SAS’ Technical Report R-108

Algorithms for the PRINQUAL and
TRANSREG Procedures

11000101
1001010010100100
00010111000001101001
00101110100001110011110
0101010111000101000110100(
1001011001010011100101011000
11010010111010010010101010111
0010010111000011010101100101011
0001011100000110101110000100100
00101110100001110011100001000101
11000101011011101000001101000101
1001010010100100111001111000101(
000101111000001101001100010101C
001011101000011100111100010100
0101010111000101000110100010
10010110010100111001010110(
11010010111010010010101(
00100101110000110101¢
0001011100000110"
00101110
59040

ﬁ”@ SAS Institute Inc.

SAS’ Technical
Report R-108
Algorithms for the

PRINQUAL and
TRANSREG Procedures

SAS Institute Inc.
SAS Circle O3 Box 8000
® Cary, NC 27512-8000

The correct bibliographic citation for this manual Is as follows: SAS Institute Inc.,
SAS® Technical Report R-108, Algorithms for the PRINQUAL and TRANSREG Pro-
cedures, Cary, NC: SAS Institute Inc., 1990. 21 pp.

SAS® Technical Report R-108, Algorithms for the PRINQUAL and TRANSREG Pro-
cedures

Copyright © 1990 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-55544-388-5

All rights reserved. Printed in the United States of America. No part of this publica-
tion may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

1st printing, February 1990

The SAS® System is an integrated system of software providing complete control
over data management, analysis, and presentation. Base SAS software is the foun-
dation of the SAS System. Products within the SAS System include SAS/ACCESS?
SAS/AF® SAS/ASSIST? SAS/CPE? SAS/DMIT SAS/ETST SAS/FSPT SAS/GRAPH?
SAS/IML® SAS/IMS-DL/IT SAS/OR; SAS/QCT SAS/REPLAY-CICS; SAS/SHARE?
SAS/STAT? SAS/CONNECT; SAS/DB2; and SAS/SQL-DSsoftware. Other SAS
Institute products are SYSTEM 2000° Data Management Software, with basic
SYSTEM 2000, CREATE; Multi-User; QueX; Screen Writer; and CICS interface
software; NeoVisuals® software; JMP™ and JMP IN" software; SAS/RTERM* soft-
ware; SAS/C” and SAS/CX" Compilers. SAS Communications; SAS Training, SAS
Views® and the SASware Ballot” are published by SAS Institute Inc. Plink86® and
Plib86" are registered trademarks of Phoenix Technologies Ltd. All other trade-
marks above are registered trademarks or trademarks, as indicated by their mark,
of SAS Institute Inc.

A footnote must accompany the first use of each Institute registered trademark
or trademark and must state that the referenced trademark Is used to identify
products or services of SAS Institute Inc.

The Institute is a private company devoted to the support and further develop-
ment of its software and related services.

Credits

SAS Technical Report R-108 was created and written by Warren F. Kuhfeld.

Development and support of both the PRINQUAL and TRANSREG procedures
Is the responsibility of Warren F. Kuhfeld.

Algorithms for
the PRINQUAL

and TRANSREG
Procedures

ABSTRACT 1
Intended Audience 1
INTRODUCTION 2
Background 3
Optimal Scaling 4
OPSCORE, MONOTONE, UNTIE, and LINEAR Transformations 4
SPLINE and MSPLINE Transformations 6
ALGORITHMS 8
Terminology and Notation 8
The TRANSREG Univariate Method Algorithm 10
The TRANSREG MORALS Method Algorithm 11
The TRANSREG Redundancy Method Algorithm 12
The TRANSREG CANALS Method Algorithm 13
The PRINQUAL MAC Method Algorithm 14
MAC Method Notes 14
The PRINQUAL MTV Method Algorithm 15
The MGV Method Algorithm 16
MGV Sweep Algorithm Details 16
PRINQUAL Initialization Algorithms 17
MTV OPSCORE Variable Initialization Algorithm 17
MGV OPSCORE Variable Initialization Algorithm 18
REFERENCES 18
INDEX 21

ABSTRACT

The TRANSREG and PRINQIJAL procedures obtain linear and nonlinear transfor-
mations of variables using the method of alternating least squares. The
TRANSREG procedure optimizes fit to linear regression, canonical correlation,
and analysis-of-variance models. The PRINQUAL procedure optimizes properties
of the transformed variables’ covariance or correlation matrix, including the sum
of the largest r eigenvalues, which is ameasure of the fit of the data to an r princi-
pal components model.

Iintended Audience

This repdrt is intended for advanced users who want to know the details of the
internal algorithms used in the PRINQUAL and TRANSREG procedures. The

PRINQUAL and TRANSREG procedures are described in Volume 2 of the
SAS/STAT User's Guide, Version 6, Fourth Edition. This report provides the six
optimal scaling algorithms and the seven METHOD = name algorithms used in
these procedures. While some background information Is provided here, it Is
assumed that the reader is familiar with the PRINQUAL and TRANSREG chapters
(34 and 40, respectively) of the SAS/STAT User's Guide, Version 6, Fourth Edition.

INTRODUCTION

The TRANSREG (transformation regression) procedure is a data transformation
procedure that performs many types of analyses.
TRANSREG fits many types of linear models including

simple and generalized conjoint analysis and other ANOVA models with
optional variable transformations (de Leeuw, Young, and Takane 1976;
Green and Wind 1975)

metric and nonmetric vector and ideal point preference regression
(Carroll 1972)

simple, multiple, and multivariate regression with optional variable
transformations (Young, de Leeuw, and Takane 1976; Winsberg and
Ramsay 1980; Breiman and Friedman 1985)

redundancy analysis (Stewart and Love 1968) with optional variable
transformations (Israels 1984)

canonical correlation analysis with optional variable transformations

(van der Burg and de Leeuw 1983)

response surface regression (Myers 1976; Khuri and Cornell 1987) with a
varlety of response surface models and optional variable transformations.

