Gsas

SAS® LASR™ Analytic
Server 2.1
Administration Guide

SAS® Documentation

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2013. SAS® LASR™ Analytic Server 2.1: Administration Guide.
Cary, NC: SAS Institute Inc.

SAS® LASR™ Analytic Server 2.1: Administration Guide
Copyright © 2013, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is
subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights
(June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
July 2013

SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For more
information about our e-books, e-learning products, CDs, and hard-copy books, visit support.sas.com/bookstore or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

What’s New In SAS LASR Analytic Server v
Chapter 1 « Introduction to the SAS LASR Analytic Server 1
What is SAS LASR Analytic Server?t 2
How Does the SAS LASR Analytic Server Work? 2
Benefits to Using the Hadoop Distributed File System 4
Components of the SAS LASR Analytic Server............. 5
Administering the SAS LASR Analytic Server o ... 6
Memory Managementttt 10
Data Partitioning and Ordering 12
SAS LASR Analytic Server Loggingot 13
Chapter 2 * Non-Distributed SAS LASR Analytic Server 17
About Non-Distributed SAS LASR Analytic Server.............. 17
Starting and Stopping Non-Distributed Servers 17
Loading and Unloading Tables for Non-Distributed Servers 19
Chapter 3 « LASRProcedure @ e 21
Overview: LASR Procedure i 21
Syntax: LASR Proceduret e 22
Examples: LASR Procedure i 30
Chapter 4 « VASMP Procedure @i 39
Overview: VASMP Procedurettt 39
Syntax: VASMP Procedure 39
Example: Copying Tables from One Hadoop Installation to Another.............. 44
Chapter 5 « OLIPHANT Procedure 47
Overview: OLIPHANT Procedure i 47
Concepts: OLIPHANT Procedurec.ovtntin e 48
Syntax: OLIPHANT Procedurettt 49
Examples: OLIPHANT Procedureot 52
Chapter 6 « HPDS2 Procedure i 55
Overview: HPDS2 Procedure i i 55
Parallel Execution of DS2 Code i i 57
LImItations oottt e e 57
Syntax: HPDS2 Procedureottt e 59
Examples: HPDS2 Procedureoooon it i 62
Chapter 7 » Using the SAS LASR Analytic Server Engine 65
What Does the SAS LASR Analytic Server Engine Do? 65
Understanding How the SAS LASR Analytic Server Engine Works 65
Understanding Server Tagsottt 66
Comparing the SAS LASR Analytic Server Engine with the LASR Procedure 66
What is Required to Use the SAS LASR Analytic Server Engine? 67
What is Supported? 67

Chapter 8 « LIBNAME Statement for the SAS LASR Analytic Server Engine 69

iv Contents

DICHONATY . . o ottt et e e 69
Chapter 9 » Data Set Options for the SAS LASR Analytic Server Engine 77
DICHIONATY . . o ettt ettt e e 77
Chapter 10 « Using the SAS Data in HDFS Enginec.0.0.... 81
What Does the SAS Data in HDFS Engine Do? 81
Understanding How the SAS Data in HDFS Engine Works 81
What is Required to Use the SAS Data in HDFS Engine? 82
What is Supported? 82
Chapter 11 » LIBNAME Statement for the SAS Data in HDFS Engine 83
DICHONATY . . oottt et e e 83
Chapter 12 « Data Set Options for the SAS Data in HDFS Engine 89
DICHONATY . . oottt et e e 89
GIOSSArY e 929

Index 101

What’s New In SAS LASR
Analytic Server

Overview

SAS LASR Analytic Server 2.1 includes the following changes:
* Enhancements to the LASR procedure
+ Enhancements to the VASMP procedure

* Enhancements to the SAS LASR Analytic Server engine

Enhancements to the LASR Procedure

The LASR procedure is enhanced with options that enable greater control over memory
use by the SAS LASR Analytic Server.

* The READAHEAD option can be used when loading tables from HDFS. This option
causes the server to read blocks from disk more aggressively. The initial load
requires more time than without the option, but the server performs the first analysis
of the table more quickly.

* The TABLEMEM-= option can limit the amount of physical memory used by the
server. You can specify the percentage of memory that can be allocated before the
server rejects requests to add tables or append data. If the percentage is exceeded,
either by the server or any other processes on the machine, adding tables or
appending rows fails.

+ The EXTERNALMEM-= option specifies the percentage of memory that can be
allocated before the server stops transferring data to external processes such as the
SAS High-Performance Analytics procedures. Because the procedures copy the data
from the server (and consume memory to do so), you might want to limit the amount
of memory that can be used.

The SIGNER= option for the procedure now supports the HTTPS protocol.

Enhancements to the VASMP Procedure

The following enhancements have been made to the VASMP procedure:

vi What’s New In SAS LASR Analytic Server

The SERVERPARM statement has been enhanced to support the HOST= and
PORT= options. This enables you to set server parameters before loading a table to
memory. You can also set the TABLEMEM= and EXTERNALMEM-= options for
setting memory limits.

The SIGNER= option for the procedure now supports the HTTPS protocol.

Enhancements to the SAS LASR Analytic Server

Engine

The following enhancements have been made to the SAS LASR Analytic Server engine:

When you load a table to memory, the server adds a default format to a variable
(BEST for numeric and $ for character variables). The engine is displaying the
"forced" format. If you specify the NODEFAULTFORMAT option, the format
enforced by the server is not used in the SAS session.

Computed temporary column expressions for the character data type are now
supported.

The SIGNER= option now supports the HTTPS protocol.

Chapter 1

Introduction to the SAS LASR
Analytic Server

What is SAS LASR Analytic Server? 2
How Does the SAS LASR Analytic Server Work? 2
Distributed SAS LASR Analytic Server., 2
Non-Distributed SAS LASR Analytic Server......... 4
Benefits to Using the Hadoop Distributed File System 4
Components of the SAS LASR Analytic Server 5
About the Componentsttt e 5
ROOtNOAE . .o e 5
Worker NOdeso ot e 5
In-Memory Tables o 5
Signature Filesot 5
Server Description Files i 6
Administering the SAS LASR Analytic Server 6
Administering a Distributed Server........... i i 6
Administering a Non-Distributed Server 6
Common Administration Features i 7
Features Available in SAS Visual Analytics Administrator 7
Understanding Server Run Time i 7
Distributing Data 8
Memory Managementt 10
About Physical and Virtual Memory i 10
How Does the Server Use Memory for Tables? 10
How Else Does the Server Use Memory?, 11
Managing MemOTLYottt ettt e e 11
Data Partitioning and Ordering 12
Overview of Partitioningt 12
Understanding Partition Keys i 12
Ordering within Partitions 13
SAS LASR Analytic Server Logging 13
Understanding Loggingo oottt e 13
Whatis Logged?o 14

2 Chapter 1 + Introduction to the SAS LASR Analytic Server

What is SAS LASR Analytic Server?

The SAS LASR Analytic Server is an analytic platform that provides a secure, multi-
user environment for concurrent access to data that is loaded into memory. The server
can take advantage of a distributed computing environment by distributing data and the
workload among multiple machines and performing massively parallel processing. The
server can also be deployed on a single machine where the workload and data volumes
do not demand a distributed computing environment.

The server handles both big data and smaller sets of data, and it is designed with a high-
performance, multi-threaded, analytic code. The server processes client requests at
extraordinarily high speeds due to the combination of hardware and software that is
designed for rapid access to tables in memory. By loading tables into memory for
analytic processing, the SAS LASR Analytic Server enables business analysts to explore
data and discover relationships in data at the speed of RAM.

The architecture was originally designed for optimal performance in a distributed
computing environment. A distributed SAS LASR Analytic Server runs on multiple
machines. A typical distributed configuration is to use a series of blades as a cluster.
Each blade contains both local storage and large amounts of memory. In this analytic
environment, many gigabytes of RAM per blade is common. Local storage is used to
store large data sets in distributed form. Data is loaded into memory and made available
so that clients can quickly access that data.

For distributed deployments, having local storage available on machines is critical in
order to store large data sets in a distributed form. The SAS LASR Analytic Server
supports the Hadoop Distributed File System (HDFS) as a co-located data provider.
HDFS is used because the server can read from and write to HDFS in parallel. In
addition, HDFS provides replication for data redundancy. HDFS stores data as blocks in
distributed form on the blades and the replication provides failover capabilities.

In a distributed deployment, the server also supports some third-party vendor databases
as co-located data providers. Teradata Data Warehouse Appliance and Greenplum Data
Computing Appliance are massively parallel processing database appliances. You can
install the SAS LASR Analytic Server software on each of the machines in either
appliance. The server can read in parallel from the local data on each machine.

For the SAS LASR Analytic Server 1.6 release (concurrent with the SAS Visual
Analytics 6.1 release) the server supports a non-distributed deployment. A non-
distributed SAS LASR Analytic Server can perform the same in-memory analytic
operations as a distributed deployment server. A non-distributed deployment does not
support SAS High-Performance Deployment of Hadoop or third-party vendor appliances
as co-located data providers.

How Does the SAS LASR Analytic Server Work?

Distributed SAS LASR Analytic Server

The SAS LASR Analytic Server provides a client/server environment where the client
connects to the server, sends requests to the server, and receives results back from the

server. The server-side environment is a distributed computing environment. A typical
deployment is to use a series of blades in a cluster. In addition to using a homogeneous

How Does the SAS LASR Analytic Server Work? 3

hardware profile, the software installation is also homogeneous. The same operating
system is used throughout and the same SAS software is installed on each blade that is
used for the server. In order for the software on each blade to share the workload and
still act as a single server, the SAS software that is installed on each blade implements
the Message Passing Interface (MPI). The MPI implementation is used to enable
communication between the blades.

After a client connection is authenticated, the server performs the operations requested
by the client. Any request (for example, a request for summary statistics) that is
authorized will execute. After the server completes the request, there is no trace of the
request. Every client request is executed in parallel at extraordinarily high speeds, and
client communication with the server is practically instantaneous and seamless.

There are two ways to load data into a distributed server:

* load data from tables and data sets. You can start a server instance and directly
load tables into the server by using the SAS LASR Analytic Server engine or the
LASR procedure from a SAS session that has a network connection to the cluster.
Any data source that can be accessed with a SAS engine can be loaded into memory.
The data is transferred to the root node and the root node distributes the data to the
worker nodes. You can also append rows to an in-memory table with the SAS LASR
Analytic Server engine.

* load tables from a co-located data provider.

» Tables can be read from the Hadoop Distributed File System (HDFS) that is
provided by SAS High-Performance Deployment of Hadoop. You can use the
SAS Data in HDFS engine to add tables to HDFS. When a table is added to
HDFS, it is divided into blocks that are distributed across the machines in the
cluster. The server software is designed to read data in parallel from HDFS.
When used to read data from HDFS, the LASR procedure causes the worker
nodes to read the blocks of data that are local to the machine.

» Tables can also be read from a third-party vendor database. For distributed
databases like Teradata and Greenplum, the SAS LASR Analytic Server can
access the local data on each machine that is used for the database.

The following figure shows the relationship of the root node, the worker nodes, and how
they interact when working with large data sets in HDFS. As described in the previous
list, the LASR procedure communicates with the root node and the root node directs the
worker nodes to read data in parallel from HDFS. The figure also indicates how the SAS
Data in HDFS engine is used to transfer data to HDFS.

Figure 1.1 Relationship of PROC LASR and the SAS Data in HDFS Engine

| v v v v

Root Worker Worker Worker Worker
Node Node Node Node Node

SAS Data in .| Hadoop
HDFS Engine "I NameNode
T HDFS HDFS HDFS HDFS

SAS Data

PROC LASR

4 Chapter 1

Introduction to the SAS LASR Analytic Server

Note: The preceding figure shows the distributed architecture of SAS High-Performance
Deployment of Hadoop. For deployments that use a third-party vendor database, the
architecture is also distributed, but different procedures and software components are
used for distributing and reading the data.

After the data is loaded into memory on the server, it resides in memory until the table is
unloaded or the server terminates. After the table is in memory, client applications that
are authorized to access the table can send requests to the server and receive the results
from the server.

In memory tables can be saved. You can use the SAS LASR Analytic Server engine to
save an in-memory table as a SAS data set or as any other output that a SAS engine can
use. For large tables, saving to HDFS is supported with the LASR procedure and the
SAS Data in HDFS engine.

Non-Distributed SAS LASR Analytic Server

Most of the features that are available with a distributed deployment also apply to the
non-distributed deployment too. Any limitations are related to the reduced functionality
of using a single-machine rather than a distributed computing environment.

In a non-distributed deployment, the server acts in a client/server fashion where the
client sends requests to the server and receives results back. The server performs the
analytic operations on the tables that are loaded in to memory. As a result, the processing
times are very fast and the results are delivered almost instantaneously.

You can load tables to a non-distributed server with the SAS LASR Analytic Server
engine. Any data source that SAS can access can be used for input and the SAS LASR
Analytic Server engine can store the data as an in-memory table. The engine also
supports appending data.

You can save in-memory tables by using the SAS LASR Analytic Server engine. The
tables can be saved as a SAS data set or as any other output that a SAS engine can use.

Benefits to Using the Hadoop Distributed File

System

Loading data from disk to memory is efficient when the SAS LASR Analytic Server is
co-located with a distributed data provider. The Hadoop Distributed File System (HDFS)
provided by SAS High-Performance Deployment of Hadoop acts as a co-located data
provider. HDFS offers some key benefits:

+ Parallel I/O. The SAS LASR Analytic Server can read data in parallel at very
impressive rates from a co-located data provider.

+ Data redundancy. By default, two copies of the data are stored in HDFS. If a
machine in the cluster becomes unavailable or fails, the SAS LASR Analytic Server
instance on another machine in the cluster retrieves the data from a redundant block
and loads the data into memory.

* Homogeneous block distribution. HDFS stores files in blocks. The SAS
implementation enables a homogeneous block distribution that results in balanced
memory utilization across the SAS LASR Analytic Server and reduces execution
time.

Components of the SAS LASR Analytic Server 5

Components of the SAS LASR Analytic Server

About the Components

Root Node

Worker Nodes

The following sections identify some software components and interactions for SAS
LASR Analytic Server.

When the SAS client initiates contact with the grid host to start a SAS LASR Analytic
Server instance, the SAS software on that machine takes on the role of distributing and
coordinating the workload. This role is in contrast to a worker node. This term applies to
a distributed SAS LASR Analytic Server only.

This is the role of the software that receives the workload from the root node. When a
table is loaded into memory, the root node distributes the data to the worker nodes and
they load the data into memory. If you are using a co-located data provider, each worker
node reads the portion of the data that is local to the machine. The data is loaded into
memory and requests that are sent to root node are distributed to the worker nodes. The
worker nodes perform the analytic tasks on the data that is loaded in memory on the
machine and then return the results to the root node. This term applies to a distributed
SAS LASR Analytic Server only.

In-Memory Tables

Signature Files

SAS LASR Analytic Server performs analytics on tables that are in-memory only.
Typically, large tables are read from a co-located data provider by worker nodes. The
tables are loaded quickly because each worker node is able read a portion of the data
from local storage. Once the portion of the table is in memory on each worker node, the
server instance is able to perform the analytic operations that are requested by the client.
The analytic tasks that are performed by the worker nodes are done on the in-memory
data only.

SAS LASR Analytic Server uses two types of signature files, server signature files and
table signature files. These files are used as a security mechanism for server
management and for access to data in a server. When a server instance is started, a
directory is specified on the PATH= option to the LASR procedure. The specified
directory must exist on the machine that is specified as GRIDHOST= environment
variable.

In order to start a server, the user must have Write access to the directory in order to be
able to create the server signature file. In order stop a server, the user must have Read
access to the server signature file so that it can be removed from the directory.

In order to load and unload tables on a server, the user must have Read access to the
server signature file in order to interact with the server. Write permission to the directory

6 Chapter 1 « Introduction to the SAS LASR Analytic Server

is needed to create the table signature file when loading a table and to delete the table
signature file when unloading the table.

Server Description Files

Note: Most administrators prefer to use the PORT= option in the LASR procedure
rather than use server description files.

If you specify a filename in the CREATE= option in the LASR procedure, then you start
a SAS LASR Analytic Server instance, the LASR procedure creates two files:

» aserver description file
» aserver signature file (described in the previous section)

The server description file contains information such as the host names of the machines
that are used by the server instance and signature file information.

In the LASR procedure, the server description file is specified with the CREATE=
option. The server description file is created on the SAS client machine that invoked
PROC LASR.

Administering the SAS LASR Analytic Server

Administering a Distributed Server

Basic administration of distributed SAS LASR Analytic Server can be performed with
the LASR procedure from a SAS session. Server instances are started and stopped with
the LASR procedure. The LASR procedure can be used to load and unload tables from
memory though the SAS LASR Analytic Server engine also provides that ability. It is
also possible to use a DETAILS= option with the LASR procedure to retrieve
information about the server instance and tables that are resident in memory.

The SAS Data in HDFS engine is used to add and delete tables from the Hadoop
Distributed File System (HDFS). You can use the DATASETS procedure with the
engine to display information about tables that are stored in HDFS.

The HPDS2 procedure has a specific purpose for use with SAS LASR Analytic Server.
In this deployment, the procedure is used to distribute data to the machines in an
appliance. After the data are distributed, the SAS LASR Analytic Server can read the
data in parallel from each of the machines in the appliance.

The LASR and HPDS?2 procedures are described in this document. The SAS Data in
HDFS engine is also described in this document.

Administering a Non-Distributed Server

A non-distributed SAS LASR Analytic Server runs on a single machine. A non-
distributed server is started and stopped with the SAS LASR Analytic Server engine. A
server is started with the STARTSERVER= option in the LIBNAME statement. The
server is stopped when one of the following occurs:

* The libref is cleared (for example, 1ibname lasrsvr clear;).

* The SAS program and session that started the server ends. You can use the
SERVERWAIT statement in the VASMP procedure to keep the SAS program (and
the server) running.

Administering the SAS LASR Analytic Server 7

» The server receives a termination request from the SERVERTERM statement in the
VASMP procedure.

A non-distributed deployment does not include a distributed computing environment. As
a result, a non-distributed server does not support a co-located data provider. Tables are
loaded and unloaded from memory with the SAS LASR Analytic Server engine only.

Common Administration Features

As described in the previous sections, the different architecture for distributed and non-
distributed servers requires different methods for starting, stopping, and managing tables
with servers. However, the VASMP procedure works with distributed and non-
distributed servers to provide administrators with information about server instances.
The statements that provide information that can be of interest to administrators are as
follows:

+ SERVERINFO
+ TABLEINFO

Administrators might also be interested in the SERVERPARM statement. You can use
this statement to adjust the number of requests that are processed concurrently. You
might reduce the number of concurrent requests if the number of concurrent users causes
the server to consume too many sockets from the operating system.

Features Available in SAS Visual Analytics Administrator

The SAS Visual Analytics Administrator is a web application that provides an intuitive
graphical interface for server management. You can use the application to start and stop
server instances, as well as load and unload tables from the servers. Once a server is
started, you can view information about libraries and tables that are associated with the
server. The application also indicates whether a table is in-memory or whether it is
unloaded.

For deployments that use SAS High-Performance Deployment of Hadoop, an HDFS
content explorer enables you to browse the tables that are stored in HDFS. The content
explorer also enables adding tables to HDFS from registered tables. Once tables are
stored in HDFS, you can to load them into memory in a server instance. Because SAS
uses a special file format for the data that is stored in HDFS, the HDFS content explorer
also provides information about the columns, row count, and block distribution.

Understanding Server Run Time

By default, servers are started and run indefinitely. However, in order to conserve the
hardware resources in a distributed computing environment, server instances can be
configured to exit after a period of inactivity. This feature applies to distributed SAS
LASR Analytic Server only. You specify the inactivity duration with the LIFETIME=
option when you start the server.

