs and Process IDs

Comprehensive logs and any list output are written to the `autoload-scripts/Logs` directory. Each run of autoload generates a separate log, with a filename in the format `AutoLoad_date-and-time-stamp`.

Additional logs and any debug output are written to the `autoload-data/Logs` directory. Each run of autoload generates a new log (in both data set and text format) that overwrites the previous log.

Autoload process ID (PID) text files are written to the `va.monitoringPath/PIDs` directory in the format `autoload_library-name.pid` (for example, `autoload_VisualAnalyticsPublicLASR.pid`). See “`va.monitoringPath`” on page 126.
UNIX Specifics: An additional PID file (autoload.pid) is written to the autoload scripts directory. This additional PID file is used to prevent the runsas script from starting again if it is already running.

Metadata Server Connection

In the standard configuration, no metadata connection options are specified in the AutoLoad.sas program. Connection information is obtained as follows:

- The metadata repository name is obtained from the associated sasv9.cfg file. See “Configuration Files for Autoload” on page 28.
- The metadata server’s machine name and port are obtained from the file that the sasv9.cfg file references in its METAPROFILE setting. This is the preferred approach, because it supports both clustered and unclustered metadata servers.
- The account that schedules autoload also runs autoload and connects to the metadata server. This is the preferred approach, because it does not require specifying credentials in any host file.

Note: For information about metadata server connection options, see SAS Language Interfaces to Metadata.

Configuration Files for Autoload

Although autoload does not run in a SAS Application Server, autoload can borrow settings from server configuration files. This borrowing can reduce the need to set the same option in multiple locations. Each implementation of autoload has its own list of references to configuration files.

Windows Specifics: The list is in the AutoLoad.cfg file in the implementation’s autoload scripts directory.

UNIX Specifics: The list is in the SASCFGPATH= variable in the implementation’s runsas script.

The standard list references the following files in the following order:

1. The sasv9.cfg file for the SAS Application Server that is designated in the implementation’s runsas script (for example, SERVER_CONTEXT= SASApp). The designated SAS Application Server and the autoload implementation must be on the same machine.

2. The sasv9_usermods.cfg file for the designated SAS Application Server.

3. The implementation’s AutoLoad.cfg file.

4. The implementation’s AutoLoad_usermods.cfg file.

The preceding list is in reverse precedence order. If an option is set in multiple configuration files, the setting in the last-listed file has precedence. For example, settings in an AutoLoad_usermods.cfg file override any conflicting settings in other configuration files.

You can add, remove, or adjust options in the referenced configuration files as needed. See Reference: Configuration Files for SAS Servers in the SAS Intelligence Platform: System Administration Guide.

User-Defined Formats for Autoload

For general information, see “Supporting User-Defined Formats” on page 73.
Any format catalogs that are made available through a referenced configuration file are available to autoload.

If you want to make certain user-defined formats available exclusively to a particular implementation of autoload, place format catalogs in that implementation’s `autoload-data-branch/Formats` directory. Catalogs in that directory have precedence over same-named catalogs that are available to autoload through configuration files.

Library-Level Attributes for Autoload

The following attributes support autoload:

- `VA.AutoLoad.Location` sets the autoload data directory. If you change the location, make sure you create the required subdirectories. For a new library, the suggested value is `autoload-data-branch/LIBNAME`.

- `VA.Default.MetadataFolder` sets the metadata location for the LASR table objects that autoload generates. For a new library, the initial value is your equivalent of `/Shared Data/SAS Visual Analytics/Autoload`.

- `VA.AutoLoad.Enabled` specifies whether the library supports any autoload features. For a new library, the initial value is `No`.

 Note: Setting this attribute to `Yes` does not disable interactive loading. You can interactively load data to a library that supports autoload.

- `VA.AutoLoad.Sync.Enabled` specifies whether synchronization actions are enabled. This is a parent setting (and a prerequisite) for other `{*}.Sync.*` attributes. For a new library, the initial value is `No`.

 To preview synchronization actions, set this value to `No`, run autoload, and then examine the autoload log file.

- `VA.AutoLoad.Sync.Import` specifies whether the import action is enabled. For a new library, the initial value is `No`.

- `VA.AutoLoad.Sync.Load` specifies whether the load action is enabled. For a new library, the initial value is `No`.

- `VA.AutoLoad.Sync.Refresh` specifies whether the refresh action is enabled. For a new library, the initial value is `No`.

- `VA.AutoLoad.Sync.Append` specifies whether the append action is enabled. For a new library, the initial value is `No`.

- `VA.AutoLoad.Sync.Unload` specifies whether the unload action is enabled. For a new library, the initial value is `No`.

- `VA.AutoLoad.Compress.Enabled` specifies whether compression is used when data is autoloaded. The default value is `No`. (For the administrative reporting library, EVDMLA, the initial value is `Yes`.)
VA.AutoLoad.Debug.Enabled
specifies whether debugging is enabled for autoload. The default value is No.

VA.AutoLoad.ExpandChars.Enabled
specifies whether autoload supports expansion of character variable lengths. The default value is No. To enable character expansion, set the value to Yes.

Note: Character expansion occurs when a SAS data set that is not UTF-8 encoded is autoloaded to a server that uses UTF-8 encoding. For more information, see Avoiding Character Data Truncation By Using the CVP Engine in the SAS National Language Support (NLS): Reference Guide.

CAUTION! Format widths are not expanded with character variable lengths. If you enable character expansion, in-memory data might appear to be truncated. In the designer and explorer, you can adjust formats as needed. To minimize the potential impact, enable character expansion in a separate LASR library that contains only tables that require character expansion. For more information, see the technical paper "Processing Multilingual Data with the SAS 9.2 Unicode Server".

VA.AutoLoad.Import.Delimiter.TXT
specifies the delimiter to use when autoload imports TXT files. The default value is TAB, which specifies to use the Tab character as the delimiter. You can specify a single character (for example, |, 1, or &), SPACE (to use a space delimiter), or a hexadecimal code (for example, `09`x).

VA.AutoLoad.Import.RowsToScan
specifies the number of rows to scan to determine the data type and length for each column in an imported table. You can specify a positive integer or the value ALL. The default value is 500. (For the administrative reporting library, EVDMLA, the initial value is ALL.)

TIP The header row counts. For example, to scan one row of data, specify 2 as the value.

The following attribute is used by autoload (but is not exclusive to autoload):

VA.AutoLoad.AutoStart
specifies whether the associated SAS LASR Analytic Server starts on demand for load requests against this library. For a new library, the initial value is No.

To set these extended attributes, access a LASR library’s Properties dialog box in SAS Management Console. Except where otherwise specified, the supported values are No and Yes.

Note: Changes take effect on the next run of autoload. For information about how tables that are already loaded are affected, see “How Autoload Works” on page 21.

Processing of Delimited Files and Spreadsheets
In general, autoload processes delimited files and spreadsheets in the same way that these files are processed during a self-service import. For information about supported file types, requirements, missing values, and valid names, see the SAS Visual Analytics: User’s Guide.

The following details are specific to autoload:

- The file size limitation for interactive import is not applicable to autoload.
You cannot autoload a ZIP file.

Autoload always reads column names from the first row and begins data import on the second row.

When you autoload a spreadsheet that has multiple worksheets, only the first worksheet is loaded.

For append actions, column data types and lengths in both files must match.

Autoload of XLSB and XLSM files is supported only on Windows. The 64-bit version of Microsoft Access Database Engine (formerly known as Microsoft Office Access Connectivity Engine, or ACE) is required.

To autoload files that use a delimiter (other than a comma or the Tab character), use the TXT file extension and specify the delimiter in the \texttt{VA.AutoLoad.Import.Delimiter.TXT} extended attribute.
Security

Permissions
- About Permissions .. 34
- Permissions by Task .. 35
- Grant or Deny a Permission ... 37
- Set a Row-Level Permission Condition 37
- View Authorization Information 38

Access to In-Memory Data
- SAS LASR Authorization Service 39
- Signature Files ... 41
- Server Tags .. 42

Row-Level Security
- Introduction .. 42
- Permission Precedence ... 43
- Syntax (Enhanced Editor) ... 44
- Syntax (Basic Editor, Batch) ... 44

Key Actions Auditing
- Introduction .. 46
- How to Safely Enable Auditing 46
- Audit Content and Coverage .. 47

Locked-Down Servers .. 53

Access to SAS Mobile BI
- About Mobile Device Management 53
- How to Manage Mobile Devices 54
- Change How Devices Are Managed 55
- About the Mobile Devices Tab 56
- Protections for Mobile Content 57

Authentication
- Introduction .. 57
- Shared Accounts for Self-Service Imports 57
- Policy for Concurrent User Logins 58

Encryption
- Introduction .. 58
- On-Disk Encryption of Reload-on-Start Files 58
- On-Disk Encryption of SASHDAT Files 61
Permissions

About Permissions

Key Points

Here are the key points about permissions:

- SAS Visual Analytics uses the platform’s metadata authorization layer to manage access to objects such as reports, explorations, tables, libraries, servers, and folders.

- SAS Visual Analytics supports row-level security. SAS Visual Analytics does not support column-level security.

 Note: Do not set denials of the ReadMetadata permission on individual columns within a table. If a table is loaded by a user who lacks access to one or more columns, duplicate metadata entries are created for the unavailable columns.

- In the administrator, you can set folder, library, table, and row-level permissions. For alternate interfaces, see Access Management in the SAS Intelligence Platform: Security Administration Guide.

 Note: In the administrator, you cannot view or set permissions on the objects that support metadata-bound libraries (secured library folders, secured libraries, and secured tables).

- Access to each object is displayed as part of the object’s properties. Not all permissions are relevant for all objects.

- Do not block ReadMetadata access for the SAS Trusted User (for example, sastrust@saspw). To preserve access, grant the ReadMetadata permission to the SAS System Services group.

- For simplicity, set permissions on folders, not on individual objects. Most objects (including tables) inherit permissions from their parent folders. To learn how to customize the metadata folder structure, see Working with SAS Folders in the SAS Intelligence Platform: System Administration Guide.

- For simplicity, assign permissions to groups, not to individual users. The broadest group is called PUBLIC. The SASUSERS group includes all registered users. To learn how to manage permissions systematically using access control templates, see Access to Metadata Folders in the SAS Intelligence Platform: Security Administration Guide.

Permission Definitions

The following table documents permissions that have a special purpose in SAS Visual Analytics, and introduces some of the standard permissions.

<table>
<thead>
<tr>
<th>Permission</th>
<th>Affected Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administer (A)</td>
<td>On a LASR library, load and import tables.</td>
</tr>
<tr>
<td></td>
<td>On a SAS LASR Analytic Server, stop the server or set a tables limit.</td>
</tr>
</tbody>
</table>
Permissions by Task

LASR Tables and Servers

The following table documents metadata-layer permissions for working with LASR tables and SAS LASR Analytic Servers.

<table>
<thead>
<tr>
<th>Task</th>
<th>Server</th>
<th>Library</th>
<th>Folder</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read data</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM, R</td>
</tr>
<tr>
<td>Append or delete rows</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM, R, W</td>
</tr>
<tr>
<td>Edit computed columns</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM, R, W</td>
</tr>
<tr>
<td>Load or import a table*</td>
<td>RM</td>
<td>RM, R, WM, A</td>
<td>RM, R, WMM, W</td>
<td>-</td>
</tr>
<tr>
<td>Load a stop list</td>
<td>RM, WM</td>
<td>RM, R, WM, A</td>
<td>RM, R, WMM, W</td>
<td>-</td>
</tr>
<tr>
<td>Reload a table</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM, R, WM, W</td>
</tr>
<tr>
<td>Unload a table</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM, R, W</td>
</tr>
<tr>
<td>Start a server</td>
<td>RM</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stop a server</td>
<td>RM, A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Set a server’s tables limit</td>
<td>RM, WM, A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Assign a library to a server</td>
<td>RM, WM</td>
<td>RM, WM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Register a table in metadata</td>
<td>-</td>
<td>RM, WM</td>
<td>RM, WMM</td>
<td>-</td>
</tr>
</tbody>
</table>
Explorations and Reports

The following table documents metadata-layer permissions for working with reports and explorations.

<table>
<thead>
<tr>
<th>Task</th>
<th>Server</th>
<th>Library</th>
<th>Folder</th>
<th>Report</th>
<th>Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update a table’s metadata</td>
<td>-</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM, WM</td>
</tr>
<tr>
<td>Delete a table from metadata</td>
<td>-</td>
<td>RM, WM</td>
<td>RM, WMM</td>
<td>RM, WM</td>
<td></td>
</tr>
</tbody>
</table>

* An initial load (or import) creates a new LASR table object. Read and Write permissions on the folder support actions against the new table.

Data Queries and LASR Star Schemas

The following table documents metadata-layer permissions for working with data queries and LASR star schemas.

<table>
<thead>
<tr>
<th>Task</th>
<th>Server</th>
<th>Table</th>
<th>Folder</th>
<th>Report</th>
<th>Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open a report or exploration</td>
<td>RM</td>
<td>RM, R</td>
<td>-</td>
<td>RM</td>
<td>RM</td>
</tr>
<tr>
<td>Export a report or exploration</td>
<td>RM</td>
<td>RM, R</td>
<td>-</td>
<td>RM</td>
<td>RM</td>
</tr>
<tr>
<td>Modify a report or exploration</td>
<td>RM</td>
<td>RM, R</td>
<td>-</td>
<td>RM, WM</td>
<td>RM, WM</td>
</tr>
<tr>
<td>Save a new report or exploration</td>
<td>-</td>
<td>RM</td>
<td>RM, WMM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Delete a report or exploration</td>
<td>-</td>
<td>RM</td>
<td>RM, WMM</td>
<td>RM, WM</td>
<td>RM, WM</td>
</tr>
</tbody>
</table>

To create, update, or delete a report, access to the SAS Content Server is also required. See the [SAS Intelligence Platform: Middle-Tier Administration Guide](https://support.sas.com/documentation/minimal/v9.4/middle-tier-admin-guide.pdf).

Permissions for Working with Reports and Explorations

<table>
<thead>
<tr>
<th>Task</th>
<th>Server</th>
<th>Table</th>
<th>Folder</th>
<th>Report</th>
<th>Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save a new query or schema*</td>
<td>RM</td>
<td>RM</td>
<td>RM, WMM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Run a query or schema</td>
<td>RM</td>
<td>RM</td>
<td></td>
<td></td>
<td>RM</td>
</tr>
<tr>
<td>Edit and save a query or schema</td>
<td>RM</td>
<td>RM</td>
<td>RM</td>
<td>RM, WM</td>
<td></td>
</tr>
<tr>
<td>Delete or rename a query or schema</td>
<td>RM</td>
<td>-</td>
<td>RM, WMM</td>
<td>RM, WM</td>
<td></td>
</tr>
</tbody>
</table>

* These tasks create new LASR tables, so the permission requirements for loading a LASR table must also be met. See Table 3.1 on page 35.

** This column refers to any source tables that are represented in metadata. To run a query or schema against a LASR table, Read permission for the LASR table is also required.

Read access to data in a LASR star schema is not affected by permissions for input tables. Instead, Read access to data in a LASR star schema is affected by
the Read and ReadMetadata permissions for the output table or view. ReadMetadata permission for the associated server, library, and folder is also required. See the first row in Table 3.1 on page 35.

Note: You can set explicit access controls (including permission conditions) on the output table or view for a LASR star schema. Any explicit access controls persist when you rerun the LASR star schema.

Grant or Deny a Permission

To set an explicit grant or denial:

1 In the administrator’s Folders pane, right-click on an object, and select Authorization.

 TIP To display the Folders pane, select View ➤ Folders from the main menu.

2 In the Effective Permissions table, locate the identity to which you want to assign an explicit control. If the identity is not listed, click ➕ to open the Add Identities window.

 Note: In the Add Identities window, only user administrators can successfully search by user ID. Regular users cannot see other users’ IDs.

 Note: An explicit grant of the ReadMetadata permission is automatically set for each identity that you add.

3 Double-click on a cell. From the cell’s drop-down list, select either Deny or Grant.

 ![Permission Table]

 When the drop-down list collapses, notice that the cell contains an explicit control indicator ✸.

 Note: If the selected identity is an unrestricted user, all permissions are granted and you cannot make changes.

4 If you changed a group’s access, review the impact on the other listed identities. Controls that you add for a group can affect access for all members of that group.

5 In the toolbar at the top of the tab, click ➡.

Set a Row-Level Permission Condition

To limit Read access to rows in a LASR table:

1 In the administrator’s Folders pane, right-click on a LASR table, and select Authorization.
To display the Folders pane, select View ➤ Folders from the main menu.

2 In the Read column, double-click on the cell for the identity whose row-level access you want to constrain. (Or, if the identity is not listed, click + at the right edge of the table.)

Note: An explicit grant of the ReadMetadata permission is automatically set for each identity that you add.

3 From the cell's drop-down list, select Conditional grant.

Note: If Conditional grant is not in the drop-down list, the table doesn’t support row-level security. Only LASR tables support row-level security.

Note: If Conditional grant is already selected, select Conditional grant again to view or edit the existing condition.

4 In the New Permission Condition window, create a condition that specifies which rows the identity can see. See “Syntax (Enhanced Editor)” on page 44.

Note: Conditions from releases prior to 6.2 or from batch tools use a basic editor. In the basic editor, syntax is not validated. See “Syntax (Basic Editor, Batch)” on page 44.

5 Click OK. Notice that the cell contains the conditional grant icon with an explicit control indicator.

6 If you set a permission for a group, review the impact on the other listed identities. Constraints that you add for a group can affect access for all members of that group.

7 In the toolbar at the top of the tab, click .

When you test conditions in another application (such as the explorer), refresh the data source in that application so that your changes are reflected. See “Caching” on page 41.

A permission condition constrains Read access to rows within a LASR table. For more information, see “Row-Level Security” on page 42.

View Authorization Information

Here are some details about the Authorization page:

- Each object’s Authorization page describes access to that object. The displayed effective permissions are a calculation of the net effect of all applicable metadata-layer permission settings. To identify the source of an
effective permission, double-click on its cell, and select **Show Origins** from the drop-down list. See “Permission Origins” on page 147.

- Icons indicate grants ☑, conditional (row-level) grants ☑️, and denials ☐.
- The explicit indicator icon ◆ indicates an access control that is explicitly set on the current object and explicitly assigned to the selected identity.
- The ACT indicator icon ■ indicates an access control that comes from an applied ACT whose pattern assigns the grant or denial to the selected identity.
- In combination, icons provide information as follows:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>Grant from an explicit control</td>
</tr>
<tr>
<td>☑️ ■</td>
<td>Grant from a directly applied ACT</td>
</tr>
<tr>
<td>☑</td>
<td>Grant from an indirect source (such as a parent group or parent object)</td>
</tr>
<tr>
<td>☑️ ◆</td>
<td>Conditional grant from an explicit control</td>
</tr>
<tr>
<td>☑️ ■</td>
<td>Conditional grant from an indirect source (a parent group)</td>
</tr>
<tr>
<td>☐️</td>
<td>Denial from an explicit control</td>
</tr>
<tr>
<td>☐️ ■</td>
<td>Denial from a directly applied ACT</td>
</tr>
<tr>
<td>☐</td>
<td>Denial from an indirect source (such as a parent group or parent object)</td>
</tr>
</tbody>
</table>

- To compare permissions for two tables, open them both, and then select **View ➤ Tab Layout ➤ Stacked** from the main menu.

Access to In-Memory Data

SAS LASR Authorization Service

Overview

The SAS LASR Authorization Service collaborates with the metadata authorization layer to manage user access to in-memory data.
The following figure depicts the authorization process:

Figure 3.1 Authorization Process

1. In a SAS Visual Analytics client, a user performs an action that uses a SAS LASR Analytic Server. In this example, the request is to read data. The client sends the request to the authorization service.

 Note: Other examples of actions include requesting analysis of data, loading tables, appending rows, and stopping the server.

2. The authorization service requests the following information from the metadata server:
 - authorization decisions that indicate whether the requesting user has the effective metadata-layer permissions that are required to perform the requested action. See “Permissions by Task” on page 35.
 - the security key for the target SAS LASR Analytic Server

3. The authorization service receives the authorization decisions and security key from the metadata server. If the requesting user has a conditional grant of the Read permission, the authorization service also receives a clause (or set of clauses) that specifies which rows the user can access.

4. If the requesting user has effective grants of all permissions that are required for the requested action, the authorization service provides a signed grant to the client.

 Note: The authorization service uses the security key to create the signed grant. The signed grant includes the table name, the type of action (for example, Table Info, Summary Statistics, or Regression), and any applicable row-level security conditions.

5. The client submits the signed grant to the SAS LASR Analytic Server.

6. The SAS LASR Analytic Server uses its knowledge of the security key to validate the signed grant that the client supplies. If the signed grant is valid, the server provides access to the requested in-memory table (conforming to any row-level security conditions in the signed grant).

Security Keys

A LASR security key is a unique, shared secret between a SAS LASR Analytic Server and the metadata server. LASR security keys are created and stored as follows:
When a SAS LASR Analytic Server is started, a key is generated. In the SAS LASR Analytic Server, the key is stored in memory. The key is also stored in metadata in the password field of a login object that is associated with the server’s connection object.

If a SAS LASR Analytic Server is stopped, the associated key remains in the metadata. If the server connection is restarted, a new key is generated. The new key replaces the existing key in the metadata.

Note: A LASR security key is a SAS internal construct. Do not confuse LASR security keys with encryption key passphrases. See “On-Disk Encryption of SASHDAT Files” on page 61.

Caching

To avoid making repeated queries to the metadata server for a security key, the authorization service caches the key. When the cache interval has expired, the authorization service removes the key from the middle-tier cache. When the next request is made for in-memory data, the authorization service again obtains the key from the metadata server and repopulates the cache.

To enhance performance, the authorization service caches information about users and permissions. When a SAS Visual Analytics user accesses a data source in the SAS LASR Analytic Server, a user object is created and cached. A permission object is also created and cached for the data source. These are middle-tier, session-based caches.

The duration of each cache is set by the las.caching.* properties. See “Configuration Properties” on page 123.

Signature Files

Signature files are created when a SAS LASR Analytic Server is started (server signature files) and when a table is loaded (table signature files). The location for each server’s signature files is specified in the server’s metadata definition.

Manage access to the signature files directory as follows:

- Administrators must have Write access to the directory. Without this access, they cannot perform tasks that generate signature files.
- Any service accounts that perform tasks that generate signature files must have Write access to the directory. For example, if you use automated data loading, the account under which the scheduled task runs must have this access.
- Nobody else needs access to signature files. (Access from SAS Visual Analytics clients to the SAS LASR Analytic Server and its in-memory data is controlled by metadata permissions.)
- Host-layer access controls on signature files determine access for any requests that are not mediated by the SAS LASR Authorization Service. For this reason, it is important to restrict access to signature files.

Host-protect the signature files directory as follows:

1. In SAS Management Console, right-click on a SAS LASR Analytic Server, and select Properties.
2. On the Options tab, click the Advanced Options button.
In the Advanced Options window, select the Additional Options tab. Note the path that is specified in the Signature files location on server field.

4 Host-protect the directory, using the following guidelines:

Windows Specifics: Limit Read and Write access as described above.

UNIX Specifics: For a distributed server, the UMASK value of the TKGrid determines the permissions on signature files. Set the TKGrid UMASK to 077. For a non-distributed server, set the personal UMASK to 077. These settings prevent any user other than the file owner (creator) from gaining access to signature files.

Server Tags

Server tags are identifiers that help the SAS LASR Authorization Service map each in-memory table to a corresponding metadata object. See “In-Memory LASR Names” on page 85.

Each LASR library’s server tag must be defined as follows:

- If the LASR library’s data is loaded from co-located HDFS, the server tag must be the source path in dot-delimited format. Here are some examples:

<table>
<thead>
<tr>
<th>Source Path</th>
<th>Corresponding Server Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>/hps</td>
<td>hps</td>
</tr>
<tr>
<td>/hps/special</td>
<td>hps.special</td>
</tr>
<tr>
<td>/sales</td>
<td>sales</td>
</tr>
</tbody>
</table>

- If the LASR library’s data is loaded using SAS Embedded Process, the server tag must be a valid libref. For example, the server tag cannot be MyServerTag (more than eight characters) or user.sasdemo (more than one level).

- If the LASR library’s data is loaded from a legacy co-located provider, the server tag must be the source library’s libref (for example, TDLIB or GPLIB).

- Otherwise, the server tag can be any unique string. If you do not supply a server tag in a LASR library’s metadata definition, the tag WORK is used.

CAUTION! Within a server instance (a host-port combination), each server tag must be unique.