The PRINQUAL procedure (principal components of qualitative data) Is a data
transformation procedure that is based on the work of Kruskal and Shepard
(1974); Young, Takane, and de Leeuw (1978); and Winsberg and Ramsay (1983).
PROC PRINQUAL can be used to

¢ generalize ordinary principal component analysis to a method capable of
analyzing data that are not quantitative.

perform metric and nonmetric multidimensional preference (MDPREF)
analyses (Carroll 1972).

preprocess data, transforming variables prior to their use in other data
analyses.

estimating missing values in multivariate data prior to subsequent data
analyses. When used with survey data, PROC PRINQUAL can estimate
optimal scores for nominal classes of otherwise ordered variables (such as
unfamiliar with the product in an ordered preference rating).

summarize mixed quantitative and qualitative data, and detect nonlinear
relationships.

reduce the number of variables for subsequent use in regression analyses,
cluster analyses, and other analyses.

The data can contain variables with nominal, ordinal, interval, and ratio scales
of measurement (Siegel 1956). Any mix of these variable types is allowed for the
dependent and independent variables.

* Nominal variables can be transformed by scoring the categories to
minimize squared error (Fisher 1938) with the OPSCORE transformation.

¢ Ordinal variables can be transformed monotonically by scoring the
ordered categories so that order Is weakly preserved (adjacent categories

can be merged) and squared error is minimized with the MONOTONE
transformation. Ties can be untied optimally (UNTIE transformation) or
left tied (Kruskal 1964).

Interval and ratio scale of measurement variables can be linearly
transformed (LINEAR) or nonlinearly transformed with spline (de Boor
1978; van Rijckevorsel 1982) transformations by specifying SPLINE, or
monotone spline (Winsberg and Ramsay 1980) transformations
(MSPLINE).

For all transformations, missing data can be estimated without constraint,
with category constraints (that is, missing values within the same group
get the same value), and with order constraints (that is, missing value
estimates in adjacent groups can be tied to weakly preserve a specified
ordering) (Gifi 1981; Young 1981; Kuhfeld and de Leeuw, in preparation).

Background

The TRANSREG and PRINQUAL procedures extend the ordinary general linear
model by providing optimal variable transformations that are iteratively derived
using the method of alternating least squares (Young 1981). The ordinary regres-
sion and principal component models assume that the variables are all measured
on an equal interval scale and, therefore, can be geometrically represented as
vectors in an n (the number of observations) dimensional space. In analysis of
variance, the independent variables are nominal variables, so they are not cor-
rectly represented as single vectors. Nominal independent variables are
expanded to design matrices, each column of which can be treated as a vector.
Nominal dependent variables can also be handled within the framework of the
ordinary general linear model (discriminant analysis).

An ordinary general linear model analysis can be cursorily described as taking
a set of interval and nominal variables, expanding the nominal variables to a set
of variables that can be treated as vectors, then fitting a regression (or canonical
correlation) model to the expanded set of varlables. The alternating least-squares
algorithm adds one additional capability to the general linear model: it allows vari-
ables whose full representation is a matrix consisting of more than one vector
to be represented by a single vector, which is an optimal linear combination of
the columns of the matrix. For any type of linear model, an alternating least-
squares program can solve for an optimal vector representation of any number
of variables simultaneously.

Because the alternating least-squares algorithm can replace a matrix with a vec-
tor, it can be used for fitting a linear model for many types of variables, including

interval variables

ordinal variables with or without category constraints (Kruskal 1964)
nominal variables within the space of a single vector (Fisher 1938)
interval variables that should be nonlinearly transformed (van Rijckevorsel
1982)

interval variables that should be nonlinearly but monotonically
transformed (Winsberg and Ramsay 1980)

any type of variable with some additional ordered or unordered
categories (Kuhfeld and de Leeuw, in preparation)

any type of variable with any mixture of missing value types that should
be scored with or without category constraints (Gifi 1981; Young 1981)
variables that consist of more than one measurement partition (Kuhfeld
and de Leeuw, in preparation).

TRANSREG and PRINQUAL can handle any mixture of these cases. They iterate
until convergence, alternating between these two steps:

¢ finding least-squares estimates of the parameters of the model (given the
current scoring of the data, that is, the current set of vectors)

¢ finding least-squares estimates of the scoring parameters (given the
current set of model parameters).

For more background on these and related topics, see Kruskal and Shepard
(1974); Young, de Leeuw and Takane (1976); de Leeuw, Young and Takane
(1976); Tenenhaus and Vachette (1977); Young, Takane and de Leeuw (1978);
Winsberg and Ramsay, (1980, 1981, 1983); Young (1981); Gifi (1981); Schiffman,
Reynolds, and Young (1981); Coolen, van Rijckevorsel, and de Leeuw (1982); van
Rijckevorsel (1982); van der Burg and de Leeuw (1983); Israels (1984); Breiman
and Friedman (1985); Hastie and Tibshirani (1986); de Leeuw (1986, 1988); Kuh-
feld and de Leeuw (Iin preparation); and many more.

Optimal Scaling

An alternating least-squares optimal scaling algorithm can be divided into two
major sections. The first section estimates the parameters of the linear model.
These parameters are used to create the predicted values or target for each vari-
able that can be transformed. Each target minimizes squared error as shown In
the algorithms in later sections. The definition of the target depends on many fac-
tors, such as whether a variable is independent or dependent, which algorithm
is used (for example, regression, redundancy, CANALS, principal components),
and so on. The definition of the target Is independent of the transformation family
specified for the variable. However, the target values for a variable typically do
not fit the prescribed transformation family for the variable. They might not have
the right category structure; they might not have the right order; they might not
be a linear combination of the columns of a B-spline basis; and so on.

Optimal scaling can be defined as a possibly constrained, least-squares regres-
sion problem. When an optimal transformation family other than LINEAR is speci-
fied for a variable, or when missing data are estimated for any variable, the full
representation of the variable is not simply a vector; it is a matrix with more than
one column. The optimal scaling phase finds the vector that is a linear combina-
tion of the columns of this matrix, is closest to the target (in terms of minimum
squared error), and does not violate any of the constraints imposed by the trans-
formation family. Optimal scaling methods are independent of the data analysis
method that generated the target. In all cases, optimal scaling can be accom-
plished by creating a design matrix based on the original scaling of the variable
and the transformation family specified for that variable. The optimally scaled
variable is a linear combination of the columns of the design matrix. The coeffi-
cients of the linear combination are found using the method of possibly con-
strained, least squares.