When the LIFETIME= option is used, each time a server is accessed, such as to view
data or perform an analysis, the run time for the server is reset to zero. Each second that
a server is unused, the run timer increments to count the number of inactive seconds. If
the run timer reaches the maximum run time, the server exits. All the previously used
hardware resources become available to the remaining server instances.

8 Chapter 1 « Introduction to the SAS LASR Analytic Server

Distributing Data

SAS High-Performance Deployment of Hadoop

SAS provides SAS High-Performance Deployment of Hadoop as a co-located data
provider. The SAS LASR Analytic Server software and the SAS High-Performance
Deployment of Hadoop software are installed on the same blades in the cluster. The SAS
Data in HDFS engine can be used to distribute data to HDFS.

For more information, see “Using the SAS Data in HDFS Engine” on page 81.

PROC HPDS2 for Big Data

For deployments that use Greenplum or Teradata, the HPDS2 procedure can be used to
distribute large data sets to the machines in the appliance. The procedure provides an
easy-to-use and efficient method for transferring large data sets.

For deployments that use Greenplum, the procedure is more efficient than using a
DATA step with the SAS/ACCESS Interface to Greenplum and is an alternative to using
the gpfdist utility.

The SAS/ACCESS Interface for the database must be configured on the client machine.
It is important to distribute the data as evenly as possible so that the SAS LASR Analytic
Server has an even workload when the data is read into memory.

For more information, see the Chapter 6, “HPDS2 Procedure,” on page 55.

Bulkload for Teradata
The SAS/ACCESS Interface to Teradata supports a bulk loading feature. With this
feature, a DATA step is as efficient at transferring data as the HPDS2 procedure.

The following code sample shows a LIBNAME statement and two DATA steps for
adding tables to Teradata.

libname tdlib teradata
server="dbc.example.com"
database=hps
user=dbuser
password=dbpass
bulkload=yes;

data tdlib.order fact;
set work.order fact;

run;

data tdlib.product dim (dbtype=(partno='int') n
dbcreate table opts='primary index(partno)');
set work.product_dim;

run;

data tdlib.salecode (dbtype=(_day='int' fpop='varchar(2)")
bulkload=yes
dbcreate table opts='primary index(_day, fpop)'); n
set work.salecode;

run;

data tdlib.automation (bulkload=yes

Administering the SAS LASR Analytic Server 9

dbcommit=1000000 |E
dbcreate table opts='unique primary index (obsnum)'); n
set automation;
obsnum = n_;
run;

1 Specify the BULKLOAD=YES option. This option is shown as a LIBNAME option
but you can specify it as a data set option.

2 Specify a data type of int for the variable named partno.
3 Specify to use the variable named partno as the distribution key for the table.

4 Specify to use the variables that are named _day and fpop as a distribution key for
the table that is named salecode.

5 Specify the DBCOMMIT= option when you are loading many rows. This option
interacts with the BULKLOAD-= option to perform checkpointing. Checkpointing
provides known synchronization points if a failure occurs during the loading process.

6 Specify the UNIQUE keyword in the table options to indicate that the primary key is
unique. This keyword can improve table loading performance.

Smaller Data Sets

You can use a DATA step to add smaller data sets to Greenplum or Teradata.
Transferring small data sets does not need to be especially efficient. The SAS/ACCESS
Interface for the database must be configured on the client machine.

The following code sample shows a LIBNAME statement and DATA steps for adding
tables to Greenplum.

libname gplib greenplm server="grid001l.example.com"
database=hps
schema=public
user=dbuser

password=dbpass;

data gplib.automation(distributed by='distributed randomly') ;
set work.automation;

run;

data gplib.results (dbtype=(rep='"int') E
distributed by='distributed by (rep)') ;
set work.results;

run;

data gplib.salecode (dbtype=(day="int' fpop='varchar(2)') n
distributed by='distributed by day, fpop') ; B
set work.salecode;

run;

1 Specify a random distribution of the data. This data set option is for the
SAS/ACCESS Interface to Greenplum.

2 Specify a data type of int for the variable named rep.

3 Specify to use the variable named rep as the distribution key for the table that is
named results.

4 Specify a data type of int for the variable named day and a data type of
varchar (2) for the variable named fpop.

10 Chapter 1 + Introduction to the SAS LASR Analytic Server

5 Specify to use the combination of variables day and fpop as the distribution key for
the table that is named salecode.

The following code sample shows a LIBNAME statement and a DATA step for adding a
table to Teradata.

libname tdlib teradata server="dbc.example.com"
database=hps
user=dbuser

password=dbpass;

data tdlib.parts dim;
set work.parts dim;

run;

For Teradata, the SAS statements are very similar to the syntax for bulk loading. For
more information, see “Bulkload for Teradata” on page 8.

See Also
SAS/ACCESS for Relational Databases: Reference

Memory Management

About Physical and Virtual Memory

The amount of memory on a machine is the physical memory. The amount of memory
that can be used by an application can be larger, because the operating system can
provide virtual memory. Virtual memory makes the machine appear to have more
memory available than there actually is, by sharing physical memory between
applications when they need it and by using disk space as memory.

When memory is not used and other applications need to allocate memory, the operating
system pages out the memory that is not currently needed to support the other
applications. When the paged-out memory is needed again, some other memory needs to
be paged out. Paging means to write some of the contents of memory onto a disk.

Paging does affect performance, but some amount of paging is acceptable. Using virtual
memory enables you to access tables that exceed the amount of physical memory on the
machine. So long as the time to write pages to the disk and read them from the disk is
short, the server performance is good.

One advantage of SASHDAT tables that are read from HDFS is that the server performs
the most efficient paging of memory.

How Does the Server Use Memory for Tables?

When you load a table to memory with the SAS LASR Analytic Server engine, the
server allocates physical memory to store the rows of data. This applies to both
distributed and non-distributed servers.

When a distributed server loads a table from HDFS to memory with the LASR
procedure, the server defers reading the rows of data into physical memory. You can

direct the server to perform an aggressive memory allocation scheme at load time with
the READAHEAD option for the PROC LASR statement.

Memory Management 11

Note: When a distributed server loads a table from either the Greenplum Data
Computing Appliance or the Teradata Data Warehouse Appliance, physical memory
is allocated for the rows of data. This is true even when the data provider is co-
located.

How Else Does the Server Use Memory?

Physical memory is used when the server performs analytic operations such as
summarizing a table. The amount of memory that a particular operation requires
typically depends on the cardinality of the data. In most cases, the cardinality of the data
is not known until the analysis is requested. When the server performs in-memory
analytics, the following characteristics affect the amount of physical memory that is
used:

* Operations that use group-by variables can use more memory than operations that do
not. The amount of memory that is required is not known without knowing the
number of group-by variable combinations that are in the data.

* The memory utilization pattern on the worker nodes can change drastically
depending on the distribution of the data across the worker nodes. The distribution of
the data affects the size of intermediate result sets that are merged across the
network.

Some requests, especially with high-cardinality variables, can generate large result sets.
To enable interactive near-real-time work with high cardinality problems, the server
allocates memory for data structures that speed performance. The following list
identifies some of these uses:

* The performance for traversing and querying a decision tree is best when the tree is
stored in the server.

» Paging through group-by results when you have a million groups is best done by
storing the group-by structure in a temporary table in the server. The temporary table
is then used to look up groups for the next page of results to deliver to the client.

Managing Memory

The following list identifies some of the options that SAS provides for managing
memory:

* You can use the TABLEMEM-= option to specify a threshold for physical memory
utilization.

* You can use the EXERNALMEM= option to specify a threshold for memory
utilization for SAS High-Performance Analytics procedures.

By default, whenever the amount of physical memory in use rises above 75% of the total
memory available on a node of a distributed server, loading tables, adding tables
(including temporary ones), appending rows, or any other operation that consumes
memory for storing data fails. You can specify the threshold when you start a server with
the TABLEMEM-= option in the PROC LASR statement or alter it for a running server
with the SERVERPARM statement in the VASMP procedure. By default,
TABLEMEM=75 (%).

Note: The memory that is consumed by tables loaded from HDFS do not count toward
the TABLEMEM= limit.

12 Chapter 1

Introduction to the SAS LASR Analytic Server

Be aware that the TABLEMEM= option does not specify the percentage of memory that
can be filled with tables. The memory consumption is measured across all processes of a
machine.

A separate memory setting can be applied to processes that extract data from a server on
a worker node. SAS High-Performance Analytics procedures can do this. If you set the
EXTERNALMEM-= option in the PROC LASR statement or through the
SERVERPARM statement in the VASMP procedure, then you are specifying the
threshold of total memory (expressed as a percentage) at which the server stops sending
data to the high-performance analytics procedure.

See Also
« “TABLEMEM=pct” on page 26
« “EXTERNALMEM=pct” on page 23

Data Partitioning and Ordering

Overview of Partitioning

By default, partitioning is not used and data are distributed in a round-robin algorithm.
This applies to SAS Data in HDFS engine as well as SAS LASR Analytic Server. In
general, this works well so that each machine in a distributed server has an even
workload.

However, there are some data access patterns that can take advantage of partitioning.
When a table is partitioned in a distributed server, all of the rows that match the partition
key are on a single machine. If the data access pattern matches the partitioning (for
example, analyzing data by Customer ID partitioning the data by Customer_ID), then
the server can direct the work to just the one machine. This can speed up analytic
processing because the server knows where the data are.

However, if the data access pattern does not match the partitioning, processing times
might slow. This might be due to the uneven distribution of data that can cause the
server to wait on the most heavily loaded machine.

Note: You can partition tables in non-distributed SAS LASR Analytic Server. However,
all the partitions are kept on the single machine because there is no distributed
computing environment.

Understanding Partition Keys

Partition keys in SASHDAT files and in-memory tables are constructed based on the
formatted values of the partition variables. The formatted values are derived using
internationalization and localization rules. (All formatted values in the server follow the
internationalization and localization rules.)

All observations that compare equal in the (concatenated) formatted key belong to the
same partition. This enables you to partition based on numeric variables. For example,
you can partition based on binning formats or date and time variables use date and time
formats.

A multi-variable partition still has a single value for the key. If you partition according
to three variables, the server constructs a single character key based on the three

SAS LASR Analytic Server Logging 13

variables. The formatted values of the three variables appear in the order in which the
variables were specified in the PARTITION= data set option. For example, partitioning
a table by the character variable REGION and the numeric variable DATE, where
DATE is formatted with a MONNAME3. format:

data hdfslib.sales(partition=(region date) replace=yes);
format date monname3.;
set work.sales;

run;

The partition keys might resemble EastJan, NorthJan, NorthFeb, WestMar, and so on. It
is important to remember that partition keys are created only for the variable
combinations that occur in the data. It is also important to understand that the partition
key is not a sorting of Date (formatted as MONNAMES3.) within Region. For
information about ordering, see “Ordering within Partitions” on page 13.

If the formats for the partition keys are user-defined, they are transferred to the LASR
Analytic Server when the table is loaded to memory. Be aware that if you use user-
defined formats to partition a SASHDAT file, the definition of the user-defined format is
not stored in the SASHDAT file. Only the name of the user-defined format is stored in
the SASHDAT file. When you load the SASHDAT file to a server, you need to provide
the XML definition of the user-defined format to the server. You can do this with the
FMTLIBXML= option to the LASR procedure at server start-up or with the PROC
LASR ADD request.

Ordering within Partitions

Ordering of records within a partition is implemented in the SAS Data in HDFS engine
and the SAS LASR Analytic Server. You can order within a partition by one or more
variables and the organization is hierarchical—that is ordering by A and B implies that
the levels of A vary slower than those of B (B is ordered within A).

Ordering requires partitioning. The sort order of character variables uses national
language collation and is sensitive to locale. The ordering is based on the raw values of
the order-by variables. This is in contrast to the formation of partition keys, which is
based on formatted values.

When a table that is partitioned and ordered in HDFS is loaded into memory on the
server, the partitioning and ordering is maintained. You can append to in-memory tables
that are partitioned and ordered. This does, however, require a re-ordering of the
observations after the observations are transferred to the server.

SAS LASR Analytic Server Logging

Understanding Logging

Logging is an optional feature that can be enabled when a server instance is started with
the LASR procedure. In order to conserve disk space, the default behavior for the server
is to delete log files when the server exits. You can override this behavior with the
KEEPLOG suboption to the LOGGING option when you start the server. You can also
override this behavior with a suboption to the STOP option when you stop the server.

The server writes logs files on the grid host machine. The default directory for log files
is /tmp. You can specify a different directory in the LOGGING option when you start

14 Chapter 1 < Introduction to the SAS LASR Analytic Server

What is Logged?

the server instance. The log filename is the same as server signature file with a .log
suffix (for example, LASR.924998214.28622.saslasr.log).

See Also

* LOGGING option for the LASR procedure on page 24

+ “Example 2: Starting a Server with Logging Options” on page 31
+ “Starting and Stopping Non-Distributed Servers” on page 17

When a server is started with the LOGGING option, the server opens the log file
immediately, but does not generate a log record to indicate that the server started. As
clients like SAS Visual Analytics Explorer make requests to the server for data, the
server writes a log record.

The server writes a log record when a request is received and completed by the server.
The server does not write log records for activities that do not contact the server (for
example, ending the SAS session).

A user that is configured with passwordless SSH to access the machines in the cluster,
but who is not authorized to use a server instance is denied access. The denial is logged
with the message You do not have sufficient authorization to add
tables to this LASR Analytic Server. However, if a user is not configured
correctly to access the machines in the cluster, communication with the server is
prevented by the operating system. The request does not reach the server. In this second
case, the server does not write a log record because the server does not receive the
request.

Log Record Format

The following file content shows an example of three log records. Line breaks are added
for readability. Each record is written on a single line and fields are separated by
commas. Each field is a name-value pair.

File 1.1 Sample Log File Records

ID=1,PID=28622,SASTime=1658782485.36,Time=Tue Jul 24 20:54:45 2012,User=sasdemo,
Host=grid001,LASRServer=/tmp/LASR.924998214.28622.saslasr, Port=56925,
RawCmd=action=ClassLevels name=DEPT.GRP1.PRDSALE "NlsenCoding=62",
ExeCmd=action=ClassLevels name=DEPT.GRP1.PRDSALE "NlsenCoding=62",JnlMsg=,
StatusMsg=Command successfully completed.,RunTime= 2.17

ID=2,PID=28622,SASTime=1658782593.09, Time=Tue Jul 24 20:56:33 2012,User=sasdemo,
Host=grid001,LASRServer=/tmp/LASR.924998214.28622.saslasr, Port=56925,
RawCmd=action=BoxPlot name=DEPT.GRP1.PRDSALE,

ExeCmd=action=BoxPlot name=DEPT.GRP1.PRDSALE,JnlMsg=,

StatusMsg=Command successfully completed.,RunTime= 0.12

ID=3,PID=28622,SASTime=1658825361.76,Time=Wed Jul 25 08:49:21 2012,User=sasdemo,
Host=grid001,LASRServer=/tmp/LASR.924998214.28622.saslasr, Port=56925,
RawCmd=action=APPEND TABLE ,ExeCmd=action=APPEND TABLE ,JnlMsg=,
StatusMsg=Command successfully completed.,RunTime= 0.09

Table 1.1 Log Record Fields

Field Name
ID

PID

SASTime

Time

User

Host

LASRServer

Port

RawCmd

ExeCmd

InlMsg

StatusMsg

RunTime

SAS LASR Analytic Server Logging 15

Description
specifies a unique identifier for the action.

specifies the operating system process
identifier for the server.

specifies the local time of execution in SAS
datetime format.

specifies the local time of execution as a date
and time string.

specifies the user ID that started the server.

specifies the host name of the grid host
machine.

specifies the server signature file.

specifies the network port number on which
the server listens.

specifies the request that is received by the
server.

specifies the command that the server
executes. This value can include default
substitutions or adjustments to the RawCmd
(for example, completion of variable lists).

specifies an error message that is buffered in a
journal object.

specifies the status completion message.

specifies the processing duration (in seconds).

The server uses a journal object to buffer messages that can be localized. The format for

the JnlMsg value is n-m: text.

n

is an integer that specifies the message is the nth in the journal.

m

is an integer that specifies the message severity.

text

is a text string that specifies the error.

Sample JnlMsg Values

JnlMsg=1-4:ERROR: The wvariable cl in table WORK.EMPTY must be

numeric for this analysis.

16 Chapter 1 + Introduction to the SAS LASR Analytic Server

JnlMsg=2-4:ERROR: You do not have sufficient authorization to add
tables to this LASR Analytic Server.

Chapter 2

17

Non-Distributed SAS LASR
Analytic Server

About Non-Distributed SAS LASR Analytic Server 17
Starting and Stopping Non-Distributed Servers 17
Starting SEIVETS . .« .ottt 17
SEOPPING SETVEIS . . o o\ vttt e 18
Loading and Unloading Tables for Non-Distributed Servers................ .. 19

About Non-Distributed SAS LASR Analytic Server

In a non-distributed deployment, the SAS LASR Analytic Server runs on a single
machine. All of the in-memory analytic features that are available for the distributed
deployment are also available for the non-distributed server.

One key difference has to do with reading and writing data. Because the server does not
use a distributed computing environment, the server cannot be co-located with a data
provider. The server does not read data in parallel and does not write SASHDAT files to
HDFS.

Starting and Stopping Non-Distributed Servers

Starting Servers

Non-distributed servers are started and stopped with the SAS LASR Analytic Server
engine. Starting a server requires the STARTSERVER= LIBNAME option.

To start a server:
Example Code 2.1 Starting a Non-Distributed Server

libname serverl sasiola
startserver=(B
path="c:\temp"
keeplog maxlogsize=20 ﬂ
)
host=localhost
port=10010 n
tag='hps';

18 Chapter 2

Non-Distributed SAS LASR Analytic Server

1 The STARTSERVER option indicates to start a server. For information about the
options, see “STARTSERVER =(non-distributed-server-options)” on page 70.

2 The KEEPLOG option implies the LOGGING option and prevents the server from
removing the log file when the server exits. The MAXLOGSIZE= option specifies to
use up to 20 MB for the log file before the file is rolled over.

3 The HOST= specification is optional.

4 Ifyou do not specify a PORT= value, then the server starts on a random port and sets
the LASRPORT macro variable to the network port number.

Submitting the previous LIBNAME statement from a SAS session starts a server and the
server remains running as long as the SAS session remains running. In a batch
environment where you want to start a server for client/server use by other users, follow
the LIBNAME statement with the following VASMP procedure statements:

Example Code 2.2 SERVERWAIT Statement for the VASMP Procedure

proc vasmp;
serverwait port=10010;
quit;

1 The SERVERWAIT statement causes the server to continue running and wait for a
termination request.

When non-distributed SAS LASR Analytic Server is used in a metadata environment
like SAS Visual Analytics, the SIGNER= option enables the server to enforce the
permissions that are set in metadata. The values for the HOST= and PORT= options
must match the host name and network port number that are specified for the server in
metadata.

libname serverl sasiola startserver=(path="/tmp")
host="server.example.com" port=10010 tag='hps'
signer="http://server.example.com/SASLASRAuthorization";

For information about using SAS LASR Analytic Server in a metadata environment, see
SAS Visual Analytics: Administration Guide.

Stopping Servers

Stopping a server is performed by clearing the libref that was used to start the server (if
you start the server from a SAS session and keep the session running) or with the
SERVERTERM statement.

To stop a server from the same SAS session that started it:

Example Code 2.3 Stopping a Non-Distributed Server with the LIBNAME CLEAR Option
libname serverl clear;

To stop a server from a different SAS session, use the SERVERTERM statement:

Example Code 2.4 SERVERTERM Statement for the VASMP Procedure

proc vasmp;
serverterm host="server.example.com" port=10010;
quit;

Note: Exiting the SAS session that started the server also terminates the server because
all librefs are automatically cleared at the end of a SAS session.