Row-Level Security

Introduction

Row-level security enables you to control who can access particular rows within a LASR table, and it is defined by data filter expressions. Row-level access
distinctions can be based on a simple attribute (such as security clearance level) or on a more complex expression that consists of multiple criteria.

Row-level security affects access to subsets of data within a resource. To establish row-level security, you add constraints called permission conditions to explicit grants of the Read permission. Each permission condition filters a particular LASR table for a particular user or group. Each permission condition constrains an explicit grant of the Read permission so that the associated user or group can see only those rows that meet the specified condition.

When row-level security is used, there are three possible authorization decision outcomes for a user request to view data:

- **Grant**
 - The requesting user can see all rows.

- **Conditional grant**
 - The requesting user can see only those rows that meet the specified filtering conditions.

- **Denial**
 - The requesting user cannot see any rows.

TIP When you test conditions in a SAS Visual Analytics application (such as the explorer), refresh the data source in that application (so that the results reflect your saved changes to permission conditions). See “Caching” on page 41.

Permission Precedence

Here are some key points about how permission conditions are incorporated into the metadata-layer access control evaluation process:

- A permission condition is applied only if it is on the setting that is closest to the requesting user. Other permission conditions that are relevant because of further-removed group memberships do not provide additional, cumulative access.

- If there is an identity precedence tie between multiple groups at the highest level of identity precedence, those tied conditions are combined in a Boolean OR expression. If the identity precedence tie includes an unconditional grant, access is not limited by any conditions.

The following table provides examples:

<table>
<thead>
<tr>
<th>Table 3.4 Precedence for Permission Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle</td>
</tr>
<tr>
<td>If there are multiple permission conditions that apply to a user because of the user's group memberships, then the identity that has the highest precedence controls the outcome.</td>
</tr>
<tr>
<td>Principle</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>If there are multiple permission conditions at the highest level of</td>
</tr>
<tr>
<td>identity precedence, then any data that is allowed by any of the tied</td>
</tr>
<tr>
<td>conditions is returned.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Syntax (Enhanced Editor)

TIP To access the enhanced editor, see “Set a Row-Level Permission Condition” on page 37.

- On the **Visual** tab, you can drag and drop operators and data items from the left panes.

 Note: When you enter values, do not enclose them in quotation marks. The editor adds any necessary quotation marks for you.

- On the **Text** tab, you can enter text directly. Use only those operators that are available on the **Visual** tab.

 Note: The **Text** tab does not use the same syntax as the basic editor and the batch tools. For hints, select the **Text** tab, and then click in the window toolbar.

Syntax (Basic Editor, Batch)

Introduction

This topic is applicable to permission conditions created in the following contexts:

- In SAS Visual Analytics Administrator 6.1 and earlier.
- In the batch tools for metadata authorization. See **Batch Tools for Metadata Authorization** in the **SAS Intelligence Platform: Security Administration Guide**.

General Guidelines

- Enclose non-numerical character values within quotation marks.
- The symbol `| |` is not supported. Instead, use the keyword OR.
- Expressions with months or dates are not supported.
- Do not include the WHERE keyword in any expression.
Supported Syntax

Table 3.5 Supported Syntax

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND, OR, NOT</td>
<td>Toy_Type='cars' OR Toy_Type='dolls'</td>
</tr>
<tr>
<td>IN, NOTIN</td>
<td>Toy_Type IN ('dolls' 'cars' 'animals')</td>
</tr>
<tr>
<td>CONTAINS, ?</td>
<td>Toy_Type CONTAINS 'cars'</td>
</tr>
<tr>
<td>BETWEEN, NOT BETWEEN</td>
<td>Toy_Price BETWEEN 20 AND 30</td>
</tr>
<tr>
<td>LIKE</td>
<td>Toy_Type LIKE 'dolls'</td>
</tr>
<tr>
<td>=, > ,<, >=, <=, <></td>
<td>Toy_Price=25</td>
</tr>
<tr>
<td>^=, NE</td>
<td>Toy_Price^=30</td>
</tr>
</tbody>
</table>

Identity-Driven Properties

The following table introduces properties that you can use to create identity-driven permission conditions. When you use these properties in a permission condition, values are dynamically substituted into the condition at run time, based on the metadata identity of each requesting user.

Table 3.6 Identity-Driven Properties

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB::SAS.Userid</td>
<td>returns the requesting user’s authenticated ID, normalized to the uppercase format USERID or USERID@DOMAIN. Here is an example for use in the batch tools: -condition "empID='SUB::SAS.Userid'"</td>
</tr>
<tr>
<td>SUB::SAS.IdentityGroups</td>
<td>returns the requesting user’s group and role memberships (direct, indirect, and implicit). The returned list contains group and role names (not display names). Here is an example for use in the batch tools: -condition "FacilityRegion IN ('SUB::SAS.IdentityGroups')"</td>
</tr>
<tr>
<td>SUB::SAS.PersonName</td>
<td>returns the requesting user’s name (as specified in the Name field on the General tab of the user’s metadata definition).</td>
</tr>
<tr>
<td>SUB::SAS.ExternalIdentity</td>
<td>returns a site-specific identifier for the requesting user. External identity values are populated by the platform’s user import macros (if you bulk load user information into metadata).</td>
</tr>
</tbody>
</table>

For example, if a LASR table has an empID column with values that match the user IDs with which users authenticate, you might use the condition empID='SUB::SAS.Userid'. Each affected user’s ID is substituted into the right side of the condition. In a request from the sasdemo user, the condition
resolves as empID='sasdemo', so only those rows where the value in the empID column is sasdemo are returned to the sasdemo user. If you assign the condition to a group, each member’s access is restricted to those rows where the empID value matches his or her authenticated user ID. Here is an example of the full command for the use in batch tools:

```
sas-set-metadata-access -profile Admin */Shared Data/LASRtableA(Table)
-grant sasusers:Read -condition "empID='SUB::SAS.Userid'"
```

Note: Two additional properties (SAS.IdentityName and SAS.IdentityGroupName) are not documented here because they are less frequently useful. See About Identity-Driven Properties in the SAS Intelligence Platform: Security Administration Guide.

Key Actions Auditing

Introduction

This topic provides information that is specific to SAS Visual Analytics. For general information, see Configuring Auditing for SAS Web Applications in the SAS Intelligence Platform: Middle-Tier Administration Guide.

How to Safely Enable Auditing

CAUTION! Audit data can consume significant amounts of disk space and processing capacity. To safely enable auditing, complete all of the following steps.

1. To manage the size of audit tables in the SAS Web Infrastructure Platform database, define archive rules. See Archive Process for Audit Records in the SAS Intelligence Platform: Middle-Tier Administration Guide.

 Note: For ID values to use in the archive rules, see Table 3.9 on page 52. For these archive rules, the suggested value for FREQUENCY_NO is 2592000000 milliseconds (30 days).

2. To manage the size of audit archive tables in the SAS Web Infrastructure Platform database, establish a procedure to periodically delete records from those tables. See Purging Audit Records in the SAS Intelligence Platform: Middle-Tier Administration Guide.

3. To manage the size of audit data in the autoload drop zone, establish a procedure to periodically delete the AUDIT_VISUALANALYTICS table from the EVDMLA autoload data directory and from that directory’s Append subdirectory. See “Data Lifecycle” on page 114.

4. Set the property va.AuditingEnabled to true. See “How to Set Configuration Properties” on page 123.

5. Restart the SAS Web Application Server.
Audit Content and Coverage

The following tables describe SAS Visual Analytics audit records. Here are some key points:

- To visualize audit information, see Chapter 6, “Reports for Administrators,” on page 109.
- In some cases, multiple audit records are written for a single user interaction. For example, if UserA opens ReportA, and ReportA uses TableA and TableB, records that are written include [Report.BI]Open, multiple [Table]Read records for TableA, and multiple [Table]Read records for TableB.
- In the audit_info field, Security access denied indicates that a permissions-based access denial from the LASR authorization service occurred. Capacity access denied indicates that a capacity-based access denial from the LASR authorization service occurred. See “Limit Space for Tables” on page 89.
- The server_app field is populated for actions that use the transport service. For example, when a user prints a report object, the executor_nm value identifies the client (for example, Visual Analytics Viewer 7.2) and the server_app value identifies the underlying component (for example, Visual Analytics Transport Service 7.2).
- The email_recipients field is not populated for actions that are performed in SAS Mobile BI.
- For some of the specialized fields, new and old values are recorded. The new value reflects current information.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Example Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>audit_id</td>
<td>Identifier for the audit record</td>
<td>871</td>
</tr>
<tr>
<td>timestamp_dttm</td>
<td>Date and time (GMT)</td>
<td>08:06:2014 06:42:59.219</td>
</tr>
<tr>
<td>user_id</td>
<td>Metadata name of the identity that performed the action</td>
<td>sasadm</td>
</tr>
<tr>
<td>action_type</td>
<td>Name of action</td>
<td>Add</td>
</tr>
<tr>
<td>object_type</td>
<td>Object type (in the audit service’s type classification scheme)</td>
<td>Report.BI</td>
</tr>
<tr>
<td>executor_nm</td>
<td>Application name, device type (if applicable), and version</td>
<td>Visual Analytics Designer 7.2</td>
</tr>
<tr>
<td>action_success_flg</td>
<td>Whether the action succeeded (Y) or failed (N)</td>
<td>Y</td>
</tr>
<tr>
<td>audit_info</td>
<td>Information about a failed action, additional details</td>
<td>LASR_ACTION=TASK_TABLEINFO; Security access denied</td>
</tr>
<tr>
<td>Specialized:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>location</td>
<td>metadata path and type, or local filename</td>
<td>SBIP://METASERVER/User Folders/ncjoe/My Folder/MyReport(Report)</td>
</tr>
<tr>
<td>lasr_server_name</td>
<td>Machine name and port of a SAS LASR Analytic Server</td>
<td>abc.mycompany.com:7300</td>
</tr>
<tr>
<td>table_name</td>
<td>Server tag and name of a LASR table</td>
<td>HPS.CARS</td>
</tr>
<tr>
<td>client_id</td>
<td>IP address or mobile device ID</td>
<td>12.34.56.789</td>
</tr>
<tr>
<td>report_elements</td>
<td>Identifiers for successfully printed objects (or, all)</td>
<td>ve2</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Example Value</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>server_app</td>
<td>Underlying component or service</td>
<td>Visual Analytics Transport Service 7.2</td>
</tr>
<tr>
<td>elapsed_time</td>
<td>Time for the execute method in a query (seconds, milliseconds)</td>
<td>27.829</td>
</tr>
<tr>
<td>export_output</td>
<td>Output type</td>
<td>XLSX</td>
</tr>
<tr>
<td>export_rows</td>
<td>Number of rows exported (or, all)</td>
<td>250</td>
</tr>
<tr>
<td>export_object</td>
<td>Name of the report object from which data is exported</td>
<td>List Table 2</td>
</tr>
<tr>
<td>email_sender</td>
<td>Email address</td>
<td>joe@company.com</td>
</tr>
<tr>
<td>email_recipients</td>
<td>One or more email addresses</td>
<td>tara@company.com, joy@company.com</td>
</tr>
</tbody>
</table>
Table 3.8 Audit Coverage

<table>
<thead>
<tr>
<th>Audited Activity</th>
<th>[object_type] action_types</th>
<th>Specialized Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscribe to a report on a mobile device.</td>
<td>[BIReportSubscription] Create</td>
<td>client_id, location, server_app</td>
</tr>
<tr>
<td>Delete a report from a mobile device.</td>
<td>[BIReportSubscription] Delete</td>
<td>client_id, location, server_app</td>
</tr>
<tr>
<td>Open, create, save, save as, or delete a report.</td>
<td>[Report.BI] Open, Create, Save, Delete</td>
<td>client_id, location, oldlocation (for save as)</td>
</tr>
<tr>
<td>Move, copy and paste, or rename a report.</td>
<td>[Report.BI] Move, Copy, Rename</td>
<td>client_id, location, oldlocation</td>
</tr>
<tr>
<td>Send a link to a report via email.</td>
<td>[Report.BI] SendEmail</td>
<td>client_id, location, email_sender, email_recipients</td>
</tr>
<tr>
<td>Export data from an object within a report.</td>
<td>[Report.BI] Export</td>
<td>client_id, location, export_object, export_rows, export_output</td>
</tr>
<tr>
<td>Print some or all objects in a report to PDF.</td>
<td>[Report.BI] Print</td>
<td>client_id, location, report_elements, server_app</td>
</tr>
<tr>
<td>Automatic refresh of a report by the transport service.</td>
<td>[Report.BI] Execute</td>
<td>client_id, location, server_app</td>
</tr>
<tr>
<td>Start a server (or trigger autostart) from the UI.</td>
<td>[Server.LASR] Start</td>
<td>client_id, lasr_server_name</td>
</tr>
<tr>
<td>Stop a server.</td>
<td>[Server.LASR] Cancel</td>
<td>client_id, lasr_server_name</td>
</tr>
<tr>
<td>Read a LASR table.</td>
<td>[Table] Read</td>
<td>client_id, location, lasr_server_name, table_name</td>
</tr>
<tr>
<td>Read a source table (before import or load).</td>
<td>[Table] Read</td>
<td>client_id, location (of the source table)</td>
</tr>
<tr>
<td>Load, import, or reload a LASR table.</td>
<td>[Table] Add</td>
<td>client_id, location, lasr_server_name, table_name</td>
</tr>
<tr>
<td>Add a source table to co-located HDFS.</td>
<td>[Table] Add</td>
<td>client_id, location (in metadata, new table)</td>
</tr>
<tr>
<td>Unload a LASR table.</td>
<td>[Table] Release</td>
<td>client_id, location, lasr_server_name, table_name</td>
</tr>
<tr>
<td>Audited Activity</td>
<td>[object_type] action_types</td>
<td>Specialized Fields</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Delete a physical table from co-located HDFS.</td>
<td>[Table] Delete</td>
<td>client_id, location (in HDFS)</td>
</tr>
<tr>
<td>Append, modify, or delete rows; add computed columns.</td>
<td>[Table] Update</td>
<td>client_id, location, lasr_server_name, table_name</td>
</tr>
<tr>
<td>Open, create, save, save as, or delete a data query.</td>
<td>[VisualDataQuery] Open, Create, Save, Delete</td>
<td>client_id, location, oldlocation (for save as)</td>
</tr>
<tr>
<td>Move or rename a data query.</td>
<td>[VisualDataQuery] Move, Rename</td>
<td>client_id, location, oldlocation</td>
</tr>
<tr>
<td>Run a data query.</td>
<td>[VisualDataQuery] Execute</td>
<td>client_id, location, elapsed_time</td>
</tr>
<tr>
<td>Open, create, save, save as, or delete an exploration.</td>
<td>[VisualExploration] Open, Create, Save, Delete</td>
<td>client_id, location, oldlocation (for save as)</td>
</tr>
<tr>
<td>Move, copy and paste, or rename an exploration.</td>
<td>[VisualExploration] Move, Copy, Rename</td>
<td>client_id, location, oldlocation</td>
</tr>
<tr>
<td>Send a link to an exploration via email.</td>
<td>[VisualExploration] SendEmail</td>
<td>client_id, location, email_sender, email_recipients</td>
</tr>
<tr>
<td>Export data from an object within an exploration.</td>
<td>[VisualExploration] Export</td>
<td>client_id, location, export_object, export_rows, export_output</td>
</tr>
<tr>
<td>Print some or all objects in an exploration to PDF.</td>
<td>[VisualExploration] Print</td>
<td>client_id, location, report_elements</td>
</tr>
<tr>
<td>Access encrypted SASHDAT (use of passphrase).</td>
<td>[Library] or [Server.Hadoop] Read</td>
<td>client_id, library_name or hadoop_server_name</td>
</tr>
</tbody>
</table>
Table 3.9 Audit Type IDs

<table>
<thead>
<tr>
<th>Object Type (ID)</th>
<th>Action Types (ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server.LASR (206)</td>
<td>Start (34), Cancel (47)</td>
</tr>
<tr>
<td>Server.Hadoop (208)</td>
<td>Read (45)</td>
</tr>
<tr>
<td>Library (31)</td>
<td>Read (45)</td>
</tr>
<tr>
<td>Table (32)</td>
<td>Read (45), Add (36), Release (48), Delete (2), Update (1)</td>
</tr>
<tr>
<td>BIReportSubscription (827000)</td>
<td>Create (0), Delete (2)</td>
</tr>
<tr>
<td>Report.BI (106)</td>
<td>Create (0), Delete (2), Open (13), Save (53), Move (39), Rename (40), Copy (16), SendEmail (44), Export (26), Print (7), Execute (35)</td>
</tr>
<tr>
<td>VisualExploration (101)</td>
<td>Create (0), Delete (2), Open (13), Save (53), Move (39), Rename (40), Copy (16), SendEmail (44), Export (26), Print (7)</td>
</tr>
<tr>
<td>VisualDataQuery (826001)</td>
<td>Create (0), Delete (2), Open (13), Save (53), Move (39), Rename (40), Execute (35)</td>
</tr>
</tbody>
</table>
Locked-Down Servers

You can limit the reach and activities of certain SAS servers. For more information, see Locked-Down Servers in the SAS Intelligence Platform: Security Administration Guide.

If you choose to lock down a server that is used by SAS Visual Analytics, make sure that the following directories are accessible to that server:

- `SAS-configuration-directory/Applications/SASVisualAnalytics`
- For a non-distributed server, the signature files directory. See “Signature files location on server” on page 92.
- For a distributed server, each user’s home directory (`~`) to provide access to SSH keys. See Passwordless SSH in the SAS LASR Analytic Server: Reference Guide.
- The directory where process IDs are written. See “va.monitoringPath” on page 126.
- The directory where last action logs are written. See “va.lastActionLogPath” on page 126.
- The directory that contains geographic data sets. See “Geographic Data Sets” on page 71.
- The directory that contains the SAS linguistic files for text analytics. See “Supporting Text Analytics” on page 69.
- Any directory to which users export code. See “Record actions as SAS statements” on page 81.
- Any directory that serves as a data provider for reload-on-start. See “Reload-on-Start” on page 18.
- Any directory from which users import non-local data. See “Self-Service Import” on page 16.
- The directory where scheduled jobs for SAS Visual Data Builder are written. (The standard location is in the SAS configuration directory at your equivalent of `SAS-application-server\SASEnvironment\SASCode\Jobs`.)
- The autoload drop zone for administrative reporting (if the lockdown affects the pooled workspace server within the default SAS Application Server). See “How to Provide Administrative Data” on page 111.

Access to SAS Mobile BI

About Mobile Device Management

Here are the key points:
To manage device access to SAS Mobile BI, select **Tools » Manage Devices** from the main menu in the administrator. You can manage devices either by exclusion or by inclusion.

- If you manage by exclusion, all devices can use SAS Mobile BI, except those that are on the blacklist.
- If you manage by inclusion, only devices that are on the whitelist can use SAS Mobile BI.

A deployment enforces only one list (either the blacklist or the whitelist). In a new deployment the blacklist is enforced, so there are no device-level barriers to participation.

You can modify both lists. Making changes to a list that is not currently enforced can help accommodate a future change.

These lists affect devices, not users. To manage what a particular user can see or do, use permissions and capabilities.

How to Manage Mobile Devices

Blacklist a Device

Note: These instructions have an effect only if the blacklist is enforced.

To prevent a mobile device from using SAS Mobile BI:

1. In the main menu bar, select **Tools » Manage Devices**.
2. On the **Mobile Devices** tab, select the **Blacklist** tab.
3. At the right edge of the tab, click ⬆.
4. In the **Add Device To Blacklist** window, enter the ID of the device that you want to exclude from using SAS Mobile BI. (Or, to add multiple device IDs, click **Add List**.) Click **OK**.

Note: The information that you supply is not validated by the software.

TIP For a device that has already connected (or attempted to connect), you can initiate this task from the **Logon History** tab. Select the device, right-click, and select **Add to Blacklist**.

To remove a device from the blacklist, select it on the **Blacklist** tab, right-click, and select **Move to Whitelist**.

Whitelist a Device

Note: These instructions have an effect only if the whitelist is enforced.

To enable a mobile device to use SAS Mobile BI:

1. In the main menu bar, select **Tools » Manage Devices**.
2. On the **Mobile Devices** tab, select the **Whitelist** tab.
3. At the right edge of the tab, click ⬆.
4 In the Add Device To Whitelist window, enter the ID of the device that you want to enable to use SAS Mobile BI. (Or, to add multiple device IDs, click Add List.) Click OK.

Note: The information that you supply is not validated by the software.

TIP For a device that has already connected (or attempted to connect), you can initiate this task from the Logon History tab. Select the device, right-click, and select Add to Whitelist.

To remove a device from the whitelist, select it on the Whitelist tab, right-click, and select Move to Blacklist.

Determine Which List Is Enforced

In the toolbar at the top of the Mobile Devices tab, the Enforced drop-down list indicates which list is enforced.

In addition, text at the top of either the Blacklist tab or the Whitelist tab indicates the list that is not currently enforced.

TIP You can also verify the current configuration in SAS Management Console. The blacklist is enforced unless the viewerservices.enable.whitelist.support property is set to true. See “viewerservices.enable.whitelist.support” on page 130.

Determine When a Device Was Blacklisted

Here is one way to determine when a device was blacklisted:

1 On the Blacklist tab, right-click on the device, and select Copy Device ID.

2 On the Management History tab, select Device ID from the Filter drop-down list.

3 Click in the text field, and enter Ctrl+V from the keyboard. (You cannot perform the paste action from the pop-up menu.)

4 Click Apply.

TIP You can also copy a device ID from the Whitelist tab. You can also paste a device ID into the Device ID filter on the Logon History tab.

Change How Devices Are Managed

CAUTION! These are deployment-level instructions that affect all access to SAS Mobile BI.

To switch from enforcing one list to enforcing the other:

1 Select Tools > Manage Devices from the main menu.

2 Verify that the list that you intend to enforce is appropriately populated.
 - If you enforce the whitelist, the whitelist should contain all eligible devices. The blacklist is ignored.
If you enforce the blacklist, the blacklist should contain all excluded devices. The whitelist is ignored.

3. In the toolbar at the top of the Mobile Devices tab, make a selection from the Enforced drop-down list. In the confirmation window, click Yes.

About the Mobile Devices Tab

Here are some details about the Mobile Devices tab:

- On the History tabs, you can filter by selecting an item from a Filter drop-down list, specifying a value, and clicking Apply.

- The Logon History tab displays logon events. By default, only one logon event for each device is displayed. To view previous logon events, select the Include device history check box. The following occurrences are logon events:
 - A connection attempt that comes from a new source (a unique combination of device ID and user ID).
 - A connection attempt that is accompanied by a device change (such as a new operating system version or application version).

- On the Logon History tab, the Status column provides information about a logon event. The Status column does not indicate the current status of a device connection.

- When you right-click on a device on the Logon History tab, remember that only one list is in use. Adding a device to the list that is not in use has no immediate effect. For example, if your deployment uses the blacklist, adding a device to the whitelist has no immediate effect.

- On the Blacklist and Whitelist tabs, each cell in the User ID column contains the user ID that connected (or attempted to connect) to SAS Mobile BI from the associated device. The user ID is provided for the purpose of helping you identify a device. If no user has attempted to connect from a particular device, no user ID is listed for that device. If multiple users have attempted to connect from a particular device, all of those user IDs are listed.

- On the Manage tabs, you can right-click on a device ID, and select Copy Device ID. On the History tabs, you can paste a device ID into the text field next to the Filter drop-down list.

 Note: A device ID is a unique identifier (usually a hardware device number) that is determined and communicated by the connecting mobile application.

- The Management History tab displays device management events, such as adding a device to a list or removing a device from a list. The Admin ID column provides the user ID of the administrator who performed each action.

- When you right-click on a device in the blacklist or whitelist, you can choose either a move action or a remove action. In terms of immediate effect, there is no difference between these two actions.

 Note: Authentication from SAS Office Analytics to SAS Visual Analytics does not use the SAS Visual Analytics Transport Service. For this reason, actions and information on the Mobile Devices tab in the administrator have no impact on SAS Enterprise Guide, SAS Add-in for Microsoft Office, and SAS Web Parts for SharePoint.
Protections for Mobile Content

In addition to the blacklist and whitelist functionality, protections that are specific to mobile content include the following:

- To prevent offline access to mobile data, assign users or groups to a role that has the **Purge Mobile Report Data** capability. See “Purge Mobile Report Data” on page 121.

- To limit offline access to mobile data, assign users or groups to a role that has the **Limit Duration of Offline Access** capability. See “Limit Duration of Offline Access” on page 121.