Optimal scaling problems are typically solved without actually constructing
design and projection matrices. The following sections describe the algorithms
used by the TRANSREG and PRINQUAL procedures for optimal scaling. The first
section below discusses optimal scaling for OPSCORE, MONOTONE, UNTIE,
and LINEAR transformations, including how missing values are handled. The sec-
ond section addresses SPLINE and MSPLINE transformations.

OPSCORE, MONOTONE, UNTIE, and LINEAR Transformations

Two vectors of information are needed to produce the optimally scaled variable:
the initial variable scaling vector x and the target vector y. For convenience, both
vectors are first sorted on the values of the initial scaling vector. For UNTIE trans-
formations, the target vector is sorted within ties in the initial scaling vector, The
normal SAS System collating sequence for missing and nonmissing values is used.

Sorting simply allows constraints to be specified in terms of relations among
adjoining coefficients. The sorting partitions x and y into missing and nonmissing
parts (Xg' Xy, and (ym' Ya)'.

Next, category membership is determined. Every ordinary missing value (.)
forms aseparate category. (Three ordinary missing values form three categories.)
Every special missing value within the range specified in the UNTIE= option
forms a separate category. (If UNTIE= BC and there are three .B and two .C miss-
ing values, five categories are formed from them.) For all other special missing
values, a separate category Is formed for each different value. (If there are four
.A missing values, one category is formed from them.)

Each distinct nonmissing value forms a separate category for OPSCORE and
MONOTONE transformations (11 1 2 2 3 form three categories). Each nonmiss-
ing datum forms a separate category for all other transformations (111223 form
six categories). Once category membership is determined, category means are
computed, for example:

x: (.- - A A B111223
y: 56 2 4 212346 4
OPSCORE and MONOTONE means: (5 6 3 2 2 5 5
other means: (5 6 3 2 1 23 46 4

The category means are the coefficients of a category indicator design matrix.
The category means are the Fisher (1938) optimal scores. For MONOTONE and
UNTIE transformations, order constraints are imposed on the category means for
the nonmissing partition by merging categories that are out of order. The algo-
rithm checks upward until an order violation is found, then averages downward
until the order violation is averaged away. (The average of X, computed from ry
observations and X, computed from n, observations is (MRq + mXo)/ (M + np).) The
MONOTONE algorithm (Kruskal 1964, secondary approach to ties) for this exam-
ple with means for the nonmissing values (25 5 7)' would do the following checks:
2<5:0K, 5=5:0K, 5<7:0K. The means are In the proper order so no work is
needed.

The UNTIE transformation (Kruskal 1964, primary approach to ties) uses the
same algorithm on the means of the nonmissing values (1 2346456 7)" but
with different results for this example: 1<2:0K, 2<3:0K, 3<4:0K, 4< 6:0K,
6> 4:average 6 and 4 and replace 6 and 4 by the average. The new means of the
nonmissing values are (123 4555 6 7)'. The check resumes: 4<5:0K, 5 =5:0K,
5=5:0K, 5<6:0K, 6<7:OK. If some of the special missing values are ordered,
the upward checking, downward averaging method is applied to them too, inde-
pendently of the other missing and nonmissing partitions. Once the means con-
form to any required category or order constraints, an optimally scaled vector is
produced from the means. The following example results from a MONOTONE
transformation:

x: (- - A A B111223334y
y: (56 2 4 212346456 7)
result: G6 3 3 222255525757

The upward checking, downward averaging algorithm is equivalent to creating
a category indicator design matrix, solving for least-squares coefficients with order
constraints, then computing the linear combination of design matrix columns.

For the optimal transformation LINEAR, and for nonoptimal transformations,
missing values are handled as just described. The nonmissing target values are
regressed onto the matrix defined by the nonmissing initial scaling values and an
intercept. In this example, the target vector ¥Y,=(12346456 7) is regressed
onto the design matrix

w W

wn

W

[=))

4)'
7

7)

’
111111111
111223334

Although only a linear transformation is performed. the effect of a linear regres-
sion optimal scaling is not eliminated by the later standardization step (except

if the variable has no missing values). In the presence of missing values, the linear
regression is necessary to minimize squared error.

SPLINE and MSPLINE Transformations

The missing portions of variables subjected to SPLINE or MSPLINE transforma-
tions are handled the same way as for OPSCORE, MONOTONE, UNTIE, and
LINEAR transformations (see the previous section). The nonmissing partition is
handled by first creating a B-spline basis, of the specified degree with the speci-
fied knots for the nonmissing partition of the initial scaling vector, and then
regressing the target onto the basis. The optimally scaled vector is a linear combi-
nation of the B-spline basis vectors using least-squares regression coefficients. An
algorithm for generating the B-spline basis is given in de Boor (1978, pp. 134~
135). B-splines are both a computationally accurate and efficient way of con-
structing a basis for piece-wise polynomials; however, they are not the most natu-
ral method of describing splines. See Smith (1979) for an excellent introduction
to splines.

Consider an initial scaling vector x=(12 34 56 7 8 9)" and a degree three spline
with interior knots at 3.5 and 6.5. The B-spline basis for the transformation Is the
left matrix below, and the natural piece-wise polynomial spline basis Is the right
matrix below. The two matrices span the same column space. The natural basis
has an intercept, a linear term, a quadratic term, a cubic term, and two more terms
since there are two interior knots These terms are generated (for knot k and x
element x) by the formula: (x— k) *(x> K). The logical expression (x> k) evaluates
to 1.0 if x is greater than k and 0.0 otherwise. If knot k had been repeated, there
would be a (x— /<)2 *(x > K) term also. Notice that the fifth column makes no contri-
bution to the curve before 3.5, makes zero contribution at 3.5 (the transformation
is continuous), and makes an increasing contribution beyond 3.5. The same pat-
tern of results holds for the last term with knot 6.5. The coefficient of the fifth
column represents the change in the cubic portion of the curve after 3.5. The
coefficient of the sixth column represents the change in the cubic portion of the
curve after 6.5.