Loading and Unloading Tables for Non-Distributed Servers 19

Loading and Unloading Tables for Non-
Distributed Servers

Tables are loaded into memory in a non-distributed server with the SAS LASR Analytic
Server engine. A DATA step can be used. The following example demonstrates loading
the Prdsale table into memory after starting a server on port 10010.

To load a table to memory:

Example Code 2.5 Loading a Table to Memory for Non-Distributed Servers
libname serverl startserver port=10010 tag='hps';
data serverl.prdsale;

set sashelp.prdsale;

run;
You can unload a table from memory with the DATASETS procedure:
Example Code 2.6 Unloading a Table with the DATASETS Procedure

proc datasets lib=serverl;
delete prdsale;
quit;

20 Chapter2 -« Non-Distributed SAS LASR Analytic Server

Chapter 3

21

LASR Procedure

Overview: LASR Procedure 21
What Does the LASR Procedure Do? 21
Data SoUrcesot 21

Syntax: LASR Procedure 22
PROCLASR Statement e 22
PERFORMANCE Statement 27
REMOVE Statement e 29
SAVE Statement 29

Examples: LASR Procedure 30
Example 1: Starta Server. i 30
Example 2: Starting a Server with Logging Options 31
Example 3: Using the SAS Data in HDFS Engine 31
Example 4: Load a Table from Teradatato Memory 32
Example 5: Load a Table from Greenplumto Memory 33
Example 6: Unload a Table fromMemoryo, 34
Example 7: Stopping a Server.ottt 34
Example 8: Working with User-Defined Formats 35
Example 9: Working with User-Defined Formats and the

FMTLIBXML=OPtON . . . ot vttt et e 35
Example 10: Savinga Tableto HDFS ot 36

Overview: LASR Procedure

What Does the LASR Procedure Do?

Data Sources

The LASR procedure is used to start, stop, and load and unload tables from the SAS
LASR Analytic Server. The LASR procedure can also be used to save in-memory tables
to HDFS.

The LASR procedure can transfer data from any data source that SAS can read and load
it into memory on the SAS LASR Analytic Server. However, the LASR procedure can
also be used to make the server read data from a co-located data provider. The HDFS
that is part of SAS High-Performance Deployment of Hadoop provides a co-located data
provider. Some third-party vendor databases can also act as co-located data providers.

22 Chapter3 - LASR Procedure

Two examples of third-party vendor databases are the Greenplum Data Computing
Appliance (DCA) and Teradata Data Warehouse Appliance. When the data is co-located,
each machine that is used by the server instance reads the portion of the data that is
local. Because the read is local and because the machines read in parallel, very large
tables are read quickly.

In order to use a third-party vendor database as a co-located data provider, the client
machine must be configured with the native database client software and the
SAS/ACCESS Interface software for the database. The database is identified in a
LIBNAME statement. The LASR procedure then uses the SERVER= information from
the LIBNAME statement and the host name information in the PERFORMANCE
statement to determine whether the data is co-located. If the host information is the
same, then the data is read in parallel.

Syntax: LASR Procedure

PROC LASR server-options;
PERFORMANCE performance-options;
REMOVE fable-specification;

SAVE table-specification | save-options;

Statement Task Example
PROC LASR Start a server. Ex. 1
PROC LASR Start a server with logging. Ex. 2
PROC LASR Using the SAS Data in HDFS engine. Ex.3
PROC LASR Load a table from Teradata to memory Ex. 4
PROC LASR Load a table from Greenplum to memory Ex.5
REMOVE Unload a table from memory. Ex. 6
PROC LASR Stop a server. Ex. 7
PROC LASR Working with user-defined formats. Ex. 8
PROC LASR Working with user-defined formats and the Ex. 9

FMTLIBXML= option.

SAVE Save a table to HDFS. Ex. 10

PROC LASR Statement
Controls the SAS LASR Analytic Server.

PROC LASR Statement 23

Syntax
PROC LASR server-options;

Server Options
These options control how the server starts, stops, and operates with data.

ADD
specifies to load a table to the SAS LASR Analytic Server. The data to load is
identified by the DATA= option or the HDFS= option.

You can also add tables to memory with the SAS LASR Analytic Server engine. An
important difference between using the LASR procedure and the engine is that the
procedure has the ability to load data in parallel from a co-located data provider like
SAS High-Performance Deployment of Hadoop.

CONCURRENT=maximum-requests
specifies the number of concurrent requests that can execute in the server. This
option does not reject connections or requests that exceed maximum-requests. When
maximum-requests is reached, the additional requests are queued and then processed
in first-in-first-out order.

After the server is running, you can adjust this value in a SERVERPARM statement
with the VASMP procedure.

Alias NACTIONS=

Default 20

CREATE <="server-description-file">
specifies to start a server. The optional server-description-file argument specifies the
fully qualified path to a server description file. Enclose the value in quotation marks.
The fully qualified path is limited to 200 characters. The server description file is
assigned to the LASRLAST macro variable.

If you do not specify a server description file, then you can use the PORT= option to
specify the network port number. In either case, the LASRPORT macro variable is
updated with the network port number that the server uses for communication.

DATA=libref.-member-name
specifies the data to load into the SAS LASR Analytic Server.

DETAILS=TABLES | ALL
specifies the information to return. Use TABLES to retrieve the table names, NLS
encoding, row count, owner, and the table load time. The ALL value provides the
previous information and adds the MPI rank and host name for each machine in the
server.

The information always includes the performance information. This information
includes the host name for the grid host, the grid installation location, and the
number of machines in the server.

EXTERNALMEM=pct
specifies the percentage of memory that can be allocated before the server stops
transferring data to external processes such as external actions and the SAS High-
Performance Analytics procedures. If the percentage is exceeded, the server stops
transferring data.

Default 75

24 Chapter 3 + LASR Procedure

FMTLIBXML
specifies the file reference for a format stream. For more information, see “Example
8: Working with User-Defined Formats™ on page 35.

FORCE
specifies that a server should be started even if the server description file specified in
the CREATE= option already exists. The procedure attempts to stop the server
process that is described in the existing server description file and then the file is
overwritten with the details for the new server.

Restriction Use this option with the CREATE= option only.

HDFS(HDFS-options)
specifies the parameters for the SASHDAT file to load from HDFS.

Instead of specifying the HDFS option and parameters, you can use the
ADD-= option with a SAS Data in HDFS engine library.

FILE=
specifies the fully qualified path to the SASHDAT file. Enclose the value in
quotation marks. The filename is converted to lowercase and the SASHDAT file
in HDFS must be named in lowercase.

Alias PATH=

LABEL=
specifies the description to assign to the table. This value is used to override the
label that was associated with the data set before it was stored in HDFS. If this
option is not specified, then the label that was associated with the data set is used.
Enclose the value in quotation marks.

DIRECT
specifies that the data is loaded directly from HDFS into memory. This option
provides a significant performance improvement. With this option, the user
account ID that is used to start the server process is used to create the table
signature file.

Alias HADOOP=

LIFETIME=maximum-runtime<(active-time)>
specifies the duration of the server process, in seconds. If you do not specify this
option, the server runs indefinitely.

maximum-runtime
When the maximum-runtime is specified without an active-time value, the server
exits after maximum-runtime seconds.

active-time
When the maximum-runtime and active-time values are specified, the server runs
for maximum-runtime seconds and then starts a run timer with an inactivity time-
out of active-time seconds. When the server is contacted with a request, the run
timer is reset to zero. Each second that the server is unused, the run timer
increments to count the number of inactive seconds. If the run timer reaches the
active-time, the server exits.

LOGGING <(log-options)>
The log file is named lasr.log.

PROC LASR Statement 25

CLF
specifies to use the common log format for log files. This format is a
standardized text file format that is frequently analyzed by web analysis
software. Specifying this option implies the LOGGING option.

KEEPLOG
specifies to keep the log files when the server exits instead of deleting them. By
default, the log files are removed when the server exits.If you did not specify this
option when the server was started, you can specify it as an option to the STOP
option.

MAXFILESIZE=
specifies the maximum log file size, in megabytes, for a log file. When the log
file reaches the specified size, a new log file is created and named with a
sequentially assigned index number (for example, .log.1). The default value is
100 megabytes.

Do not include an MB or M suffix when you specify the size.

MAXROLLNUM=
specifies the maximum number of log files to create. When the maximum has
been reached, the server begins to overwrite existing log files. The oldest log file
is overwritten first. The default value is 10.

OSENCODING
specifies that the log file is produced with the operating system encoding of the
SAS LASR Analytic Server root node. This option is useful when the server is
run in a different encoding than the operating system, but you want a log file that
is readable in the server operating system.

PATH='"log-file-director)'
specifies the fully qualified path to the directory to use for server log files. The
default value is /tmp.

MERGELIMIT=n
specifies that when the number of unique values in a numeric GROUPBY variable
exceeds n, the variable is automatically binned and the GROUPBY structure is
determined based on the binned values of the variable, rather than the unique
formatted values.

For example, if you specify MERGELIMIT=500, any numeric GROUPBY variable
with more than 500 unique formatted values is binned. Instead of returning results
for more than 500 groups, the results are returned for the bins. You can specify the
number of bins with the MERGEBINS= option.

NOCLASS
specifies that all character variables are not to be treated implicitly as classification
variables. Without this option, all character variables are implicitly treated as
classification variables. The performance for loading tables is improved when this
option is used.

Interaction You must specify the NOCLASS option in order to use the APPEND
data set option of the SAS LASR Analytic Server engine.

PATH="signature-file-path"
specifies the directory to use for storing the server and table signature files. The
specified directory must exist on the machine that is specified in the GRIDHOST=
environment variable.

26 Chapter3 +« LASR Procedure

PORT=integer
specifies the network port number to use for communicating with the server. You
can specify a port number with the CREATE option to start a server on the specified
port.

Interaction Do not specify the PORT= option in the LASR procedure statement
with a LASRSERVER= option in the PERFORMANCE statement.

READAHEAD
specifies for the server to be more aggressive in reading memory pages during the
mapping phase when tables are loaded from HDFS. Loading the table takes more
time with this option, but the first access of the table is faster.

Engine SAS Data in HDFS engine

SERVERPERMISSIONS=mode
specifies the permission setting for accessing the server instance. The mode value is
specified as an integer value such as 755. The mode corresponds to the mode values
that are used for UNIX file access permissions.

Alias SERVERPERM=
Range 600 to 777

Interaction You can use this option with the CREATE option when you start a
server.

SIGNER="authorization-web-service-uri"
specifies the URI for the SAS LASR Authorization web service. The web service is
provided by the SAS Visual Analytics software. For more information, see SAS
Visual Analytics: Administration Guide.

Example SIGNER="https://server.example.com/SASLASR Authorization"

STOP <(stop-options)>
terminates a SAS LASR Analytic Server. The server instance is specified in the
LASRSERVER= option that identifies a server description file, or it is determined
from the LASRLAST macro variable. Once the server instance receives a request to
stop, the server does not accept new connections.

IMMEDIATE
specifies to stop the server without waiting for current requests to complete.
Without this option, termination requests are queued and can be queued behind a
long-running request.

Alias NOW

KEEPLOG
specifies to keep log files that are created with the LOGGING option.

Alias TERM

TABLEMEM-=pct
specifies the percentage of memory that can be allocated before the server rejects
requests to add tables or append data. If the percentage is exceeded, adding a table or
appending rows to tables fails. These operations continue to fail until the percentage
is reset or the memory usage on the server drops below the threshold.

PERFORMANCE Statement 27

This option has no effect for non-distributed servers. For non-distributed servers, the
memory limits can be controlled with the MEMSIZE system option.

Note: The specified pct value does not specify the percentage of memory allocated
to in-memory tables. It is the percentage of all memory used by the entire
machine that—if exceeded—prevents further addition of data to the server. The
memory used is not measured at the process or user level, it is computed for the
entire machine. In other words, if operating system processes allocate a lot of
memory, then loading tables into the server might fail. The threshold is not
affected by memory that is associated with SASHDAT tables that are loaded
from HDFS.

Alias MEMLOAD=

Default 75

TABLEPERMISSIONS=mode
specifies the permission setting for accessing a table. The mode value is specified as
an integer value such as 755. The mode corresponds to the mode values that are used
for UNIX file access permissions.

Alias TABLEPERM=
Range 600 to 777

Interaction You can use this option with the ADD option when you load a table to
memory.

VERBOSE
specifies to request additional information about starting a server or connecting to a
server in the SAS log. This information can be helpful to diagnose environment
configuration issues.

Alias GRIDMSG

PERFORMANCE Statement

The PERFORMANCE statement defines performance parameters for multithreaded and distributed
computing.

Examples: “Example 4: Load a Table from Teradata to Memory” on page 32
“Example 6: Unload a Table from Memory” on page 34

Syntax
PERFORMANCE performance-options;

Performance Statement Options

COMMIT=
specifies that periodic updates are written to the SAS log when observations are sent
from the client to the server instance. Whenever the number of observations sent
exceeds an integer multiple of the COMMIT= size, a message is written to the SAS

28 Chapter 3

LASR Procedure

log. The message indicates the actual number of observations distributed and not an
integer multiple of the COMMIT= size.

DATASERVER=
specifies the host to use for a database connection. This option is used in Teradata
deployments so that the LASR procedure compares this host name with the host
name that is specified in the SERVER= option in the LIBNAME statement. If you do
not specify the DATASERVER= option, the host to use for the database connection
is determined from the GRIDDATASERVER= environment variable.

HOST=
specifies the grid host to use for the server instance. Enclose the host name in
quotation marks. If you do not specify the HOST= option, it is determined from the
GRIDHOST= environment variable.

Alias GRIDHOST=

INSTALL=
specifies the path to the TKGrid software on the grid host. If you do not specify this
option, it is determined from the GRIDINSTALLLOC= environment variable.

Alias INSTALLOC=

LASRSERVER=
specifies the server to use. Provide the fully qualified path to the server description
file.

Alias LASR=

NODES=
specifies the number of machines in the cluster to use for the server instance. Specify
ALL to calculate the number automatically.

Alias NNODES=

Restriction This option has no effect when you use a third-party vendor database as
a co-located data provider and you specify the CREATE= and DATA=
options in the PROC LASR statement. When you use a third-party
vendor database as a co-located data provider, you must use all of the
machines to read data from the database.

NTHREADS=
specifies the number of threads for analytic computations and overrides the SAS
system option THREADS | NOTHREADS. By default, the server uses one thread for
each CPU core that is available on each machine in the cluster. Use this option to
throttle the number of CPU cores that are used on each machine.

The maximum number of concurrent threads is controlled by the SAS software
license.

Note: The SAS system options THREADS | NOTHREADS apply to the client
machine that issues the PROC LASR statement. They do not apply to the
machines in the cluster.

TIMEOUT=
specifies the time in seconds for the LASR procedure to wait for a connection to the
grid host and establish a connection back to the client. The default value is 120
seconds. If jobs are submitted through workload management tools that might
suspend access to the grid host for a longer period, you might want to increase the
value.

SAVE Statement 29

REMOVE Statement

The REMOVE statement is used to unload a table from memory.

Syntax
REMOVE table-specification;

Required Argument

table-specification
specifies the table to unload from memory. For a table that was loaded from a SAS
library, the table specification is the same libref.member-name that was used to load
the table. For a table that was loaded from HDFS, the table specification is the same
as the HDFS path to the table, but is delimited with periods (.) instead of slashes (/).
For a table that was loaded from the / directory in HDFS, the table specification is
HADOOP.TABLENAME.

SAVE Statement

The SAVE statement is used to save an in-memory table to HDFS.

Syntax

SAVE table-specification | save-options;

Required Arguments

table-specification
specifies the table that is in memory. For a table that was loaded from a SAS library
with the procedure, the table specification is the same libref.member-name that was
used to load the table. For a table that was loaded from HDFS, the table specification
is the same as the HDFS path to the table, but is delimited with periods (.) instead of
slashes (/). For a table that was loaded from the / directory in HDFS, the table
specification is HADOOP.TABLENAME.

save-options
specifies the options for saving the file in HDFS.

BLOCKSIZE=
specifies the block size to use for distributing the data set. Suffix values are B
(bytes), K (kilobytes), M (megabytes), and G (gigabytes). The default block size
is 32M.

Alias BLOCK=

COPIES=n
specifies the number of replications to make for the data set (beyond the original
blocks). The default value is 1.

30 Chapter3 - LASR Procedure

FULLPATH
specifies that the value for the PATH= option specifies the full path for the file,
including the filename.

PATH='"HDFS-path'
specifies the directory in HDFS in which to store the SASHDAT file. The value
is case sensitive. The filename for the SASHDAT file that is stored in the path is
always lowercase.

Note: 1f the PATH= option is not specified, the server attempts to save the table
in the /user/userid directory. The userid is the user ID that started the
server instance.

REPLACE
specifies that the SASHDAT file should be overwritten if it already exists.

Examples: LASR Procedure

Example 1: Start a Server

Details

This PROC LASR example demonstrates starting a server instance on network port
number 10010. Once the server instance is started, the LASRPORT macro variable in
the SAS session is set.

Program

option set=GRIDHOST="grid001l.example.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";

proc lasr create port=10010 E
path="/tmp" noclass;

performance nodes=all;

run;

Program Description

1. The GRIDHOST= and GRIDINSTALLLOC= environment variables are used to
identify the machine to connect to and the location of the SAS High-Performance
Analytics components.

2. The CREATE option is required and the PORT= option specifies the network port
number to use.

Example 3: Using the SAS Data in HDFS Engine 31

Example 2: Starting a Server with Logging Options

Details

This PROC LASR example demonstrates how to start a server instance and specify
logging options.

Program

option set=GRIDHOST="grid001l.example.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";

proc lasr
create port=10010
path="/tmp"
noclass
logging (path="/opt/logs" maxfilesize=5 keeplog clf);

performance nodes=all;

run;

Program Description

The logging statement modifies the default logging behavior. Log files are written

to /opt/logs instead of the default directory, /tmp. The log files are rolled over when
they reach five megabytes. The KEEPLOG option is used to keep the log files when the
server exits rather than delete them.

Example 3: Using the SAS Data in HDFS Engine

Details

The LASR procedure can load tables to memory from HDFS with the SAS Data in
HDEFS engine. This use is similar to using the HDFS option with the procedure, but has
the advantage that you can FORMAT statements and data set options.

Program

option set=GRIDHOST="grid001l.example.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";

libname grpl sashdat path="/dept/grpl"; Hl

proc lasr create port=10010 noclass;
performance nodes=all;

run;

proc lasr add data=grpl.sales2012 port=10010;
format predict $dollar20.
actual $dollar20.;

32 Chapter3 - LASR Procedure

run;

Program Description

1.

The GRIDHOST= and GRIDINSTALLLOC= environment variables are used by the
LASR procedure and the GRIDHOST= option is also used by the LIBNAME
statement.

The SAS Data in HDFS engine uses the GRIDHOST= environment variable to
determine the host name for the NameNode. The PATH= option is used to specify
the directory in HDFS.

The FORMAT statement is used to override the format name in HDFS for the
variable.

If the table in HDFS has variables that are associated with user-defined formats, then
you must have the user-defined formats available in the format catalog search order.

Example 4: Load a Table from Teradata to Memory

Details

This PROC LASR example demonstrates how to load a table to memory from Teradata.
The native database client for Teradata and SAS/ACCESS Interface to Teradata must be
installed and configured on the client machine.

libname tdlib teradata server="dbccopl.example.com"
database=hps user=dbc password=dbcpass;

proc lasr create port=10010
data=tdlib.sometable
path="/tmp";

performance host="tms.example.com" n
install="/opt/TKGrid"
dataserver="dbccopl.example.com";

run;

proc lasr add data=tdlib.tabletwo (label = "Table description") n
port=10010;
format revenue dollar20.2
units comma9; B
run;

Program Description

1.

The SERVER= option in the LIBNAME statement specifies the host name for the
Teradata database.

The HOST= option in the PERFORMANCE statement specifies the host name of the
Teradata Management Server (TMS).

The DATASERVER= option in the PERFORMANCE statement specifies the same
host name for the Teradata database that is used in the LIBNAME statement.