- To require knowledge of an application passcode, assign users or groups to a role that has the **Require Passcode on Mobile Devices** capability. See “Require Passcode On Mobile Devices” on page 121.

- Content on a mobile device is encrypted by the device’s operating system. For information about encrypted communication for mobile devices, see the SAS Intelligence Platform: Middle-Tier Administration Guide.

Authentication

Introduction

SAS Visual Analytics uses platform-level functionality for authentication. See **Authentication Model** in the **SAS Intelligence Platform: Security Administration Guide**. For information about authentication for mobile devices, see the SAS Intelligence Platform: Middle-Tier Administration Guide.

This topic provides details that are specific to SAS Visual Analytics.

Shared Accounts for Self-Service Imports

To enable users to import data under a shared account, configure SAS token authentication for a general purpose workspace server. See **SAS Token Authentication** in the **SAS Intelligence Platform: Security Administration Guide**.

To set up multiple levels of access, use multiple shared accounts. Here is a summary of one approach:

1. For each distinct set of secured resources, create a service account that can authenticate to the SAS LASR Analytic Server. Make sure the account has the privileges that are required to operate the server and load data. See “Host Account Privileges” on page 5.

2. For each service account, create a SAS Application Server that contains a standard workspace server. See “Add a New Server” on page 79.

3. Configure each standard workspace server for SAS token authentication. For each standard workspace server, use a different service account as the launch credential. See **How to Configure SAS Token Authentication** in the **SAS Intelligence Platform: Security Administration Guide**.
4 For each SAS Application Server, create a corresponding SAS LASR Analytic Server instance. Assign a unique signature files directory to each instance. Give each service account exclusive host access to the signature files directory for its server instance. See “Add a SAS LASR Analytic Server” on page 86.

5 For each SAS LASR Analytic Server instance, create one or more LASR libraries. Assign each library to the SAS Application Server that corresponds to the library’s SAS LASR Analytic Server instance. See “Add a LASR Library” on page 87 and “Which Server is Used?” on page 79.

Note: Keep the initial SAS Application Server (for example, SASApp) available for general use.

Policy for Concurrent User Logins

SAS Visual Analytics does not support deny or logoff values for the Policy.ConcurrentUserLogins property. For successful interactions with the SAS LASR Analytic Server, make sure this property is set to allow.

The Policy.ConcurrentUserLogins property is documented in Disabling Concurrent Sign In Sessions in the SAS Intelligence Platform: Middle-Tier Administration Guide.

Encryption

Introduction

SAS Visual Analytics uses platform-level functionality to encrypt sensitive data in transit and on disk. See Encryption Model in the SAS Intelligence Platform: Security Administration Guide.

This topic helps you get started with AES encryption of data that SAS Visual Analytics writes to disk.

On-Disk Encryption of Reload-on-Start Files

Overview

To increase protection of data in a reload-on-start backing store, bind the backing store to metadata and enable encryption on the corresponding secured library.

CAUTION! Binding physical data to metadata is an advanced technique.
Before you configure encryption, see Overview of Metadata-Bound Libraries in SAS Guide to Metadata-Bound Libraries and review the following key points.
Key Points

- Access to in-memory data is unaffected by encryption of corresponding backing store files. Encrypted backing store files are not read or written as quickly as unencrypted backing store files.

- Each metadata-bound backing store is represented twice in metadata:
 - One representation is a traditional library that is assigned as the backing store for a particular LASR library.
 - The other representation is a secured library to which the physical backing store is bound.

To read from or write to an encrypted backing store, you must have sufficient metadata-layer permissions on both the traditional library and the secured library.

- Passphrases (Encrypt Key values) and passwords are not promoted. After the initial import of a secured library, you must re-apply the passphrase and password (or passwords) in the target environment. See Promotion Details for Specific Object Types in the SAS Intelligence Platform: System Administration Guide.

- To use AES, SAS/SECURE must be installed and available. See Providers of Encryption in Encryption in SAS.

Encrypt a Backing Store Library

Note: For alternatives to the following basic instructions, see Implementation of Metadata-Bound Libraries in the SAS Guide to Metadata-Bound Libraries.

1. Identify or create a backing store for a LASR library that supports reload-on-start and will contain sensitive data. See “How to Enable Reload-on-Start” on page 19.

 Note: A backing store is a host directory that is registered in metadata and assigned to a LASR library as its data provider library.

2. Log on to SAS Management Console as someone who has the following privileges:
 - Host-layer control of the target directory:
 - On Windows, you must have full control of the directory.
 - On UNIX, you must be an owner of the directory.
 - Metadata-layer access to the Secured Libraries folder. The SAS Administrators group usually has the necessary access.

 Note: As an alternative, you can first create a secured library folder, and then create the new secured library within that folder. If you are creating multiple secured libraries, it is usually more efficient to create one or more folders, so that each secured library inherits effective permissions from a parent folder. Each secured table inherits effective permissions from its parent secured library. See Object Creation, Location, and Inheritance.

4. On the General page, enter a name and description. Click Next.

5. On the Connection Data page, provide information as follows:
a Select a SAS Application Server. For **Library Path**, click **Browse**, and select your target directory.

b Enter and confirm a library password.

CAUTION! If you lose a library password, you cannot unbind or modify the library. Keep track of the password (or passwords) that you enter.

Note: The password must be a valid SAS name. (It must begin with a letter or an underscore. It can include letters, underscores, and numeric digits. It is not case sensitive. It cannot be longer than 8 characters.) If you need to create a longer, compound password, select the **Specify multiple passwords** check box and specify multiple passwords.

c Select the **Require Encryption** check box and its **Yes** radio button. With this setting, the following files are encrypted:

- Any unencrypted tables that already exist in the directory.
- Tables that are later added to the directory during imports that participate in reload-on-start.
- Tables that are later added to the directory directly through SAS code. (Do not use a host copy utility to add tables to the directory.)

d Select the **Encryption Type** check box and its **AES** radio button.

e Leave the first **Encrypt Key** field blank. That field is not applicable when you create a secured library for a directory that is empty or contains only unencrypted files.

Enter a value in the **New Encrypt Key** and **Confirm Encrypt Key** fields. Here are some details:

- Keep track of the value that you enter.
- The value that you enter functions as a passphrase that is used to create the actual key with which AES encrypts the target tables.
- The value that you enter is automatically enclosed in quotation marks when it is saved, so the value is case sensitive. (Do not include quotation marks when you enter a value.) For more information, see `ENCRYPTKEY=` in the **SAS Data Set Options: Reference**.

f Click **Finish**. When prompted, click **Yes** to review the log.

6 Review and adjust metadata-layer access to the new secured library.

a Right-click on the new secured library, and select **Properties**.

Note: If you are managing permissions at the folder level, right-click on the appropriate secured library folder.

b On the **Authorization** tab, use one of the following techniques:

- Grant all permissions to a broad group, such as PUBLIC, SASUSERS, or Visual Analytics Users. This simple approach uses the secured library only to provide on-disk encryption.

- Grant permissions in a more selective, limited manner. This advanced approach uses the secured library to provide enhanced enforcement of authorization constraints, as well as on-disk encryption. See **Permissions for Metadata-Bound Data**. Here are some examples:
To import a table that participates in reload-on-start, a user must have the Create Table permission on the corresponding secured library object.

Note: If a same-named table already exists in the metadata-bound backing store, the user must also have the Alter Table permission on the corresponding secured table object.

To reload a table (using reload-on-start), the user who triggers the SAS LASR Analytic Server to start must have the ReadMetadata and Select permissions on the corresponding secured table object.

7 To verify the results:

- In the data builder, explorer, or designer, import a participating table. For example, import a local file to a LASR library that supports reload-on-start from an AES-encrypted backing store.
- In the administrator, stop and then start a SAS LASR Analytic Server that is associated with a LASR library that supports reload-on-start from an AES-encrypted backing store.
- In SAS code, run the CONTENTS procedure against the backing store library. The procedure output indicates whether tables are encrypted.
- For further verification, see [Validating a Metadata-Bound Library](#).

Update a Passphrase

To update a passphrase, see [Changing a Metadata-Bound Library's Encryption Options](#).

Note: Only a user who has physical control of the target directory and can supply the library password (or passwords) can change the passphrase.

On-Disk Encryption of SASHDAT Files

Overview

To increase protection of SASHDAT files, enable on-disk AES encryption for a library that uses the SASHDAT engine.

CAUTION! Encrypting SASHDAT files can significantly impact data availability and memory consumption. Before you configure encryption, review the following sections.

Note: The SASHDAT engine is sometimes referred to as the SAS Data in HDFS engine.

Key Points

- Access to in-memory data is unaffected by encryption of corresponding SASHDAT files. Encrypted SASHDAT files are not read or written as quickly as unencrypted SASHDAT files.
- Encrypted SASHDAT files are available to only requests that are authorized by the SAS LASR Authorization Service (which is also referred to as the signer). For authorized requests, the authorization service retrieves the encryption passphrase from metadata and provides it to the SASHDAT
engine. This enables the SASHDAT engine to encrypt and unencrypt data as needed. Here are the related requirements:

- The connection object for the associated data server must enable the authorization service. For SAS Visual Analytics, encryption of SASHDAT files is always signer-managed.
- In an encrypted SASHDAT library, users who add, delete, or load associated data must have the Read permission.
- Within an environment, each Hadoop server must have a unique host name. Within a Hadoop server, each SASHDAT library must have a unique host path.

- Encrypted SASHDAT files always consume unmapped memory when they are loaded. Memory mapping is not available for LASR tables that are loaded from encrypted SASHDAT files.
- Encrypted SASHDAT files are always uncompressed when they are loaded.

 Note: You can use compression to conserve disk space for an encrypted SASHDAT file. However, compressing an encrypted SASHDAT file does not conserve memory. Before an encrypted file is loaded, it must be decrypted—decryption requires that the data be uncompressed.

- Changes that you make to SASHDAT encryption settings do not affect existing SASHDAT files.
- If you want to centralize SASHDAT encryption configuration, specify encryption settings at the server level, and configure each associated library to inherit its settings.

- Passphrases (Encrypt Key values) are not promoted. After the initial import of an encrypted SASHDAT library or server, you must use SAS Management Console to re-apply the passphrase in the target environment.

 Note: If both the source and the target environment reference the same physical data instance, you do not have to copy and replace that data (because that data remains encrypted).

- To encrypt SASHDAT files, the following requirements must be met:

 - The SAS TKGrid Encryption Extension must be installed and available. See "Configuring the Analytics Environment for SASHDAT Encryption" in the SAS High-Performance Analytics Infrastructure: Installation and Configuration Guide.

 - To use AES, SAS/SECURE must be installed and available. See Providers of Encryption in Encryption in SAS.

Protect Encryption Settings

To protect SASHDAT encryption settings, limit WriteMetadata access to the SASHDAT library.

Limiting WriteMetadata access is necessary because anyone who has WriteMetadata access to an encrypted SASHDAT library can modify its VA.Encryption.Enabled extended attribute. That attribute is intended for exclusively internal purposes. Nobody should directly set, modify, or delete the VA.Encryption.Enabled attribute. Instead, unrestricted users can manage settings from the library's Options tab, as instructed below.
Note: Limiting WriteMetadata access has side effects. Users who lack WriteMetadata access to a library cannot register tables in or delete tables from that library.

For example, for maximum protection, you might give the PUBLIC group an explicit denial of WriteMetadata on the Authorization tab of an encrypted SASHDAT library. With that setting, only an unrestricted user has WriteMetadata access to the library. Actions that add or remove SASHDAT table metadata for that library must be performed by an unrestricted user.

Encrypt a SASHDAT Library

1 Identify a SASHDAT library that references an empty target directory.

 Note: These instructions are for an existing SASHDAT library. To create a new library that uses the SASHDAT engine, see the SAS Intelligence Platform: Data Administration Guide.

2 Log on to SAS Management Console as an unrestricted user (for example, sasadm@saspw).

3 On the library, set encryption options and adjust metadata-layer permissions.
 a On the Plug-ins tab, expand the Data Library Manager node and then the Libraries node. Right-click the target library, and select Properties.

 b On the Options tab, make the following changes:

 a In the Enable Encryption field, select the Yes radio button.

 TIP To instead make the library inherit encryption settings from its associated data server, select the Inherit from server radio button. Then, verify that encryption is enabled on the data server’s Options tab. Inherited settings are dynamic. Server-level changes affect all associated libraries that are configured to inherit server-level settings.

 b Enter a value in the New Encrypt Key and Confirm Encrypt Key fields.

 CAUTION! If the passphrase is lost, all access to the encrypted data is irretrievably lost. Keep track of the passphrase that you enter.

 Here are some details:

 n The value that you enter functions as a passphrase that is used to create the actual key with which AES encrypts the target tables.

 n The value that you enter is automatically enclosed in quotation marks when it is saved, so the value is case sensitive. (Do not include quotation marks when you enter a value.) For more information, see ENCRYPTKEY= in the SAS Data Set Options: Reference.

 c On the Authorization tab, grant the Read permission to users who add data to the encrypted library, load data from the encrypted library, or delete data from the encrypted library. In most cases, it is sufficient to grant the Read permission to the following groups:

 n Visual Analytics Data Administrators

 n Visual Data Builder Administrators
Note: For an unencrypted SASHDAT library, the Read permission is not required or enforced.

Note: You can grant the Read permission on a parent folder, rather than directly on the library.

d On the Authorization tab, make sure that WriteMetadata access is limited. See “Protect Encryption Settings” on page 62.

e Click OK.

4 On the associated server’s connection object, enable the LASR authorization service.

CAUTION! If the LASR authorization service is not enabled, added tables are not encrypted and encrypted tables are not available.

a On the Plug-ins tab, expand Server Manager, and select the target data server.

b In the right pane, right-click the server’s connection object, and select Properties.

c On the Options tab, make sure the Use LASR authorization service check box is selected.

5 To verify the results:

- Add tables to the SASHDAT library.
- Load tables from the SASHDAT library to a SAS LASR Analytic Server.
- For SASHDAT files in co-located HDFS, examine each table’s Encryption property on the administrator’s HDFS tab. See “About the HDFS Tab” on page 100.
- In SAS code, run the CONTENTS procedure against the SASHDAT library. The procedure output indicates whether tables are encrypted.

Update a Passphrase

To update a passphrase:

1 If the target directory currently contains tables, move those tables to an alternate location.

TIP One approach is to load the existing tables to memory and then delete both the physical tables and the corresponding metadata definitions.

CAUTION! If you delete table metadata, you must manually repair or re-create any affected objects (for example, explicit and row-level permissions).

2 Log on to SAS Management Console as an unrestricted user. On the appropriate server or library, enter a new value in the New Encrypt Key and Confirm Encrypt Key fields.

3 If you moved tables in step 1, move them back to the target directory. As the files are written back to the target directory, they are encrypted using the new encryption key (which is generated from the updated passphrase).
If you loaded tables from co-located HDFS in step 1, you can use the data builder to save the tables back to HDFS.

For more information, see Data Encryption in the SAS LASR Analytic Server: Reference Guide.
Fine-Tuning

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administering the Home Page</td>
<td>68</td>
</tr>
<tr>
<td>Supporting Guest Access</td>
<td>68</td>
</tr>
<tr>
<td>Supporting Text Analytics</td>
<td>69</td>
</tr>
<tr>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>Linguistic Files</td>
<td>69</td>
</tr>
<tr>
<td>Stop Lists</td>
<td>69</td>
</tr>
<tr>
<td>Supporting Geographic Maps</td>
<td>69</td>
</tr>
<tr>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>OpenStreetMap Server</td>
<td>70</td>
</tr>
<tr>
<td>Esri Server</td>
<td>70</td>
</tr>
<tr>
<td>Geographic Data Sets</td>
<td>71</td>
</tr>
<tr>
<td>Supporting Stored Processes</td>
<td>71</td>
</tr>
<tr>
<td>Supporting Report Distribution</td>
<td>72</td>
</tr>
<tr>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>About the Scheduling Server</td>
<td>72</td>
</tr>
<tr>
<td>About the Size of Email Attachments</td>
<td>72</td>
</tr>
<tr>
<td>Supporting User-Defined Formats</td>
<td>73</td>
</tr>
<tr>
<td>Managing Alerts and Notifications</td>
<td>74</td>
</tr>
<tr>
<td>Introduction</td>
<td>74</td>
</tr>
<tr>
<td>Requirements</td>
<td>74</td>
</tr>
<tr>
<td>How to Delete Other Users’ Alerts</td>
<td>74</td>
</tr>
<tr>
<td>Supporting the Monitoring Features</td>
<td>75</td>
</tr>
<tr>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>Network Name Resolution</td>
<td>75</td>
</tr>
<tr>
<td>Managing the Monitoring Server</td>
<td>75</td>
</tr>
<tr>
<td>Logging for the Monitoring Server</td>
<td>76</td>
</tr>
<tr>
<td>Adjusting the Logging Configuration</td>
<td>76</td>
</tr>
<tr>
<td>Log Directories</td>
<td>76</td>
</tr>
<tr>
<td>How to Change Log Levels</td>
<td>77</td>
</tr>
<tr>
<td>How to Log Submitted Code</td>
<td>77</td>
</tr>
<tr>
<td>How to Log LASR Actions</td>
<td>77</td>
</tr>
<tr>
<td>Logging of Access Denials</td>
<td>78</td>
</tr>
<tr>
<td>Logging for SAS Mobile BI</td>
<td>78</td>
</tr>
<tr>
<td>Logging for Platform Servers</td>
<td>78</td>
</tr>
<tr>
<td>Making More Fonts Available on UNIX</td>
<td>78</td>
</tr>
</tbody>
</table>
Administering the Home Page

The home page is a SAS web application that provides integrated access to participating licensed SAS solutions, including SAS Visual Analytics. The home page’s official product and software component names (SAS Visual Analytics Hub and Visual Analytics Hub) reflect the original scope of the home page.

Supporting Guest Access

Guest access is an optional feature that provides anonymous access to a subset of resources and functionality. Any user who connects as a guest is authenticated as the SAS Anonymous Web User, which functions as the single surrogate identity for all guests.

Guest access is documented in Configuring Guest Access in the SAS Intelligence Platform: Middle-Tier Administration Guide.

The following additional details are specific to SAS Visual Analytics:

- If you enable guest access during installation, the home page, the web viewer, and transport service (SAS Mobile BI) allow users to connect as guest. See "App.AllowGuest" on page 123.

- The Visual Analytics: Basic role provides an appropriate set of guest access capabilities for SAS Visual Analytics. Do not permanently give the Personalization capability to the Visual Analytics: Basic role. Failure to conform to this guideline causes each user’s experience to reflect the activities of the previous user.

- To customize the web viewer for guests, temporarily add the Personalization capability to the Visual Analytics: Basic role. Connect as a guest, make changes, and then remove the Personalization capability from the Visual Analytics: Basic role.

- If your deployment supports guest access, you can append guest.jsp to the end of the viewer’s direct URL. For example:

 http://host/SASVisualAnalyticsViewer/guest.jsp

 The exact URL is documented in an HTML file on the SAS Visual Analytics middle-tier machine (for example, SAS-configuration-directory/Documents/Instructions.html).
Note: Prior to the third maintenance release of the SAS 9.4 Intelligence Platform, the only way to access a web application as a guest is by using a guest.jsp URL.

Supporting Text Analytics

Introduction

This topic provides information to help administrators support text analysis features. For user instructions, see the SAS Visual Analytics: User’s Guide.

Linguistic Files

To enable a server to access required linguistic files:

1. In SAS Management Console, right-click on a SAS LASR Analytic Server, and select Properties.

2. On the Extended Attributes tab, set the required property. See “VA.TextAnalyticsBinaryLocation” on page 90.

Stop Lists

To omit certain words from text analysis that is performed by a SAS LASR Analytic Server, register and load a stop list for that server. For example, you can filter out noise by omitting commonly used words. For instructions, see Load a Stop List in the SAS Visual Analytics: User’s Guide.

TIP To find the location of the stop lists that SAS provides, examine the Extended Attributes tab of a predefined SAS LASR Analytic Server. The field names are VA.TextAnalyticsStopList and VA.TextAnalyticsStopList.de.

Supporting Geographic Maps

Introduction

Use of geo maps introduces two specialized requirements:

- A connection to a supported geographic information server.
- A data source that contains geographic information, including longitude and latitude values.
OpenStreetMap Server

Hosted by SAS

By default, SAS Visual Analytics retrieves mapping tiles from OpenStreetMap servers that SAS hosts. The OpenStreetMap servers that SAS hosts support replication and failover, providing reliable and dependable access.

Maps are rendered internally within SAS Visual Analytics. Only the following information is exchanged:

- Requests for tile numbers (in a URL format) are sent from SAS Visual Analytics to an OpenStreetMap server.
- Map images are returned from an OpenStreetMap server to SAS Visual Analytics.

To change the protocol that SAS Visual Analytics uses to connect to the OpenStreetMap servers that SAS hosts, set the property “va.SASGeomapCommunicationProtocol” on page 126.

Hosted Elsewhere

As an alternative to using the OpenStreetMap servers that SAS hosts, you can install, configure, host, and maintain an OpenStreetMap server at your site. This is a complex task that should be attempted only after you have carefully evaluated the requirements, needs, benefits, and maintenance responsibilities at your site. For information about OpenStreetMap servers, see www.openstreetmap.org.

To reference an alternate OpenStreetMap server from SAS Visual Analytics, set the property “va.GeoMapServerUrl” on page 125.

To change the protocol that SAS Visual Analytics uses to connect to an alternate OpenStreetMap server, specify the appropriate protocol (http or https) in the URLs that you list in the va.GeoMapServerUrl property.

Esri Server

Using an Esri server is an optional additional configuration. To reference an Esri server from SAS Visual Analytics, set the property “va.SASGeomapEsriURL” on page 126.

Here are the key points:

- You can reference an Esri server (ArcGIS for Server, version 10.1 or later) that you install, configure, host, and maintain at your site. For example:

 http://my.arcgis.com:6080/arcgis/rest/services

- You can reference public ArcGIS Online sample map services that do not require authentication. For example:

 http://services.arcgisonline.com/ArcGIS/rest/services

- You cannot reference an ArcGIS Online site that requires authentication.

- You cannot reference an individual subfolder or map service. You must reference the REST endpoint of the map server.
In deployments that reference an Esri server, the explorer and the designer provide user preferences and per-object settings that determine which server (OpenStreetMap or Esri) is used.

Geographic Data Sets

SAS provides data sets that contain geographic information for several geographic domains (for example, states in the United States and ZIP codes for cities in the United States). The data sets (ATTRLOOKUP and CENTLOOKUP) are in the SAS configuration directory at your equivalent of `/SASApp/Data/valib/`. A corresponding library (for example, `SASApp - valib`) is registered in metadata.

In addition to the predefined geographical roles that use the SAS geographic data sets, you can define custom geographical roles for your data. If your data contains latitude and longitude values, then you can assign custom geographical roles using those values.

- For instructions for the explorer, see Define a Geography Data Item in the SAS Visual Analytics: User's Guide.
- For instructions for the designer, see Working with Geography Data Items in the SAS Visual Analytics: User's Guide.

Supporting Stored Processes

A stored process is a SAS program that is stored on a server and defined in metadata. For information about how stored processes are incorporated in SAS Visual Analytics, see the SAS Visual Analytics: User’s Guide. For information about how to create and register a stored process, see Managing Stored Process Metadata in the SAS Stored Processes: Developer’s Guide.

The following considerations are specific to the administration of stored processes for SAS Visual Analytics:

- Stored processes can use any available data source (not only LASR tables). However, running stored processes against large LASR tables is not a high-performance operation. Any referenced LASR tables must be read from the SAS LASR Analytic Server into a SAS session in the SAS Stored Process Server. Using a stored process to read large tables from memory is not a high-performance operation.

- Most SAS procedures are available to only sites that license additional software (such as Base SAS). For a site that licenses only SAS Visual Analytics, most stored processes do not run.
Supporting Report Distribution

Introduction

This topic helps administrators support the report distribution feature that the designer provides. For user instructions, see Sharing Reports with Other Users in the SAS Visual Analytics: User’s Guide.

Here are the key points:

- In the designer, the File ▶ Distribute Reports menu item is available to only those users who have the Distribute Reports capability.

- Use only the designer to schedule and distribute SAS Visual Analytics reports. (If you use the Schedule Manager plug-in to SAS Management Console, and you set an option that is not available in the designer, the report job might be incompatible with the designer.)

- Log output for report distribution is in the SAS Visual Analytics Hyperlink Services log. The logging context is com.sas.bicommon.distribution. See “Adjusting the Logging Configuration” on page 76.