B-Spline Basis Piecewise Polynomial
Splines
471 557 250 022 O O 11 1 1 0 0
037 447 443 073 0 O 12 4 8 0 0
.001 251 576 172 0 O 13 9 27 0 0]
0 093 572 334 001 O 1416 64 0125 0
0 .020 437 517 027 O 1525125 + 3375 0
0 .001 253 623 .123 O 16 36216 15625 0
0O 0 .108 .557 .332 .003 17 49 343 42875 0.125
0 0 .032 .341 548 .079 1864512 91125 3.375
| 0 0.004 109 .523 .364 | |19 81729 166.375 15.625 |

The numbers in the B-spline basis do not have a simple interpretation like the
numbers In the natural piece-wise polynomial basis. The B-spline basis has a diag-
onally banded structure. The band shifts to the right one column after every knot.
The number of nonzero elements in a row is one greater than the degree. The
elements within a row always sum to one. The procedures take advantage of the
sparseness of the B-spline basis when they accumulate crossproducts. The num-
ber of required multiplications and additions to accumulate the crossproduct
matrix does not increase with the number of knots, but does increase with the
degree of the spline, so it is much more computationally efficient to increase the
number of knots than to increase the degree of the polynomial.

MSPLINE transformations are handled like SPLINE transformations except con-
straints are placed on the coefficients to ensure monotonicity. When the coeffi-
cients of the B-spline basis are monotonically increasing, the transformation is
monotonically increasing. When the polynomial degree is two or less, monotone
coefficient splines, integrated splines (Winsberg and Ramsay 1980), and the gen-
eral class of all monotone splines are equivalent.

This algorithm shows how optimal scaling is handled for SPLINE and MSPLINE
transformations.

1. Let X be the full (n xm) B—spline basis and y be the target. The
partitioned crossproduct matrix

[x'x X'y]

5= lyx vy
Is created without storing the full X matrix. The DEGREE = p plus one
nonzero elements of each row of X are generated one row at a time, S
Is accumulated taking advantage of the sparseness of X, and the row of
X is discarded.

2. If a SPLINE transformation is specified, the first m columns of § are
swept (Goodnight 1978), so the first m rows of the last column of §
contain ordinary least-squares regression coefficients, b. Go to DONE
(step 17).

3. An MSPLINE transformation is requested, so compute least-squares
monotone coefficients (steps 4 through 16).

4. Create a tie flags m-vector t initialized to indicate that each column of X
starts a new tie block (no ties). The /th element of t is set to /.

5. Create a backup copy of §: C=8.

6. START ITERATING:

7. Restore the original §: S=C.

8. Impose on § the ties indicated by the tie flags: if the jth and (/+1)th

B-spline columns are to be tied to impose monotonicity constraints

(if & =t 44), add the (7 +1)th column of § to the / th column and zero
the (/ +1)th column; then add the (7 +1)th row of § to the / th row, and
zero the (/ +1)th row. Check backwards, so a three-way tie is imposed
by adding the third row and column to the second, then the new
second to the first, resulting in two rows and columns that are zero.
Multiple ties can be imposed on § this way.

9. Sweep the first m columns of § on the nonzero pivots, so the first m
rows of the last column of § contain ordinary least-squares regression
coefficients, (b) given the current tie structure.

10. If a coefficient is zero because it is not the first in a tie block (its row
and column in § is zero), set the coefficient to the nonzero coefficient
for the first row in the tie block. When § is swept to find ordinary least-
squares coefficients, column x; can result from the original x; plus Xx;, 1.

1.

12.
13.

14.

15.

16.

17.
18.

19.

Creating b; .1 =0b; for all ties defines the constrained coefficient vector
in terms of the original problem of finding a monotone linear
combination of m B-spline columns.

Check the coefficients for monotonicity. b, should be less than b, and
so on. Find the biggest monotonicity violation (if one exists), and set the
tie flags so that the offending columns will be combined in the next
iteration. If the biggest violation is between b; and b, , 4, set &, 4 tO &

If a monotonicity violation was found, go to START ITERATING (step 6).
Since no monotonicity violations in the coefficients were found, check
to see if any of the ties previously imposed can be unimposed (steps 14
through 16). However, if only zero or one tie was imposed, untying is
impossible, so go to DONE (step 17).

Create the sums of crossproducts between the residuals and the
columns of X:d=X (y—Xb)= Xy —X'Xb, using the pieces stored in

C and S. While d is a zero vector in ordinary least squares, it is not by
definition all zero when constraints exist.

Create m sums of the elements in d: sum the first / elements for
i=1,2,...,m.If the ith sum is negative, the ith and (/ —1)th
columns can be untied, glven the other ties. (The first sum, d,, Is always
zero.) Find the smallest sum that is less than the negative of the
singularity criterion. If one exists, set the tie flags so that the indicated
columns will not be tied on the next iteration:
forj=i+1,i+2, ..., m, ift=tset ;=7 +1.

If two columns were flagged to be untied, go to START ITERATING
(step 6).

DONE: (Done computing coefficients.)

The b vector now contains the (unconstrained for SPLINE or constrained
for MSPLINE) least-squares estimates of the coefficients for combining
the B-spline columns.

The nonzero elements of X are generated again and the linear
combination Xb Is computed, again taking advantage of the

sparseness in X.

ALGORITHMS

The four TRANSREG and three PRINQUAL alternating least-squares optimal scal-
ing algorithms are discussed in this section.

Terminology and Notation

optimal scaling involves taking the variable approximations and imposing

the appropriate measurement level constraints, resulting
in a transformed variable that fits the model at least as
well as the previous scaling.

the necessary initializations

computes power, log, logit, inverse sine, rank, and
exponent transformations (TRANSREG and PRINQUAL);
optionally adds the intercept variable (TRANSREG);
expands classification variables into design matrices
(TRANSREG); creates the additional variables for external
unfolding: a sums-of-squares variable for point models,
squared variables for the elliptical and quadratic point
models, and crossproduct variables for quadratic point

models (TRANSREG); the dummy variable or MAC

initializations (PRINQUAL, both described below).
missing value initialization

replaces missing values by the variable mean.

internal mean is zero if NOINT Is not specified: otherwise, the mean of
the original variable or, for nonoptimal transformations,
the mean of the transformed variable, by default.

the final standardization

is described in the TSTANDARD = option (PRINQUAL
and TRANSREG) and ADDITIVE option (TRANSREG).
the necessary expansions
optionally add the intercept variable, substitute ranks for
RANK variables, expand CLASS varlables Into design
matrices, create the POINT sums-of-squares variable,
create EPOINT and QPOINT squared variables, and
create QPOINT crossproduct variables.