Example 5: Load a Table from Greenplum to Memory 33

4. The input data set option, LABEL=, associates the description with the data in the

server instance. This option causes a warning in the SAS log because the
SAS/ACCESS Interface to Teradata does not support data set labels.

SAS formats are applied with the FORMAT statement. Specifying the variable
formats is useful for DBMS tables because database systems do not store formats.

Example 5: Load a Table from Greenplum to Memory

Details

This PROC LASR example demonstrates how to load a table to memory from
Greenplum. The ODBC drivers and SAS/ACCESS Interface to Greenplum must be
installed and configured on the client machine.

libname gplib greenplm server="mdw.example.com"
database=hps user=dbuser password=dbpass;

proc lasr create port=10010
data=gplib.sometable
path="/tmp";

performance host="mdw.example.com" n
install = "/opt/TKGrid";

run;

proc lasr add data=gplib.tabletwo (label = "Table description")
port=10010;
format y x1-x15 5.4
dt date9.; n
run;

Program Description

1.

The SERVER= option in the LIBNAME statement specifies the host name for the
Greenplum database.

The HOST= option in the PERFORMANCE statement specifies the host name of the
Greenplum master host.

The input data set option, LABEL=, associates the description with the data in the
server instance. This option causes a warning in the SAS log because the
SAS/ACCESS Interface to Greenplum does not support data set labels.

SAS formats are applied with the FORMAT statement. Specifying the variable
formats is useful for DBMS tables because database systems do not store formats.

34 Chapter3 + LASR Procedure

Example 6: Unload a Table from Memory

Details

This PROC LASR example demonstrates how to unload tables from memory. The first
REMOVE statement applies to tables that were loaded from HDFS. The second
REMOVE statement is typical for tables that are loaded from SAS libraries.

Program

libname finance "/data/finance/2011/";

proc lasr port=10010;
remove user.sales.2011.qg4;
remove finance.trans; B}
performance host="grid001l.example.com"
install="/opt/TKGrid";

run;

Program Description
1. This REMOVE statement specifies a table that was loaded from HDFS.

2. The libref and member name for a SAS data set are specified in this REMOVE
statement example.

Example 7: Stopping a Server

Details

This PROC LASR example demonstrates stopping a server instance.

Program
option set=GRIDHOST="grid001l.example.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";

proc lasr term port=10010;

run;

Program Description

The server instance listening on port 10010 is stopped.

Example 9: Working with User-Defined Formats and the FMTLIBXML= Option 35

Example 8: Working with User-Defined Formats

Details

By default, when user-defined formats are used with the server, the LASR procedure
automatically uses these formats. The formats must be available in the format catalog
search order. You can use the FMTSEARCH= system option to specify the format
catalog search order. The LASR procedure converts the formats to an XML
representation and transfers them to the server with the data.

Program
proc format library=myfmts;
value YesNo 1="'Yes' 0='No"';
value checkThis 1='ThisisOne' 2='ThisisTwo';
value $cityChar 1='Portage' 2="'Kinston';

run;
options fmtsearch=(myfmts) ;

proc lasr add data=orsdm.profit company product year port=10010;
format city S$cityChar.; ﬂ

performance host="grid001l.example.com"
install="/opt/TKGrid"
nodes=ALL;

run;

Program Description

1. The user-defined formats are available to the LASR procedure because they are
added to the format catalog search order.

2. When the $cityChar. format is applied to the city variable, the LASR procedure
converts the formats to XML, and transfers the format information and the data to
the server.

Example 9: Working with User-Defined Formats and the FMTLIBXML=
Option

Details

As explained in the previous example, the LASR procedure can use any format so long
as the format is in the format catalog search order. The procedure automatically converts
the format information to XML and transfers it to the server with the data. However, if
the same formats are used many times, it is more efficient to convert the formats to XML
manually and use the FMTLIBXML= option.

You can use the FORMAT procedure to write formats to an XML fileref. Then, you can
reference the fileref in the FMTLIBXML= option each time you use the LASR

36 Chapter3 + LASR Procedure

procedure to load tables. This improves performance because the conversion to XML
occurs once rather than each time LASR procedure transfers the data.

Formats are created with the FORMAT procedure. The following SAS statements show
a simple example of creating a format and using the XML fileref in the LASR
procedure.

Program

proc format library=gendrfmt;
value $gender 'M'="'Male'" 'F'='Female';
run;

options fmtsearch=(gendrfmt) ;

filename fmtxml 'genderfmt.xml';
libname fmtxml XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;

proc format library=gendrfmt cntlout=fmtxml.allfmts; n
run;

proc lasr add data=sashelp.class fmtlibxml=fmtxml;
format sex $gender.; n

performance host="grid001l.example.com"
install="/opt/TKGrid"
nodes=ALL;
run;

Program Description

1. The user-defined formats are available to the LASR procedure because they are
added to the format catalog search order.

2. An XML stream for the formats in the file genderfmt.xml is associated with the file
reference fmtxml. The formats are converted to XML and stored in the file.

3. The file reference fmtxml is used with the FMTLIBXML= option in the PROC
LASR statement. For subsequent uses of the LASR procedure, using the
FMTLIBXML= option to reference the fileref is efficient because the formats are
already converted to XML.

4. The $gender. format information is transferred to the server in an XML stream and
associated with the variable that is named sex. However, the format must be
available to the SAS session that runs the LASR procedure.

Example 10: Saving a Table to HDFS

Details

The server can save in-memory tables to HDFS. Use the SAVE statement to provide a
table specification and the save options.

option set=GRIDHOST="grid001l.example.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";

Example 10: Saving a Table to HDFS 37

proc lasr port=10010;
save sales.sales2012 / path="/dept/grpl/" copies=1 blocksize=32m;
save sales.avg2012 / fullpath path="/dept/grpl/avg/y2012" copies=1; H
run;

Program Description
1. The table that is named sales2012 is saved to HDFS as /dept/grp1/sales2012.sashdat.

2. The table that is named avg2012 is saved to HDFS as /dept/grp1/avg/y2012.sashdat.
The FULLPATH option is used to rename the file.

38 Chapter3 - LASR Procedure

39

Chapter 4
VASMP Procedure

Overview: VASMP Procedure i, 39
What Does the VASMP Procedure Do? 39
Syntax: VASMP Procedure 39
PROC VASMP Statementttt 40
QUIT Statementot e e e e 40
SERVERINFO Statement e 41
SERVERPARM Statement i, 41
SERVERTERM Statement 42
SERVERWAIT Statementt 43
TABLEINFO Statementot ans 43
Example: Copying Tables from One Hadoop Installation to Another 44

Overview: VASMP Procedure

What Does the VASMP Procedure Do?

The VASMP procedure is used to list in-memory tables and perform administration of
Non-distributed SAS LASR Analytic Server instances.

Syntax: VASMP Procedure

PROC VASMP <options>;
QUIT;
SERVERINFO <option>;
SERVERPARM <option>;
SERVERTERM <options>;
SERVERWAIT <options>;
TABLEINFO </ options>;

40 Chapter4 « VASMP Procedure

PROC VASMP Statement
in a SAS LASR Analytic Server instance.

Syntax
PROC VASMP <options>;

Optional Arguments

DATA=libref.member-name
specifies the table to access from memory. The libref must be assigned from a SAS
LASR Analytic Server engine LIBNAME statement.

IMMEDIATE
specifies that the procedure executes one statement at a time rather than
accumulating statements in RUN blocks.

Alias SINGLESTEP

NOPRINT
This option suppresses the generation of ODS tables and other printed output in the
VASMP procedure.

NOTIMINGMSG
When an action completes successfully, the VASMP procedure generates a SAS log
message that contains the execution time of the request. Specify this option to
suppress the message.

Alias NOTIME

QUIT Statement

The QUIT statement is used to end the procedure execution. When the procedure reaches the QUIT
statement, all resources allocated by the procedure are released. You can no longer execute procedure
statements without invoking the procedure again. However, the connection to the server is not lost,
because that connection was made through the SAS LASR Analytic Server engine. As a result, any
subsequent invocation of the procedure that uses the same libref executes almost instantaneously
because the engine is already connected to the server.

Interaction: Using a DATA step or another procedure step is equivalent to issuing a QUIT
statement. If there is an error during the procedure execution, it is also equivalent to
issuing a QUIT statement.

Syntax
QUIT;

SERVERPARM Statement 41

SERVERINFO Statement
The SERVERINFO statement returns information about the SAS LASR Analytic Server.

Syntax
SERVERINFO </ option>;

SERVERINFO Statement Options

HOST="host-name"
specifies the host name for the SAS LASR Analytic Server. Use this option with the
PORT= option.

NORANKS
specifies to omit the list of host names for the worker nodes. This option reduces the
output of the SERVERINFO option considerably for large environments.

PORT=number
specifies the port number for the SAS LASR Analytic Server. If you do not specify a
PORT= value, then behavior of the SERVERINFO statement depends on whether an
in-memory table is active. If there is no active table, then the procedure attempts to
connect to the server using the LASRPORT macro variable. If a table is active, the
information is gathered for the server that is implied by the libref of the active table.

SERVERPARM Statement

The SERVERPARM statement enables you to change some global settings for the server if you have
sufficient authorization. The user account that starts the server has privileges to modify server parameters.

Syntax
SERVERPARM <options>;

SERVERPARM Statement Options

CONCURRENT=number
specifies the number of concurrent requests that can execute in the server. Once the
threshold is met, the requests are queued and then executed as the currently running
requests complete.

Alias NACTIONS=

Default 20

EXTERNALMEM-=pct
specifies the percentage of memory that can be allocated before the server stops
transferring data to external processes such as external actions and the SAS High-
Performance Analytics procedures. If the percentage is exceeded, the server stops
transferring data.

42 Chapter 4

VASMP Procedure

Default 75

HADOOPHOME="path"

specifies the path for the HADOOP_ HOME environment variable. Changing this
variable is useful for migrating SASHDAT files from one Hadoop installation to
another.

Setting the HADOOP_HOME environment variable is a server-wide change. All
requests, by all users, for reading files from HDFS and saving files, use the specified
HADOOP_HOME. This can cause unexpected results if users are not aware of the
change.

Note: 1f you are using this option to migrate SASHDAT files, then consider starting
a server for that exclusive purpose.

Alias HADOOP=

HOST="host-name"

specifies the host name for the SAS LASR Analytic Server. Use this option with the
PORT= option.

PORT=number

specifies the port number for the SAS LASR Analytic Server. If you do not specify a
PORT= value, then behavior of the SERVERPARM statement depends on whether
an in-memory table is active. If there is no active table, then the procedure attempts
to connect to the server using the LASRPORT macro variable. If a table is active, the
information is gathered for the server that is implied by the libref of the active table.

TABLEMEM=pct

specifies the percentage of memory that can be allocated before the server rejects
requests to add tables or append data. If the percentage is exceeded, adding a table or
appending rows to tables fails. These operations continue to fail until the percentage
is reset or the memory usage on the server drops below the threshold.

This option has no effect for non-distributed servers. For non-distributed servers, the
memory limits can be controlled with the MEMSIZE system option.

Note: The specified pct value does not specify the percentage of memory allocated
to in-memory tables. It is the percentage of all memory used by the entire
machine that—if exceeded—prevents further addition of data to the server. The
memory used is not measured at the process or user level, it is computed for the
entire machine. In other words, if operating system processes allocate a lot of
memory, then loading tables into the server might fail. The threshold is not
affected by memory that is associated with SASHDAT tables that are loaded
from HDFS.

Alias MEMLOAD=

Default 75

SERVERTERM Statement

The SERVERTERM statement sends a termination request to the server that is identified through the
statement options. You must have sufficient authorization for this request to succeed.

TABLEINFO Statement 43

Syntax
SERVERTERM <options>;

SERVERTERM Statement Options

HOST="host-name"
specifies the host name for the SAS LASR Analytic Server. Use this option with the
PORT= option.

PORT=number
specifies the port number for the SAS LASR Analytic Server.

SERVERWAIT Statement

The SERVERWAIT statement suspends execution of the VASMP procedure until the server that it uses
receives a termination request. This is useful for starting a non-distributed server from a batch program.
This statement suspends the SAS session in which it is executed until the server stops or until an interrupt
signal is received.

Syntax
SERVERWAIT <options>;

SERVERWAIT Statement Options

HOST="host-name"
specifies the host name for the SAS LASR Analytic Server. Use this option with the
PORT= option.

PORT=number
specifies the port number for the SAS LASR Analytic Server.

TABLEINFO Statement

The TABLEINFO statement is used to return information about an in-memory table. This information
includes the table name, label, number of rows and column, owner, encoding, and the time of table
creation. If no table is in use, then information is returned for the in-memory tables for the server specified
in the HOST= and PORT= options.

Syntax
TABLEINFO </ options>,

TABLEINFO Statement Options

HOST="host-name"
specifies the host name for the SAS LASR Analytic Server. Use this option with the
PORT= option.

44 Chapter 4

VASMP Procedure

PORT=number
specifies the port number for the SAS LASR Analytic Server. If you do not specify a
PORT= value, then behavior of the TABLEINFO statement depends on whether an
in-memory table is active. If there is no active table, then the procedure attempts to
connect to the server using the LASRPORT macro variable. If a table is active, the
information is gathered for the server that is implied by the libref of the active table.

Example: Copying Tables from One Hadoop
Installation to Another

Details

This example does not apply to Non-distributed SAS LASR Analytic Server. It might be
necessary to work with more than one Hadoop installation so that you can copy
SASHDAT files from one Hadoop installation to a newer version. The SAS LASR
Analytic Server must be co-located with both Hadoop installations and both versions of
Hadoop must be running.

Note: Using the HADOOPHOME-= option to switch between Hadoop installations is a
server-wide change. If users access the server while the setting is being switched,
they might accidentally access the older Hadoop installation. Consider starting a
server for the exclusive use of copying files.

Program

proc lasr create port=12636 serverpermissions=700;
performance host="grid001l.example.com" install="/opt/TKGrid" nodes=all;

run;
libname private sasiola host="grid00l.example.com" port=12636 tag='hps';
data private.iris; set sashelp.iris; run; /* a table must be active */

proc VASMP data=private.iris; E
serverparm hadoophome="/olderhadoop/path";
quit;

proc lasr add hdfs (path="/dept/sales/y2011" direct) port=12636; [
performance host="grid001l.example.com";

run;

proc VASMP data=private.y2011(tag="dept.sales"); B
serverparm hadoophome="/newerhadoop/path"; E
run;
save path="/dept/sales/";
quit;

Program Description

1. Starting a server with SERVERPERMISSIONS=700 creates a single-user server.
This is not required but can be used to prevent users from accessing the server while
the HADOOP_HOME value is changed and accidentally accessing older or incorrect
data.

Example: Copying Tables from One Hadoop Installation to Another 45

. You must have an active table. You can specify an active table with the DATA=
option. Any table, such as the Iris data set can be used.

. Use the SERVERPARM statement to specify the path to the older Hadoop
installation with the HADOOPHOME-= option. Specify the same path that is
returned for the HADOOP_ HOME environment variable for the older installation.
Example: /hadoop/hadoop-0.21.

. You must specify the DIRECT option. This statement loads table y2011 into
memory from the /dept/sales directory in HDFS.

. The TAG= option must be used to specify the in-memory table. The server tag
matches the HDFS path to the table, but the slashes are replaced with periods (.). If
the table was loaded from /, then specify TAG=HADOOP.

. Use the SERVERPARM statement to specify the path to the newer Hadoop
installation. Example: /hadoop-0.23/hadoop-0.23.1.

. The SAVE statement writes the y2011 table to HDFS in the /dept/sales directory.
The HDFS directory is in the newer Hadoop installation.

46 Chapter4 +« VASMP Procedure

Chapter 5

47

OLIPHANT Procedure

Overview: OLIPHANT Procedure 47
What about the SAS Data in HDFS Engine? 47
What Does the OLIPHANT Procedure Do? it 47
Understanding How SAS LASR Analytic Server Usess HDFS 48

Concepts: OLIPHANT Procedure 48
Adding BigData e 48
Adding Small Data 48

Syntax: OLIPHANT Procedure iiu... 49
PROC OLIPHANT Statemento.vtt ittt 49
ADD Statement 50
REMOVE Statement e 51
DETAILS Statementot e e 51

Examples: OLIPHANT Procedure 52
Example 1: Adding and Removing Filesin HDFS 52
Example 2: Querying File Details from HDFS 53

Overview: OLIPHANT Procedure

What about the SAS Data in HDFS Engine?

The SAS Data in HDFS engine replaces the functionality provided by the OLIPHANT
procedure. For more information, see “Using the SAS Data in HDFS Engine” on page
81.

What Does the OLIPHANT Procedure Do?

The OLIPHANT procedure is used to add, delete, and manage SASHDAT files that are
stored in the Hadoop Distributed File System (HDFS). The procedure is used to add data
sets from SAS libraries into HDFS. Once the data is in HDFS, it is stored as a
SASHDAT file. The filename for the SASHDAT file is always lowercase. The
procedure is also used to remove SASHDAT files from HDEFS. For the data in
SASHDAT files, the procedure can provide information about the data such as file size,
block size, column count, row count, and so on.

48 Chapter5 « OLIPHANT Procedure

Understanding How SAS LASR Analytic Server Uses HDFS

The SAS LASR Analytic Server reads data in parallel from the SASHDAT files that are
added to HDFS.

Concepts: OLIPHANT Procedure

Adding Big Data

The best performance for reading data into memory on the SAS LASR Analytic Server
occurs when the server is co-located with the distributed data and the data is distributed
evenly. The OLIPHANT procedure distributes the data such that parallel read
performance by the SAS LASR Analytic Server is maximized. In addition, the
distribution also ensures an even workload for query activity performed by the SAS
LASR Analytic Server.

In order to produce an even distribution of data, it is important to understand that
Hadoop stores data in blocks and that any block that contains data occupies the full size
of the block on disk. The default block size is 32 megabytes and blocks are padded to
reach the block size after the data is written. The data is distributed among the machines
in the cluster in round-robin fashion. In order to maximize disk space, you can specify a
block size that minimizes the padding.

It is important to know the size of the input data set such as the row count and the length
of a row. This information, along with the number of machines in the cluster, can be
used to set a block size that distributes the blocks evenly on the machines in the cluster
and uses the space in the blocks efficiently.

For example, if the input data set is approximately 25 million rows with a row length of
1300 bytes, then the data set is approximately 30 gigabytes. If the hardware is a cluster
of 16 machines, with 15 used to provide HDFS storage, then storing 2 gigabytes on each
machine is optimal. In this case, a BLOCKSIZE= setting of 32 megabytes or 64
megabytes would fill the overwhelming majority of blocks with data and reduce the
space that is wasted by padding.

Adding Small Data

If the amount of data to add is not very large, then distributing it evenly can lead to poor
block space utilization because at least one block is used on each machine in the cluster.
However, the blocks might be mostly padding and contain little data. In these cases, the
INNAMEONLY option can be used. This option sends the data to the Hadoop
NameNode only. The blocks are distributed according to the default strategy used by
Hadoop. The distribution is likely to be unbalanced, but the performance is not reduced
because the data set is not large.

PROC OLIPHANT Statement 49

Syntax: OLIPHANT Procedure

PROC OLIPHANT HOST=root-node INSTALL="grid-install-path’
<PATH='"HDFS-path> <LOGUPDATE> <INNAMEONLY>;

ADD libref.member-name PATH="HDFS-path'<BLOCKSIZE=size><COPIES=n>
<REPLACE>;

REMOVE SASHDAT-file PATH='"HDFS-path',

DETAILS PATH="HDFS-path' <FILE=SASHDAT-file>
<ALL | COLUMN | RECURSIVE | ROWCOUNT>;

Statement Task Example
ADD Add a data set. Ex. 1
REMOVE Remove a data set. Ex. 1
DETAILS Query data set metadata. Ex.2

PROC OLIPHANT Statement
Enables adding, removing, and managing SASHDAT files in Hadoop Distributed File System (HDFS).