- Report jobs and distributions (job flows) are stored in user-specific folders beneath a folder that is referenced by a configuration property. See “va.baseSchedulingFolder” on page 124.

About the Scheduling Server

Report distribution uses distributed in-process scheduling. See Setting Up Scheduling Using SAS Distributed In-Process Scheduling in Scheduling in SAS.

A SAS Java Batch Server of the sub-type Visual Analytics Scheduled Distribution is required. The predefined SAS Java Batch Server is named Visual Analytics Scheduled Distribution.

About the Size of Email Attachments

How Size Limits Are Defined

Reports are distributed as PDF attachments to email messages. Size limits for emails are established as follows:

- Most email systems limit the size of attachments. If an email system rejects an attachment due to size, report distribution uses special handling for any future attempts to send emails that are the same size (or larger). Report distribution’s knowledge of email system size limits is reset when the SAS Web Application Server restarts.

- You can use the configuration properties va.distribution.email.aggregate.attachments.mb and va.distribution.email.attachment.mb to set explicit size limits. See “How to Set Configuration Properties” on page 123.
TIP Because report distribution adapts to actual rejections from an email system, it is rarely necessary to set explicit size limits.

How Oversize Email Attachments Are Handled

For a report distribution email with attachments that exceed a known size limit, the following results occur:

- If there are multiple attachments, report distribution attempts to distribute the attachments among multiple messages. The user who requests the report distribution is notified that multiple emails have been sent.
- Any individual attachment that exceeds the size limit is removed from the email. The email indicates that an attachment was omitted due to a size limit.

If a report distribution email is rejected by an email system due to a (previously unknown) size limit, report distribution’s knowledge of email system’s size limits is updated to reflect the rejection.

Note: If size limits are explicitly set (in configuration properties), the new limits that are in effect are lower than the configured limits.

Supporting User-Defined Formats

Formats are instructions that SAS uses to write data values. Formats are used to control the written appearance of data values, or, in some cases, to group data values together for analysis.

User-defined formats are specialized formats that are stored in a custom format library. To incorporate user-defined formats, make them available as required by the clients that you are using.

- The explorer, the designer, and the viewers rely on formats that are available when data is loaded. To make user-defined formats available during autoload, see "User-Defined Formats for Autoload" on page 28.
- Other clients (such as the data builder and SAS Enterprise Guide) rely on formats that are available when data is accessed. Any user-defined formats must be known to the appropriate SAS Application Server. The preferred method for making user-defined formats available to a SAS Application Server is to use a standard name and location for the custom format catalog as follows:

 1 Name the format catalog formats.sas7bcat.
 2 On each machine that hosts a workspace server, place the format catalog in the SAS configuration directory under /SAS-application-server/SASEnvironment/SASFormats.

Note: To use a nonstandard name or location or to make multiple custom format catalogs available, see Create a User-Defined Formats Configuration File in the SAS Intelligence Platform: Data Administration Guide.

Note: If you use load-balanced workspace servers, see Managing Data and Catalogs for Servers on Multiple Machines in the SAS Intelligence Platform: Application Server Administration Guide.
Managing Alerts and Notifications

Introduction

This topic provides information to help administrators manage the alerts that users can create in the designer. For user instructions, see Working with Alerts for Report Objects in the SAS Visual Analytics: User’s Guide.

Requirements

Evaluation of data-driven alerts requires the following conditions:

- The associated SAS LASR Analytic Server is running.
- The target LASR table is loaded.
- The SAS Trusted User (for example, sastrust@saspw) has metadata-layer access to the target LASR table. The standard method for providing the necessary access is to grant the ReadMetadata and Read permissions to the SAS System Services group.

TIP Alert evaluations are performed by SAS Visual Analytics Hyperlink Services, so any errors are reported in your equivalent of /Web/Logs/server/SASVisualAnalyticsHyperlinkVersion.log.

For information about delivery, see SAS Web Infrastructure Platform in the SAS Intelligence Platform: Middle-Tier Administration Guide. Here are some tips:

- Email delivery of alert notifications requires that the subscriber’s metadata user definition includes a valid email address.
- Text message delivery of alert notifications requires that the subscriber’s metadata user definition includes a valid mobile phone number that has SMS as its assigned type value. The phone number must be specified as an email address, in the appropriate carrier-specific format (for example, 1234567899@mobile.att.net).
- To customize alert and notification behaviors, see “Alerts Properties” on page 127.

How to Delete Other Users’ Alerts

To delete other users’ alerts:

1. From the main menu in the administrator, select Tools ➤ Manage Alerts.
2. On the Alerts tab, select one or more alerts, right-click, and select Delete.

Here are some details:

- Anyone who has the Manage Environment capability can access the Alerts tab.
- Alerts are stored in the SharedServices database in the middle tier.
Supporting the Monitoring Features

Introduction

Note: This topic is applicable to only distributed servers.
Features that depend on the monitoring server (SAS LASR Analytic Server Monitor) include the following:
- table details on the Process Monitor tab
- per-instance memory gauges on the LASR Servers tab
- certain information on the HDFS tab

Network Name Resolution

Successful functioning of the monitoring server requires network name resolution on the middle-tier machine.
Insufficient network name resolution can cause a log entry such as the following:

```
Exception caught in LASRClient (lasr=null, host=hostname, port=nnnn)
java.net.UnknownHostException: hostname
action=TableInfo
```
The log entry is written to the bihpgrdc.monitor.console.log file, which is in the SAS configuration directory at /Applications/SASVisualAnalytics/HighPerformanceConfiguration/Logs.
The host name that the log entry references requires name resolution on the middle-tier machine. You can alias the host name to the IP address for the grid host that is used for the SAS LASR Analytic Server.

Managing the Monitoring Server

Commands

Use the following commands to manage the process that monitors a distributed server:

<table>
<thead>
<tr>
<th>UNIX:</th>
<th>LASRMonitor.sh</th>
<th>start</th>
<th>stop</th>
<th>restart</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows:</td>
<td>LASRMonitor.bat</td>
<td>start</td>
<td>stop</td>
<td>restart</td>
<td>status</td>
</tr>
</tbody>
</table>

The script is in the SAS configuration directory under /Applications/SASVisualAnalytics/HighPerformanceConfiguration.

Note: On Windows, the monitoring process runs as a service (for example, SAS [config-Lev1] LASR Analytic Server Monitor). You can manage the process using the Windows Services interface.
Requirement: Passwordless SSH

The monitoring process account must have passwordless SSH access to all machines on the cluster.

To provide passwordless SSH access to a monitoring process that runs on Windows:

1. Determine which Windows account the service runs as. Here are sample instructions:
 b. Right-click on the service, and select Properties.
 c. On the Log On tab, next to the This account radio button, note the user ID.

2. Make sure that the following requirements are met:
 - The account must have a copy of the SSH keys that belong to a corresponding UNIX account on the distributed server. See the section about Windows clients in Passwordless SSH in the SAS LASR Analytic Server: Reference Guide.
 - In the HighPerformanceConfiguration\wrapper \LASRMonitor.conf file, the set.USERNAME field must specify the user name of the corresponding UNIX account.

Logging for the Monitoring Server

Note: Changes to logging should be made only under the direction of SAS Technical Support.

Generated logs are in the SAS configuration directory under /Applications/ SASVisualAnalytics/HighPerformanceConfiguration/Logs.

The following log excerpt indicates that the account that attempted to start the monitoring server is not configured correctly for passwordless SSH:

```
NOTE: Unable to enumerate grid.
java.io.IOException
  at com.sas.grid.broker.monitor.ConnectionManager.startTKGridMon()
  at com.sas.grid.broker.core.BrokerCore.main(BrokerCore.java:257)
ERROR: ERROR: Monitor thread failed to start.
```

Adjusting the Logging Configuration

Log Directories

In the standard configuration, logs are in the SAS configuration directory as follows:

- Generated logs are in /Web/Logs/server.
- Log configuration files are in /Web/Common/LogConfig.
Note: Generated logs and log configuration for SAS Visual Statistics is included in the generated logs and log configuration for SAS Visual Analytics Explorer.

Note: Log configuration files that have an _apm suffix are used by SAS Environment Manager. Do not make changes to those files.

How to Change Log Levels

CAUTION! Excessive logging can degrade performance. Do not use the TRACE and DEBUG logging levels unless you are directed to do so by SAS Technical Support.

The preferred method for changing a logging level is to make a temporary, dynamic change in SAS Web Administration Console. See **Administering Logging for SAS Web Applications** in the **SAS Intelligence Platform: Middle-Tier Administration Guide**.

As an alternative to making a dynamic change, you can directly edit the appropriate log configuration file. The following example demonstrates how to change the log level to debug the explorer.

1. In the SASVisualAnalyticsExplorer-log4j.xml file, change the log level to **DEBUG**:

   ```xml
   <category additivity="false" name="com.sas.biv">
     <level value="DEBUG"/>
     <appender-ref ref="SAS_CONSOLE"/>
     <appender-ref ref="SAS_INFO_FILE"/>
   </category>
   ```

2. Restart the SAS Web Application Server.

How to Log Submitted Code

To include SAS logs in the data builder and administrator logs:

1. In the SASVisualDataBuilder-log4j.xml file and the SASVisualAnalyticsAdministrator-log4j.xml file, uncomment the **SAS Job submission** section.

2. Restart the SAS Web Application Server.

TIP Related functionality is provided by a user preference. See “Record actions as SAS statements” on page 81.

How to Log LASR Actions

To log commands that are issued to a SAS LASR Analytic Server from the designer or the web viewer:

1. In the **logging contexts** section of the SASVisualAnalyticsDesigner-log4j.xml file and the SASVisualAnalyticsViewer-log4j.xml file, uncomment the tags for the **com.sas.lasr.command** category.
2 Restart the SAS Web Application Server.

Logging of Access Denials

Metadata-layer access denials are logged as follows:

- For requests from the administrator and the data builder, access denials are logged in the LASR authorization log (SASLASRAuthorizationVersion.log).
- For requests from other SAS Visual Analytics applications, access denials are logged in the application's log file (for example, SASVisualAnalyticsExplorerVersion.log).

Log entries provide details about the cause of the access denial, indicating which user lacks which permissions for which metadata object.

Logging for SAS Mobile BI

The logging configuration for SAS Mobile BI is defined in the SASVisualAnalyticsTransport-log4j.xml file.

You can use the viewerservices.validate.schema.* properties to increase logging for the rendering of reports in SAS Mobile BI. See “Transport Service Properties” on page 129.

Logging for Platform Servers

See Administering Logging for SAS Servers in the SAS Intelligence Platform: System Administration Guide.

Making More Fonts Available on UNIX

When a report or exploration is printed to PDF, font substitution occurs for fonts that are unavailable to the transport service that generates the PDF. To make more fonts available to a service that runs on UNIX, use Fontconfig (version 2.8 or later). See www.freedesktop.org/wiki/Software/fontconfig/.

Note: The font file must be installed on the middle-tier machine that hosts the transport service. If you have a clustered middle tier, the font file must be installed on every middle-tier machine.

Note: ODS destinations such as stored processes register fonts using Fontreg, not Fontconfig.
Using Multiple SAS Application Servers

Which Server is Used?

Preliminary Requirements

Only a SAS Application Server that meets both of the following requirements can be used:

- The server is registered with the job execution service.
- The server is visible to the requesting user. (The user must have ReadMetadata access to the server.)

Automatic Selection

In most cases, a server is automatically selected using the following logic:

1. Use an associated server. For example, for a load request, follow the associations from the target LASR library to its SAS Application Server assignments.

 Note: For a request to start or stop a SAS LASR Analytic Server, follow the associations from the target SAS LASR Analytic Server to its LASR libraries to their SAS Application Server assignments.

2. Use the suite-level default server. See “va.defaultWorkspaceServer” on page 125.

 If the suite-level default server is not registered with the job execution service or not visible to the requesting user, proceed to step 3.

3. Use any server that is registered with the job execution service and visible to the requesting user.

Specific Designation

For the administrator and data builder, users can opt out of automatic selection and instead force the use of a particular server. See “User Preference: SAS Application Server” on page 80.

Note: For example, if you schedule data queries in the data builder, you might need to force the use of a SAS Application Server that includes a SAS DATA Step Batch Server.

Add a New Server

To add a new SAS Application Server, see Managing SAS Application Servers in the SAS Intelligence Platform: Application Server Administration Guide.

The following details are specific to SAS Visual Analytics:
You must register the server with the job execution service. See Job Execution Service in the SAS Intelligence Platform: Middle-Tier Administration Guide.

To support geo maps in the classic (Flex) applications, include a SAS Stored Process Server within the SAS Application Server. (SAS Visual Analytics uses the stored process server internally to read boundary and lookup data for geo maps.)

To support any of the following activities, include a SAS Pooled Workspace Server within the SAS Application Server:
- Use geo maps. The pooled workspace server loads the geographic lookup data sets.
- Extract and feed data for administrative reports.
- Access the Import Data panel in the designer, explorer, or data builder. (The pooled workspace server pre-screens available SAS/ACCESS licenses and then populates the Import Data panel.)

To support scheduled queries in the data builder, include a SAS DATA Step Batch Server within the SAS Application Server.

To support scheduled report distribution in the designer, include a Java batch server within the SAS Application Server.

To support customized formats for data, see “Supporting User-Defined Formats” on page 73.

To support interactions with a SAS LASR Analytic Server, make sure the configured monitoring path exists on the machine that hosts the new SAS Application Server. Either ensure that the standard location exists on that machine, or add an extended attribute to the SAS LASR Analytic Server to specify an alternate location. See “va.monitoringPath” on page 126.

TIP To reduce the need for back-end accounts, consider configuring the workspace server within the new SAS Application Server to use SAS token authentication. See “Shared Accounts for Self-Service Imports” on page 57.

Setting User Preferences

About User Preferences

This topic documents user preferences that are specific to the administrator.

To review or set preferences, select File ➔ Preferences from the main menu in the administrator.

User Preference: SAS Application Server

In the Preferences window, under SAS Visual Analytics Administrator ➔ Application Server, the value in the Application server drop-down list specifies how a SAS Application Server is selected for requests in the administrator.
causes an appropriate server to be automatically selected for each request. See “Which Server is Used?” on page 79.

server-name
forces use of a specified SAS Application Server (for example, SASApp). Only servers that are registered with the job execution service are listed.

Other User Preferences in the Administrator

In the Preferences window, under SAS Visual Analytics Administrator ➤ Manage Environment, the following settings are available:

Resource monitor sample rate (ms)
Specifies, in milliseconds, the sampling rate that the resource monitor uses for polling the machines in the cluster. This setting is not applicable to a non-distributed server.

Process monitor sample rate (ms)
Specifies, in milliseconds, the sampling rate that the performance monitor uses for polling application instances. This setting is not applicable to a non-distributed server.

Show the processes that measure performance
Controls whether processes that measure performance are included in the process-monitoring graphs. To include performance measurement processes in the graphs, select the check box. If several instances of performance measurement processes are running, they can negatively impact performance. This setting is not applicable to a non-distributed server.

Record actions as SAS statements
Saves the SAS code that the administrator generates when you perform certain tasks. You can save all recorded code in a single file or you can save the recorded code for each task in its own file.

If you enable recording, the following actions are recorded:
- Start or stop a SAS LASR Analytic Server.
- Load, reload, or unload a table.
- Add a table to co-located HDFS (Add to HDFS) or another server (Add to Data Server).
- Delete a table from co-located HDFS.

Note: You can modify and schedule recorded statements. However, metadata server connection information is not recorded. For information about the metadata server connection options, see SAS Language Interfaces to Metadata.
SAS LASR Analytic Server

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About SAS LASR Analytic Server</td>
<td>84</td>
</tr>
<tr>
<td>Introduction</td>
<td>84</td>
</tr>
<tr>
<td>Distributed or Non-distributed?</td>
<td>84</td>
</tr>
<tr>
<td>LASR-Related Metadata</td>
<td>84</td>
</tr>
<tr>
<td>In-Memory LASR Names</td>
<td>85</td>
</tr>
<tr>
<td>Add a SAS LASR Analytic Server</td>
<td>86</td>
</tr>
<tr>
<td>Introduction</td>
<td>86</td>
</tr>
<tr>
<td>Add a SAS LASR Analytic Server</td>
<td>86</td>
</tr>
<tr>
<td>Add a LASR Library</td>
<td>87</td>
</tr>
<tr>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>Instructions</td>
<td>88</td>
</tr>
<tr>
<td>Limit Space for Tables</td>
<td>89</td>
</tr>
<tr>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>Over Capacity</td>
<td>89</td>
</tr>
<tr>
<td>How to Set a Tables Limit</td>
<td>90</td>
</tr>
<tr>
<td>Extended Attributes: SAS LASR Analytic Server</td>
<td>90</td>
</tr>
<tr>
<td>Introduction</td>
<td>90</td>
</tr>
<tr>
<td>Reference</td>
<td>90</td>
</tr>
<tr>
<td>Advanced Options: SAS LASR Analytic Server</td>
<td>91</td>
</tr>
<tr>
<td>Introduction</td>
<td>91</td>
</tr>
<tr>
<td>Version Information</td>
<td>91</td>
</tr>
<tr>
<td>Memory Limits</td>
<td>91</td>
</tr>
<tr>
<td>Logging Options</td>
<td>92</td>
</tr>
<tr>
<td>Additional Options</td>
<td>92</td>
</tr>
<tr>
<td>Distributed Server: Monitoring</td>
<td>93</td>
</tr>
<tr>
<td>Memory Gauges</td>
<td>93</td>
</tr>
<tr>
<td>Resource Monitor</td>
<td>93</td>
</tr>
<tr>
<td>Process Monitor</td>
<td>94</td>
</tr>
<tr>
<td>Memory Usage: A Closer Look</td>
<td>95</td>
</tr>
<tr>
<td>Distributed Server: Parallel Load</td>
<td>96</td>
</tr>
<tr>
<td>Introduction</td>
<td>96</td>
</tr>
<tr>
<td>Method: Co-located Storage</td>
<td>97</td>
</tr>
<tr>
<td>Method: SAS Embedded Process</td>
<td>97</td>
</tr>
<tr>
<td>Example Depictions</td>
<td>98</td>
</tr>
<tr>
<td>Distributed Server: Co-located HDFS</td>
<td>99</td>
</tr>
<tr>
<td>Introduction</td>
<td>99</td>
</tr>
</tbody>
</table>
About SAS LASR Analytic Server

Introduction

SAS LASR Analytic Server is an analytic platform that provides secure, multi-user concurrent access to in-memory data. With high-performance, multi-threaded, analytic code that processes client requests at extraordinarily high speeds, the server enables business analysts to easily explore data and discover relationships. The server handles both big data and smaller sets of data. For more information, see the SAS LASR Analytic Server: Reference Guide.

Distributed or Non-distributed?

A SAS LASR Analytic Server can be distributed or non-distributed.

- A distributed SAS LASR Analytic Server runs on multiple blades in a chassis.
- A non-distributed SAS LASR Analytic Server runs on a single machine. All of the in-memory analytic features that are available for a distributed server are also available for a non-distributed server. A non-distributed server does not support memory gauges, the Resource Monitor tab, or the Process Monitor tab.

LASR-Related Metadata

Metadata objects that are related to the SAS LASR Analytic Server include the following:

- LASR Analytic Server
 a metadata definition for a LASR Analytic Server process
- LASR Analytic Server connection
 a metadata representation of one instance of a LASR Analytic Server
- LASR library
 a metadata representation of a data library that is associated with a LASR Analytic Server connection
LASR table
a metadata representation of a table that has been loaded to memory in a LASR Analytic Server

The following figure depicts the relationships among these metadata objects.

Figure 5.1 Server, Connection, Libraries, and Tables

The preceding figure illustrates these points:
- Each server has one (multi-user) connection.
- Each connection can have multiple libraries.
- Each library can have multiple tables.
- Each deployment can have multiple servers.

In-Memory LASR Names

The following figure depicts an example of the mapping of metadata objects to corresponding in-memory data.

Figure 5.2 Uniqueness Requirements
The preceding figure illustrates these uniqueness requirements:

- Each host-port combination must be unique.
- Within a server instance (a host-port combination), each server tag must be unique. See “Server Tags” on page 42.
- Within a server tag, each table name must be unique.
- The fully qualified in-memory name for a table (in the format host-name:port/server-tag/table-name) must be unique.

Note: The metadata does not always reflect the current state of the SAS LASR Analytic Server. For example, when you unload a table from memory, the corresponding table object is not deleted from metadata.

Add a SAS LASR Analytic Server

Introduction

This topic explains how to define an additional instance of a SAS LASR Analytic Server in metadata. Adding a server instance facilitates separation for management and ease-of-use purposes.

- Each server instance has a unique, multi-user connection to the hardware on which the SAS LASR Analytic Server process runs.
- Each server instance has a distinct set of associated LASR libraries and provides access to only those tables that are in an associated LASR library.

Add a SAS LASR Analytic Server

3. Enter a name for the server. Click Next.

4. Set properties as follows:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
</table>
| Single machine server | For a distributed server, select No.
| | For a non-distributed server, select Yes. |
| High-Performance Analytics | Specify the host path where files that define the cluster are located (for example, /opt/TKGrid). This field is applicable to a distributed server only. |
| environment install location | |
| Number of machines to use | Accept the default value (ALL). This field is applicable to a distributed server only. |
Click the **Advanced Options** button.

5 In the Advanced Options window, select the **Additional Options** tab. Review the settings and make any necessary adjustments. See “Advanced Options: SAS LASR Analytic Server” on page 91.

TIP Make sure that **Signature files location on server** field references a directory that has appropriate host protection.

Click **OK** to close the Advanced Options window. In the wizard, click **Next**.

6 Enter connection properties as follows:

<table>
<thead>
<tr>
<th>Port number</th>
<th>Enter a unique port number. See “In-Memory LASR Names” on page 85.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Performance Analytics environment host</td>
<td>Enter the fully qualified machine name of the host (for example, va.abc.com).</td>
</tr>
<tr>
<td>Use LASR authorization service</td>
<td>Leave this check box selected. See “SAS LASR Authorization Service” on page 39.</td>
</tr>
</tbody>
</table>

Click **Next**.

7 If you want to adjust the default grants of the Administer permission that the wizard applies to the server, move identities from one list to the other. Click **Next**.

Note: Only users who have the Administer permission for the server can stop the server or set its tables limit. The server inherits settings from the repository ACT (default ACT), so it might not always be essential to add explicit grants.

8 Click **Finish**.

9 (Optional) Configure support for text analytics. See “Supporting Text Analytics” on page 69.

10 (Optional) Limit the amount of space that the server can use to host tables. See “Limit Space for Tables” on page 89.

Add a LASR Library

Introduction

Here are the main reasons for creating a new LASR library:

- You want additional separation for management or ease-of-use purposes.
- You use co-located HDFS, and you added a new directory within that provider. You already created the new SASHDAT library. Now, you need to create the corresponding LASR library.
Instructions

To create a new LASR library:

2. In the New Library wizard, select High-Performance Analytics ➤ SAS LASR Analytic Server Library. Click Next.

3. Enter a name (for example, Sales LASR). If necessary, adjust the location. Click Next.

4. (Optional) Assign the library to one or more SAS Application Servers. Click Next.

 Note: Assigning a LASR library to a SAS Application Server facilitates interactions from clients such as SAS Enterprise Guide. Assignments can also affect which SAS Application Server is used for interactions with this LASR library and its associated SAS LASR Analytic Server. See “Which Server is Used?” on page 79.

5. Set library properties as follows. Click Next.

<table>
<thead>
<tr>
<th>Libref</th>
<th>Enter an identifier of your choice (for example, SALESLIB).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>This field is not editable. The value (SASIOLA) is the engine name for LASR libraries.</td>
</tr>
<tr>
<td>Server tag</td>
<td>See “Server Tags” on page 42.</td>
</tr>
<tr>
<td>Data provider library</td>
<td>If you want participating tables to be reloaded each time the associated server starts, specify a Base library to function as the backing store for this LASR library. See “Reload-on-Start” on page 18.</td>
</tr>
</tbody>
</table>

6. Assign the library to a SAS LASR Analytic Server by entering settings as follows. Click Next.

 | Database Server | Select a server from the drop-down list. |
 | Connection | Use the pre-selected value (which prepends the selected server name with the string Connection:). |
 | Default Login | This field is not editable. The value is None. |

7. If you want to adjust the default grants of the Administer permission that the wizard applies to the library, move identities from one list to the other. Click Next.

 Note: Only users who have the Administer permission for the library can load new tables to memory. The library inherits settings from its parent folder, so it might not be essential to add any explicit grants.
8 Click Finish.