X Is the current scaling. of the independent variables in
TRANSREG or, in PRINQUAL, all variables.

Y s the current scaling of the dependent variable(s).

B is the matrix of ordinary regression coefficients XY
(where X~ is a generalized inverse of X) in the
univariate, MORALS and redundancy algorithms, and
canonical coefficients for the X variables in the CANALS
algorithm.

A is the matrix of canonical coefficients for the Y variables

in the CANALS algorithm.

appropriate variance
is the variance of the variable if COVARIANCE is
specified; the default is one.

standardized design matrix
is @ matrix constructed by creating a cell indicator design
matrix, discarding the last column, centering the
remaining columns, and standardizing the matrix so that
the rolled out design matrix has the appropriate variance.

n the number of components specified by N=n
(PRINQUAL).

10

The TRANSREG Univariate Method Algorithm

The univariate algorithm is based on the MORALS method of Young, de Leeuw,
and Takane (1976). The univariate algorithm is a simple generalization of ordinary
multiple regression to allow dependent variable transformations. The indepen-
dent variables are not transformed while each dependent variable is separately
transformed to be as much as possible, given the transformation family con-
straints, like a linear combination of the independent variables. While more than
one dependent variable can be transformed with a single analysis, the algorithm
is univariate since each dependent variable Is transformed independently of each
other dependent variable. The following algorithm is used:

input the data
perform any necessary initializations
store a copy of the data for use in optimal scaling
perform missing value initialization
set variable variances and means
put the initialized independent variables in X
do for each dependent variable that can be transformed:
put the current dependent variable in Y
repeat for a maximum number of iterations or until convergence:
compute regression coefficients B
compute regression predicted values XB
set Y equal to the optimally scaled XB
standardize Y to internal mean and variance one
evaluate change and output iteration convergence information
end iteration loop
end dependent variable loop
compute and output all required output data set information.

The TRANSREG MORALS Method Algorithm

The MORALS algorithm is based on the MORALS method of Young, de Leeuw,
and Takane (1976). The MORALS algorithm is a generalization of the univariate
algorithm that allows all variables, both dependent and independent, to be trans-
formed. Each dependent variable is transformed to be like a linear combination
of the independent variables as much as possible, given the transformation family
constraints. Then each independent variable is transformed to maximize the
squared muitiple correlation as much as possible, given the transformation family
constraints. While more than one dependent variable can be transformed with
a single analysis, the algorithm is univariate since each dependent varlable is
transformed independently of each other dependent variable, and the set of inde-
pendent variables Is independently transformed for each dependent variable. The
following algorithm is used:

input the data
perform any necessary initializations
store a copy of the data for use in optimal scaling
perform missing value initialization
set variable variances and means
store a copy of the initialized independent variables
do for each dependent variable that can be transformed:
put initialized independent variables in X
put current dependent varlable in Y
repeat for a maximum number of iterations or untlf convergence:
compute regression coefficients B
compute regression predicted values XB
replace the Y variable with optimally scaled XB
standardize Y to internal mean and variance one
compute residuals: R=Y —XB
do for each independent variable that can be transfomed:
b = coefficient for current independent variable
x =current independent variable
update residuals: R=R +bx
compute the target for x: R/b
replace x with the optimally scaled target
standardize x to internal mean and variance one
update residuals: R=R —bx
store x back in X
end independent variable loop
evaluate change and output iteration convergence information
end iteration loop
compute and output all required output data set information
end dependent variable loop.

1"

12

The TRANSREG Redundancy Method Algorithm

The redundancy analysis algorithm is a logical extension of Young, de Leeuw, and
Takane's (1976) work. The redundancy analysis algorithm jointly transforms a set
of independent and dependent variables to maximize the average of the p
-squared multiple correlations. This Is a multivariate method since the entire set

of dependent and independent variables are transformed together. The followi ng
algorithm is used:

input the data
perform any necessary initializations
store a copy of the data for use in optimal scaling
perform missing value initialization
set variable variances and means
put independent variables in X
put dependent variable in Y
repeat for a maximum number of iterations or until convergence:
compute regression coefficients B
compute regression predicted values XB
replace the Y variables with optimally scaled XB
standardize Y to intemal means and variances one
compute residuals: R=Y —-XB
do for each independent variable that can be transformed:
x = current independent variable
b’ = coefficient row vector for current x
update residuals: R=R + xb'
compute the target for x: Rb(b’ b)~"
replace x with the optimally scaled target
standardize x to internal mean and variance one
update residuals: R=R—xb’
store x back in X
end independent variable loop
evaluate change and output iteration convergence information
end iteration loop
compute and output all required output data set information.

The TRANSREG CANALS Method Algorithm

The CANALS algorithm is based on (but not identical to) the CANALS method
of van der Burg and de Leeuw (1983). The canonical analysis algorithm jointly
transforms a set of independent and dependent variables to maximize the aver-
age of the first r -squared canonical correlations. This is a multivariate method
since the entire set of dependent and independent variables are transformed
together. The following algorithm is used:

input the data
perform any necessary initializations
store a copy of the data for use in optimal scaling
perform missing value initialization
set variable variances and means
put independent variables in X
put dependent variable in Y
repeat for a maximum number of iterations or until convergence:
compute ordinary canonical coefficients B and A
keep only the first 7 columns of B and A
multiply each column of A by its cdnonical correlation
compute residuals: R=XB - YA
do for each dependent variable that can be transformed:
y =current dependent variable
a' = coefficient row vector for current y
update residuals: R=R +ya’
compute the target for y: Ra(a'a)”"
replace y with the optimally scaled target
standardize y to internal mean and variance one
update residuals: R=R—ya’
store y back in Y
end dependent variable loop
compute ordinary canonical coefficients B and A
keep only the first r columns of B and A
multiply each column of B by its canonical correlation
compute residuals: R=YA — XB
do for each independent variable that can be transformed:
x = current independent variable
b' = coefficient row vector for current x
update residuals: R =R + xb’
compute the target for xR (b’)
replace x with the optimally scaled target
standardize x to internal mean and variance one
update residuals: R =R —xb’
store x back in X
end independent variable loop
evaluate change and output iteration convergence information
end iteration loop
compute and output all required output data set information

-1

13

14

The PRINQUAL MAC Method Algorithm

The MAC method (de Leeuw 1985) uses an iterated constrained multiple regres-
sion algorithm in an attempt to maximize the average of the elements of the corre-
lation matrix. This method transforms each variable to be (in a least-squares
sense) as similar to the average of the remaining variables as possible (de Leeuw
1985).