Syntax

PROC OLIPHANT HOST=root-node INSTALL="grid-install-path'
<PATH='HDFS-path'™> <LOGUPDATE> <INNAMEONLY>

Required Arguments

HOST=
specifies the host name or IP address of the grid host. This is the machine that is
running the Hadoop NameNode that is provided by SAS High-Performance
Deployment of Hadoop. If you do not specify the HOST= option, it is determined
from the GRIDHOST= environment variable.

Alias NAMENODE=

INSTALL=
specifies the path to the TKGrid software on the grid host. If you do not specify this
option, it is determined from the GRIDINSTALLLOC= environment variable.

Alias INSTALLLOC=

50 Chapter5 + OLIPHANT Procedure

Oliphant Options

PATH=
specifies the directory in HDFS to use. This value can be overridden with a PATH=
option on an ADD, REMOVE, or DETAILS statement.

Alias OUTDIR=

LOGUPDATE
provides progress messages in the SAS log about the data transfer to the grid host.
The data transfer size is not necessarily the same as the block size that is used to
form blocks in HDFS. The data transfer size is selected to optimize network
throughput.

Alias LOGNOTE

INNAMEONLY
specifies that data identified in an ADD statement should be sent as a single block to
the Hadoop NameNode for distribution. This option is appropriate for smaller data
sets.

Restriction The BLOCKSIZE= option is ignored.

ADD Statement
Adds a data set to HDFS as a SASHDAT file.
Example: “Example 1: Adding and Removing Files in HDFS” on page 52

Syntax

ADD libref. member-name <add-statement-options>;

Add Statement Options

BLOCKSIZE=
specifies the block size to use for distributing the data set. Suffix values are B
(bytes), K (kilobytes), M (megabytes), and G (gigabytes). The default block size is
32M.

Alias BLOCK=

COPIES=
specifies the number of replications to make for the data set (beyond the original
blocks). The default value is 2 when the INNAMEONLY option is specified and
otherwise is 1. Replicated blocks are used to provide fault tolerance for HDFS. If a
machine in the cluster becomes unavailable, then the blocks needed for the
SASHDAT file can be retrieved from replications on other machines.

Alias COPY=

(input-data-set-options)
specifies any data set options to apply to the input data set.

DETAILS Statement 51

Typically, you specify a description for the data set with the LABEL~= option. The
LABEL= option assigns the description to the SASHDAT file when the data set is
stored in HDFS. The LABEL= option is used to override the label that is associated
with the data set. Enclose the options in parentheses.

PATH="HDFS-path'
specifies the directory in HDFS in which to store the SASHDAT file. The value is
case sensitive. The filename for the SASHDAT file that is stored in the path is
always lowercase.

Alias OUTDIR=

REPLACE
specifies that the SASHDAT file should be overwritten if it already exists.

Alias OVERWRITE

VARS=(<variables>)
specifies the variables from the input data set to include in the SASHDAT file that is
stored to HDFS. The default action is to include all the variables from the input data
set.

REMOVE Statement
Removes a SASHDAT file from HDFS.
Example: “Example 1: Adding and Removing Files in HDFS” on page 52

Syntax
REMOVE SASHDAT-file PATH="HDFS-path';

Required Arguments

SASHDAT-file
specifies the name of the file to remove. Do not specify a fully qualified HDFS path.
Do not enclose the value in quotation marks. Do not include the SASHDAT filename
suffix. The name is converted to lowercase and the filename of the SASHDAT file in
HDFS must also be in lowercase.

PATH='"HDFS-path'
specifies the HDFS directory.

Alias OUTDIR=

DETAILS Statement
Queries information about the data in a SASHDAT file.
Example: “Example 2: Querying File Details from HDFS” on page 53

52 Chapter 5

OLIPHANT Procedure

Syntax

DETAILS <details-statement-options>;

Details Statement Options

ALL
includes the number of rows for each SASHDAT file in the SAS output.

Alias ALLFILES

COLUMN
includes the column attributes for the specified SASHDAT file in the SAS output.

Alias COLUMNINFO

FILE=SASHDAT-file
specifies the name of the SASHDAT file to use. Do not specify a fully qualified
HDFS path. Do not enclose the value in quotation marks. Do not include the
SASHDAT filename suffix. The name is converted to lowercase and the filename of
the SASHDAT file in HDFS must also be in lowercase.

Alias TABLE=

PATH='HDFS-path'
specify the fully qualified HDFS directory name.

Alias OUTDIR=

RECURSIVE
when FILE= is not specified, the details are reported for all SASHDAT files that are
found in the path and child directories.

ROWCOUNT
includes the number of observations in the specified SASHDAT file.

Examples: OLIPHANT Procedure

Example 1: Adding and Removing Files in HDFS

Details
This PROC OLIPHANT example demonstrates adding and removing data sets to HDFS.

One data set is added and a different SASHDAT file is removed.

Program

libname hrdata "/data/hr/2011";

proc oliphant host="grid001l.example.com" install="/opt/TKGrid";

Example 2: Querying File Details from HDFS 53

add hrdata.emps blocksize=16M path="/sasdata/2011/" replace; ﬂ

add (label='Bonuses for 2011') hrdata.bonus path="/sasdata/2011";
remove salary path="/sasdata/2011"; n

run;

Program Description

1.

The PROC OLIPHANT statement uses the HOST= and INSTALL= options to
identify the SAS High-Performance Deployment of Hadoop cluster to use.

The ADD statement copies the EMPS data set to the HDFS path. The data set is
distributed in blocks of 16 megabytes each. If an emps.sashdat file for the EMPS
data set already exists, it is replaced.

This ADD statement includes a LABEL= option for the input data set.
The REMOVE statement deletes the salary.sashdat file from the HDFS path.

Example 2: Querying File Details from HDFS

Details

This PROC OLIPHANT example demonstrates how to query the details of SASHDAT
files.

Program

proc oliphant host="grid001l.example.com" install="/opt/TKGrid";
details path="/sasdata/2011/" recursive; ﬂ

details file=emps path="/sasdata/2011/" column;

run;

Program Description

1.

The PROC OLIPHANT statement uses the HOST= and INSTALL= options to
identify the SAS High-Performance Deployment of Hadoop to use.

The table information details for all SASHDAT files in the /sasdata/2011 directory
and any subdirectories are displayed.

The column information for the emps.sashdat file is displayed.

54 Chapter5 + OLIPHANT Procedure

55

Chapter 6
HPDS2 Procedure

Overview: HPDS2 Procedure, 55
What Does the HPDS2 Procedure Do? oo, 55
HPDS2 Procedure Featuresttt 56
Client and Cluster Execution Modes 56

Parallel Execution of DS2 Code 57

Limitations e 57
DS2 Packages . . . oot 57
PERFORMANCE Statement Optionsovutitn .. 57
DataInputand Outputt 58
Data Types and Declarations it 58
Error Messageso vv i e 58

Syntax: HPDS2 Procedure 59
PROC HPDS2 Statementou i i 59
DATA Statement Statementttt e 60
ENDDATA Statement Statemento .ttt 60
PERFORMANCE Statementoout ittt 60
QUIT Statement Statement i 61
RUN Statement Statement 62
RUN CANCEL Statementottt e e 62

Examples: HPDS2 Procedure 62
Example 1: Distribute Data to Greenplum 62
Example 2: Distribute Datato Teradata, 63

Overview: HPDS2 Procedure

What Does the HPDS2 Procedure Do?

The HPDS2 procedure enables you to submit DS2 language statements from a SAS
session to a SAS High-Performance Analytics cluster for parallel execution. The
procedure verifies the syntactic correctness of the DS2 source on the client machine
before it submits the source to the cluster for execution. The data that is created by the
DS2 DATA statement can be generated in either of the following ways: it can be written
in parallel to the cluster data store or it can be returned to the client machine and directed
to any data store that is supported by SAS.

56 Chapter 6

HPDS2 Procedure

The syntax of DS2 is similar to that of the DATA step, but it does not include several
key statements such as INPUT and MERGE. In addition, when you use DS2 in a SAS
High-Performance Analytics environment, the SET statement of the DS2 procedure is
limited to a single input stream. The use of BY processing within the SET statement is
also not supported. Therefore, many of the traditional DATA step data preparation
features are not available in the HPDS2 procedure. The procedure is most useful when
significant amounts of computationally intensive, row-independent logic must be applied
to the data. The DSTRANS procedure converts a DATA step to DS2 and in the process
identifies DATA step syntax that is not compatible with PROC HPDS2.

For more information about the DSTRANS procedure and the DS2 language, see the
SAS DS2 Language Reference. This document is available at http://
support.sas.com/documentation/solutions/ds2/DS2Ref.pdf.

HPDS2 Procedure Features

The HPDS2 procedure enables the parallel execution of DS2 code in a distributed
computing environment. The following list summarizes the basic features of the HPDS2
procedure:

» provides the ability to execute DS2 code in parallel

» enables DS2 code to be executed on a local client machine or on the SAS High-
Performance Analytics cluster

» enables control of the level of parallelism per execution node and the number of
machines to use

» performs a syntax check of the DS2 code on the client machine before sending it to
the cluster for execution

* manages data transfer to the location of execution and the transfer back to the client
machine as needed

Client and Cluster Execution Modes

The HPDS2 procedure controls the execution of DS2 code in two ways. You can control
both the number of threads for each machine and also the number of machines to use.
The threading provided by the HPDS2 procedure operates outside the syntax of the
language. This is in contrast to the THREADS PACKAGE DS2 syntax, which provides
single-machine scalability as part of the DS2 syntax.

Alternatively, the HPDS2 procedure can be executed on the SAS High-Performance
Analytics cluster. In this case, one or more copies of the DS2 program are executed in
parallel on each machine in the cluster.

Execution has two variations in a cluster environment:

* In the client-data (local-data) model of execution, the input data is not stored on the
SAS High-Performance Analytics cluster. The data is distributed to the cluster
during the execution of the HPDS2 procedure.

* In the co-located data provider model of execution, the data source is the database on
the cluster. The data is stored in the distributed database, and the DS2 program that is
running on each machine can read and write the data in parallel during the execution
of the procedure. Instead of data being transferred across the network and possibly
back to the client machine, data is passed locally between the processes on each
machine of the cluster. In general, especially with large data sets, you can achieve
the best HPDS2 performance if execution is with a co-located data provider.

http://support.sas.com/documentation/solutions/ds2/DS2Ref.pdf
http://support.sas.com/documentation/solutions/ds2/DS2Ref.pdf

Limitations 57

By default, the number of instances of the DS2 program that are executed in parallel on a
given machine (that is, on a client machine or on a cluster machine) is determined by the
HPDS?2 procedure, based on the number of CPUs (cores) that are available on the
machine. The default is to execute one instance of the DS2 program in one dedicated
thread for each CPU. You can change the default with the NTHREADS= option in the
PERFORMANCE statement. For example, if NTHREADS=n is specified, then the
HPDS?2 procedure runs 7 instances of the DS2 program in parallel on each machine.

Parallel Execution of DS2 Code

An important characteristic of multithreaded or distributed applications is that they
might produce nondeterministic or unpredictable results. The behavior of a DS2 program
running in parallel is influenced by a number of factors: the pattern of data distribution
that is used, the execution mode that is chosen, the number of compute nodes and
threads that are used, and so on. The HPDS2 procedure does not determine whether the
DS2 code that is submitted produces meaningful and reproducible results. The procedure
executes the DS2 code that is provided on each of the units of work, whether these units
are multiple threads on a single machine or multiple threads on separate machines. Each
instance of the DS2 program operates on a subset of the data. The results that each unit
of work produces are then gathered, without further aggregation, into the output data set.

Because the DS2 code instances are executed in parallel, you must consider the DS2
language elements that are included in the DS2 code block of an HPDS2 procedure. Not
all DS2 language elements can be meaningfully used in multithreaded or distributed
applications. For example, lagging or retaining of variables can imply the ordering of
observations. A deterministic order of observations does not exist in distributed
applications, and enforcing data order might have a negative impact on performance.

You can achieve optimal performance when the input data is stored in the distributed
database and the SAS High-Performance Analytics software is installed on the same
machines. With the data distributed in this manner, the different instances of the DS2
code running on the machines can read the input data and write the output data in
parallel from the local database management system (DBMS).

Limitations

DS2 Packages

DS2 packages are collections of variables and methods that can be used in DS2
programs and threads. The HPDS2 procedure does not support DS2 packages. Use of the
PACKAGE and ENDPACKAGE constructs within an HPDS2 procedure results in an
error. Similarly, you cannot reference existing packages within an HPDS2 procedure.

PERFORMANCE Statement Options

The maximum allowed value for the CPCUCOUNT= option in the PERFORMANCE
statement is 256. However, setting CPUCOUNT= to high values, including values that
substantially exceed the actual number of available CPUs, can result in unpredictable
errors. These errors might include DS2 program instances that unexpectedly produce no

58 Chapter6 - HPDS2 Procedure

observations in the output data set. Specifying CPUCOUNT=ACTUAL sets
CPUCOUNT to the number of physical processors that are available.

Setting the NTHREADS= option in the PERFORMANCE statement to very high values
can cause out-of-memory errors. For example, errors have been generated when
NTHREADS=100.

Data Input and Output

If an input data set is specified, then you must include a SET DS2GTF.in statement in
the METHOD RUN() statement. If either the SET DS2GTF.in or the SET DS2GTF.out
driver reference is missing, then the SAS session stops responding. The following list
identifies some additional I/O limitations for the HPDS2 procedure:

* BY groups within the SET statement are not supported.

* Nested SQL within the SET statement is not supported.

* The OVERWRITE= option is not supported.

» The PUT statement does not write any data to the client log.

* Dropping the only variable in a one-variable input data set might cause SAS to stop
responding or might result in an exception.

Data Types and Declarations

The following list identifies the limitations to the HPDS2 procedure for data types and
declarations:

* The REAL, TINYINT, NCHAR, TIMESTAMP, DATE, and TIME data types are
not supported. If you declare any of these data types within an HPDS2 procedure,
then an error is displayed.

» User-defined formats are not supported.

* Formats, informats, and labels that are specified in the HAVING clause of a
DECLARE statement are ignored.

* Delimited identifiers (for example, dcl double "a%& b") are not supported.

» No warning or error messages are generated when assignments that involve out-of-
bounds arrays are used.

Error Messages

Incorrect source line numbers are reported when there is an error in an HPDS2
procedure. In addition, the order of error messages that are displayed is reversed for
PROC HPDS2 from the order of error messages that is generated for DS2.

PROC HPDS?2 Statement 59

Syntax: HPDS2 Procedure

PROC HPDS?2 options;
PERFORMANCE performance-options;
DATA DS2GTF.out;
DS2 statements;
METHOD RUN();
SET DS2GTF.in;

END;

ENDDATA;

RUN;

RUN CANCEL;

QUIT;

Statement Task

PROC HPDS2 Distribute data to Greenplum.

PROC HPDS2 Distribute data to Teradata.

Example
Ex. 1

Ex.2

PROC HPDS2 Statement
The PROC HPDS2 statement invokes the procedure.

Syntax
PROC HPDS2 hpds2-options;

HPDS2 Statement Options

These options control the input data and output data for the procedure.

DATA=libref.member-name

specifies the SAS data set or database table to be used by PROC HPDS2. If this
option is not specified, then the default value is the most recently created data set.

Alias [N=

OUTPUT=libref-member-name

specifies the SAS data set or database table to create with the HPDS2 procedure.

Alias OUT=

60 Chapter6 - HPDS2 Procedure

DATA Statement Statement

The DATA statement indicates the beginning of the DS2 code block. The code block terminates with the
ENDDATA statement.

Syntax
DATA DS2GTF.out;

Details

You must include a reference to the DS2 Grid Table Function driver (DS2GTF.out) as
part of the DATA statement. If you specify an input data set in the PROC HPDS2
statement, then you should include a RUN() method in the DS2 code block. The first
statement after the METHOD RUN() statement must be the SET DS2GTF.in statement
for this case. DS2GTF.out and DS2GTF.in refer to the input and output data sets,
respectively.

ENDDATA Statement Statement

The DATA statement indicates the beginning of the DS2 code block. The code block terminates with the
ENDDATA statement.

Syntax
ENDDATA;

Details

The ENDDATA statement terminates the DS2 code block. The statements between the
DATA and ENDDATA statement are submitted to the cluster for execution. Specify the
DS2 run, init, and term methods between the DATA and ENDDATA statements.

PERFORMANCE Statement

The PERFORMANCE statement defines performance parameters for multithreaded and distributed
computing. It also passes variables about the distributed computing environment, and requests detailed
results about the performance characteristics of a SAS High-Performance Analytics procedure.

Syntax
PERFORMANCE performance-options;

Performance Statement Options

You must understand the difference between the NODES= and NTHREADS= options to
use these options effectively. The NODES= option specifies the number of separate
machines in the cluster to use for executing the DS2 code. The NTHREADS= option
specifies how many independent instances of the DS2 program to run in parallel on each

QUIT Statement Statement 61

machine. If the data is located on the cluster, then specify NODES=ALL. Setting
NODES=0 causes the DS2 code to execute on the client machine only. Setting the
NTHREADS= option to a value that is greater than the CPU count on each machine is
not likely to improve overall throughput.

COMMIT=
specifies that periodic updates are written to the SAS log when observations are sent
from the client to the server instance. Whenever the number of observations sent
exceeds an integer multiple of the COMMIT= size, a message is written to the SAS
log. The message indicates the actual number of observations that were distributed
and not an integer multiple of the COMMIT= size.

HOST=
specifies the name of the appliance host in single quotation marks or double
quotation marks. If the HOST= option is specified, it overrides the value of the
GRIDHOST environment variable. For Greenplum deployments, specify the host
name of the master host.

Alias GRIDHOST=

INSTALL=
specifies the path to the TKGrid software on the grid host. If you do not specify this
option, it is determined from the GRIDINSTALLLOC= environment variable.

Alias INSTALLOC=

NODES=
specifies the number of machines in the cluster to use for the server instance. Specify
ALL to calculate the number automatically.

Alias NNODES=

NTHREADS=
specifies the number of threads for analytic computations and overrides the SAS
system options THREADS | NOTHREADS. By default, the server uses one thread
for each CPU core that is available on each machine in the cluster. Use this option to
throttle the number of CPU cores that are used on each machine.

Note: The SAS system options THREADS | NOTHREADS apply to the client
machine that issues the procedure statement. They do not apply to the machines
in the cluster.

TIMEOUT=
specifies the time, in seconds, for the procedure to wait for a connection to the grid
host and to establish a connection back to the client. The default value is 120
seconds. If jobs are submitted through workload management tools that might
suspend access to the grid host for a longer period, you might want to increase the
value.

QUIT Statement Statement

The QUIT statement stops the procedure. The HPDS2 procedure statements that have not been submitted
with a RUN statement are terminated.

62 Chapter6 - HPDS2 Procedure

Syntax
QUIT;

RUN Statement Statement

The RUN statement submits the preceding HPDS2 procedure statements for execution. The procedure
requires the RUN statement to submit the statements. SAS reads the program statements that are
associated with one task until it reaches a RUN statement.

Syntax
RUN;

RUN CANCEL Statement

The RUN CANCEL statement cancels the preceding HPDS2 procedure statements. RUN CANCEL is
useful if you enter a typographical error.

Syntax
RUN CANCEL;

Examples: HPDS2 Procedure

Example 1: Distribute Data to Greenplum

Details

This example shows how to use the HPDS2 procedure to copy a data set to Greenplum.
The distribution algorithm in the first code block uses a random distribution. The second
code block specifies a column name to use for distributing rows.