9 (Optional) If you want the associated server to start on demand for data load and import requests against the new library, enable autostart for the library. See “Autostart” on page 7.

10 (Optional) If you want locally imported files to reload each time the associated server restarts, enable reload-on-start for the library. See “Reload-on-Start” on page 18.

11 (Optional) If you want to automatically synchronize the library's in-memory data against source tables in a host directory, set up a corresponding implementation of autoload. See “Autoload” on page 21.

12 (Optional) If the library is associated with a distributed server and contains only small tables, set an extended attribute that optimizes performance. See “VA.TableFullCopies” on page 106.

Limit Space for Tables

Introduction

To limit the amount of space that a SAS LASR Analytic Server can use to host tables, set a tables limit. For example, to limit the total amount of data that can be loaded or imported to a general-purpose or public server, you might set a tables limit of 500 megabytes for that server. The limit helps ensure sufficient memory availability for other processes that run on the same machine (or cluster).

Over Capacity

Definition

If the sum of the sizes of loaded tables on a particular server equals or exceeds the server’s tables limit, the server is over capacity. A server that is over capacity accepts requests for activities such as data retrieval and analysis, but rejects requests to load, import, append, or reload tables. In other words, the tables limit does not constrain total memory usage; it constrains only the amount of memory that a particular server can use to host tables.

Note: Memory that is mapped for tables counts toward the limit. Memory that is used for temporary tables does not count toward the limit.

Feedback

In most cases, a request that is rejected because a server is over capacity generates a message that indicates that the server is over capacity. However, for the following requests, the message indicates that the metadata server denied access to the operation:

- autoload
- create a table as output from a data query
TIP For information about how the administrator displays the actual use of memory for tables, tables limits, and over capacity status, see “Get Server Information” on page 6.

How to Set a Tables Limit

To set a server’s tables limit:

1. From the administrator’s main menu, select LASR ➔ Manage Servers.
2. In the Tables Limit column, click a cell, and enter a number.

 Note: Any cells that you are authorized to modify have an edit indicator (a small triangle). You must have both the Administer and WriteMetadata permissions for a server to add, update, or remove its tables limit.
3. To save the change, press Enter (or click anywhere else in the interface).

Extended Attributes: SAS LASR Analytic Server

Introduction

This topic documents extended attributes in the metadata definition for a SAS LASR Analytic Server.

Note: Extended attributes for autostart, autoload, and reload-on-start are at the library level, not the server level. See Table 2.1 on page 10.

Reference

- **VA.MonitoringPath**

 specifies a custom directory for monitoring artifacts for this SAS LASR Analytic Server.

 By default, this attribute is not set. If this attribute is set, it overrides the corresponding suite-level property (“va.monitoringPath”) for this server.

 If this attribute is set, the specified directory must exist on a workspace server host. The directory must have two required subdirectories: PIDs and Logs.

- **VA.MaxTotalMemoryForTables (tables limit)**

 specifies (in bytes) how much of a server’s memory can be used by tables.

 By default, this attribute is not set, so no limit is in effect. Instead of setting this attribute in SAS Management Console, the best practice is to set it in the administrator. See “Limit Space for Tables” on page 89.

- **VA.TextAnalyticsBinaryLocation**

 location of SAS linguistic files. See “Supporting Text Analytics” on page 69.

 In the standard configuration, the files are in the SAS installation directory. Here are some examples:
Advanced Options: SAS LASR Analytic Server

Introduction

This topic documents advanced options in the metadata definition for a SAS LASR Analytic Server. For information about the basic options, see “Add a SAS LASR Analytic Server” on page 86.

Note: For a non-distributed server, the only applicable advanced options are Server lifetime, Signature files location on server, and Enable logging.

Version Information

The options are for descriptive purposes only.

Memory Limits

The following options affect the circumstances in which a distributed SAS LASR Analytic Server rejects certain tasks:

Data loading (%)

specifies a percentage of used physical memory above which tables cannot be loaded to memory. If total memory use (by all processes on the cluster) exceeds the specified limit, operations that add tables or append rows fail. For example, if the value for this field is 80, and more than 80% of memory is already in use, tables cannot be loaded.

Note: Tables that are loaded from co-located HDFS do not count toward this limit.

TIP To limit available memory for tables on a particular server, see “Limit Space for Tables” on page 89.

External processes (%)

specifies a percentage of used physical memory above which external processes (such as SAS High-Performance Analytics procedures) cannot retrieve data. If total memory use (by all processes on the cluster) exceeds the specified limit, affected processes cannot retrieve data. For example, if the value for this field is 80, and more than 80% of memory is already in use, affected processes cannot retrieve data.

Note: If you do not specify values, the default value (75) is used for both options.
Logging Options

The logging options are as follows:

Enable logging
- Enables logging in a SAS LASR Analytic Server.

Path to log files
- The path where the log file for a distributed server is placed.

 Note: For a non-distributed server, log files are always written to the signature files directory.

Maximum file size (MB)
- Specifies the size of the log file (in megabytes) before the log file is rolled over. The default is 100 MB.

Maximum rollover files
- Specifies how many rotating log files can be used before older log files are overwritten. The default is 10.

Keep log files when the server terminates
- Select **Yes** to leave log files in the file system when the server terminates. The default value is **No**, and the files are removed.

Additional logging parameters
- This field is reserved for use in the future.

Additional Options

The **Additional Options** tab includes the following items:

Vendor
- SAS

Associated Machine
- Select the server’s host. If the host is not listed, click **New** to add it.

Force overwrite of server description file
- This field is not used.

Signature files location on server
- The host directory where signature files are written. The location is set during installation.

 CAUTION! It is important to protect the specified directory. See “Signature Files” on page 41.

 Note: Do not use a signature files path that contains double-byte character set (DBCS) characters.

 Note: For a distributed server, the specified path must be located on the SAS High-Performance Analytics environment root node.

Server lifetime
- By default, the server runs forever. This is appropriate in most environments.

 To set a maximum run time, specify a value in seconds. For example, if you specify **3600**, the server stops after it runs for 60 minutes.

 For a distributed server, you can also set a time-out period so that the server stops after an interval of inactivity. The time-out is specified in parentheses.
after the first value. For example, if you specify the value as 3600 (600), then after the server runs for 60 minutes, it starts tracking any inactivity. If no action requests are received within 10 minutes, the server stops.

Display detailed diagnostics
By default, detailed diagnostics are not displayed.

The connection object’s Advanced Options window includes this option:

Server description file
Leave this field blank. SAS Visual Analytics does not use this setting.

Distributed Server: Monitoring

Memory Gauges

For a distributed server, an overall memory gauge is displayed in the main menu bar in the administrator. The overall gauge indicates how much of the server host’s total physical memory is currently in use. The overall gauge is refreshed every minute.

![Memory Gauge](image)

Here are some details:

- If a specified percentage of memory is used, a distributed server rejects requests to load tables or append rows. See “Memory Limits” on page 91.

- The gauge provides information for only the distributed server that is referenced in the service.properties file in the SAS configuration directory (at /Applications/SASVisualAnalytics/HighPerformanceConfiguration).

 Note: This constraint also applies to additional memory usage information for distributed servers (on the Monitor tabs and the LASR Servers tab).

- For a distributed server, individual memory gauges are displayed in the Virtual Memory column on the LASR Servers tab. Each individual gauge indicates how much of the cluster’s total virtual memory is being used by a particular server instance (process). The individual gauges are refreshed every minute after the LASR Servers tab is opened.

 Note: The calculation behind the overall memory gauge differs from the calculation behind the individual memory gauges. For details, see “Memory Usage: A Closer Look” on page 95.

Resource Monitor

For a distributed server, you can monitor resource utilization by selecting LASR Monitor Resources from the main menu in the administrator.
In the upper half of the Resource Monitor tab, the Utilization History graph plots utilization against time as follows:

- CPU and memory utilization are plotted as percentages of capacity. Under high demand, the upper bound can reach 100%. Under low demand, the upper bound can drop below 10%.

- Network input and output utilization is displayed as two line plots. The plots show the transfer rate in megabytes per second.

To view resource utilization for a particular sampling period, place your pointer over a line. To select that sampling period in the entire display, click a line. You can then place your pointer over the sampling period on each line to view details.

In the lower half of the Resource Monitor tab, the Real-Time View heat map contains a column for each machine in the cluster. To view the host name and details, place your pointer over a cell.

- The top and middle sections show CPU utilization and memory utilization, respectively. The color reflects the workload (more saturated color indicates heavier use).

- The bottom section shows network output transfer rate (in the first row) and network input transfer rate (in the last row). The color reflects the transfer rate between 0 and 25 megabytes per second. If the transfer rate exceeds 25 MBps, the color is purple.

Process Monitor

For a distributed server, you can monitor per-process utilization by selecting LASR » Monitor Processes from the main menu in the administrator.
At the top of the Process Monitor tab, the Selection and Filter controls enable you to specify which server instances to display.

The Process Monitor tab displays two graphs:

- **Memory Utilization versus CPU Utilization**

 Each server instance is represented by a bubble. The size of the bubble represents the number of processes for that instance. The location of the bubble indicates the resource utilization for that instance. Ideally, an instance has one process for each machine in the cluster.

- **CPU and Memory Utilization by Instance**

 Each bar shows CPU and memory utilization for a server instance. If a bar is vertically divided, CPU utilization is shown in the lower section, and memory utilization is shown in the upper section.

To view details, place your pointer over a bubble or a bar. For machine-level information, click on a bubble or bar. A window lists host names, ranks the hosts (by the column that you most recently sorted), and shows used memory and CPU. For table-level information, click Show tables within the window. The window lists loaded tables, the user ID of the person who loaded them, and the number of rows and columns in each table.

Note: Per-process utilization is calculated from the traditional systems perspective. See the following section.

Memory Usage: A Closer Look

For a distributed server, the administrator provides two distinct expressions of memory usage:
In the main menu bar, the overall memory gauge provides a practical estimate of effective capacity.

The value for the overall memory gauge is calculated as follows:

\[
\frac{\text{total allocations} - \text{SASHDAT allocations}}{\text{total memory for the cluster}}
\]

- **total allocations**: all memory allocations for all processes on the cluster.
- **SASHDAT allocations**: memory that is allocated for tables that have been loaded from HDFS. These tables are stored in a highly efficient manner that keeps them instantly available on demand but consumes memory only when the data is accessed. For this reason, the overall gauge does not count SASHDAT allocations as used memory.

In the **Virtual Memory** column on the **LASR Servers** tab, each individual gauge indicates how much memory is currently being used by a particular server instance (process).

The individual gauges express memory usage from the traditional systems perspective, disregarding the memory-sparing efficiencies of SASHDAT allocations. The individual gauges can help you analyze capacity for the hypothetical scenario in which all tables are accessed simultaneously.

The value for each individual gauge is calculated as follows:

\[
\frac{\text{total allocations for this instance}}{\text{total memory for the cluster}}
\]

Note: The per-instance information on the **Process Monitor** tab also uses the preceding calculation to express memory usage.

TIP: On the **LASR Servers** tab, the sum of the individual gauges matches the overall memory gauge only if there are no SASHDAT allocations.

Distributed Server: Parallel Load

Introduction

SAS Visual Analytics loads data in parallel whenever possible. This topic outlines the parallel load methods that SAS Visual Analytics can support.

Note: Not all methods and providers are configured and available in all deployments. See the **SAS Visual Analytics: Installation and Configuration Guide (Distributed SAS LASR)**.
Method: Co-located Storage

<table>
<thead>
<tr>
<th>Topology:</th>
<th>The storage and analytics nodes must be on the same machines.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider:</td>
<td>Co-located HDFS or a legacy co-located provider.</td>
</tr>
<tr>
<td>Pattern:</td>
<td>Symmetric. There must be a one-to-one mapping between storage and analytics nodes.</td>
</tr>
<tr>
<td>SASHDAT:</td>
<td>In co-located HDFS, data is staged in SASHDAT format.</td>
</tr>
<tr>
<td>Server tag:</td>
<td>The HDFS source path in dot-delimited format or the legacy libref.</td>
</tr>
<tr>
<td>Usage:</td>
<td>See "Administrator Load" on page 15 or use the data builder.</td>
</tr>
</tbody>
</table>

Method: SAS Embedded Process

<table>
<thead>
<tr>
<th>Topology:</th>
<th>The storage cluster can be separate from the analytics cluster.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider:</td>
<td>Various.**</td>
</tr>
<tr>
<td>Pattern:</td>
<td>Asymmetric. One-to-one mapping between storage and analytics nodes is not required.</td>
</tr>
<tr>
<td>SASHDAT:</td>
<td>Data is not staged in SASHDAT format.</td>
</tr>
<tr>
<td>Server tag:</td>
<td>Any valid libref.</td>
</tr>
<tr>
<td>Usage:</td>
<td>See “Administrator Load” on page 15, use the data builder, or use an import action.*</td>
</tr>
</tbody>
</table>

* Load is parallel if embedded processing is available, LASR table name matches source table name, and server tag is a valid libref.
** See the SAS High-Performance Analytics Infrastructure: Installation and Configuration Guide.
Example Depictions

The following figures depict staging to and loading from co-located HDFS:

Figure 5.3 Stage to Co-located Storage

Figure 5.4 Load from Co-located Storage
The following figure depicts an import action that uses SAS Embedded Process:

Figure 5.5 Import Using SAS Embedded Process

Distributed Server: Co-located HDFS

Introduction

Co-located HDFS is a deployment of Hadoop that meets the following criteria:

- The deployment runs on the same hardware as a distributed SAS LASR Analytic Server.
- The deployment incorporates services that SAS High-Performance Deployment of Hadoop provides.

SAS High-Performance Deployment of Hadoop adds services to Apache Hadoop (and other supported Hadoop distributions) to provide the following integrated functionality:

- SAS uses a special file format (with the filename suffix SASHDAT) to store tables in HDFS. Like any file that is stored in HDFS, a SASHDAT file is distributed as a series of blocks. Copies of blocks are stored to provide data redundancy.
- SAS enhances the block distribution algorithm to make sure that blocks are distributed evenly. Because SAS LASR Analytic Server reads blocks of data directly, the even block distribution contributes to an even workload on the machines in the cluster.

This integration enables a distributed SAS LASR Analytic Server to use HDFS to read SASHDAT tables in parallel very efficiently.

TIP Basic HDFS commands are documented in the SAS LASR Analytic Server: Reference Guide.
About the HDFS Tab

Introduction

To open the **HDFS** tab, select **Tools** ➤ **Explore HDFS** from the main menu in the administrator.

Note: The **HDFS** tab is available in deployments that use co-located HDFS. Only users that have the Browse HDFS capability can access the **HDFS** tab.

The **HDFS** tab provides a host-layer view of HDFS folders and tables. The view is not mediated by metadata or by your permissions. Instead, a privileged Hadoop account retrieves the information that this tab displays.

You can use the **HDFS** tab to perform the following tasks:

- Browse HDFS folders and tables.
- View row count, columns, column information, and block information for tables that have been added to HDFS. Information about block distribution, block redundancy, and measures of block utilization is provided.
- Delete HDFS tables that are stored in SASHDAT format. (Files that are not SASHDAT files are listed, but they cannot be deleted.)

System Properties

To view HDFS system properties, click 📊. The following table describes the fields:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command for setting permissions</td>
<td>This setting is not used.</td>
</tr>
<tr>
<td>Set permissions as root?</td>
<td>This setting is not used.</td>
</tr>
<tr>
<td>Command for getting file information</td>
<td>This setting is not used.</td>
</tr>
<tr>
<td>Data directories</td>
<td>Specifies the directory that is used to store blocks.</td>
</tr>
<tr>
<td>Name Node</td>
<td>Specifies the host name of the machine that is used as the Hadoop NameNode.</td>
</tr>
<tr>
<td>Live Data Nodes</td>
<td>Specifies the number of Hadoop DataNodes that are reachable.</td>
</tr>
<tr>
<td>Dead Data Nodes</td>
<td>Specifies the number of Hadoop DataNodes that are not available.</td>
</tr>
</tbody>
</table>
Basic File Information

To view basic file information, select a file. The following information is provided:

Table 5.2 Basic File Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Specifies the name of the file.</td>
</tr>
<tr>
<td>Size</td>
<td>Specifies the file size. This value includes the disk space required to store the data in blocks and metadata about the file.</td>
</tr>
<tr>
<td>Date Modified</td>
<td>Specifies the date on which the file was created or replaced.</td>
</tr>
<tr>
<td>Path</td>
<td>Specifies the HDFS directory.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the description that is stored with the data. The description is displayed beside the table name in the explorer interface.</td>
</tr>
<tr>
<td>Copies</td>
<td>Specifies the number of redundant copies of the data.</td>
</tr>
<tr>
<td>Block Size</td>
<td>Specifies the number of bytes that are used to store each block of data.</td>
</tr>
<tr>
<td>Number of Variables</td>
<td>Specifies the number of columns in the HDFS table.</td>
</tr>
<tr>
<td>Owner</td>
<td>Specifies the user account that added the data to HDFS.</td>
</tr>
<tr>
<td>Group</td>
<td>Specifies the primary UNIX group for the user account.</td>
</tr>
<tr>
<td>Permissions</td>
<td>Specifies the Read, Write, and Execute access permissions for owner, group, and other.</td>
</tr>
<tr>
<td>SASHDAT file?</td>
<td>Specifies whether the file is in the SASHDAT format. Yes indicates that the file is in the SASHDAT format.</td>
</tr>
<tr>
<td>Compression</td>
<td>Specifies whether the file is compressed. Yes indicates that the file is compressed.</td>
</tr>
<tr>
<td>Encryption</td>
<td>Specifies whether the file is encrypted. Yes indicates that the file is encrypted.</td>
</tr>
</tbody>
</table>

Note: The **HDFS** tab might display multiple files for a table as the table is being added to HDFS. After the table is added, the multiple files disappear.
Table Information

To view column information, select a table, and click \[\text{icon}\]. The following information is provided:

Table 5.3 Column Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Name</td>
<td>Specifies the column name from the source table.</td>
</tr>
<tr>
<td>Label</td>
<td>Specifies the label for the data set column when the table was added to HDFS.</td>
</tr>
<tr>
<td>Type</td>
<td>Numeric or Character. Numeric variables are encoded as 1.</td>
</tr>
<tr>
<td>Offset</td>
<td>Specifies the starting position for the variable in the SASHDAT file.</td>
</tr>
<tr>
<td>Length</td>
<td>Specifies the storage used by the variable.</td>
</tr>
<tr>
<td>Format</td>
<td>Specifies the format associated with the variable.</td>
</tr>
<tr>
<td>Format Length</td>
<td>Specifies the format length of the format that existed on the variable when it was added to HDFS. This value is zero if the variable did not have a format when it was added to HDFS.</td>
</tr>
<tr>
<td>Precision</td>
<td>Specifies the precision portion of the format for number formats.</td>
</tr>
<tr>
<td>Length (Formatted)</td>
<td>Specifies the length of the variable when formatting is applied.</td>
</tr>
</tbody>
</table>

To view the row count, select a table, and click \[\text{icon}\]. The following information is provided:

Table 5.4 Row Count Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows</td>
<td>Specifies the number of rows in the data.</td>
</tr>
<tr>
<td>Blocks</td>
<td>Specifies the number of HDFS blocks that are used to store the data.</td>
</tr>
<tr>
<td>Allocated</td>
<td>Specifies the number of bytes allocated to store the data. The value is a multiple of the block size and the number of blocks. This value is smaller than the file size because it does not include the space needed for the SASHDAT file header.</td>
</tr>
<tr>
<td>Used</td>
<td>Specifies the number of bytes within the allocated blocks that are used for storing rows of data.</td>
</tr>
</tbody>
</table>
Utilization
Specifies the percentage of allocated space that is used for storing rows of data.

Block Detail Information

To view block details, select a file, and click 📝. The following information is provided:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name</td>
<td>Specifies the machine in the cluster that stores the block of data.</td>
</tr>
<tr>
<td>Block Name</td>
<td>Specifies the filename for the block.</td>
</tr>
<tr>
<td>Path</td>
<td>Specifies the directory to the block.</td>
</tr>
<tr>
<td>Record Length</td>
<td>Specifies the sum of the column lengths for the variables in the data.</td>
</tr>
<tr>
<td>Records</td>
<td>Specifies the number of rows stored in the block. Because redundant blocks</td>
</tr>
<tr>
<td></td>
<td>are listed in the table, the sum of the records listed does not equal the</td>
</tr>
<tr>
<td></td>
<td>number of rows in the data.</td>
</tr>
<tr>
<td>Owner</td>
<td>Specifies the user account that added the data to HDFS.</td>
</tr>
<tr>
<td>Group</td>
<td>Specifies the primary UNIX group for the user account that stored the data.</td>
</tr>
<tr>
<td>Permissions</td>
<td>Specifies the Read, Write, and Execute access permissions for owner, group,</td>
</tr>
<tr>
<td></td>
<td>and other.</td>
</tr>
</tbody>
</table>

You can sort by the column headings to identify anomalies. It is normal for several blocks to be stored on the same machine. However, it is not normal for the values of **Record Length, Owner, Group, or Permissions** to be different from row to row.

The files added to HDFS are stored as blocks. One block is the preferred block, and additional copies of the blocks are used to provide data redundancy. The Block Distribution dialog box offers two ways to view this information. The **Block Detail View** tab enables you to select a block number and view the host names that store the original or redundant blocks. The **Node Detail View** enables you to select a host name and view the block numbers that are stored on the machine.
Block Distribution Information

To view the block distribution, select a table, and click **.** The following information is provided:

Table 5.6 Block Distribution Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Size</td>
<td>Specifies the size of the file in bytes.</td>
</tr>
<tr>
<td>Block Size</td>
<td>Specifies the block size for the file.</td>
</tr>
<tr>
<td>Blocks</td>
<td>Specifies the number of blocks used to store the original copy of the data.</td>
</tr>
<tr>
<td>Machines Used</td>
<td>Specifies the number of machines in the cluster that have original or redundant blocks for the file.</td>
</tr>
<tr>
<td>Copies</td>
<td>Specifies the number of redundant block copies of the data.</td>
</tr>
</tbody>
</table>

On the **Block Detail View** tab, you can select a block number. This enables you to view how many copies of the block exist and the host names for the machines that store the blocks. The value in the **Total Copies** column equals the number of redundant copies of the block plus the original block. You can select the column heading to sort the rows. In an ideal distribution, the number of total copies is equal for all blocks.

On the **Host Detail View** tab, you can expand a host name node, and then view the block numbers that are stored on that machine. When you select the block number, the host name and any additional machines with copies of the block are identified in the host name list.

How to Introduce an Additional Directory

Each co-located HDFS directory that you use must be represented in metadata by a library that uses the SASHDAT engine. To create the required metadata, see the chapter **Connecting to Common Data Sources** in the *SAS Intelligence Platform: Data Administration Guide*.

Here are some key points:

- Each directory in co-located HDFS must also have a corresponding LASR library. See “Add a LASR Library” on page 87.
- The server tag for the corresponding LASR library must be the source path in dot-delimited format. See “Server Tags” on page 42.
- To facilitate parallel loads, use only single-level paths that have eight or fewer characters. For example, use `/sales` instead of `/dept/sales` or `/sales_department`. The path is the basis for the server tag, and the server tag is used as a libref in parallel loads.

How to Delete an HDFS Table

1. Right-click on the table in the **Folders** pane, and select **Delete**.
2 In the confirmation window, if you want to delete the physical table with the metadata object that represents it, select the **Remove from HDFS storage** check box.

TIP You can also delete an HDFS table from the HDFS tab. Select the table, and click

Distributed Server: Legacy Co-located Providers

If your deployment uses a legacy provider (co-located Greenplum or co-located Teradata), consider the following points:

- To stage a table, right-click the table (in the administrator’s **Folders** pane), and select **Add to a Data Server**.
- For data that is loaded from a legacy provider, SAS Visual Analytics uses SAS variable names as data item names.
- Each legacy provider library must have a corresponding LASR library.
- The middle-tier machine is configured as a client of the legacy provider, and must have network name resolution for host names.

Distributed Server: High-Volume Access to Smaller Tables

Introduction

This topic addresses the specialized situation where all of the following circumstances exist:

- You must support high-volume Read access to smaller tables.

 Note: Smaller is a relative concept. Tables that are less than 2 GB are good candidates. Tables that are between 2 GB and 20 GB might be good candidates, depending on factors such as server capacity, amount of free memory, and number of nodes.

- High inter-machine network communication (relative to table size) is negatively impacting data retrieval performance.

- You are willing to separate your frequently accessed smaller tables into a separate LASR library.