On each iteration for each variable, the MAC algorithm alternates computing
an equally weighted average of the other variables with optimal scaling. The MAC
method is similar to the MGV method in that each variable is scaled to be as simi-
lar to a linear combination of the other variables as possible, given the constraints
on the transformation. However, optimal weights are not computed. The MAC
method can be used when all variables are positively correlated, or when no
monotonicity constraints are placed on any transformations. Do not use this
method with negatively correlated variables when some optimal transformations
are constrained to be increasing because the signs of the correlations are not
taken into account. The MAC method is useful as an initialization method for the
MTV and MGV methods. This method uses the following algorithm:

input the data matrix X
perform the nonoptimal transformations
store a copy of X for use in optimal scaling
perform missing value initialization
scale the variables of X to mean zero and appropriate variance
repeat for a maximum number of iterations or until convergence:
do for all variables:
select the jth variable as a criterion
approximate the criterion using the mean of the remaining variables
optimally scale the approximation and store in x
standardize x to mean zero and appropriate variance
replace the jth column of X with x
end variable loop
evaluate change and output iteration convergence information
end iteration loop
perform the final standardization
output the results.

MAC Method Notes

The MAC algorithm can be used alone by specifying METHOD =MAC, or used
as an initialization algorithm for METHOD =MTV and METHOD = MGV analyses
by specifying the iteration option INITITER=n . If any variables are negatively
correlated, do not use the MAC algorithm with monotonic transformations
(MONOTONE, UNTIE, and MSPLINE) because the signs of the correlations
among the variables are not used when computing variable approximations. If
an approximation is negatively correlated with the original variable, monotone
constraints would make the optimally scaled variable a constant, which is not
allowed. When used with other transformations, the MAC algorithm can reverse
the scoring of the variables. So, for example, if variable X is designated LOG(X)
with METHOD = MAC and TSTANDARD = ORIGINAL, the final transformation
(for example, TX) may not be LOG(X). If TX is not LOG(X), it will have the same
mean as LOG(X), the same variance as LOG(X), and it will be perfectly negatively
correlated with LOG(X). PROC PRINQUAL prints a note for every variable that
is reversed in this manner. -

The METHOD =MAC algorithm can be used to deliberately reverse the scor-
ings of some rating variables before a factor analysis. The correlations among

bipolar ratings such as ‘like - dislike’, 'hot - cold’, and ‘fragile - monumental' are
typically both positive and negative. If some items are reversed to say 'dislike -
like', ‘cold - hot’, and ‘monumental - fragile', some of the negative signs could
be eliminated, and the factor pattern matrix would be cleaner. PROC PRINQUAL
can be used with METHOD =MAC and LINEAR transformations to reverse some
items, maximizing the average of the intercorrelations.

The PRINQUAL MTV Method Algorithm

The MTV method (Young, Takane, and de Leeuw 1978) is based on the principal
component model and attempts to maximize the sum of the first r eigenvalues
of the covariance matrix. This method transforms variables to be (in a least-
squares sense) as similar to linear combinations of r principal component score
variables as possible, where r can be much smaller than the number of variables.
This maximizes the total variance of the first rcomponents (the trace of the covar-
iance matrix of the first r principal components) (Kuhfeld, Sarle, and Young 1985).

On each iteration, the MTV algorithm alternates classical principal component
analysis (Hotelling 1933) with optimal scaling (Young 1981). When all variables
are ordinal preference ratings, this corresponds to Carroll's (1972) MDPREF analy-
sis. The Iterations can be Initialized using the method suggested by Tenenhaus
and Vachette (1977), who independently proposed the same iterative algorithm
for nominal and interval scale-of-measurement variables. This method uses the
following iterated principal component algorithm:

input the data matrix X

perform the nonoptimal transformations

store a copy of X for use in optimal scaling

perform missing value initialization

scale the variables of X to mean zero and appropriate variance

perform any necessary initializations

repeat for a maximum number of iterations or until convergence:
compute R, the covariance matrix of X
compute W, the first r eigenvectors of R
approximate X with XWW'
replace X with the optimally scaled variables of XWW'
scale the variables of X to mean zero and appropriate variance
evaluate change and output iteration convergence information
end iteration loop

perform the final standardization

output the results.

15

16

The MGV Method Algorithm

The MGV method (Sarle 1984) uses an iterated multiple regression algorithm in
an attempt to minimize the determinant of the covariance matrix of the trans-
formed variables. This method transforms each variable to be (in a least-squares
sense) as similar to linear combinations of the remaining variables as possible.
This locally minimizes the generalized variance of the transformed variables, the
determinant of the covariance matrix, the volume of the parallelepiped defined
by the transformed variables, and sphericity (the extent to which a quadratic form
in the optimized covariance matrix defines a sphere) (Kuhfeld, Sarle, and Young
1985).