Program

libname source "/data/marketing/2012";

libname target greenplm
server = "grid00l.example.com"
user = dbuser
password = dbpass
schema = public
database = templatel
dbcommit=1000000;

proc hpds2 data = source.mktdata

Example 2: Distribute Data to Teradata 63

out = target.mktdata (distributed by = 'distributed randomly');

performance host = "grid00l.example.com"
install = "/opt/TKGrid";;

data DS2GTF.out;
method run() ;
set DS2GTF.in;
end;
enddata;

run;

proc hpds2 data = source.mkdata2
out = target.mkdata2 (dbtype=(id='int')
distributed by='distributed by (id)'); H

performance host = "grid00l.example.com"
install = "/opt/TKGrid";

data DS2GTF.out;
method run() ;
set DS2GTF.in;
end;
enddata;

run;

Program Description
1. The rows of data from the input data set are distributed randomly to Greenplum.

2. The id column in the input data set is identified as being an integer data type. The
rows of data are distributed based on the value of the id column.

Example 2: Distribute Data to Teradata

Details

This example shows how to use the HPDS2 procedure to copy a data set to Teradata.
The first example does not specify a distribution key. The second code block specifies a
column name to use for distributing rows and creates a new column based on the log
value of another column.

Program

libname source "/data/sales";

libname sales teradata
server = "dbc.example.com"
user = dbuser
password = dbpass
database = hps
bulkload=yes;

proc hpds2 data = source.sale201l

64 Chapter6 - HPDS2 Procedure

out = target.sale2011l;

performance host = "grid00l.example.com"
install = "/opt/TKGrid"
dataserver = "dbc.example.com";

data DS2GTF.out;
dcl double log x5; B
method run() ;
set DS2GTF.in;
log x5 = log(x5);
end;
enddata;
run;

proc hpds2 data = source.mktdata
out = target.mktdata (dbtype=(region='int')
bulkload=yes

dbcreate table opts='primary index(region)');
performance host = "grid00l.example.com"
install = "/opt/TKGrid"
dataserver = "dbc.example.com";

data DS2GTF.out;
method run() ;
set DS2GTF.in;
end;
enddata;
run;

Program Description
1. The BULKLOAD= option is specified in the LIBNAME statement.

2. The data type for the column to create is declared. The values in the column are
created with the LOG function in the RUN() method.

3. The region column in the input data set is identified as being an integer data type.
The column is used as a distribution key.

65

Chapter 7

Using the SAS LASR Analytic
Server Engine

What Does the SAS LASR Analytic Server Engine Do? 65
Understanding How the SAS LASR Analytic Server Engine Works 65
Understanding Server Tags 66

Whatisa Server Tag?ot 66

Why Use a Server Tag?ottt e e 66
Comparing the SAS LASR Analytic Server Engine with the LASR Procedure .. 66
What is Required to Use the SAS LASR Analytic Server Engine? 67
Whatis Supported? 67

What Does the SAS LASR Analytic Server Engine
Do?

The SAS LASR Analytic Server engine is used to add, remove, and access tables in a
SAS LASR Analytic Server instance.

Typically, the tables that are loaded in memory are very large on a SAS LASR Analytic
Server instance. The engine makes it possible to access a table and use procedures like
the UNIVARIATE procedure. However, in this case, the entire table is transferred from
the server instance to the SAS session and then the procedure is executed on the data. If
the table is large, the data volume can overwhelm the SAS session.

The best performance for accessing the data through the engine is with a SAS High-
Performance Analytics procedure. These procedures are designed to operate in a
distributed computing environment and can read data in parallel from a SAS LASR
Analytic Server instance.

Understanding How the SAS LASR Analytic
Server Engine Works

An engine is a component of SAS software that reads from or writes to a file. The SAS
LASR Analytic Server engine provides Read and Write access for data and metadata
information such as variable attributes. Each engine enables SAS to access files that are
in a particular format. There are several types of SAS engines.

66 Chapter7 -« Using the SAS LASR Analytic Server Engine

You use the SAS LASR Analytic Server engine like other SAS data access engines. That
is, you execute a LIBNAME statement to assign a libref and to specify the engine. You
then use that libref throughout the SAS session where a libref is valid to access a SAS
LASR Analytic Server instance.

Understanding Server Tags

What is a Server Tag?

A server tag is a text string that is associated with a table that is loaded into memory on a
SAS LASR Analytic Server instance. The server tag is specified in the LIBNAME
statement or as a data set option. The server tag and the table name are used together to
match the name used for tables in the SAS LASR Analytic Server.

Why Use a Server Tag?
The following list identifies some reasons for specifying a server tag:

* You must use a server tag in a LIBNAME statement or as a data set option to access
tables that are loaded from HDFS.

« Different users can load tables with the same name, such as Forecast, into a server
instance. You use a server tag and the Forecast table name to specify which table to
access.

+ Tables that are loaded into memory with the LASR procedure (but not from HDFS)
use the libref as the server tag. In order to access these tables, you must specify the
server tag.

* When you load a table into memory from HDFS with the LASR procedure, the table
is assigned a server tag. The server tag represents the directory path from which the
SASHDAT file was loaded. You need to use that server tag to access the table.

See Also
+ “Example 4: Accessing Tables Loaded with a DATA Step” on page 73
+ “Example 5: Accessing Tables Loaded with the LASR Procedure” on page 74
+ “Example 6: Accessing Tables That Are Loaded from HDFS” on page 75

Comparing the SAS LASR Analytic Server Engine
with the LASR Procedure

The engine and the LASR procedure are similar in that you can use them to load tables
to memory in a SAS LASR Analytic Server instance. You can also use the engine and
the procedure to unload tables from memory.

You can use the engine with the APPEND data set option to add data to an existing
table. The procedure cannot modify the data.

What is Supported? 67

You cannot use the engine to load tables into memory from HDFS. Only the LASR
procedure can be used to load tables into memory from HDFS.

You can use the LASR procedure to save in-memory tables to HDFS. The procedure
writes the data in parallel because the server instance uses SAS High-Performance
Deployment of Hadoop as a co-located data provider.

You can use the engine to supply a libref to SAS procedures or DATA steps. However,
be aware that if you use the engine as an input data source, the data volume can be large.
Large data volumes can overwhelm the SAS session.

What is Required to Use the SAS LASR Analytic
Server Engine?

To use the SAS LASR Analytic Server engine, the following are required:

+ access to the machines in the cluster where a SAS LASR Analytic Server is running.
A server instance is started with the LASR procedure.

+ an operating system user ID that is configured for passwordless secure shell (SSH)
on the machines in the cluster

The requirement for passwordless SSH is not unique to using the engine. Passwordless
SSH is used throughout SAS High-Performance Analytics. The SAS High-Performance
Computing Management Console can be used to simplify configuring users for
passwordless SSH.

What is Supported?

The following list identifies some usage notes:
» The engine does not support views or BY-group processing.

* You cannot add or drop columns from a table using a DATA step or a SAS
procedure.

* You cannot replace or overwrite tables in memory. You must unload the table and
then load the new table.

* You cannot use the APPEND procedure. However, you can use an APPEND data set
option to achieve the same result.

* Loading tables into memory from HDFS is performed with the LASR procedure.
You cannot load tables into memory from HDFS with the engine.

68 Chapter7 -« Using the SAS LASR Analytic Server Engine

69

Chapter 8

LIBNAME Statement for the SAS
LASR Analytic Server Engine

Dictionary 69
LIBNAME Statement Syntax, 69

Dictionary

LIBNAME Statement Syntax
associates a SAS libref with tables on a SAS LASR Analytic Server.
Valid in: Anywhere
Category: Data Access

Syntax

LIBNAME /ibref SASIOLA <LASR="server-description-file">
<HOST="grid-host"> <PORT=number>
<TAG=server-tag> <FORMATEXPORT=DATA | NONE | ALL>
<STARTSERVER <=(non-distributed-server-options)>>

<SIGNER="authorization-web-service-uri'">,

Required Arguments

libref
is a valid SAS name that serves as a shortcut name to associate with the tables on the
SAS LASR Analytic Server. The name must conform to the rules for SAS names. A
libref cannot exceed eight characters.

SASIOLA
is the engine name for the SAS LASR Analytic Server engine.

Optional Arguments

FORMATEXPORT= DATA | NONE | ALL
specifies how the engine interacts with user-defined formats when tables are added
to the server instance. The default value is FORMATEXPORT=DATA. This option

70 Chapter 8 -+ LIBNAME Statement for the SAS LASR Analytic Server Engine

can be overridden in a data set option. This option has no effect for input data sets
(data sets that are transferred from the server instance to the SAS client).

DATA
specifies that the definition of all user-defined formats associated with variables
written to the server instance are transferred to the server. You can then use those
formats when you access the table (from a client such as SAS Visual Analytics).
The user-defined formats are transferred to the server only once. The formats are
not transferred as XML streams on subsequent requests to the server.

NONE
specifies that user-defined formats are not transferred to the server.

ALL
specifies that all formats in the format catalog search path are converted and
transferred to the server with the table. This option is useful if the catalog search
path contains user-defined formats that are not associated with variables in the
table, but you might want to use later. Considerable resources can be required to
generate the XML representation of the formats for deployments that have large
catalogs or a deep search path.

HOST="grid-host"
specifies the grid host that has a running server instance. Enclose the host name in
quotation marks. If you do not specify the HOST= option, it is determined from the
GRIDHOST= environment variable.

Alias SERVER=

Interaction If the LASR= option is specified, then the host name specified in the
HOST= option is ignored.

LASR=""server-description-file"
specifies the server to use. Provide the fully qualified path to the server description
file.

Interaction If you specify the server description file to use, then you do not need to
specify the HOST= or PORT= options.

PORT=number
specifies the port number to use for connecting to the running server instance. If you
use the PORT= option when you start a non-distributed server instance, then use this
option to specify the network port number for the server.

Interaction The LASR procedure stores the port number of the last server instance
that is started in the LASRPORT macro variable. You can specify
PORT=&LASRPORT to use the macro variable.

SIGNER="authorization-web-service-uri"
specifies the URI for the SAS LASR Authorization web service. The web service is
provided by the SAS Visual Analytics 6.1 software. For information about
implementing row-level security, see SAS Visual Analytics: Administration Guide.

Example SIGNER="https://server.example.com/SASLASRAuthorization"

STARTSERVER <=(non-distributed-server-options)>
specifies to start a non-distributed server instance. Options are specified as name and
value pairs. Separate each option with a space. The following options are available:

LIBNAME Statement Syntax 71

CLF
specifies to use the common log format for log files. This format is a
standardized text file format that is frequently analyzed by web analysis
software. Specifying this option implies the LOGGING option.

KEEPLOG
specifies to keep the log files when the server exits instead of deleting them. By
default, the log files are removed when the server exits. Specifying this option
implies the LOGGING option.

LOGGING
specifies to enabling logging of server actions. The log file is stored with the
signature files in the directory that is specified in the PATH= option. The log file
is named in the pattern LASR. timestamp.0.saslasr.log.

MAXLOGSIZE=n
specifies the maximum log file size, in megabytes, for a log file. When the log
file reaches the specified size, the log file is rolled over and renamed with a
sequentially assigned index number (for example, .log.1). The default value is
100 megabytes. Specifying this option implies the LOGGING option.

Do not include an MB or M suffix when you specify the size.

MAXLOGROLL=n
specifies the maximum number of log files to create. When the maximum has
been reached, the server begins to overwrite existing log files. The oldest log file
is overwritten first. The default value is 10. Specifying this option implies the
LOGGING option.

MERGELIMIT=n
specifies the limit for merging large result sets into smaller groups. The
MERGEBINS= option specifies the size of the group. [f MERGEBINS= is not
specified, then 7 is the bin limit.

MERGEBINS=b)
specifies the number of bins that numeric variables are binned into when
MERGELIMIT=n is reached.

NTHREADS=n
specifies the number of threads to use for the server. By default, n equals the
number of CPU cores on the machine.

PATH="signature-file-path"
specifies the directory to use for storing the server and table signature files. The
specified directory must already exist.

If you do not specify a value for PATH=, the signature files are stored in the
default utility file directory of the SAS session.

PERMISSION=mode
specifies the permission setting for accessing the server instance. The mode value
is specified as an integer value such as 755. The mode corresponds to the mode
values that are used for UNIX file access permissions.

Alias PERM=

Range 600 to 777

Alias START=

72 Chapter 8 + LIBNAME Statement for the SAS LASR Analytic Server Engine

TAG=server-tag
specifies the tag to use for identifying the tables in the server instance. The value for
server-tag cannot exceed 128 characters in length.

Examples

Example 1: Submitting a LIBNAME Statement Using the Defaults
Program

The following example shows the code for starting a server with the LASR procedure
and then connecting to the same server with a LIBNAME statement:

option set=GRIDHOST="grid001l.example.com";
option set GRIDINSTALLLOC="/opt/TKGrid";

proc lasr
create port=10010
path="/tmp" noclass;

performance nodes=all;

run;

libname salessvr sasiola; i

NOTE: No tag was specified in the LIBNAME statement. The default tag (WORK) is
used to name and identify tables in the LASR Analytic Server. You can
specify a tag as a data set option.

NOTE: Libref SALESSVR was successfully assigned as follows:

Engine: SASIOLA
Physical Name: SAS LASR Analytic Server engine on host
'grid00l1.example.com', port 10010

Program Description
1. The grid host is specified in the GRIDHOST environment variable.

2. The default LIBNAME statement does not include the LASR=, HOST=, or PORT=
options. The LIBNAME statement uses host name from the GRIDHOST
environment variable and the LASRPORT macro variable and connect to server
instance.

Example 2: Submitting a LIBNAME Statement Using the LASR=
Option

The following example shows a LIBNAME statement that uses the LASR= option to
specify the server instance to use:

proc lasr
create="/tmp/hrsvr"
path="/opt/VADP/var/hr"
noclass;

performance host="grid00l.example.com" install="/opt/TKGrid" nodes=all; !ﬂ

run;

libname hrsvr sasiola lasr="/tmp/hrsvr";

Example 4: Accessing Tables Loaded with a DATA Step 73

Program Description

1. A server instance is started with the CREATE= option. The server description file
is /tmp/hrsvr.

2. The HOST= option is specified in the PERFORMANCE statement rather than
specifying the GRIDHOST environment variable.

3. The LASR= option specifies the server description file that was created when the
server instance started.

Example 3: Submitting a LIBNAME Statement Using the HOST= and
PORT= Options
The following example shows the code for starting a server with the LASR procedure

and then submitting a LIBNAME statement to use the same server by specifying the
HOST= and PORT= options.

proc lasr
create port=10010
path="/tmp"
noclass;

performance host="grid001l.example.com" install="/opt/TKGrid" nodes=all;

run;

NOTE: The LASR procedure is executing in the distributed computing environment
with 7 worker nodes.

NOTE: The server started on 'grid00l.example.com' port 10010.

NOTE: The LASR Analytic Server port '12637' has been assigned to the macro
variable "LASRPORT".

libname hrdata sasiola host="grid001l.example.com" port=10010 tag='hr'; !ﬂ

NOTE: Libref hrdata was successfully assigned as follows:
Engine: SASIOLA
Physical Name: SAS LASR Analytic Server engine on host
'grid001.example.com', port 10010

Program Description

1. When a server instance is started, the SAS log indicates the port number for the
server instance.

2. The PORT= option in the LIBNAME statement references the port number. The
value for the PORT= option can also be specified as PORT=&LASRPORT to use
the port number for the most recently started server instance.

Example 4: Accessing Tables Loaded with a DATA Step
The following example shows how to use the engine without a server tag in a DATA
step.

libname sales sasiola port=10010;
data sales.prdsale;

set sashelp.prdsale;
run;

74 Chapter 8 + LIBNAME Statement for the SAS LASR Analytic Server Engine

proc datasets lib=sales;
quit;

* a server tag is not needed to access the data ;
proc print data=sales.prdsale(obs=5) ;
run;

When no server tag is specified, a default server tag that is named WORK is used.

Output 8.1 DATASETS Procedure Output Showing the WORK Server Tag

Directory
Libref SALES
Engine SASIOLA
Physical Name | SAS LASR Analytic Server engine on hest ‘grid001.example.com’, port 10010

Number of Number
| Mame Member Type Rows | of Columns | Last Modified erver Tag | Data Encoding | Owner
1 PRDSALE DATA 1440 10 29Nov12:20:53: @ latin1 sasdemo

Example 5: Accessing Tables Loaded with the LASR Procedure
When tables are loaded to memory on a server instance with the LASR procedure, the
libref that is used with the procedure is set as the server tag. The following example
shows how to add a table to a server instance and then access the table with a LIBNAME
statement that includes a server tag.

proc lasr port=10010 add data=sashelp.prdsale noclass;
run;

libname lasr2 sasiola tag=sashelp;

proc datasets lib=lasr2;
run;

* a server tag is not needed to access the data H
* because a server tag is specified in the LIBNAME statement ;
proc print data=lasr2.prdsale(obs=5) ;

run;

By default, the libref is used as the server tag. The following display shows sashelp
used as the server tag.

Output 8.2 DATASETS Procedure Output Showing the SASHELP Server Tag

Directory
Libref LASRZ
Engine SASIOLA

Physical Name | SAS LASR Analytic Serer engine on hest 'grid001.example.com’, port 10010

Number of Number

| Name Member Type Rows | of Columns | Last Modified epver Tag | Data Encoding | Owner
1 | PRDSALE | DATA 1440 10 29N0\.'12:21:34:tin1 sasdemo

Example 7: Loading a Table and Partitioning 75

Example 6: Accessing Tables That Are Loaded from HDFS

When tables are loaded into memory on the server instance with the LASR procedure
and the SAS Data in HDFS engine, the server tag is related to the HDFS directory name.
The server tag is the same as the HDFS path to the SASHDAT file, but is delimited with
periods (.) instead of slashes (/).

The following example shows how to add a table to a server instance from HDFS and
then access the table with a LIBNAME statement that includes a server tag.

libname sales sashdat path="/dept/sales";

proc lasr port=10010 add data=sales.sales2012 noclass;

run;
libname lasr3 sasiola tag="dept.sales";

proc datasets lib=lasr3;

run;

* access the data with the "dept.sales" server tag;
proc print data=lasr3.sales2012 (obs=5) ;

run;

Output 8.3 DATASETS Procedure Output Showing the DEPT.SALES Server Tag

Directory
Libref LASR3
Engine SASIOLA
Physical Name | SAS LASR Analytic Sener engine on host 'gnd001.example.com’, port 10010

Number of Number
| Name Member Type Rows | of Columns | Last Modified Segyarlag | Data Encoding | Owner
1 SALES2012 DATA 452459 39 19Jul12:21:34:0 '|11 sasdemo

Example 7: Loading a Table and Partitioning

Partitioning a table as it is loaded to memory can be a powerful feature for reducing
processing times. For more information, see “Data Partitioning and Ordering” on page
12.

libname lasrlib sasiola host="grid00l.example.com" port=10010 tag="sales";

data lasrlib.prdsale(partition=(country region) orderby=(descending year));
set sashelp.prdsale;

run;

Program Description

The Prdsale table is distributed to the machines in the cluster according to the
PARTITION= data set option. The rows are distributed according to the unique
combinations of the formatted values for the variables Country and Region. In addition,
the ORDERBY= option is used to sort the rows in each partition by Year, in descending
order.

76 Chapter 8 + LIBNAME Statement for the SAS LASR Analytic Server Engine

Chapter 9

77

Data Set Options for the SAS
LASR Analytic Server Engine

Dictionary 77
APPEND Data Set Optionottt e 77
FORMATEXPORT=Data Set Optionc.ouuiiuniuninenaen .. 78
HASH Data Set Optionttt e 78
ORDERBY=Data Set Optionottt 78
PARTITION=Data Set Optionouuuiiniinnnininnennen. 79
PERM=Data Set Optionttt i 80
TAG=Data Set Optionottt e e 80
UCA Data Set Option oottt et e e e e e e 80

Dictionary

APPEND Data Set Option

specifies to append the data to an existing table in the server instance.

Valid in:
Default:

Interaction:

DATA Step
NO

You must use the NOCLASS option if you load the initial table with the LASR
procedure.