For smaller tables, in-memory access is faster when data is consolidated rather than distributed. For example, if a smaller table serves as the data source for a report, retrieval of that report is faster if the table is available in its entirety on a single machine rather than distributed across multiple machines. For reports that are widely and frequently accessed, the difference in retrieval performance can be worth the effort of managing a separate library for smaller tables.
To optimize retrieval performance for smaller tables, a distributed SAS LASR Analytic Server can keep multiple consolidated (full non-distributed) copies of each table. Each copy is written to and retrieved from a single machine. Each machine launches its own non-distributed server processes as needed to fulfill load and access requests. Load balancing and reuse of the non-distributed server processes further enhance performance.

For more information, see the SAS LASR Analytic Server: Reference Guide.

Instructions

To optimize high-volume access to smaller tables in a distributed SAS LASR Analytic Server:

1. Identify or create a LASR library that is exclusively for smaller tables.
 - Give the library a name that helps users recognize that they should never load or import large tables into it.
 - Associate the library with a distributed SAS LASR Analytic Server.

2. In SAS Management Console, on the LASR library’s Extended Attributes tab, set the attribute “VA.TableFullCopies” to a positive integer.

3. To verify results, load a table to the LASR library. On the LASR Tables tab, verify the table’s status. See “Get Table Information” on page 12.

Extended Attribute

The following library-level extended attribute enables smaller-table optimization and controls the number of in-memory instances per table.

VA.TableFullCopies

specifies how many complete, in-memory, single-node instances are created for each loaded table. By default, no value is specified, so no full copy instances are created. If you have a LASR library that contains only smaller tables and is associated with a distributed server, set the value to a positive integer.

CAUTION! If you specify a high value or if someone loads a large table to the library, server memory could be rapidly consumed. Consider initially specifying a value less than 4 (and increasing the value incrementally if needed), setting a tables limit for the associated server, and limiting the Administer permission on the library.

Here are some additional details:

- Autoload supports this attribute.
- You cannot append data to tables that are loaded with additional full copies.
- LASR star schemas, imports from Twitter, and imports from Facebook ignore this attribute.
- Non-distributed SAS LASR Analytic Servers ignore this attribute.
- In general, it is not beneficial to use compression for tables that are loaded with additional full copies.
Example

Scenario
- LibraryA is a LASR library that contains only smaller tables.
- LibraryA is associated with ServerA, a distributed SAS LASR Analytic Server.
- LibraryA’s Extended Attributes tab specifies a value of 3 for VA.TableFullCopies.

Results
- When TableA is loaded to LibraryA, three of the nodes on ServerA get a full copy of TableA.
- When access to TableA is requested, one of those three nodes provides its full copy of TableA.
- TableA is also loaded in the usual distributed manner. However, no access requests are fulfilled from the distributed instance of TableA.
- You cannot append to TableA.
Reports for Administrators

About the Predefined Reports

Location

Predefined reports provide insight into how your site uses SAS Visual Analytics. To open a report, select View ➤ Usage Reports from the administrator’s main menu. In the Open window, select a report, and click Open.

Predefined reports are in the folder /Products/SAS Visual Analytics Administrator/Reports/Usage.

TIP Each predefined report is populated with data only after its data feed is fully enabled and operational. See “How to Provide Administrative Data” on page 111.

Access

Initial Configuration

In the standard configuration, only administrators and unrestricted users can access predefined reports and their underlying data. Details are as follows:

- The Visual Analytics Data Administrators and Visual Data Builder Administrators groups have ReadMetadata and Read access to the data.
The Visual Analytics Data Administrators and Visual Data Builder Administrators groups have ReadMetadata access to the reports.

The Visual Analytics Data Administrators and SAS Administrators groups have WriteMemberMetadata access to the /Products/SAS Visual Analytics Administrator/Reports/Usage folder.

An explicit denial of the WriteMetadata permission on each predefined report prevents modification or deletion by anyone other than an unrestricted user.

How to Modify Access

Here is one way to make predefined reports more widely available:

1. Grant the ReadMetadata permission on the folder that contains the reports (/Products/SAS Visual Analytics Administrator/Reports/Usage).
2. Grant the ReadMetadata and Read permissions on the folder that contains the data (/Shared Data/SAS Visual Analytics/Autoload/EVDMLA).
3. Grant the ReadMetadata permission on the library Environment Manager Data Mart LASR.

TIP If your site doesn’t use the reports and underlying data, you can hide them from all restricted users by adding denials of the ReadMetadata permission.

Data Currency

Data currency is affected by the following factors:

- frequency of data collection or generation by the source system
- frequency of data extraction from the source system to a drop zone
- frequency of data loading from the drop zone to a SAS LASR Analytic Server

For example, in the standard configuration, the SAS Visual Analytics key actions audit data is usually less than 30 minutes old. Audit records are continuously generated, audit data is extracted every 15 minutes, and the extracted data is loaded every 15 minutes.

Note: For data extraction and loading, a new run begins only after the preceding run is completed. This can cause occasional exceptions to the timing that is described here.

Interacting with Reports

For information about viewing and interacting with reports, see the SAS Visual Analytics: User’s Guide.

About Custom Reports

Do not modify the predefined reports. Instead, use the designer to create custom reports.
Before you create a custom report that uses data structures that SAS provides, or data that SAS generates, review the following considerations:

- Data structures, data generation, and available tables are subject to change in future releases (of SAS Visual Analytics or of any underlying component). Any custom reports that you create might require revision before they can be used in a future release.
- Before you perform any software upgrades, migrations, or new installations, we recommend that you save a backup copy of any custom reports.

How to Provide Administrative Data

Orientation

What Data is Needed?
Before data is available in an administrative report, the data must be collected or generated by a source system, extracted to a drop zone, and autoloded to memory. To determine which data source is used by a particular report section, open the report in the designer, select the report section that you are interested in, and then select the Data tab in the left pane.

What Data is Already Available?
1. In the administrator, select LASR ▶ Manage Tables from the main menu.
2. Right-click on any column heading, and make sure the LASR Name column is selected.
3. In the tab toolbar, select LASR name from the drop-down list, and enter EVDM in the search field.
4. Check the check box in the first column heading so that all tables are selected. Then, click in the tab toolbar. To interpret the display, see “Get Table Information” on page 12.

1. Start Autoload
To start autolode for administrative data:

1. On the machine that hosts the administrative reporting library, identify or create a scheduler account.
 - Give the account the host-layer privileges that are required to start the associated SAS LASR Analytic Server and load data. See “Host Account Privileges” on page 5.
 - On UNIX, enable the account to run cron jobs.
 - In the SAS configuration directory, give the account Read and Write access to the following autolode directories and their contents:
2 In the metadata, create a corresponding individual metadata identity. See "Adding Users" on page 3.

 Note: This requirement reflects the standard configuration. See "Metadata Server Connection" on page 28.

 Give the scheduler account's metadata identity the required metadata-layer permissions on the target server, library, and folder. A simple approach is to add the scheduler account’s metadata identity to the Visual Analytics Data Administrators group. An alternative is to grant access to the metadata identity as follows:

 | Server: | LASR Analytic Server | RM, WM, A |
 | Library: | Environment Manager Data Mart LASR | RM, R, WM, A |
 | Folder: | /Shared Data/SAS Visual Analytics/Autoload/EVDMLA | RM, R, WMM, W |

 TIP You can set all of the permissions in SAS Management Console or SAS Environment Manager. You can set library and folder permissions in the administrator. See "Permissions" on page 34.

3 Log on to the host as the scheduler account, navigate to the scripts directory for EVDMLA, and invoke schedule.sh (or schedule.bat).

 TIP The schedule script that is in the VisualAnalyticsAdministrator directory starts a different library’s implementation of autoload. You must invoke the script that is in /VisualAnalyticsAdministrator/EVDMLA. See "Autoload" on page 21.

4 Verify that the scheduled task is running.

 Windows Specifics: Access the Task Scheduler (for example, select Start ▶ Control Panel ▶ Administrative Tools ▶ Task Scheduler). Locate the task in the Task Scheduler Library.

 UNIX Specifics: Run the command: crontab -l

2. Feed Data to the Autoload Drop Zone

 To efficiently enable multiple data feeds, defer server restart and verification steps until all configuration property changes have been made.

Audit Data

 To feed audit data to the drop zone:
1 Enable generation and extraction of audit data. See “How to Safely Enable Auditing” on page 46.

Note: In addition to starting data collection, this step extracts certain audit records from the audit service’s database, and feeds that data to the Append directory in the administrative reporting drop zone.

Note: Until autoload is started, the data feed occurs only one time.

2 Perform some tasks that generate audit records. For example, load or import a table, or create and save a report or exploration.

3 After 30 minutes, verify that the LASR table EVDM.AUDIT_VISUALANALYTICS is loaded.

Here are some details:
- Audit data is provided by the audit service. See “Key Actions Auditing” on page 46.
- Extraction occurs only if the data builder is licensed, installed, and running.
- Extraction uses the pooled workspace server in the suite-level default SAS Application Server. See “va.defaultWorkspaceServer” on page 125.
- The extraction process must have Read access to the autoload data directory and Write access to the Append subdirectory.
 Note: Autoload’s append action is used, so the extracted table is written to the Append subdirectory.
- If autoload is not running, the data feed to the drop zone occurs only one time.

Agent-Collected Metrics

Note: Agent-collected metrics do not provide information about distributed SAS LASR Analytic Servers.

To feed agent-collected metrics (ACM) to the drop zone:

2 Enable data transfer to the EVDMLA drop zone. See Feeding Data From the Data Mart into SAS Visual Analytics in the SAS Environment Manager: User’s Guide.

 TIP A supporting format catalog must be available. When you enable this data feed, the required format catalog is added to the /AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/AutoLoad/EVDMLA/Formats directory. For some applications, the format catalog must also be added to the path of the appropriate SAS Application Server. See “Supporting User-Defined Formats” on page 73.

3 After a sufficient interval has elapsed, verify that the expected ACM tables are loaded. For information about the source data, see ACM Tables in the SAS Environment Manager: User’s Guide. (The list of tables is subject to change in future releases of SAS Environment Manager.)
Data Lifecycle

Data in the administrative reporting drop zone and in corresponding LASR tables is not automatically purged or archived.

You can periodically retire a table by deleting it from the autoload data directory (/AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/AutoLoad/EVDMLA) or moving it to a backup location. To retire the AUDIT_VISUALANALYTICS table, you must remove it from both the autoload data directory and that directory’s Append subdirectory.

CAUTION! After you retire the AUDIT_VISUALANALYTICS table, the next run of the extraction process retrieves all applicable audit data from the SAS Web Infrastructure Platform database. Before you retire the AUDIT_VISUALANALYTICS table, make sure the size of the audit tables in the SAS Web Infrastructure Platform database is being limited by archive rules.

TIP To archive and purge audit data in the SAS Web Infrastructure Platform database, see “How to Safely Enable Auditing” on page 46.
Reference

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Components</td>
<td>115</td>
</tr>
<tr>
<td>Roles and Capabilities</td>
<td>117</td>
</tr>
<tr>
<td>About Capabilities</td>
<td>117</td>
</tr>
<tr>
<td>Predefined Roles</td>
<td>117</td>
</tr>
<tr>
<td>Capability Definitions</td>
<td>120</td>
</tr>
<tr>
<td>Standard Members</td>
<td>122</td>
</tr>
<tr>
<td>Configuration Properties</td>
<td>123</td>
</tr>
<tr>
<td>How to Set Configuration Properties</td>
<td>123</td>
</tr>
<tr>
<td>Suite-Level Properties</td>
<td>123</td>
</tr>
<tr>
<td>Alerts Properties</td>
<td>127</td>
</tr>
<tr>
<td>Explorer Properties</td>
<td>128</td>
</tr>
<tr>
<td>Transport Service Properties</td>
<td>129</td>
</tr>
<tr>
<td>Web Viewer Properties</td>
<td>131</td>
</tr>
<tr>
<td>High-Cardinality Constraints</td>
<td>132</td>
</tr>
<tr>
<td>Introduction</td>
<td>132</td>
</tr>
<tr>
<td>Client-Side Thresholds for High-Cardinality Data</td>
<td>132</td>
</tr>
<tr>
<td>Middle-Tier Thresholds for High-Cardinality Data</td>
<td>132</td>
</tr>
<tr>
<td>Configuration Properties for High-Cardinality Thresholds</td>
<td>133</td>
</tr>
<tr>
<td>Predefined LASR Libraries</td>
<td>136</td>
</tr>
</tbody>
</table>

Software Components

Here is an introduction to selected components:

- **mobile viewers**
 - mobile apps that support native interactions with reports and dashboards on mobile devices. See the SAS Mobile BI page on the SAS support site.

- **web applications**
 - provide role-based access to an integrated suite of functionality.

- SAS LASR Authorization Service
 - enforces data access permissions.

- SAS Visual Analytics Hyperlink Service
 - supports functionality such as report distribution, linking, and alerts.
SAS Visual Analytics Transport Service
supports communication from SAS Mobile BI, provides integration with SAS Office Analytics (SAS Enterprise Guide, SAS Add-In for Microsoft Office, and SAS Web Parts for Microsoft SharePoint), and supports printing of reports.

SAS LASR Analytic Server
provides secure, multi-user, concurrent access to in-memory data. See Chapter 5, “SAS LASR Analytic Server,” on page 83.

SAS LASR Analytic Server Monitor
supports monitoring of a distributed server and browsing of co-located HDFS content, if applicable. See “Supporting the Monitoring Features” on page 75.

SAS Intelligence Platform
servers and services that support SAS solutions. Here are some examples of how SAS Visual Analytics uses platform servers:

- The metadata server provides metadata management.
- The SAS Content Server stores digital content in the middle tier. Reports are stored in both metadata and the content server. Explorations are stored exclusively in metadata.
- SAS Information Retrieval Studio and Search Interface to SAS Content index SAS content and support search features on the home page.
- The workspace server supports tasks such as registering tables, staging data, importing data, loading data, and starting or stopping the SAS LASR Analytic Server.
- For more examples, see “Add a New Server” on page 79.

Here is a conceptual view of selected components:

Figure A1.1 Clients, Middle-Tier, and Servers
Roles and Capabilities

About Capabilities

Here are the key points about capabilities:

- Unlike permissions, which affect access to data, content, and metadata, capabilities affect access to features and functionality.
- Capabilities are assigned to roles. Users get their capabilities through their memberships.
- You can’t deny a capability to a user. Instead, make sure that user is not a member of any role that provides the capability.
- If the standard distribution of capabilities is not optimal for your environment, consider creating custom roles. Here are some tips:
 - If you create a specialized administrative role, remember to provide the Manage Environment capability in addition to any specific functional capabilities.
 - If you create a global administrative role, make the Visual Analytics: Administration role a contributing role for the new custom role. In addition, add the Build Data capability to the custom role.

Predefined Roles

Here are the predefined roles for SAS Visual Analytics:

Visual Analytics: Basic
provides functionality for guest access (if applicable) and entry-level users. This role enables all registered users to view reports in the web viewer. This role does not provide commenting or personalization features. See “Supporting Guest Access” on page 68.

Visual Analytics: Report Viewing
provides commenting and personalization features, in addition to basic functionality.

Visual Analytics: Analysis
provides the ability to create reports and explorations, in addition to report viewing functionality. If SAS Visual Statistics is licensed, provides the Build Analytical Model capability.

Visual Analytics: Data Building
provides the ability to prepare data, in addition to analysis functionality.

Visual Analytics: Administration
provides the ability to perform tasks in the administrator, in addition to most other capabilities.
<table>
<thead>
<tr>
<th>Capability</th>
<th>Basic</th>
<th>Report Viewing</th>
<th>Analysis</th>
<th>Data Building</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Analytics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View Report and Stored Process</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Create Report</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Explore Data</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Build Custom Graph</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Add and View Comments</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Export Data</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Export or Print as PDF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Email</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Personalization</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Visual Analytics: Self-Service Import</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import and Load Data</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Import Local Files</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Import SAS Data Sets from a Server</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Import from data-source</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Visual Analytics: Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Build Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Capability</td>
<td>Basic</td>
<td>Report Viewing</td>
<td>Analysis</td>
<td>Data Building</td>
<td>Administration</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Manage Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Manage Mobile Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Distribute Reports</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

Visual Analytics Transport Service

<table>
<thead>
<tr>
<th>Capability</th>
<th>Basic</th>
<th>Report Viewing</th>
<th>Analysis</th>
<th>Data Building</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge Mobile Report Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Require Passcode On Mobile Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit Duration of Offline Access</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Analytics Explorer

<table>
<thead>
<tr>
<th>Capability</th>
<th>Basic</th>
<th>Report Viewing</th>
<th>Analysis</th>
<th>Data Building</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh Data</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Export as Image</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Export as Report</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Build Analytical Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Analytics Admin

<table>
<thead>
<tr>
<th>Capability</th>
<th>Basic</th>
<th>Report Viewing</th>
<th>Analysis</th>
<th>Data Building</th>
<th>Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage LASR Analytic Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Monitor LASR Analytic Server</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Manage Authorization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Browse HDFS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
For role membership information, see “Standard Memberships” on page 122.

To manage roles, see SAS Management Console: Guide to Users and Permissions.

Capability Definitions

Here are descriptions of the SAS Visual Analytics capabilities:

Visual Analytics
 View Report and Stored Process
 Access the viewer. View reports and stored process output. (Access to SAS Mobile BI is also affected by device-level constraints. See “Access to SAS Mobile BI” on page 53.)

Create Report
 Access the designer. Create and modify reports.

Explore Data
 Access the explorer. Create and modify explorations. (In some contexts, the explorer is a separately licensed add-on product.)

Build Custom Graph
 Access the graph builder. Create and modify graph template objects for use in the designer.

Add and View Comments
 Add comments, view comments, and edit your own comments.

 Note: In order to delete comments and edit other users’ comments, you need the capabilities that are listed under SAS Application Infrastructure ▶ Comments. Consider adding those capabilities to the Visual Analytics: Administration role or making any users that need these capabilities members of the Comments: Administrator role.

Export Data
 Export data to other applications.

Export or Print as PDF
 Export or print reports and explorations as PDF files.

Email
 Send a link to a report or exploration via email.

Personalization
 Use individualized features such as setting preferences, accessing recently viewed objects, and managing favorites.

Visual Analytics: Self-Service Import
 Import and Load Data
 A prerequisite for access to self-service import functionality in the designer and the explorer. See “Self-Service Import” on page 16.

Import Local Files
 Import spreadsheets, delimited files, and SAS data sets from your computer.

Import SAS Data Sets from a Server
 Import remote data sets.

Import from data-source
 Import data from a third-party data source (for example, Import from Oracle).
Visual Analytics: Advanced
Build Data
 Access the data builder. Set advanced load options in the explorer and the designer.

Manage Environment
 Access the administrator. Additional capabilities are required to perform particular tasks.

Manage Mobile Devices
 Blacklist or whitelist mobile devices. (The Manage Environment capability is also required.)

Distribute Reports
 Schedule and manage the distribution of reports.

Visual Analytics Transport Service
Purge Mobile Report Data
 Causes cached data in SAS Mobile BI to be purged when reports are closed. For users who do not have this capability, cached data is retained locally on the mobile device for use in offline mode. In previous releases, this capability was named Purge Mobile Report Data.

 Note: For unrestricted users, mobile data is always purged when reports are closed.

Require Passcode On Mobile Devices
 Requires users to enter an application passcode on their devices when they use SAS Mobile BI. For users who do not have this capability, an application passcode is not required.

 Note: Unrestricted users are always subject to the application passcode requirement.

 See “viewerservices.passcode.attempts” on page 130 and “viewerservices.passcode.timeout” on page 131.

Limit Duration of Offline Access
 Causes a time limit for offline access to be enforced. A user who has this capability and has been offline for a certain period of time must sign in to SAS Mobile BI to access any mobile report data. The time limit is specified in the property viewerservices.offline.limit.days.

 Note: For unrestricted users, mobile data is always purged when reports are closed.

Visual Analytics Explorer
Refresh Data
 Refresh data for explorations.

Export as Image
 Export images of explorations to a local machine.

Export as Report
 Export explorations as reports to SAS folders.

Build Analytical Model
 Create and modify analytical models in the explorer using SAS Visual Statistics (a separately licensed add-on).

Visual Analytics Admin
 The Manage Environment capability provides access to the administrators, and is a prerequisite for all tasks that are performed in the administrator.
Manage LASR Analytic Server
Access the **LASR** tabs and the folders tree. For a distributed server, this capability makes a link to the SAS High-Performance Computing Management Console available from the **Tools** menu.

Monitor LASR Analytic Server
Access the **Monitor** tabs. This capability is applicable to deployments that use a distributed server.

Manage Authorization
Set metadata-layer permissions.

Browse HDFS
Access the **HDFS** tab. This capability is applicable to deployments that use co-located HDFS.

Note: For conciseness, version numbers are omitted in this topic.

Standard Memberships

The following figure depicts selected group and role relationships in the standard membership structure. Here are some details about the figure:

- Containers indicate nested group memberships. For example, the Visual Analytics Data Administrators group is a direct member of the Visual Analytics Users group.
- Bracketed text indicates role assignments. For example, the SASUSERS group is a direct member of the **Visual Analytics: Basic** role.

Figure A1.2 Standard Membership Structure
Configuration Properties

How to Set Configuration Properties

1 On the Plug-ins tab in SAS Management Console, navigate to Application Management ➤ Configuration Manager ➤ SAS Application Infrastructure ➤ Visual Analytics. Expand nodes as needed, right-click on the appropriate node, and select Properties.

- Set suite-level properties on the Visual Analytics node.
- Set explorer properties on the Visual Analytics Explorer node.
- Set alerts properties on the Visual Analytics Hyperlink Service node.
- Set SAS Mobile BI properties on the Visual Analytics Transport Service node.
- Set web viewer properties on the Visual Analytics Viewer node.

Note: For conciseness, version numbers are omitted from the instructions and figure in this topic.

2 On the Advanced tab of the appropriate Properties dialog box, add or set values.

3 To make changes take effect, restart the SAS Web Application Server. One approach is to restart all instances from your equivalent of SAS-configuration-directory/Web/Scripts/AppServer/.

 UNIX appsrvconfig.sh restart
 Windows appsrvconfig.cmd restart

For details and alternatives, see Understanding SAS Web Application Server Management and Using Configuration Manager in the SAS Intelligence Platform: Middle-Tier Administration Guide.

Suite-Level Properties

TIP Use the Visual Analytics node (except where otherwise specified).

App.AllowGuest enables or disables guest access. Valid values are true and false. See “Supporting Guest Access” on page 68.

Note: In new deployments, this property is set on the Visual Analytics Transport Service node and the Visual Analytics Viewer node, not at the suite level.
To enable or disable guest access for the home page, set this property on the **SAS Application Infrastructure > Visual Analytics Hub** node.

las.caching.key.lifetime
sets the duration of time (in seconds) for which a LASR security key is cached in the middle tier. The default is 180 seconds (3 minutes). Do not set a custom value unless you are directed to do so by SAS Technical Support.

las.caching.permission.lifetime
sets the duration of time (in seconds) for which permission information is cached by the LASR authorization service. The default is 900 seconds (15 minutes). Do not set a custom value unless you are directed to do so by SAS Technical Support.

las.caching.user.lifetime
sets the duration of time (in seconds) for which user information is cached by the LASR authorization service. The default is -1 (the cache does not have a time-based expiration period). With the default setting, user objects remain in the cache until the requesting user’s session ends. Do not set a custom value unless you are directed to do so by SAS Technical Support.

lasrmgmt.server.monitor.refresh
sets the refresh interval (in seconds) for the LASR management service’s information cache. This setting affects timing on the **LASR Servers** and **LASR Tables** tabs. The default is 60. The default value provides a trade-off (among responsiveness, consumption of system resources, and currency of information) that is appropriate for most deployments.

- **Note:** If you set this property to 0, no caching of LASR management service information occurs. When the cache is disabled, changes to a server’s tables limit take effect immediately, and information is retrieved on demand for each request. Response time for an information request is increased.

va.AuditingEnabled
nodes whether applications write audit records. Valid values are true and false. The default is false. See “Key Actions Auditing” on page 46.

CAUTION! Audit data can consume significant amounts of disk space and processing capacity. If you enable auditing, it is essential that you manage the size of tables that contain audit data. See “How to Safely Enable Auditing” on page 46.

va.baseSchedulingFolder
specifies the name of the parent folder for jobs and flows that are used in report distribution. The default is /System/Applications/SAS Visual Analytics/ScheduledDistribution. See “Supporting Report Distribution” on page 72.