On each iteration for each variable, the MGV algorithm alternates multiple
regression with optimal scaling. The multiple regression involves predicting the
selected variable from all other varlables. The iterations can be Initialized using
a modification of the Tenenhaus and Vachette (1977) method that is appropriate
with a regression algorithm. This method can be viewed as a way of investigating
the nature of the linear and nonlinear dependencies in, and the rank of, a data
matrix containing variables that can be nonlinearly transformed. This method tries
to create a less-than-full rank data matrix. The matrix contains the transformation
of each variable that is most similar to what the other transformed variables pre-
dict. This method uses the following iterated regression algorithm:

input the data matrix X
perform the nonoptimal transformations
store a copy of X for use in optimal scaling
perform missing value initialization
set the variables of X to mean zero and appropriate variance
perform any necessary initializations
repeat for a maximum number of iterations or until convergence:
do for all variables:
select the /th variable as a criterion
select a full rank set of predictors from all other variables
approximate the criterion using regression
optimally scale the approximation and store in x
standardize x to mean zero and appropriate variance
replace the th variable of X with x
end variable loop
evaluate change and output iteration convergence information
end iteration loop
perform the final standardization
output the results.

MGV Sweep Algorithm Details

The MGV method sweeps (Goodnight 1978) the corrected cross product matrix
to select the full rank set of predictor variables and compute the regression coeffi-
cients. This algorithm does not require that the cross product matrix be recom-
puted and reswept for each variable for each iteration. The cross products,
inverse, and regression coefficients are updated for each variable.

The MGV algorithm selects a full rank set of predictor variables by checking
the R, for predicting a candidate predictor variable from those variables already
in the set of predictors. If (1 —R? is less than the value of SINGULAR= (1E-8
by default), the candidate variable is not included in the set of predictors for this
model. When the next model is fit, the new criterion variable is removed from
the set of predictors (by sweeping) if it was a predictor. Then the R? for each of
the variables that is not in the set of predictors is checked, as before, to see if

it should be included (swept) into the set of predictors. Once a variable is in the
set of predictors it is not removed until it becomes a criterion, or until as many
models as is specified by REFRESH = have been fit.

Periodically the computations need to be refreshed to eliminate accumulated
rounding error. Refreshing removes all variables from the predictor set so that
a new inverse, new regression coefficients, and so on, are computed from the
cross product matrix. The REFRESH = option controls how many models are fit
before this happens. When the variables are highly collinear, the effects of round-
ing error are more severe, so REFRESH= should be smaller. The default,
REFRESH =S5, is conservative. In many cases a larger value does not result in
appreciable rounding error. Increasing REFRESH = might result in only a small
reduction in iteration time. The sweeps are very fast compared to the time
required for accumulating the cross product matrix and performing the other cal-
culations. So, for example, doubling the value of REFRESH = will not halve the
iteration time.

One method of detecting when too many sweeps have occurred without
refreshing is to compute R? as the squared length of the predicted values vector,
divided by the total sum of squares. If this ratio is different from the RZ computed
from the error sum of squares (which is a by-product of the sweep algorithm) by
more than the square root of SINGULAR=n, a warning is printed, the value of
REFRESH = is halved, and the model is refit after refreshing. This error checking
can be turned off by specifying NOCHECK. Specifying NOCHECK speeds up the
algorithm slightly.

PRINQUAL Initialization Algorithms

When the DUMMY option is specified, PROC PRINQUAL uses the following ini-
tialization algorithms. The first step always replaces each OPSCORE variable in
X by a standardized design matrix. This process expands X , because each single
column OPSCORE variable is replaced by a design matrix. By the end of the ini-
tialization, each OPSCORE variable in X is replaced by a single column which
is the optimal scoring, so the order of X matches its original order.

The results of the initializations are not reported separately, but are incorpo-
rated into the results of the first iteration. The MTV initialization affects all vari-
ables, while the MGV initialization only affects OPSCORE variables. The MTV
initialization was proposed by Tenenhaus and Vachette (1977), and the MGV ini-
tialization is a modification of the Tenenhaus and Vachette algorithm.

MTV OPSCORE Variable Initialization Algorithm

replace each OPSCORE variable in X by a standardized design matrix
compute R, the covariance matrix of the expanded X
compute W , the first r eigenvectors of R
compute F = XW
approximate each OPSCORE variable of X with the first
canonical variable predicting the design matrix from F
approximate the other variables of X with XWW'
replace X with the optimally scaled approximations
set the variables of X to mean zero and appropriate variance.

The canonical correlation approximation process is as follows: let Y be the stan-
dardized design matrix. The canonical correlation model is Ya = Fb . The first
column of Fb is the approximation to the OPSCORE variable.

17

18

MGV OPSCORE Variable Initialization Algorithm

replace each OPSCORE variable in X by a standardized design matrix
do for each OPSCORE variable in X (variable /)

approximate the variable with the first canonical variable

predicting the design matrix from the rest of X

optimally scale the approximation and store in x

standardize x to mean zero and appropriate variance

replace the / th variable of X with x

end OPSCORE variable loop.

The canonical correlation approximation process is as follows: let Y be the stan-
dardized design matrix and Z be the rest of X . The canonical correlation model
is Ya = Zb . The first column of Zb is the approximation to the OPSCORE variable.

REFERENCES

de Boor, C. (1978), A Practical Guide to Splines, New York: Springer Verlag.

Breiman, L., and Friedman, J.H. (1985), “Estimating Optimal Transformations for
Multiple Regression and Correlation," (with discussion), Journal of the American
Statistical Association, 77, 580-619.

van der Burg, E., and de Leeuw, J. (1983), “Non-linear Canonical Correlation,”
British Journal of Mathematical and Statistical Psychology, 36, 54—80.

Carroll, J.D. (1972), “Individual Differences and Multidimensional Scaling,” in
R.N. Shepard, A.K. Romney, and S.B. Nerlove (eds.), Multidimensional Scaling:
Theory and Applications in the Behavioral Sciences (Volume 1), New York: Semi-
nar Press.

Coolen, H., van Rijckevorsel, J., & de Leeuw, J. (1982), "An Algorithm for Nonlin-
ear Principal Components with B-splines by Means of Alternating Least
Squares,” in H. Caussinus, P. Ettinger, and R. Tomassone (Eds.), COMPUSTAT
1982, Part 2, Vienna: Physica Verlag.

Fisher, R. (1938), Statistical Methods for Research Workers (10th Edition), Edin-
burgh: Oliver and Boyd Press.

Gifi, A. (1981), Nonlinear Multivariate Analysis, Department of Data Theory, The
Netherlands: The University of Leiden.