Syntax
APPEND

Details

By default, the SAS LASR Analytic Server engine does not permit appending
observations to tables. The APPEND data set option can be used to permit adding
observations to an existing table with a DATA step.

Example Code 9.1 Using the APPEND Data Set Option

proc lasr add data=grpl.sales noclass port=10010;

run;

libname grpllasr host="grid001l.example.com" port=10010 tag=grpl;

78 Chapter9 -« Data Set Options for the SAS LASR Analytic Server Engine

data grpllasr.sales (append) ;
set yr2012.sales (keep=date location amount) ;
run;

As shown in the preceding example, the APPEND data set option can be used to add
observations to an existing table. The KEEP= option on the input data set specifies the
variables from the input data to append. Any variables for which the input data set does
not append data are set to missing. You cannot add new variables to the table.

The example also shows how to load the initial table to memory with the LASR
procedure. The NOCLASS option must be specified if you use the LASR procedure. As
an alternative, you can load the initial table to memory with the SAS LASR Analytic
Server engine.

FORMATEXPORT= Data Set Option

specifies how the engine interacts with user-defined formats when tables are added to the server instance.

Syntax
FORMATEXPORT=DATA | NONE | ALL

Details

This option is used to override the FORMATEXPORT= option for the LIBNAME
statement.

See Also

FORMATEXPORT= option in the LIBNAME statement

HASH Data Set Option

specifies that when partitioning data, the distribution of partitions is not determined by a tree, but by a
hashing algorithm. As a result, the distribution of the partitions is not as evenly balanced, but it is effective
when working with high-cardinality partition keys (in the order of millions of partitions).

Syntax
PARTITION=(variable-list) HASH

Example

data lasrlib.transactions (partition=(cust_id year) hash);
set somelib.sometable;

run;

ORDERBY= Data Set Option

specifies the variables by which to order the data within a partition.

PARTITION= Data Set Option 79

Example: “Example 7: Loading a Table and Partitioning” on page 75

Syntax

ORDERBY=(variable-list)
ORDERBY=(variable-name <DESCENDING> variable-name)

Details
The variable names in the variable-list are separated by spaces.

The ordering is hierarchical. For example, ORDERBY=(A B) specifies ordering by the
values of variable B within the ordered values of variable A. The specified variables
must exist and cannot be specified as partitioning variables. The order is determined
based on the raw value of the variables and uses locale-sensitive collation for character
variables. By default, values are arranged in ascending order. You can specify
descending order by preceding the variable name in the variable-list with the keyword
DESCENDING.

Example

The following code sample orders the data in the partitions by Year in ascending order
and then by Quarter in descending order.

data lasrlib.prdsale (partition=(country region)
orderby=(year descending quarter)) ;
set sashelp.prdsale;

run;

PARTITION= Data Set Option

specifies the list of partitioning variables to use for partitioning the table.

Example: “Example 7: Loading a Table and Partitioning” on page 75

Syntax
PARTITION=(variable-list)

Details

Partitioning is available only when you create tables. User-defined format definitions for
partitioning variables are always transferred to the server, regardless of the
FORMATEXPORT= option.

Partitioning by a variable that does not exist in the output table is an error. Partitioning
by a variable listed in the ORDERBY= option is also an error. Partition keys are derived
based on the formatted values in the order of the variable names in the variable-list.

Be aware that the key construction is not hierarchical. That is, PARTITION=(A B)
specifies that any unique combination of formatted values for variables A and B defines
a partition.

80 Chapter9 - Data Set Options for the SAS LASR Analytic Server Engine

PERM= Data Set Option

specify the permission setting for the table in the server.

Alias: PERMISSION=

Syntax
PERM=mode

Details

The mode is specified as an integer (for example, PERM=755). The value is converted
by the engine to a umask. If no permission is specified, the access permissions for the
table are set according to the umask of user that loads the table.

TAG= Data Set Option

specifies the tag to use for identifying the tables in the server instance.

Syntax
TAG='server-tag'

Details

If no TAG= option is specified as a data set option, then the TAG= option from the
LIBNAME statement is used. If the LIBNAME statement does not specify the TAG=
option, then the name of the libref is used as the server tag.

UCA Data Set Option

specifies that you want to use Unicode Collation Algorithms (UCA) to determine the ordering of character
variables in the ORDERBY = option.

Syntax
PARTITION=(key) ORDERBY=(variable-list) UCA

81

Chapter 10

Using the SAS Data in HDFS
Engine

What Does the SAS Data in HDFS EngineDo? 81
Understanding How the SAS Data in HDFS Engine Works 81
What is Required to Use the SAS Data in HDFS Engine? 82
Whatis Supported? 82

What Does the SAS Data in HDFS Engine Do?

The SAS Data in HDFS engine is used to distribute data in the Hadoop Distributed File
System (HDFS) that is provided by SAS High-Performance Deployment of Hadoop. The
engine enables you to distribute the data in a format that is designed for high-
performance analytics. The block redundancy and distributed computing provided by
SAS High-Performance Deployment of Hadoop is complemented by the block structure
that is created with the engine.

The engine is designed to distribute data in HDFS only. Because the data volumes in
HDEFS are typically very large, the engine is not designed to read from HDFS and
transfer data back to the SAS client. For example, consider the case of reading several
terabytes of data from a distributed computing environment, transferring that data back
to a SAS session, and then using the UNIVARIATE or REG procedures on such a large
volume of data. In contrast, the SAS High-Performance Analytics procedures are
designed to operate in a distributed computing environment and to read data in parallel
from a co-located data provider like SAS High-Performance Deployment of Hadoop.

Understanding How the SAS Data in HDFS Engine
Works

An engine is a component of SAS software that reads from or writes to a file. The SAS
Data in HDFS engine is write-only for data and read-write for metadata information such
as variable attributes. Each engine enables SAS to access files that are in a particular
format. There are several types of SAS engines.

You use the SAS Data in HDFS engine like other SAS data access engines. That is, you
execute a LIBNAME statement to assign a libref and to specify the engine. You then use
that libref throughout the SAS session where a libref is valid to transfer data to the

82 Chapter 10 + Using the SAS Data in HDFS Engine

Hadoop Distributed File System (HDFS) or to retrieve information about a table in
HDEFS.

What is Required to Use the SAS Data in HDFS
Engine?

To use the SAS Data in HDFS engine, the following are required:

+ access to the machines in the cluster where SAS High-Performance Deployment of
Hadoop is installed and running

+ an operating system user ID that is configured for passwordless secure shell (SSH)
on the machines in the cluster

The requirement for passwordless SSH is not unique to using the engine. Passwordless
SSH is used throughout SAS High-Performance Analytics. The SAS High-Performance
Computing Management Console can be used to simplify configuring users for
passwordless SSH.

What is Supported?

The SAS Data in HDFS engine is used with SAS High-Performance Deployment of
Hadoop only.

The engine is designed as a write-only engine for transferring data to HDFS. However,
SAS High-Performance Analytics procedures are designed to read data in parallel from a
co-located data provider. The LASR procedure, and other procedures such as HPREG
and HPLOGISTIC, can read data from HDFS with the engine. The HPDS2 procedure is
designed to read data and write data in parallel. The HPDS2 procedure can be used with
the engine to read data from HDFS and create new tables in HDFS.

Whenever a SAS High-Performance Analytics procedure is used to create data in HDFS,
the procedure creates the data with a default block size of 8 megabytes. This size can be
overridden with the BLOCKSIZE= data set option.

The engine does not support views.

Chapter 11
LIBNAME Statement for the SAS

83

Data in HDFS Engine

Dictionary 83
LIBNAME Statement Syntaxt 83

Dictionary

LIBNAME Statement Syntax
Associates a SAS libref with SASHDAT tables stored in HDFS.

Valid in:
Category:

Anywhere

Data Access

Syntax

LIBNAME /ibref SASHDAT
<HOST="grid-host"> <INSTALL="grid-install-location">
<PATH="HDFS-path"> <COPIES=n > <INNAMEONLY>

Required Arguments

libref
is a valid SAS name that serves as a shortcut name to associate with the SASHDAT
tables that are stored in the Hadoop Distributed File System (HDFS). The name must
conform to the rules for SAS names. A libref cannot exceed eight characters.

SASHDAT
is the engine name for the SAS Data in HDFS engine.

Optional Arguments

COPIES=n
specifies the number of replications to make for the data set (beyond the original
blocks). The default value is 2 when the INNAMEONLY option is specified and
otherwise is 1. Replicated blocks are used to provide fault tolerance for HDFS. If a
machine in the cluster becomes unavailable, then the blocks needed for the
SASHDAT file can be retrieved from replications on other machines. If you specify

84 Chapter 11

LIBNAME Statement for the SAS Data in HDFS Engine

COPIES=0, then the original blocks are distributed, but no replications are made and
there is no fault tolerance for the data.

HOST="grid-host"
specifies the grid host that has a running Hadoop NameNode. Enclose the host name
in quotation marks. If you do not specify the HOST= option, it is determined from
the GRIDHOST= environment variable.

INNAMEONLY
specifies that when data is added to HDFS, that it should be sent as a single block to
the Hadoop NameNode for distribution. This option is appropriate for smaller data
sets.

Alias NODIST

INSTALL="grid-install-location"
specifies the path to the TKGrid software on the grid host. If you do not specify this
option, it is determined from the GRIDINSTALLLOC= environment variable.

PATH="HDFS-path"
specifies the fully qualified path to the HDFS directory to use for SASHDAT files.
You do not need to specify this option in the LIBNAME statement because it can be
specified as a data set option.

Examples

Example 1: Submitting a LIBNAME Statement Using the Defaults
Program

The following example shows the code for connecting to a Hadoop NameNode with a
LIBNAME statement:

option set=GRIDHOST="grid001.example.com";
option set GRIDINSTALLLOC="/opt/TKGrid";

libname hdfs sashdat; B

NOTE: Libref HDFS was successfully assigned as follows:
Engine: SASHDAT
Physical Name: grid001.example.com

Program Description

1. The host name for the Hadoop NameNode is specified in the GRIDHOST
environment variable.

2. The LIBNAME statement uses host name from the GRIDHOST environment
variable and the path to TKGrid from the GRIDINSTALLLOC environment
variable. The PATH= and COPIES= options can be specified as data set options.

Example 2: Submitting a LIBNAME Statement Using the HOST=,

INSTALL=, and PATH= Options
The following example shows the code for submitting a LIBNAME statement with the
HOST=, INSTALL=, and PATH= options.

libname hdfs sashdat host="grid00l.example.com" install="/opt/TKGrid"
path="/user/sasdemo";

Example 6: Creating a SASHDAT File from Another SASHDAT File 85

NOTE: Libref HDFS was successfully assigned as follows:
Engine: SASHDAT
Physical Name: Directory '/user/sasdemo' of HDFS cluster on host
grid001.example.com

Example 3: Adding Tables to HDFS

The following code sample demonstrates the LIBNAME statement and the REPLACE=
and BLOCKSIZE= data set options. The LABEL= data set option is common to many
engines.

libname arch "/data/archive";
libname hdfs sashdat host="grid001l.example.com" install="/opt/TKGrid"
path="/dept";

data hdfs.allyears(label="Sales records for previous years"
replace=yes blocksize=32m) ;
set arch.sales2012
arch.sales2011

run;

Example 4: Adding a Table to HDFS with Partitioning

The following code sample demonstrates the PARTITION= and ORDERBY= data set
options. The rows are partitioned according to the unique combinations of the formatted
values for the Year and Month variables. Within each partition, the rows are sorted by
descending values of the Prodtype variable. For more information, see “Data Partitioning
and Ordering” on page 12.

libname hdfs sashdat host="grid001l.example.com" install="/opt/TKGrid"
path="/dept";

data hdfs.prdsale(partition=(year month) orderby=(descending prodtype)) ;
set sashelp.prdsale;

run;

Example 5: Removing Tables from HDFS
Removing tables from HDFS can be performed with the DATASETS procedure.

libname hdfs sashdat host="grid001l.example.com" install="/opt/TKGrid"
path="/dept";

proc datasets lib=hdfs;
delete allyears;

run;

NOTE: Deleting HDFS.ALLYEARS (memtype=DATA) .

Example 6: Creating a SASHDAT File from Another SASHDAT File
The following example shows copying a data set from HDFS, adding a calculated
variable, and then writing the data to HDFS in the same library. The BLOCKSIZE= data
set option is used to override the default 8-megabyte block size that is created by SAS

86 Chapter 11 + LIBNAME Statement for the SAS Data in HDFS Engine

High-Performance Analytics procedures. The COPIES=0 data set option is used to
specify that no redundant blocks are created for the output SASHDAT file.

libname hdfs sashdat host="grid00l.example.com" install="/opt/TKGrid"
path="/dept";

proc hpds2
in = hdfs.allyears (where=(region=212))
out = hdfs.avgsales(blocksize=32m copies=0); !!

data DS2GTF.out;
dcl double avgsales;
method run() ;
set DS2GTF.in;
avgsales = avg(monthl-monthl2) ;
end;
enddata;

run;

1 The WHERE clause is used to subset the data in the input SASHDAT file.
2 The BLOCKSIZE= and COPIES= options are used to override the default values.

Example 7: Working with CSV Files

The comma-separated value (CSV) file format is a popular format for files stored in
HDFS. The SAS Data in HDFS engine can read these files in parallel. The engine does
not write CSV files.

List the Variables in a CSV File

The following example shows how to access a CSV file in HDFS and use the
CONTENTS procedure to list the variables in the file. For this example, the first line in
the CSV file lists the variables names. The GETNAMES data set option is used to read
them from the first line in the file.

libname csvfiles sashdat host="grid001l.example.com" install="/opt/TKGrid"

path="/user/sasdemo/csv";

proc contents data=csvfiles.rep(filetype=csv getnames) ;

run;

Example 7: Working with CSV Files 87
Output 11.1 List the Variables in a CSV File with the CONTENTS Procedure

The SAS System

The CONTENTS Procedure

Data Set Name luser/sasdemolcswvirep.csv Observations

Member Type DATA, Variables 5]
Engine SASHDAT Indexes o]
Created Tuesday, July 03, 2012 08:53:36 AM Observation Length | 208
Last Modified Thursday, June 28, 2012 02:45:41 PM Deleted Observations O
Protection Compressed NO
Data Set Type Sorted NO
Label

Data Representation SCLARIS_X56_64, LINUX_X36_64, ALPHA_TRUG4, LINUX_lAG4
Encoding Default

Alphabetic List of Variables and Attributes

Variable Type Len
1| alias Char 13
6 | enddt Char 10
3 | path Char 140
4 set Char 1
5 | startdt Char 10
2 id Char 7

Convert a CSV File to SASHDAT

The engine is not designed to transfer data from HDFS to a SAS client. As a
consequence, the contents of a CSV file can be accessed only by a SAS High-
Performance Analytics procedure that runs on the same cluster that is used for HDFS.
The SAS High-Performance Analytics procedures can read the data because the
procedures are designed to read data in parallel from a co-located data provider.

The following code sample shows how to convert a CSV file to a SASHDAT file with
the HPDS2 procedure.

option set=GRIDHOST="grid001l.example.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";

libname csvfiles sashdat path="/user/sasdemo/csv";

proc hpds2 in=csvfiles.rep(filetype=csv getnames)
out=csvfiles.rephdat (path="/user/sasdemo" copies=0 blocksize=32m) ;

data DS2GTF.out;
method run() ;
set DS2GTF.1in;
end;
enddata;
run;

1 The values for the GRIDHOST and GRIDINSTALLLOC environment variables are
read by the SAS Data in HDFS engine in the LIBNAME statement and by the
HPDS2 procedure.

88 Chapter 11 + LIBNAME Statement for the SAS Data in HDFS Engine

2 The FILETYPE=CSV data set option enables the engine to read the CSV file. The
GETNAMES data set option is used to read the variable names from the first line in
the CSV file.

3 The PATH= data set option is used to store the output as /user/sasdemo/
rephdat.sashdat. The COPIES=0 data set option is used to specify that no
redundant blocks are created for the rephdat.sashdat file.

Chapter 12

89

Data Set Options for the SAS Data
in HDFS Engine

Dictionary
BLOCKSIZE=Data Set Optionottt
COLUMNS=Data Set Optionc.uiuiiinininnnnenn.
COPIES=Data Set Optionottt e e
FILETYPE=Data Set Optionoouiinii it
GETNAMES Data Set Optionovitn i
GETOBS Data Set Optiono oovt ettt
GUESSROWS=Data Set Optionottt
HASH Data Set Option ottt e
LOGUPDATE Data Set Optiono vttt it e
ORDERBY=Data Set Optioncuuirni i
PARTITION=Data Set Optionouuuiiniinninnnnennen.
PATH=Data Set Optionottt e
PERM=Data Set Optionottt i
REPLACE=Data Set Optionvuuttn ettt
UCA Data Set Option oottt e e e e e e

Dictionary

BLOCKSIZE= Data Set Option

specifies the block size to use for distributing the data set.

Valid in:
Default:

Example:

DATA Step
2 megabytes
“Example 6: Creating a SASHDAT File from Another SASHDAT File” on page 85

Syntax
BLOCKSIZE=

Details

By default, the SAS Data in HDFS engine distributes data in 2-megabyte blocks or the
length of a record, which ever is greater. You can override this value by specifying the
block size to use. Suffix values are B (bytes), K (kilobytes), M (megabytes), and G

90 Chapter 12 + Data Set Options for the SAS Data in HDFS Engine

(gigabytes). The actual block size is slightly larger than the value that you specify. This
occurs for any of the following reasons:

* to reach the record length. This occurs if the specified size is less than the record
length.

* to align on a 512-byte boundary.

* to include a metadata header in HDFS for the SASHDAT file.

The following code shows an example of specifying the BLOCKSIZE= option.
Example Code 12.1 Using the BLOCKSIZE= Data Set Option

data hdfs.sales (blocksize=48M) ;
set yr2012.sales;
run;

COLUMNS= Data Set Option
specifies the variable names and types for a CSV file.
Alias: COLS=
Applies to: Reading CSV files

Syntax

COLUMNS=(column-specification < ...column-specification>);

Required Argument

column-specification
is a name-value pair that specifies the column name and data type. For numeric data,
specify double as the data type. For character data, specify 'char (1ength) '.

Default ~ Any variables that are not named are assigned the name VARn.

Example columns=(station='char(4)' obsdate='char(18)' tempf=double precip=double)

Details

Numeric variables use eight bytes. For character variables, if the byte length is not
specified, then the default action is to use eight bytes. If the variable in the CSV file uses
fewer bytes than the specified length, then the variable is padded with spaces up to the
specified length. If the variable in the CSV file uses more bytes than the specified length,
then the variable is truncated to the specified length.

If the variable name is not specified, then the variable is named automatically.
Automatically named variables are named VARn, starting at 1. If the data type is not
specified and cannot be determined, the variable is assigned as char (8).

Do not use a comma between each column specification. Enclose 'char (n) ' in
quotation marks.

FILETYPE= Data Set Option 91

COPIES= Data Set Option
specifies the number of replications to make for the data set (beyond the original blocks).

Default: 1

Syntax
COPIES=n

Details

The default value is 1. This default value creates one copy of each block, in addition to
the original block. When the INNAMEONLY option is specified, the default is 2.
Replicated blocks are used to provide fault tolerance for HDFS. If a machine in the
cluster becomes unavailable, then the blocks needed for the SASHDAT file can be
retrieved from replications on other machines.

You can specify COPIES=0 to avoid creating redundant blocks for the SASHDAT file.
This option can be useful to preserve storage space when you have redundancy for the
source data.

FILETYPE= Data Set Option

specifies whether to access a comma-separated value (CSV) file instead of a SASHDAT file.

Applies to: Reading CSV files

Syntax
FILETYPE=CSV

Details

The SAS Data in HDFS engine can be used to read CSV files. The engine does not write
CSV files. Specify this option to use the file as input for a SAS High-Performance
Analytics procedure or the SAS LASR Analytic Server.