- **Note:** To schedule a report, users must have WriteMemberMetadata access to the specified base folder.

va.ComparisonEpsilon
specifies a small number to be used to account for floating-point rounding error in the following numeric comparisons: equals, not equals, less than, greater than, less than or equals, greater than or equals. Valid values are doubles. The default is 1e-12. In the unusual circumstance in which users find that some values are being compared as equal when they should not be (or vice versa), consider changing this value. The epsilon comparison is relative to the size of the numbers that are being compared (it is not
absolute). When the following expression is true, a and b are considered to be equal:

\[\text{ABS}(a-b) \leq \epsilon \times \text{MAX}(\text{ABS}(a), \text{ABS}(b)) \]

va.dataServer.PublicLibrary
identifies the standard library for co-located HDFS (for example, Visual Analytics Public HDFS). The window for adding data to HDFS is initially prepopulated with this value. If you change the name of the referenced library, you must also update this property.

va.defaultLASRLibrary
identifies the predefined LASR library for the Visual Analytics LASR server. This property is no longer in use.

va.defaultPublicFolder
identifies the standard metadata location for LASR tables that are generated by data import and load activities (for example, /Shared Data/SAS Visual Analytics/Public/LASR). If you change the name of the referenced folder, you must also update this property.

va.defaultWorkspaceServer
identifies the suite-level default SAS Application Server. If you change the name of the referenced server (for example, SASApp), you must also update this property. See “Which Server is Used?” on page 79.

va.distribution.email.aggregate.attachments.mb
sets a maximum combined size (in megabytes) for all attachments in a report distribution email. If this property is not defined, the default value of 20 is in effect. If a value of -1 is specified for this property, no limit is in effect. See “Supporting Report Distribution” on page 72.

va.distribution.email.attachment.mb
sets a maximum size (in megabytes) for an individual attachment in a report distribution email. Initially, a value of -1 is specified, so no limit is in effect. If this property is not defined, the default value (20) is in effect. See “Supporting Report Distribution” on page 72.

va.extractRelationshipData
intended for future use. In SAS Visual Analytics 7.2, the only supported value is the default value, which is false.

va.GeoMapMaxResolution
for an alternate OpenStreetMap server (specified in the property va.GeoMapServerUrl), sets the resolution value for the farthest out zoom level in each geo map. The default is 156543.0339.

va.GeoMapNumResolutions
for an alternate OpenStreetMap server (specified in the property va.GeoMapServerUrl), sets the number of levels in each geo map. The default is 18.

TIP Each level corresponds to an increment by which a user can zoom in. Adding a level doubles the resolution and quadruples the number of tiles. In general, a value higher than 23 is not practical.

va.GeoMapServerUrl
that SAS hosts, leave the value for this property blank. See “OpenStreetMap Server” on page 70.

va.LASRMonitor.HostPort
specifies the machine name and port for the process that monitors a distributed SAS LASR Analytic Server. The value is in the format host:port (for example, machine.company.com:9971).

va.lastActionLogPath
specifies the location of last action logs. See “Get Server Information” on page 6 and “Get Table Information” on page 12. The standard location is within the SAS configuration directory at /Applications/SASVisualAnalytics/VisualAnalyticsAdministrator/Monitoring/Logs. In a multi-machine deployment, the specified location exists on the middle-tier host.

va.MaxTiesToIncludeOnRank
sets the maximum number of identically ranked values that can be returned in a rank operation. Valid values are integers. The default is 100.

va.monitoringPath
specifies the location for certain process ID files and logs. The standard location is within the SAS configuration directory at /Applications/SASVisualAnalytics/VisualAnalyticsAdministrator/Monitoring. The specified location must exist on a workspace server host.

Note: To specify a custom directory for monitoring artifacts for a particular SAS LASR Analytic Server, set an extended attribute for that server. See “VA.MonitoringPath” on page 90.

va.publicLASRLibrary
identifies the general purpose library for data import and load activities (for example, Visual Analytics Public LASR). If you change the name of the referenced library, you must also update this property.

va.publicLASRServer
identifies the server that is associated with the va.publicLASRLibrary (for example, Public LASR Analytic Server).

va.SASGeomapCommunicationProtocol
sets the protocol for connections between SAS Visual Analytics and the OpenStreetMap servers that SAS hosts. Valid values are http and https.

va.SASGeomapEsriURL
references a supported Esri server. The value must be a URL that specifies a protocol, the server’s host name, and the REST endpoint of the server. See “Esri Server” on page 70.

va.SelfServe.MaxUploadSizeInMegabytes
sets the maximum file size (in megabytes) that a user can import. This property affects importing local files in the data builder, the explorer, and the designer. The default, 4096, corresponds to browser-based constraints. To further constrain import activities, set a lower value for this property. You cannot use this property to circumvent browser-based constraints.

va.SelfService.ImportGoogleRowLimit
sets a maximum number of rows for an import from Google Analytics. The default is 100000.
va.SelfService.ImportRowsHardCap
sets a maximum number of rows for a self-service import action. If this value is exceeded, no data is imported. No initial value is set (initially, no limit is imposed).

Note: Enforcing a threshold requires a query to the data provider for each import action, so setting a value for this property can negatively impact performance.

va.SelfService.ImportRowsSoftCap
sets the number of rows that triggers a warning message for a user who is performing a self-service import action. The message indicates that the import action might take a long time. No initial value is set (initially, no limit is imposed).

Note: Enforcing a threshold requires a query to the data provider for each import action, so setting a value for this property can negatively impact performance.

va.supportSharedThumbnails
determines whether the designer and explorer create specific preview images for display on the home page. Valid values are true and false. The default is false (specific preview images are not generated).

Note: To display specific preview images, this property must also be set to true for the home page. See the SAS Intelligence Platform: Web Application Administration Guide.

Alerts Properties

TIP Use the Visual Analytics Services ➤ Visual Analytics Hyperlink Service node.

va.Alert.DefaultEvaluationIntervalMilliseconds
specifies the evaluation interval (how frequently the system makes a determination about whether the alert’s conditions have been met). The default is 600000 milliseconds (10 minutes).

Note: This property affects only alerts that do not use a custom interval. In the designer’s Edit Alert window, the Use the system default setting causes the value for this property to be used.

Note: Long intervals increase the risk of a missed incident (where the alert’s conditions are met intermittently between one evaluation and the next). Short intervals consume more resources and can negatively impact the performance of the entire SAS Visual Analytics suite of applications.

va.Alert.DefaultMaxEvaluationTimeMilliseconds
specifies how long an individual evaluation can run before it terminates and restarts. The default is 180000 milliseconds (30 minutes).

va.Alert.EvaluationCycleMilliseconds
specifies how frequently the system verifies that alerts are running. The default is 30000 milliseconds (30 seconds). If a large number of alerts are registered, consider increasing the value to reduce the use of resources.

va.Alert.Eventgen.disabled
specifies whether alerts generate notifications. The default is false. To disable notifications, set this property to true.
va.Alert.SMS.showServerName
specifies whether to append Server: server-name to the end of an SMS text message that is generated by an alert. The default is true. If the server name is not useful in your environment, or if you want to reduce the possibility of message truncation, set this property to false.

va.AlertThreadPool.CoreSize
specifies the number of threads that are available in normal circumstances (for concurrent evaluation of alerts). The default is 3.

va.AlertThreadPool.IdleTimeoutSeconds
specifies how long excess threads can be idle before they are terminated. The purpose of terminating idle excess threads is to reduce the number of threads to the specified CoreSize. The default is 1800 seconds (30 minutes).

Note: This property is applicable only if the MaxSize is greater than the core size.

va.AlertThreadPool.MaxSize
specifies the maximum number of threads that can be used (for concurrent evaluation of alerts). If the load is heavy, additional threads are temporarily added to the CoreSize (up to the value that is set for this property). The default is 3.

va.AlertThreadPool.QueueSize
specifies the maximum number of tasks that can be queued. The default is 100000.

Explorer Properties

TIP Use the Visual Analytics Explorer node.

va.BeforeDecisionTreeTimeout
affects how long (in seconds) the explorer waits for a response after the explorer makes a decision tree request. The default is 300.

va.BeforePageRowCount
limits the amount of data that can be returned for a table visualization. If table sorting is enabled, the va.BeforePageRowCount limit is applicable only if its value exceeds the value that is specified for the va.BeforeSortResultLimit property. The default is 10000.

Note: For example, if the value is 10000, then 10000 rows of data are returned to the client. If the user scrolls through the data, and passes the row that is numbered 10001, the client prompts the SAS LASR Analytic Server for the next 10000 rows.

va.BeforePathingPathLengthLimit
sets the server-side maximum path length for a Sankey diagram. The value specifies the maximum number of events (nodes) in a single path. If the longest path length equals or exceeds the specified value, the explorer displays a message indicating that the Sankey diagram excludes paths longer than the specified value. If this property is not defined, the default value (2000) is in effect.

Note: Client-side controls in the explorer interface provide additional, more stringent limits (to facilitate quick display of Sankey diagrams).
Note: Each path in a Sankey diagram has a limit of 32,767 characters for the event values. Depending on the width of an event, the effective path length limit might be less than the value that you specify for vae.PathingPathLengthLimit. A numeric value uses a width of 40 for this calculation.

vae.PathingTopKLimit
sets the server-side maximum number of paths that are selected by path ranking in a Sankey diagram. If this property is not defined, the default value (1000) is in effect.

vae.PathingTransactionIdsLimit
sets the server-side maximum number of unique values for the transaction identifier in a Sankey diagram. If this property is not defined, the default value (10000) is in effect.

vae.TableSortingEnabled
specifies whether users in the explorer can click on a column heading to sort the items. Valid values are true and false. The default is true.

Transport Service Properties

<table>
<thead>
<tr>
<th>TIP</th>
<th>Use the Visual Analytics Services ➤ Visual Analytics Transport Service node.</th>
</tr>
</thead>
</table>

Printing.Timeout
sets a maximum wait time (in milliseconds) that affects printing reports from applications such as the designer and the viewer. The default is 90000 milliseconds (15 minutes). To disable this property, set its value to 0.

Note: This setting does not affect the first phase of a print request, which generates a report package. This setting affects only the second phase of a print request, which uses a stored process call to execute the print routine.

viewerservices.data.default.interactive.drill.depth
determines how much data is sent to SAS Mobile BI for offline drilling. This property is applicable to visualizations that reference a hierarchy. The default is 3 (users can drill down three levels). If certain reports require users to have the ability to drill down more than three levels into a hierarchy, modify the value.

viewerservices.company.banner.logoUrl
this property is not currently supported.

viewerservices.company.banner.message
this property is not currently supported.

viewerservices.company.banner.title
this property is not currently supported.

viewerservices.default.max.cells.produced
sets the maximum number of data cells that can be delivered to SAS Mobile BI for a single data query. The default is 250000 data cells, which is sufficient for most environments and does not cause the web application server to crash. In very rare scenarios, you might need to modify the value.

Note: If the number of data cells in a query exceeds the value specified for this property, the data that is returned to SAS Mobile BI is truncated. Data in the displayed report is not complete.
viewerservices.enable.whitelist.support controls which approach is used to manage access to SAS Mobile BI. Valid values are:

false causes the blacklist to be enforced and the whitelist to be ignored. With this setting, all mobile devices can use SAS Mobile BI except for those devices that are on the blacklist. This is the default.

ture causes the whitelist to be enforced and the blacklist to be ignored. With this setting, only mobile devices that are on the whitelist can use SAS Mobile BI.

CAUTION! Enabling the whitelist can disrupt existing users. Make sure that all valid mobile devices are on the whitelist before you make the change.

TIP As an alternative to setting this property explicitly, you can set it from within the administrator. See “Change How Devices Are Managed” on page 55.

viewerservices.image.default.max.bytes sets the maximum size of images (PNG, BMP, JPEG, or GIF) that can be delivered to a mobile device. Larger images are resized on the server side before delivery. The default is 307200 (300 KB), which is sufficient for most environments. In very rare scenarios when you want to change this constraint, consider modifying the value. To entirely disable resizing of images in the middle tier, set the value to 0. However, to ensure faster download times and smaller memory footprints on the mobile device, do not increase the value of this property or set the value to 0.

Note: Users can customize image resizing on their devices by setting the Scale type option (under Insert ▶ Other ▶ Image). If the option is set to None, the user’s device is exempt from middle-tier resizing.

viewerservices.lasr.socketTimeout.milliseconds.interactions sets the maximum wait time for when SAS Mobile BI attempts to contact SAS LASR Analytic Server. This property is applicable to live requests from a mobile device for tasks such as filtering, brushing, and drilling. The default is 30000 milliseconds (30 seconds), which is sufficient for most environments. If sessions between SAS Mobile BI and SAS LASR Analytic Server are timing out, consider modifying the value.

viewerservices.lasr.socketTimeout.milliseconds.subscribe sets the maximum wait time for a response to a query in a subscribed report when SAS Mobile BI contacts the SAS LASR Analytic Server. The default is 300000 milliseconds (5 minutes), which is sufficient for most environments. If the queries within some reports take an excessive amount of time for completion, consider modifying the value.

viewerservices.offline.limit.days specifies how long downloaded mobile report data remains available to a user who is not signed in to SAS Mobile BI. A user who is offline for the specified number of days must sign in before accessing any mobile report data. The default is 15. This property affects only those users who have the Limit Duration of Offline Access capability.

viewerservices.passcode.attempts limits the number of sequential failed attempts to enter a passcode for SAS Mobile BI. The default is 5. If a user reaches the limit, the user is locked out.
of the app for 15 minutes. After the lockout interval, the user can again attempt to enter his or her passcode. If the user reaches the limit again, all custom content (data, reports, settings, and connection information) is removed from the mobile device.

Note: This property is applicable to only those users who are subject to the capability “Require Passcode On Mobile Devices”.

viewerservices.passcode.timeout
specifies, in minutes, how frequently a user must re-enter his or her passcode in SAS Mobile BI. The default is 15.

viewerservices.validate.schema.create
enables XML schema validation when reports are rendered in SAS Mobile BI. When this property is set to true, all actions that apply to the creation of reports are captured in the transport log. The default is false. Set this property only if SAS Technical Support instructs you to do so.

viewerservices.validate.schema.read
enables XML schema validation when reports are rendered in SAS Mobile BI. When this property is set to true, all actions that apply to opening and viewing reports are captured in the transport log. The default is false. Set this property only if SAS Technical Support instructs you to do so.

viewerservices.validate.schema.write
enables XML schema validation when reports are rendered in SAS Mobile BI. When this property is set to true, all actions that apply to the writing of reports are captured in the transport log. See “Adjusting the Logging Configuration” on page 76. The default is false. Set this property only if SAS Technical Support instructs you to do so.

Web Viewer Properties

TIP Use the Visual Analytics Viewer node.

vav.ui.mode
enables an administrator to force the use of a particular presentation mode for the web viewer, regardless of individual user preferences. In the initial configuration, this property is not specified, so individual user preferences are effective. To force the use of the HTML5 presentation mode for the web viewer, specify this property with the value modern. To force the use of the Flash presentation mode for the web viewer, specify this property with the value classic.

TIP To set the equivalent property for the home page, use home.ui.mode in the Visual Analytics Hub node.

Note: If your browser does not support the web viewer in modern presentation mode, the web viewer uses the classic presentation mode.

Note: In the 7.2 release of SAS Visual Analytics, the modern viewer is preproduction.

See Also

“Configuration Properties for High-Cardinality Thresholds” on page 133
High-Cardinality Constraints

Introduction

High-cardinality data has one or more columns that contain a very large number of unique values. For example, user names, email addresses, and bank account numbers can be high-cardinality data items.

SAS Visual Analytics supports billions of values that are aggregated to thousands of values. If the billions of values in a table have millions of unique identifiers, then a column that contains those identifiers is a high-cardinality data item.

To help ensure that users get meaningful results in a timely fashion, the number of unique values that can be returned for certain visualizations and report objects is constrained. When a user selects a high-cardinality data item, the outcome is determined by any applicable thresholds, the number of unique values in the data, and the user's selections.

The following topics provide information about two distinct levels of thresholds: client-side thresholds and middle-tier thresholds.

Client-Side Thresholds for High-Cardinality Data

Client-side thresholds are specific to an individual application (such as the explorer), or to a group of applications (such as the designer and the viewer). For some requests that exceed a client-side threshold, an error is displayed, and no results are returned. For some requests that exceed a client-side threshold, but do not exceed a middle-tier threshold, adapted results are returned.

Note: In general, client-side thresholds are fixed. An exception is that a user can select a low, medium, or high threshold level as a user preference in the explorer. On a computer that has low memory availability, setting the client-side threshold to Low can help prevent events such as system crashes.

Client-side thresholds for visualizations and report objects are documented in the Data Limits appendix in the SAS Visual Analytics: User's Guide. The appendix explains the adapted responses that clients provide for certain requests that exceed a client-side threshold (but do not exceed a middle-tier threshold).

Middle-Tier Thresholds for High-Cardinality Data

Middle-tier thresholds have a wider scope, affecting all instances of the specified visualization or report object. Compared to client-side thresholds, middle-tier thresholds are less granular and less restrictive. For requests that exceed a middle-tier threshold, an error message is displayed, and no results are returned. The default thresholds work in almost all environments. In general, users filter or group any high-cardinality data items, so requests rarely exceed a middle-tier threshold.
In the following table, the second column indicates the maximum number of unique values (not the maximum volume of data).

Table A1.2 Middle-Tier Thresholds

<table>
<thead>
<tr>
<th>Visualization or Report Object</th>
<th>Rows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision trees*</td>
<td>10,000</td>
</tr>
<tr>
<td>Crosstabs</td>
<td>50,000</td>
</tr>
<tr>
<td>Tables (in the designer and the viewers)</td>
<td>50,000</td>
</tr>
<tr>
<td>Box plots: at least one measure, no categories**</td>
<td>50,000</td>
</tr>
<tr>
<td>Bar charts: single category</td>
<td>50,000</td>
</tr>
<tr>
<td>Heat maps: single category</td>
<td>50,000</td>
</tr>
<tr>
<td>Line charts: at least one measure, single category (numeric, date, time, or string)</td>
<td>50,000</td>
</tr>
<tr>
<td>Bubble plots: three measures, grouped</td>
<td>50,000</td>
</tr>
<tr>
<td>Bubble plots: three measures, grouped with animation category</td>
<td>50,000</td>
</tr>
<tr>
<td>Bubble plots: three measures, not grouped, horizontal or vertical series (or both)</td>
<td>50,000</td>
</tr>
<tr>
<td>Bubble plots: three measures, no categories</td>
<td>100,000</td>
</tr>
<tr>
<td>Scatter plots</td>
<td>100,000</td>
</tr>
<tr>
<td>Tables (in the explorer)</td>
<td>100,000</td>
</tr>
</tbody>
</table>

* There is also a time-out period for decision tree calls. See “vae.DecisionTreeTimeout” on page 128.

** If there is no category, one box is applied for each measure, up to 400 measures.

Configuration Properties for High-Cardinality Thresholds

CAUTION! Increasing a middle-tier threshold can affect performance and stability. The default settings are appropriate in most environments. Do not set excessively high thresholds. If you have questions about adjusting the following properties, contact SAS Technical Support.

Note: For instructions, see “How to Set Configuration Properties” on page 123.

The following properties affect middle-tier thresholds:

- **va.DistinctCountServerLimit**
 - sets the distinct count limit for graphs. By default, there is no distinct count limit for graphs. The default is -1.
 - **Scope:** Entire suite
va.DistinctCountDataPanelLimit
sets the distinct count limit for data that is displayed in a data panel. This property affects only the data panel, not the distinct count limits within graphs. The default is 5,000.
Scope: Entire suite

va.CardinalityLimitForGroupByTempTable
for all high cardinality rank requests that exceed the specified limit (number of unique values), prevents processing and returns an error. Set this property only in the unusual circumstance in which high cardinality ranks cause the SAS LASR Analytic Server to hang. For example, to block rank requests against data that contains more than 2 million unique values, set this property to 2000000. If you choose to set this property, the suggested value is 3000000.
Scope: Entire suite

va.CardinalityLimitForGroupByCountDistinctTempTable
for only distinct count high cardinality rank requests that exceed the specified limit (number of unique values), prevents processing and returns an error. Set this property only in the unusual circumstance in which distinct count high cardinality ranks cause the SAS LASR Analytic Server to hang. (This property affects only distinct count requests, providing a narrower constraint than the va.CardinalityLimitForGroupByTempTable property.) If you choose to set this property, the suggested value is 1000000.
Scope: Entire suite

va.SortResultServerLimit
sets the maximum number of values that can be returned for detail queries that are run with sorting. This property affects only results in list tables for which details are turned on.
Scope: Entire suite, except for the explorer

va.CategoryCardinalityServerLimit
sets the maximum number of values for category crossings. Only a fixed (and finite) number of category crossings are supported. For example, if you drag and drop “First name” and “Last name” onto the population of the United States, the server might generate 200 million different values. This property determines how high the cardinality can be and still allow the server to process and return results to the client. If the number of values for category crossings exceeds this limit, the query is not run.
Scope: Entire suite, except for the explorer

va.SummaryServerRowLimit
sets the maximum number of values that can be returned to the middle tier for further processing. For example, for high-cardinality data that is sorted by first name, the number of values computed could be very large.
Scope: Entire suite, except for the explorer (which uses vae.SummaryServerLimit)

va.MidtierCellLimit
sets the maximum size of a crosstab.
Scope: Entire suite, except for the explorer

va.maxPeriodCalculations
specifies the maximum number of calculated columns that are constructed for period calculations. If this limit is exceeded for a particular period
measure, excess calculations are excluded, and existing calculations (for that particular period measure) are replaced with missing values. The user is prompted to apply a filter to reduce the number of calculations. The default is 800.

Note: Software optimizations reduce the number of calculations before this limit is applied, so this limit is rarely exceeded. An example of the effect of this property is a distinct count calculation with cumulative periods (the number of unique date values that are visible cannot exceed the specified limit).

Scope: designer, viewer, transport service

va.MaxSparkTables
sets the maximum number of spark tables. The default is 300.

Scope: Entire suite, except for the explorer

va.CheckCardinalityBeforeQuery
controls whether cardinality pre-checks occur. The default value is -1 (which disables this constraint). By default, pre-checks do not occur.

Scope: Entire suite, except for the explorer

va.CheckCardinalityWithinQuery
controls whether SAS LASR Analytic Server enforces cardinality limits. By default, these checks do occur.

Scope: Entire suite, except for the explorer

vae.BoxPlotServerLimit
sets middle-tier thresholds for box plots that have at least one measure and no more than one category.

Scope: Explorer only

vae.DecisionTreeServerLimit
sets the middle-tier threshold for decision trees.

Scope: Explorer only

vae.FetchRowsServerLimit
sets middle-tier thresholds for tables.

Scope: Explorer only

vae.FrequencyServerLimit
sets middle-tier thresholds for bar charts that have a single category. This constraint is applied before a selection list of values is displayed.

Scope: Explorer only

vae.modeling.ClassCardinalityLimit
sets the maximum number of distinct levels in a model. This property limits the cumulative total of classification effects and interaction terms in a model. For example, if you set this property to 800, a user can neither specify an effect variable that contains more than 800 distinct levels nor add an effect variable that would cause the total number of distinct levels to exceed 800. The initial value is 2048.

Scope: SAS Visual Statistics add-on (if licensed)

vae.modeling.DecisionTreePredictorBinsCardinalityLimit
sets the maximum number of bins for a measure variable in a decision tree. The initial value is 1024.
vae.modeling.DecisionTreePredictorCardinalityLimit

sets the maximum number of distinct levels for a category variable in a
decision tree. The initial value is 1024.

vae.modeling.DecisionTreeResponseCardinalityLimit

sets the maximum number of distinct levels for the response category
variable in a decision tree. In the initial configuration, this property is not set,
so the default value (100) is in effect.

vae.modeling.GroupByCardinalityLimit

sets the maximum number of distinct levels for the group-by variables in a
model. This property limits the cumulative total for group-by variables in a
model. For example, if the value of this property is set to 800, users can
neither specify a group-by variable that contains more than 800 distinct levels
nor add a group-by variable that would cause the total number of distinct
levels to exceed 800. The initial value is 1024.

vae.RealScatterServerLimit

sets middle-tier thresholds for scatter plots and bubble plots that have three
measures and no categories.

vae.ScatterPlotServerLimit

sets middle-tier thresholds for heat maps that have exactly one category.

vae.SummaryServerLimit

sets middle-tier thresholds for the following visualization types:

- crosstabs
- line charts that have at least one measure and a single category
 (numeric, date, time, or string)
- bubble plots that are grouped with no series, grouped with animation, or
 with series and not grouped

Predefined LASR Libraries

The following tables document the initial configuration of the predefined LASR
libraries.