Goodnight, J.H. (1978), SAS Technical Report R-106, The Sweep Operator: Its
Importance in Statistical Computing, Cary NC: SAS Institute Inc.

Green, P.E., and Wind, Y. (1975), "New Way to Measure Consumers' Judge-
ments,"” Harvard Business Review, July-August, 107-117.

Hastie, T., and Tibshirani, R. (1986), “Generalized Additive Models," Statistical
Science, 3, 297-318.

Hotelling, H. (1933), "Analysis of a Complex of Statistical Variables into Principal
Components," Journal of Educational Psychology, 24, 498-520.

Israels, A.Z. (1984), "Redundancy Analysis for Qualitative Variables," Psycho-
metrika, 49, 331-346.

Khuri, A.l., and Cornell, J.A. (1987), Response Surfaces, New York: Marcel Dekker.

Kruskal, J.B. (1964), "Multidimensional Scaling By Optimizing Goodness of Fitto
a Nonmetric Hypothesis,” Psychometrika, 29, 1-27.

Kruskal, J.B., and Shepard, R.N. (1974), “A Nonmetric Variety of Linear Factor
Analysis,” Psychometrika, 38, 123-157.

Kuhfeld, W.F., and de Leeuw, J., "Optimal Scaling of Partitioned Variables,” (in
preparation).

Kuhfeld, W.F., Sarle, W.S., and Young, F.W. (1985), "Methods of Generating
Model Estimates in the PRINQUAL Macro,” SAS Users Group International Cor-
ference Proceedings: SUGI 10, Cary, NC: SAS Institute Inc., 962-971.

de Leeuw, J.,, Young, F.W., and Takane, Y. (1976), "Additive Structure in Qualita-
tive Data: An Alternating Least Squares Approach with Optimal Scaling Fea-
tures,” Psychometrika, 41, 471-503.

de Leeuw, J. (1985), (Personal Communication).

de Leeuw, J. (1986), "Regression with Optimal Scaling of the Dependent Vari-
able,” Department of Data Theory, The Netherlands: The University of Leiden.

deleeuw, ., Young, F.W., & Takane, Y. (1976), “"Additive Structure in Qualitative
Data: an Alternating Least Squares Method with Optimal Scaling Features. Psy
chometrika, 41, 471-503.

Meyers, R.H. (1976), Response Surface Methodology, Blacksburg, VA: Virginia
Polytechnic Institute and State University.

van Rijckeveorsel, J. (1982), "Canonical Analysis with B-Splines,” in H. Caussinus,
P. Ettinger, and R. Tomassone (ed.), COMPUSTAT 1982, Part 1 Vienna: Physica
Verlag.

Sarle, W.S. (1984), (Personal Communication).

Schiffman, S.S., Reynolds, M.L., and Young, F.W. (1981), /ntroduction to Multidi
mensional Scaling, New York: Academic Press.

Siegel, S. (1956), Nonparametric Statistics, New York: McGraw-Hill.

Smith, P.L. (1979), "Splines as a Useful and Convenient Statistical Tool," The
American Statistician, 33, 57-62.

Stewart, D., and Love, W. (1968), “A General Canonical Correlation Index," Psy
chological Bulletin, 70, 160-163.

Tenenhaus, M. and Vachette, J.L. (1977), “PRINQUAL: Un Programme d'Analyse
en Composantes Principales d'un Ensemble de Varlables Nominales ou
Numeriques,” Les Cahiers de Recherche #68, CESA, Jouy-en-josas, France.

Winsberg, S., and Ramsay, J.O. (1980), “Monotonic Transformations to Additivity
Using Splines,” Biometrika, 67, 669-674.

Winsberg, S., and Ramsay, J.O. (1981), "Analysis of Pairwise Preference Data
Using Integrated B-splines,” Psychometrika, 46, 171-186.

Winsberg, S. and Ramsay, J.O. (1983), "Monotone Spiine Transformations for
Dimension Reduction,” Psychometrika, 48, 575-595.

Young, F.W. (1981), "Quantitative Analysis of Qualitative Data,” Psychometrika,
46, 357-388.

Young, F.W., de Leeuw, J., and Takane, Y. (1976), "Regression with Qualitative
and Quantitative Variables: An Alternating Least Squares Approach with Opti-
mal Scaling Features,” Psychometrika, 41, 505-529.

Young, F.W.,, Takane, Y., and delLeeuw, J. (1978), "The Principal Components of
Mixed Measurement Level Multivariate Data: An Alternating Least Squares
Method with Optimal Scaling Features,” Psychometrika, 43, 279-281.

19

20

A

algorithms

canals method (TRANSREG) - 13

initialization algorithms (PRINQUAL) 17-18

MAC method (PRINQUAL) 14

MGV method (PRINQUAL) 16

MGV OPSCORE variable initialization
(PRINQUAL) 18

morals method (TRANSREG) 11

MTV method (PRINQUAL) 15

MTV OPSCORE variable initialization
(PRINQUAL) 17

optimal scaling 4

redundancy method (TRANSREG) 12

terminology and notation 8-9

univariate method (TRANSREG) 10

Cc

conjoint analysis 2

F

factor analysis
reverse scoring 14

L

LINEAR transformation 3, 4

missing data estimation 3, 5

MONOTONE transformation 2-3, 4

MSPLINE transformation 3, 6

multidimensional preference analyses
(MDPREF) 2

o

OPSCORE transformation 2, 4
optimal scaling algorithm 4

P

preference regression 2
PRINQUAL procedure
functions of 2
initialization algorithms 17-18
MAC method algorithm 14
MGV method algorithm 16

Index

MGV OPSCORE variable initialization
algorithm 18

MTV method algorithm 15

MTV OPSCORE variable initialization
algorithm 17

R

REFRESH = option, PROC PRINQUAL
statement 17

)

SPLINE transformation 3, 6

T

TRANSREG procedure
canals method algorithm 13
morals method algorithm 11
redundancy method algorithm 12
types of linear models fit 2
univariate method algorithm 10

U

UNTIE transformation 3, 4
UNTIE= option, MODEL statement
(TRANSREG) 5