The filename for CSV files in HDFS can be upper, mixed, or lower case. If more than
one file in the directory has the same name (but with different casing), the engine does
not read the file because the file reference is ambiguous.

See Also
*+ COLUMNS= data set option

* GETNAMES data set option
*+ GUESSROWS= data set option

92 Chapter 12 + Data Set Options for the SAS Data in HDFS Engine

GETNAMES Data Set Option

specifies to read variable names from the first line in the CSV file.

Applies to: Reading CSV files

Syntax
GETNAMES

Details

Specify this option if the first line of a CSV file contains the variable names for the file.
Alternatively, you can specify the variable names in the COLUMNS=data set option, or
you can use the default names that are provided by the SAS Data in HDFS engine.

GETOBS Data Set Option

specifies to retrieve the number of observations in SASHDAT files.

Syntax
GETOBS

Details

By default, the SAS Data in HDFS engine does not compute the number of observations
in a SASHDAT file. This improves performance for SASHDAT files that are distributed
among a large number of blocks, or for HDFS directories that have a large number of
SASHDAT files. When you specify this option, the engine calculates the number of
observations in a SASHDAT file.

ods select attributes;
proc datasets library=hdfs;

contents data=sales2012 (getobs) ;

run;

HASH Data Set Option 93

The SAS System

The DATASETS Procedure

Data Set Name /user/sasdemo/sales2012.sashdat Observations 100000

Member Type DATA Variables 88
Engine SASHDAT Indexes 0
Created Thursday, June 28, 2012 09:47:45 AM Observation Length | 704
Last Modified Wednesday, June 27, 2012 04:06:40 PM Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label

Data Representation | SOLARIS_XB6_54, LINUX_X56_64, ALPHA_TRUS4, LINUX_IAG4

Encoding wlatin1 Western (Windows)

GUESSROWS= Data Set Option

specifies the number of lines in CSV file to scan for determining variable types and lengths.
Default: 20
Applies to: Reading CSV files

Syntax
GUESSROWS=r

Details

The SAS Data in HDFS engine scans the specified number of lines from the CSV file to
determine the variable types and lengths. If the GETNAMES data set option is specified,
then the engine begins scanning lines from the second line in the file.

HASH Data Set Option

specifies that when partitioning data, the distribution of partitions is not determined by a tree, but by a
hashing algorithm. As a result, the distribution of the partitions is not as evenly balanced, but it is effective
when working with high-cardinality partition keys (in the order of millions of partitions).

Syntax
PARTITION=(variable-list) HASH

Example

data hdfs.transactions(partition=(cust_id year) hash);
set somelib.sometable;
run;

94 Chapter 12 + Data Set Options for the SAS Data in HDFS Engine

LOGUPDATE Data Set Option

provides progress messages in the SAS log about the data transfer to the grid host.

Syntax
LOGUPDATE

Details

The data transfer size is not necessarily the same as the block size that is used to form
blocks in HDFS. The data transfer size is selected to optimize network throughput. A
message in the SAS log does not mean that a block was written to HDFS. The message
indicates the transfer progress only.

data hdfs.sales2012 (logupdate) ;
set saleslib.sales2012;

run;

NOTE: 4096 kBytes (5191 records) have been transmitted (1.91 MB/sec).
NOTE: 8192 kBytes (10382 records) have been transmitted (3.65 MB/sec).
NOTE: 12288 kBytes (15573 records) have been transmitted (5.19 MB/sec).

NOTE: 16384 kBytes (20764 records) have been transmitted (6.15 MB/sec).
NOTE: 20480 kBytes (25955 records) have been transmitted 7.3 MB/sec) .
NOTE: 24576 kBytes (31146 records) have been transmitted (8.16 MB/sec).
NOTE: 28672 kBytes (36337 records) have been transmitted (8.83 MB/sec).
NOTE: 32768 kBytes (41528 records) have been transmitted (9.73 MB/sec).
NOTE: 36864 kBytes (46719 records) have been transmitted (10.3 MB/sec).
NOTE: 40960 kBytes (51910 records) have been transmitted (10.8 MB/sec).

))
() ()
() ()
() ()
() ()
() ()
() ()
() ()

NOTE: 45056 kBytes (57101 records) have been transmitted (11.6 MB/sec).
() ()
() ()
() ()
() ()
() ()
() ()
() ()

NOTE: 49152 kBytes (62292 records) have been transmitted 12 MB/sec

NOTE: 53248 kBytes (67483 records) have been transmitted (12.4 MB/sec).
NOTE: 57344 kBytes (72674 records) have been transmitted (12.9 MB/sec).
NOTE: 61440 kBytes (77865 records) have been transmitted (13.2 MB/sec).
NOTE: 65536 kBytes (83056 records) have been transmitted (13.5 MB/sec).
NOTE: 69632 kBytes (88247 records) have been transmitted (13.9 MB/sec).
NOTE: 73728 kBytes (93438 records) have been transmitted (14.1 MB/sec).

NOTE: 77824 kBytes (98629 records) have been transmitted (14.3 MB/sec).

NOTE: There were 100000 observations read from the data set SALESLIB.YEAR2012.
NOTE: The data set /user/sasdemo/sales2012 has 100000 observations and 86
variables.

NOTE: 78906 kBytes (100000 records) have been transmitted (14.3 MB/sec).

ORDERBY= Data Set Option

specifies the variables by which to order the data within a partition.

Example: “Example 4: Adding a Table to HDFS with Partitioning” on page 85

Syntax

ORDERBY=(variable-list)
ORDERBY=(variable-name <DESCENDING> variable-name)

PARTITION= Data Set Option 95

Details
The variable names in the variable-list are separated by spaces.

The ordering is hierarchical. For example, ORDERBY=(A B) specifies ordering by the
values of variable B within the ordered values of variable A. The specified variables
must exist and cannot be specified as partitioning variables. The order is determined
based on the raw value of the variables and uses locale-sensitive collation for character
variables. By default, values are arranged in ascending order. You can specify
descending order by preceding the variable name in the variable-list with the keyword
DESCENDING.

Example

The following code sample orders the data in the partitions by Year in ascending order
and then by Quarter in descending order.

data hdfs.prdsale (partition=(country region)
orderby= (year descending quarter)) ;
set sashelp.prdsale;
run;

PARTITION= Data Set Option

specifies the list of partitioning variables to use for partitioning the table.

Interaction:

Example:

If you specify the PARTITION= option and the BLOCKSIZE= option, but the block
size is less than the calculated size that is needed for a block, the operation fails and
the table is not added to HDFS. If you do not specify a block size, the size is
calculated to accommodate the largest partition.

“Example 4: Adding a Table to HDFS with Partitioning” on page 85

Syntax
PARTITION=(variable-list)

Details

Partitioning is available only when you add tables to HDFS. If you partition the table
when you add it to HDFS, it becomes a partitioned in-memory table when you load it to
SAS LASR Analytic Server. If you also specify the ORDERBY= option, then the
ordering is preserved when the table is loaded to memory too.

Partition keys are derived based on the formatted values in the order of the variable
names in the variable-list. All of the rows with the same partition key are stored in a
single block. This ensures that all the data for a partition is loaded into memory on a
single machine in the cluster. The blocks are replicated according to the default
replication factor or the value that you specify for the COPIES= option.

If user-defined formats are used, then the format name is stored with the table, but not
the format. The format for the variable must be available to the SAS LASR Analytic
Server when the table is loaded into memory. This can be done by having the format in
the format catalog search path for the SAS session.

96 Chapter 12 + Data Set Options for the SAS Data in HDFS Engine

Be aware that the key construction is not hierarchical. That is, PARTITION=(A B)
specifies that any unique combination of formatted values for variables A and B defines
a partition.

Partitioning by a variable that does not exist in the output table is an error. Partitioning
by a variable listed in the ORDERBY= option is also an error.

PATH= Data Set Option
specifies the fully qualified path to the HDFS directory to use for SASHDAT files.

Syntax
PATH="HDFS-path'

Details
This option overrides the PATH= option specified in the LIBNAME statement.

PERM= Data Set Option

specifies how the engine sets the file access permissions on the SASHDAT file.

Alias: PERMISSION=

Syntax
PERM=mode

Details

The mode value is specified as an integer value such as 755. The mode corresponds to
the mode values that are used for UNIX file access permissions.

REPLACE= Data Set Option

specifies whether to overwrite an existing SASHDAT file.

Syntax
REPLACE=YES | NO

Details

By default, the SAS Data in HDFS engine does not replace SASHDAT files. Specify
REPLACE=YES as a data set option to replace a SASHDAT file by overwriting it.

UCA Data Set Option 97

UCA Data Set Option

specifies that you want to use Unicode Collation Algorithms (UCA) to determine the ordering of character
variables in the ORDERBY= option.

Syntax
PARTITION=(key) ORDERBY=(variable-list) UCA

98 Chapter 12 + Data Set Options for the SAS Data in HDFS Engine

99

Glossary

Apache Hadoop
a framework that allows for the distributed processing of large data sets across
clusters of computers using a simple programming model.

BY-group processing
the process of using the BY statement to process observations that are ordered,
grouped, or indexed according to the values of one or more variables. Many SAS
procedures and the DATA step support BY-group processing. For example, you can
use BY-group processing with the PRINT procedure to print separate reports for
different groups of observations in a single SAS data set.

co-located data provider
a distributed data source, such as SAS Visual Analytics Hadoop or a third-party
vendor database, that has SAS High-Performance Analytics software installed on the
same machines. The SAS software on each machine processes the data that is local
to the machine or that the data source makes available as the result of a query.

grid host
the machine to which the SAS client makes an initial connection in a SAS High-
Performance Analytics application.

Hadoop Distributed File System
a framework for managing files as blocks of equal size, which are replicated across
the machines in a Hadoop cluster to provide fault tolerance.

HDFS
See Hadoop Distributed File System

Message Passing Interface
is a message-passing library interface specification. SAS High-Performance
Analytics applications implement MPI for use in high-performance computing
environments.

MPI

See Message Passing Interface

root node
in a SAS High-Performance Analytics application, the role of the software that
distributes and coordinates the workload of the worker nodes. In most deployments

100 Glossary

the root node runs on the machine that is identified as the grid host. SAS High-
Performance Analytics applications assign the highest MPI rank to the root node.

SASHDAT file
the data format used for tables that are added to HDFS by SAS. SASHDAT files are
read in parallel by the server.

server description file
a file that is created by a SAS client when the LASR procedure executes to create a
server. The file contains information about the machines that are used by the server.
It also contains the name of the server signature file that controls access to the server.

signature file
small files that are created by the server to control access to the server and to the
tables loaded in the server. There is one server signature file for each server instance.
There is one table signature file for each table that is loaded into memory on a server
nstance.

worker node
in a SAS High-Performance Analytics application, the role of the software that
receives the workload from the root node.

Index

101

Cc
connecting to a Hadoop NameNode
LIBNAME statement, SAS Data in
HDFS engine 84
connecting to a server
LIBNAME statement, SAS LASR
Analytic Server engine 72

D
DATA statement 60

E
ENDDATA statement 60
engine 65, 81

F

formats
LASR procedure 32, 33

G
gpfdist
distributing data 8
Greenplum
distributing data 6

H
HDFS
accessing with the SAS LASR Analytic
Server engine 75
HPDS?2 procedure
concepts 55
SAS Data in HDFS engine 85
HPDS?2 procedure examples
distribute data to Greenplum 62
distribute data to Teradata 63

L
LABEL= option 51
LASR procedure
accessing tables with the SAS LASR
Analytic Server engine 74
compared with the SAS LASR Analytic
Server engine 66
concepts 21
FMTLIBXML= option 35
LASR procedure examples
load a table from Greenplum 33
load a table from Teradata 32
logging 31
saving tables 36
starting a server 30
stopping a server 34
unload a table from memory 34
user-defined formats 35
working with formats 35
LIBNAME statement, SAS Data in HDFS
engine
syntax 83
LIBNAME statement, SAS LASR
Analytic Server engine
syntax 69
logging
default log file location 13
insufficient authorization 14

o
OLIPHANT procedure
concepts 47
syntax 49
OLIPHANT procedure examples
adding files to HDFS 52
querying file details from HDFS 53

P
PERFORMANCE statement

102

Index

HPDS2 procedure 60

LASR procedure 27
PROC HPDS?2 statement 59
PROC LASR statement 22
PROC OLIPHANT statement 49
PROC VASMP statement 40

Q

QUIT statement
HPDS2 procedure 61
VASMP procedure 40

R
REMOVE statement
LASR procedure 29
RUN CANCEL statement
HPDS2 procedure 62
RUN statement
HPDS2 procedure 62

S

SAS Data in HDFS engine
BLOCKSIZE= data set option 89
COPIES= data set option 91, 92
FILETYPE= data set option 91
GUESSROWS= data set option 93
HASH data set option 93
how it works 81
LOGUPDATE data set option 94
ORDERBY= data set option 94
PARTITION= data set option 95
PATH= data set option 96
PERM= data set option 96
requirements for using 82
what is supported 82

SAS LASR Analytic Server engine
accessing tables loaded from HDFS 75
accessing tables loaded with a DATA

step 73
accessing tables loaded with the LASR
procedure 74

APPEND data set option 77
compared with the LASR procedure 66

FORMATEXPORT= data set option 78
HASH data set option 78
ORDERBY= data set option 78
PARTITION= data set option 79
PERMISSION= data set option 80
TAG= data set option 80
understanding server tags 66
SAS LASR Analytic Server engineSAS
Data in HDFS engine
how it works 65
requirements for using 67
what is supported 67
SAS/ACCESS engines 8
SAVE statement
LASR procedure 29
server run time 7
server tag 66
accessing a table loaded with a DATA
step 73
accessing tables loaded from HDFS 75
accessing tables loaded with the LASR
procedure 74
SERVERINFO statement 41
SERVERPARM statement 41
SERVERTERM statement 42
SERVERWAIT statement
VASMP procedure 43
specifying host and port
LIBNAME statement, SAS LASR
Analytic Server engine 73
specifying host and software installation
location
LIBNAME statement, SAS Data in
HDFS engine 84

T
TABLEINFO statement 43
Teradata

distributing data 8

\'
VASMP procedure 39
VASMP procedure examples
more than one Hadoop installation 44

	Contents
	What’s New In SAS LASR Analytic Server
	Overview
	Enhancements to the LASR Procedure
	Enhancements to the VASMP Procedure
	Enhancements to the SAS LASR Analytic Server Engine

	Introduction to the SAS LASR Analytic Server
	What is SAS LASR Analytic Server?
	How Does the SAS LASR Analytic Server Work?
	Distributed SAS LASR Analytic Server
	Non-Distributed SAS LASR Analytic Server

	Benefits to Using the Hadoop Distributed File System
	Components of the SAS LASR Analytic Server
	About the Components
	Root Node
	Worker Nodes
	In-Memory Tables
	Signature Files
	Server Description Files

	Administering the SAS LASR Analytic Server
	Administering a Distributed Server
	Administering a Non-Distributed Server
	Common Administration Features
	Features Available in SAS Visual Analytics Administrator
	Understanding Server Run Time
	Distributing Data

	Memory Management
	About Physical and Virtual Memory
	How Does the Server Use Memory for Tables?
	How Else Does the Server Use Memory?
	Managing Memory

	Data Partitioning and Ordering
	Overview of Partitioning
	Understanding Partition Keys
	Ordering within Partitions

	SAS LASR Analytic Server
Logging
	Understanding Logging
	What is Logged?
	Log Record Format

	Non-Distributed SAS LASR Analytic Server
	About Non-Distributed SAS LASR Analytic Server
	Starting and Stopping Non-Distributed Servers
	Starting Servers
	Stopping Servers

	Loading and Unloading Tables for Non-Distributed Servers

	LASR Procedure
	Overview: LASR Procedure
	What Does the LASR Procedure Do?
	Data Sources

	Syntax: LASR Procedure
	PROC LASR Statement
	PERFORMANCE Statement
	REMOVE Statement
	SAVE Statement

	Examples: LASR Procedure
	Start a Server
	Starting a Server with Logging Options
	Using the SAS Data in HDFS Engine
	Load a Table from Teradata to Memory
	Load a Table from Greenplum to Memory
	Unload a Table from Memory
	Stopping a Server
	Working with User-Defined Formats
	Working with User-Defined Formats and the FMTLIBXML= Option
	Saving a Table to HDFS

	VASMP Procedure
	Overview: VASMP Procedure
	What Does the VASMP Procedure Do?

	Syntax: VASMP Procedure
	PROC VASMP Statement
	QUIT Statement
	SERVERINFO Statement
	SERVERPARM Statement
	SERVERTERM Statement
	SERVERWAIT Statement
	TABLEINFO Statement

	Example: Copying Tables from One Hadoop Installation to Another

	OLIPHANT Procedure
	Overview: OLIPHANT Procedure
	What about the SAS Data in HDFS Engine?
	What Does the OLIPHANT Procedure Do?
	Understanding How SAS LASR Analytic Server
Uses HDFS

	Concepts: OLIPHANT Procedure
	Adding Big Data
	Adding Small Data

	Syntax: OLIPHANT Procedure
	PROC OLIPHANT Statement
	ADD Statement
	REMOVE Statement
	DETAILS Statement

	Examples: OLIPHANT Procedure
	Adding and Removing Files in HDFS
	Querying File Details from HDFS

	HPDS2 Procedure
	Overview: HPDS2 Procedure
	What Does the HPDS2 Procedure Do?
	HPDS2 Procedure Features
	Client and Cluster Execution Modes

	Parallel Execution of DS2 Code
	Limitations
	DS2 Packages
	PERFORMANCE Statement Options
	Data Input and Output
	Data Types and Declarations
	Error Messages

	Syntax: HPDS2 Procedure
	PROC HPDS2 Statement
	DATA Statement Statement
	ENDDATA Statement Statement
	PERFORMANCE Statement
	QUIT Statement Statement
	RUN Statement Statement
	RUN CANCEL Statement

	Examples: HPDS2 Procedure
	Distribute Data to Greenplum
	Distribute Data to Teradata

	Using the SAS LASR Analytic Server Engine
	What Does the SAS LASR Analytic Server Engine Do?
	Understanding How the SAS LASR Analytic Server Engine Works
	Understanding Server Tags
	What is a Server Tag?
	Why Use a Server Tag?

	Comparing the SAS LASR Analytic Server Engine with the LASR
Procedure
	What is Required to Use the SAS LASR Analytic Server Engine?
	What is Supported?

	LIBNAME Statement for the SAS LASR Analytic Server Engine
	Dictionary
	LIBNAME Statement Syntax

	Data Set Options for the SAS LASR Analytic Server Engine
	Dictionary
	APPEND Data Set Option
	FORMATEXPORT= Data Set Option
	HASH Data Set Option
	ORDERBY= Data Set Option
	PARTITION= Data Set Option
	PERM= Data Set Option
	TAG= Data Set Option
	UCA Data Set Option

	Using the SAS Data in HDFS Engine
	What Does the SAS Data in HDFS Engine Do?
	Understanding How the SAS Data in HDFS Engine Works
	What is Required to Use the SAS Data in HDFS Engine?
	What is Supported?

	LIBNAME Statement for the SAS Data in HDFS Engine
	Dictionary
	LIBNAME Statement Syntax

	Data Set Options for the SAS Data in HDFS Engine
	Dictionary
	BLOCKSIZE= Data Set Option
	COLUMNS= Data Set Option
	COPIES= Data Set Option
	FILETYPE= Data Set Option
	GETNAMES Data Set Option
	GETOBS Data Set Option
	GUESSROWS= Data Set Option
	HASH Data Set Option
	LOGUPDATE Data Set Option
	ORDERBY= Data Set Option
	PARTITION= Data Set Option
	PATH= Data Set Option
	PERM= Data Set Option
	REPLACE= Data Set Option
	UCA Data Set Option

	Glossary
	Index