Note: Paths that begin with /AppData or /Applications are host locations
within a SAS configuration directory.

Note: Paths that begin with /Products or /Shared Data are metadataolders.
Table A1.3 General-Purpose Library

<table>
<thead>
<tr>
<th>Name</th>
<th>Visual Analytics Public LASR (libref: LASRLIB, server tag: VAPUBLIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The library name must match the value of a configuration property. See “va.publicLASRLibrary” on page 126.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>/Shared Data/SAS Visual Analytics/Public</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The location must match the value of a configuration property. See “va.defaultPublicFolder” on page 125.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data server</th>
<th>Public LASR Analytic Server</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The server name must match the value of a configuration property. See “va.publicLASRServer” on page 126.</td>
</tr>
</tbody>
</table>

| Intended use | The default output library for import and load actions for all registered users (SASUSERS). This library is sometimes referred to as the public LASR library. |

<table>
<thead>
<tr>
<th>Autostart</th>
<th>Enabled</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Autoload</th>
<th>Enabled (To use autoload, start the scheduled task. See "Autoload" on page 21.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>/AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/AutoLoad</td>
</tr>
<tr>
<td>Scripts</td>
<td>/Applications/SASVisualAnalytics/VisualAnalyticsAdministrator</td>
</tr>
<tr>
<td>LASR table objects</td>
<td>/Shared Data/SAS Visual Analytics/Public/LASR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reload-on-start</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library</td>
<td>Visual Analytics Public Data Provider (libref: DPPUBLIC)</td>
</tr>
<tr>
<td>Directory</td>
<td>/AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/PublicDataProvider</td>
</tr>
<tr>
<td>LASR table objects</td>
<td>/Shared Data/SAS Visual Analytics/Public/LASR</td>
</tr>
<tr>
<td>Table A1.4 Restricted Library</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Visual Analytics LASR (libref: VALIBLA, server tag: HPS)</td>
</tr>
<tr>
<td>Location</td>
<td>/Products/SAS Visual Analytics Administrator</td>
</tr>
<tr>
<td>Data server</td>
<td>LASR Analytic Server</td>
</tr>
<tr>
<td>Intended use</td>
<td>An output library to which only administrators can import and load data. This library is sometimes referred to as the non-public, private, or limited availability LASR library. All registered users have Read access to this library.</td>
</tr>
<tr>
<td>Autostart</td>
<td>Not enabled</td>
</tr>
<tr>
<td>Autoload</td>
<td>Not enabled (To use autoload, set extended attributes, and start the scheduled task. See “Autoload” on page 21.)</td>
</tr>
<tr>
<td>Data</td>
<td>/AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/AutoLoad/VALIBLA</td>
</tr>
<tr>
<td>Scripts</td>
<td>/Applications/SASVisualAnalytics/VisualAnalyticsAdministrator/VALIBLA</td>
</tr>
<tr>
<td>LASR table objects</td>
<td>/Shared Data/SAS Visual Analytics/AutoLoad/VALIBLA</td>
</tr>
<tr>
<td>Reload-on-start</td>
<td>Not enabled</td>
</tr>
<tr>
<td>Name</td>
<td>Environment Manager Data Mart LASR (libref: EVDMLA, server tag: EVDM)</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Location</td>
<td>/Shared Data/SAS Visual Analytics/Autoload/EVDMLA</td>
</tr>
<tr>
<td>Data server</td>
<td>LASR Analytic Server</td>
</tr>
<tr>
<td>Autostart</td>
<td>Enabled</td>
</tr>
<tr>
<td>Autoload</td>
<td>Enabled (To use autoload, start the scheduled task. See “Autoload” on page 21.)</td>
</tr>
<tr>
<td>Data:</td>
<td>/AppData/SASVisualAnalytics/VisualAnalyticsAdministrator/AutoLoad/EVDMLA</td>
</tr>
<tr>
<td>Scripts:</td>
<td>/Applications/SASVisualAnalytics/VisualAnalyticsAdministrator/EVDMLA</td>
</tr>
<tr>
<td>LASR table objects:</td>
<td>/Shared Data/SAS Visual Analytics/Autoload/EVDMLA</td>
</tr>
<tr>
<td>Reload-on-start</td>
<td>Not enabled</td>
</tr>
</tbody>
</table>
Appendix 2

Troubleshooting

Troubleshooting: SAS Visual Analytics ... 141
Access Issues .. 141
Server Operation Issues ... 143
Load, Reload, and Import Issues ... 145
Troubleshooting: SAS Mobile BI .. 146
Permission Origins .. 147
Introduction .. 147
Simple Permission Origins ... 147
Inherited Permission Origins ... 148

Troubleshooting: SAS Visual Analytics

Access Issues

Issue: Inability to sign in.

Resolution:

- If the error message is *Public access denied*, make sure that the user has a well-formed definition in metadata. On a user’s *Accounts* tab in SAS Management Console, this problem can be caused by a user ID that is not in a qualified format. This problem is not caused by passwords or authentication domain assignments on a user’s *Accounts* tab. See “Adding Users” on page 3.

- Make sure that the metadata server and the middle tier are running. See “Operate Other Servers” on page 7.

Issue: Missing applications or features.

Resolution:

- Make sure that each user’s memberships provide the appropriate capabilities. See “Roles and Capabilities” on page 117.

- Make sure that users are not inadvertently connecting as guests. See “Supporting Guest Access” on page 68.

- Make sure that the appropriate applications are licensed and installed.

Issue: Users cannot access any LASR tables in the explorer or the designer.
Resolution:

- Make sure that the SAS LASR Analytic Server is running and that tables are loaded.

- In SAS Management Console, make sure that the LASR authorization service is enabled. On the Options tab in the Properties window for the SAS LASR Analytic Server’s connection object, verify that the Use LASR authorization service check box is selected.

- Make sure that uniqueness requirements are met. See “In-Memory LASR Names” on page 85.

Issue: Users cannot access a particular LASR table.

Resolution:

- Make sure that users have the ReadMetadata and Read permissions for the LASR table. Also, make sure that the SAS Trusted User’s ReadMetadata access is not blocked. See “Permissions” on page 34.

- Make sure the table does not have any invalid permission conditions. On the table’s Authorization page, look for any conditional grants. To restore access, remove any permission conditions that are no longer valid. If appropriate, set new conditions.

 Note: A table that has a conditional grant becomes inaccessible if its metadata is updated with information that renders the permission condition invalid. For example, a permission condition might reference a column that is no longer part of the table.

- Make sure that each LASR table for the target LASR library has a unique name. For example, a copy-and-paste action in the data builder can result in multiple tables that have the same name within a particular library. To restore access, delete one of the tables. See “Unload, Reload, or Delete a Table” on page 13.

- Make sure that concurrent user logons are allowed. See “Policy for Concurrent User Logins” on page 58.

Issue: Inability to take a capability away from a user.

Resolution:

- Make sure that the user is not assigned to any role that provides that capability. Consider indirect and implicit memberships, as well as direct memberships. Remember that all registered users are automatically members of the PUBLIC and SASUSERS groups.

- Make sure that the user is not assigned to the Metadata Server: Unrestricted role.

Issue: Inability to access a third-party DBMS table.

Resolution:

- From the main menu, select File » Clear Credentials Cache. Then, attempt access again. If you are prompted for a user ID and password, enter DBMS credentials.

- If the third-party DBMS uses proprietary authentication, you might need to store a DBMS user ID and password. See How to Store Passwords for a

Issue: Inability to register tables.

Resolution:

- Make sure that you have the necessary metadata-layer permissions. See “Permissions by Task” on page 35.
- Make sure that you have Read access to the physical source tables (host-layer permissions).
- On Windows, make sure that the account that you are using has the Log on as a batch job Windows privilege. See “Host Account Privileges” on page 5.
- If you are prompted for a user ID and password, enter host credentials for the workspace server.

Issue: Problem running exported code (inability to connect to the metadata server).

Resolution:

- Metadata server connection information is not included in exported code. Either supply connection information or use a SAS session that already includes connection information (for example, the SAS DATA Step Batch Server). For information about metadata server connection options, see SAS Language Interfaces to Metadata.

Server Operation Issues

Issue: Inability to start a SAS LASR Analytic Server.

Resolution:

- Make sure that any host-layer requirements are met. See “Host Account Privileges” on page 5.
- Make sure that the server’s metadata definition is complete. In particular, valid values for the install path, signature files location, and number of machines to use are required. See “Add a SAS LASR Analytic Server” on page 86.
- Make sure that each server on a particular host uses a unique port number.
- If your deployment has multiple SAS Application Servers, make sure an appropriate server is being used. See “Using Multiple SAS Application Servers” on page 79.
- If the error indicates that the LASR procedure is not found, make sure that the workspace server that is being used has a valid license for SAS Visual Analytics software.
- If the error indicates that a path is not in the list of accessible paths, see “Locked-Down Servers” on page 53.

Issue: Inability to stop a SAS LASR Analytic Server.

Resolution:

- Make sure that you have the Administer permission for the server.
Make sure that any host-layer requirements are met. See “Host Account Privileges” on page 5.

If the error is Procedure LASR not found, make sure that the workspace server that is being used has a valid license for SAS Visual Analytics software.

Make sure that concurrent user logons are allowed. See “Policy for Concurrent User Logins” on page 58.

Issue: No last action log is available for a server.

Resolution:

- If no action on a server has been initiated from the LASR Servers tab, no last action log exists for that server.
- Not all actions generate a last action log. In most cases, success and failure results generate last action logs; not processed results do not.
- If the last action log file for a server has been deleted from its file system location, no last action log is available for that server. Last action logs are written to the directory that is specified by a suite-level configuration property. See “va.lastActionLogPath” on page 126.

Issue: The SAS LASR Analytic Server Monitor graphs are blank.

Resolution:

- Make sure that the SAS LASR Analytic Server is running.
- Make sure that the SAS LASR Analytic Server is distributed. The Monitor tabs are not supported for non-distributed servers.
- Make sure that the TKGrid location in the service.properties file is correct. The file is located in the SAS configuration directory under /Applications/SASVisualAnalytics/HighPerformanceConfiguration.

Note: Any changes that you make to the High-Performance Analytics environment install location field in a server definition in SAS Management Console must also be manually made in the monitoring server’s properties file.

- Restart the monitoring server. See “Managing the Monitoring Server” on page 75.

Issue: On the Process Monitor tab, table details are not provided.

Resolution:

- Make sure that the middle-tier machine has the necessary network name resolution. See “Network Name Resolution” on page 75.

Issue: On the LASR Servers tab, per-instance memory gauges are not available.

Resolution:

- If the Virtual Memory column is not displayed, you have a non-distributed server. Per-instance memory gauges are not supported for a non-distributed server.
- If the Virtual Memory column is empty:
 - Make sure that the middle-tier machine has the necessary network name resolution. See “Network Name Resolution” on page 75.
Make sure that the monitoring process is running. See “Supporting the Monitoring Features” on page 75.

Load, Reload, and Import Issues

Issue: Inability to load, reload, or import tables.

Resolution:
- Make sure that you can access the SAS LASR Analytic Server using an account that has the necessary privileges. See “Host Account Privileges” on page 5.
- Make sure that you have the necessary metadata-layer permissions for the output folder, LASR library, and LASR table (if applicable). See “Permissions” on page 34.
- For actions against an encrypted SASHDAT library, make sure that you have metadata-layer Read access to the library. See “On-Disk Encryption of SASHDAT Files” on page 61.
- For actions against a library that supports reload-on-start, make sure that you have host access to the associated data provider library. See “Reload-on-Start” on page 18.

Note: If the library is encrypted, make sure that you have the necessary metadata-layer permissions on the corresponding secured folder, secured library, and secured table objects. See “On-Disk Encryption of Reload-on-Start Files” on page 58.

- For loads to the public area, make sure that the library, server, and folder that are referenced by the va.publicLASRLibrary, va.publicLASRServer, and va.defaultPublicFolder configuration properties exist. See “Configuration Properties” on page 123.
- If the OK button in an Import window remains disabled after a user populates the required fields, and the Advanced panel is not displayed, make sure that the user has ReadMetadata access to the library that is specified in the va.publicLASRLibrary property.
- If a message indicates that a table is not reloadable, use a different technique to make the table available again. See “Reload Methods” on page 10.
- Determine whether a memory limit is preventing the actions:
 - In the Status column on the LASR Servers tab, make sure the target server is not over capacity. See “Limit Space for Tables” on page 89.
 - For a distributed server, make sure that total memory usage (by all processes) does not meet or exceed the configured limit. See “Memory Limits” on page 91.
- Make sure that concurrent user logons are allowed. See “Policy for Concurrent User Logins” on page 58.
- For co-located HDFS:
 - Make sure that the source library is paired with a LASR library through a match between the HDFS path and the server tag. For example, tables in
the directory /users/sasdemo must be loaded to a LASR library that has users.sasdemo as its server tag. See “Add a LASR Library” on page 87.

Make sure that the Hadoop server and the SAS LASR Analytic Server have identical, fully qualified host names in the Associated Machine field in their metadata definitions.

- For the Hadoop server, select the Options tab.
- For the SAS LASR Analytic Server, select the Options tab, click the Advanced Options button, and select the Additional Options tab.

Note: The message for this issue describes the target library as uni-directional.

Issue: No last action log is available for a table.

Resolution:

- If no action on a table has been initiated from the LASR Tables tab, no last action log exists for that table.
- Not all actions generate a last action log. In most cases, success and failure results generate last action logs; not processed results do not.
- If the last action log file for a table has been deleted from its file system location, no last action log is available for that table. Last action logs are written to the directory that is specified by a suite-level configuration property. See “va.lastActionLogPath” on page 126.

Issue: On the LASR Tables tab, tables are not listed.

Resolution:

- Make sure that the middle-tier machine has the necessary network name resolution. See “Network Name Resolution” on page 75.
- Make sure that the filter (in the tab’s toolbar) is not hiding tables that you expect to see.

Issue: In the Load a Table window, the OK button is disabled.

Resolution:

- In the LASR Table section, enter a name. Click in one of the other fields in the window, and then click OK.

Issue: Inability to change the name of the output table when loading data from co-located HDFS.

Resolution:

- Add the table to co-located HDFS again. In that transaction, assign a different name to the output table. When you load data from co-located storage, you cannot choose a different name for the output table. See “Administrator Load” on page 15.

Troubleshooting: SAS Mobile BI

Issue: Inability to open reports in an offline device.
Resolution:
- Make sure that the user is not in any role that provides the capability that prevents this action. See “Purge Mobile Report Data” on page 121.

Issue: Prompt for an application passcode.
Resolution:
- Make sure that the user is not in any role that provides the capability that introduces this requirement. See “Require Passcode On Mobile Devices” on page 121.

Issue: On the Mobile Devices tab, a message indicates that a list is not currently in use.
Resolution:
- By design, only one list (either the blacklist or the whitelist) is in use. See “About Mobile Device Management” on page 53.

Permission Origins

Introduction
Permission origins identify the source of each effective permission in the metadata authorization layer. This information can be useful in troubleshooting. It answers the question: Why is this identity granted (or denied) this permission?

In the origins answer, only the controlling (winning, highest precedence) access control is shown. If there are multiple tied winning controls, they are all shown. Other, lower precedence controls are not shown in the answer.

Origins information is available on an object’s Authorization page. See “View Authorization Information” on page 38.

Simple Permission Origins
The following table provides simple examples of permission origins answers. In each example, we are interested in why UserA has an effective grant on FolderA. In each example, UserA is a direct member of both GroupA and GroupB. Each row in the table is for a different (independent) permissions scenario. In the table, the first column depicts the contents of the Origins window. The second column interprets the information.

Table A2.1 Origins: Simple Examples

<table>
<thead>
<tr>
<th>Origins Information</th>
<th>Source of UserA’s Effective Grant on FolderA</th>
</tr>
</thead>
<tbody>
<tr>
<td>👤 UserA [Explicit]</td>
<td>On FolderA, an explicit grant for UserA</td>
</tr>
<tr>
<td>🧑‍🤝‍🧑 GroupA [Explicit]</td>
<td>On FolderA, an explicit grant for GroupA</td>
</tr>
<tr>
<td>Origins Information</td>
<td>Source of UserA's Effective Grant on FolderA</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>✅ GroupB [Explicit]</td>
<td>Note: Two settings are shown because they are tied and they both win (UserA is a direct member of GroupA and GroupB).</td>
</tr>
<tr>
<td>✅ GroupA [ACT: GroupARead]</td>
<td>On FolderA, an ACT pattern grant for GroupA (from a directly applied ACT)</td>
</tr>
<tr>
<td>✅ SASUSERS [ACT: GenRead]</td>
<td>On FolderA, an ACT pattern grant for SASUSERS (from a directly applied ACT)</td>
</tr>
<tr>
<td>✅ GroupA [ACT: GroupARead]</td>
<td>On FolderA, ACT pattern grants for GroupA and GroupB (from two different directly applied ACTs)</td>
</tr>
<tr>
<td>✅ GroupB [ACT: GroupBRead]</td>
<td>Note: Two settings are shown because they are tied and they both win (UserA is a direct member of GroupA and GroupB).</td>
</tr>
<tr>
<td>✅ GroupA [ACT: GroupABRead]</td>
<td>On FolderA, ACT pattern grants for GroupA and GroupB (from the same directly applied ACT)</td>
</tr>
<tr>
<td>✅ GroupB [ACT: GroupABRead]</td>
<td>Note: Two settings are shown because they are tied and they both win (UserA is a direct member of GroupA and GroupB).</td>
</tr>
<tr>
<td>✅ UserA is unrestricted.</td>
<td>UserA's status as an unrestricted user (someone who is unrestricted is always granted all permissions)</td>
</tr>
</tbody>
</table>

Inherited Permission Origins

In many cases, the controlling setting is not on the current object. Instead, the controlling setting is defined on a parent object and inherited by the current object.

The following table provides examples in which the controlling setting comes from a parent object. Because the source of the effective permission is a parent object, the answer must identify which parent object has the controlling setting. For this reason, the answers in the following examples identify both a parent object (the object that has the controlling setting) and the controlling setting, itself.

In each example, we are interested in why UserA has an effective grant on FolderA. In each example, UserA is a direct member of both GroupA and GroupB. Each row in the table is for a different (independent) permissions scenario. In the table, the first column depicts the contents of the Origins window. The second column interprets the information.
Table A2.2 Origins: Inheritance Examples

<table>
<thead>
<tr>
<th>Origins Information</th>
<th>Source of UserA’s Effective Grant on FolderA</th>
</tr>
</thead>
<tbody>
<tr>
<td> [Explicit]</td>
<td>On ParentFolderA, an explicit grant for UserA</td>
</tr>
<tr>
<td> [Explicit]</td>
<td>On ParentFolderA, an explicit grant for GroupA</td>
</tr>
<tr>
<td> [Explicit] [Explicit]</td>
<td>On ParentFolderA, explicit grants for GroupA and GroupB</td>
</tr>
<tr>
<td> [ACT: GroupARead]</td>
<td>On ParentFolderA, an ACT pattern grant for GroupA (from a directly applied ACT)</td>
</tr>
<tr>
<td> [ACT: GenRead]</td>
<td>On GreatGrandParentFolderA, an ACT pattern grant for SASUSERS (from a directly applied ACT)</td>
</tr>
<tr>
<td> [ACT: GroupARead] [ACT: GroupBRead]</td>
<td>On ParentFolderA, ACT pattern grants for GroupA and GroupB (from two different directly applied ACTs)</td>
</tr>
<tr>
<td> [ACT: GroupABRead] [ACT: GroupABRead]</td>
<td>On GrandParentFolderA, ACT pattern grants for GroupA and GroupB (from the same directly applied ACT)</td>
</tr>
</tbody>
</table>
access control template (ACT)
a reusable named authorization pattern that you can apply to multiple resources. An access control template consists of a list of users and groups and indicates, for each user or group, whether permissions are granted or denied.

authorization
the process of determining the permissions that particular users have for particular resources. Authorization either permits or denies a specific action on a specific resource, based on the user's identity and on group memberships.

capability
an application feature that is under role-based management. Typically, a capability corresponds to a menu item or button. For example, a Report Creation capability might correspond to a New Report menu item in a reporting application. Capabilities are assigned to roles.

credentials
evidence to support a claim of identity (for example, a user ID and password) or privilege (for example, a passphrase or encryption key).

group
a collection of users who are registered in a SAS metadata environment. A group can contain other groups as well as individual users.

Hadoop Distributed File System (HDFS)
a framework for managing files as blocks of equal size, which are replicated across the machines in a Hadoop cluster to provide fault tolerance.

HDFS
See “Hadoop Distributed File System”.

libref (library reference)
a SAS name that is associated with the location of a SAS library. For example, in the name MYLIB.MYFILE, MYLIB is the libref, and MYFILE is a file in the SAS library.

metadata identity (identity)
a metadata object that represents an individual user or a group of users in a SAS metadata environment. Each individual and group that accesses secured resources on a SAS Metadata Server should have a unique metadata identity within that server.

role (user role)
a set of capabilities within an application that are targeted to a particular group of users.
SAS authentication
a form of authentication in which the target SAS server is responsible for requesting or performing the authentication check. SAS servers usually meet this responsibility by asking another component (such as the server's host operating system, an LDAP provider, or the SAS Metadata Server) to perform the check. In a few cases (such as SAS internal authentication to the metadata server), the SAS server performs the check for itself. A configuration in which a SAS server trusts that another component has pre-authenticated users (for example, web authentication) is not part of SAS authentication.

SAS data set (data set)
a file whose contents are in one of the native SAS file formats. There are two types of SAS data sets: SAS data files and SAS data views.

SAS Stored Process (stored process)
a SAS program that is stored on a server and defined in metadata, and which can be executed by client applications.

SAS table
the visual rendering of a SAS data set in tabular format.

SAS Workspace Server
a SAS server that provides access to Foundation SAS features such as the SAS programming language and SAS libraries.

SASHDAT file
the data format used for tables that are added to HDFS by SAS. SASHDAT files are read in parallel by the server.

stored process
See "SAS Stored Process".

theme
a collection of specifications (for example, colors, fonts, and font styles) and graphics that control the appearance of an application.

unrestricted identity
a user or group that has all capabilities and permissions in the metadata environment due to membership in the META: Unrestricted Users Role (or listing in the adminUsers.txt file with a preceding asterisk).

user role
See "role".

web authentication
a configuration in which users of web applications and web services are verified at the web perimeter, and the metadata server trusts that verification.
Index

A

ACM data 113
adding users 3
alerts 74
audit data 112
auditing 46
authentication 57
autoload 21
autostart 7

C

capabilities 117
descriptions 120
co-located HDFS 99

D

data loading 10
autoload 21
interactive load 16
reload-on-start 18
self-service import 16

E

encryption
backing store 58
SASHDAT 61
extended attributes
autoload 29
autostart 7
linguistic files 69
reload-on-start 20
SAS LASR Analytic Server 90
stop lists 69

G

geo maps 69

esri 70
OpenStreetMap 70

H

high-cardinality data 132

L

LASR authorization service 39
libraries
HDFS 104
LASR 87
locked-down servers 53
logging 76
for reload-on-start 20
permissions 78
SAS LASR Analytic Server 92
SAS LASR Analytic Server Monitor 76
schema validation errors 78

P

parallel load
co-located storage 97
embedded process 97
permissions 34
by task 35
inherited 148
origins 147
row-level 37

R

reload-on-start 18
reports
predefined 109
roles 117
custom 117
predefined 117
row-level security 42
identity-driven 45
precedence 43
set interactively 37
syntax (basic, batch) 44
syntax (Text tab) 44

S

SAS LASR Analytic Server 116
adding 86
advanced options 91
distributed 84
extended attributes 90
lifetime 92
logging 92
managing 6
memory limits 91
metadata objects 84
monitoring 93
non-distributed 84
SAS LASR Analytic Server Monitor 75
SAS Mobile BI 53
capabilities 121
configuration properties 129
logging 78
security 57
troubleshooting 146
SAS Visual Analytics Administrator
Authorization page 38
HDFS tab 100
LASR Servers tab 95
LASR Tables tab 12, 14
Mobile Devices tab 56
Process Monitor tab 94
Resource Monitor tab 93
troubleshooting 141
user preferences 80

security
auditing 46
data 39
locked-down servers 53
mobile 57
row-level 42
SAS token authentication 57
server tags 42
signature files 41

T

tables
deleting from HDFS 104
registering 15
reloading 13
staging 15
unloading 13
valid names 12
transport service 116
device management 53
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.