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ABSTRACT

This paper suggests computing methods for variance component estimation
which are designed to handle large sample survey or animal breeding
experiments where the random effects may have thousands of levels. The
underlying theoretical technique is MIVQUE (with V=I) which has been

shown to yield unbiased, locally best, admissible, and asymptotically
consistent estimators.
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1. INTRODUCTION

In a recent paper, Hartley et al. (1978) suggest the use of Rao's
(1971) MINQUE (with V=I) as a method of estimating variance components
in large experimental or sample survey designs. The method is
intuitively appealing because of its inherent optimality, consistency,
and éomputability properties. In the main, their paper focuses on a
computational technique for computing MINQUE (with V=I) estimates.
Alternative computing techniques are suggested here which have been
implemented in the VARCOMP procedure of the Statistical Analysis System
(SAS), Barr et al. (1979).

Following Rao (1972) the technique described by Hartley et al.
with their implied choice of a MINQUE norm can be better labeled as
MIVQUE (with V=I) or MIVQUE (with O priors) or simply MIVQUEA. In what
is to follow, the necessary computing formulas for MIVQUEO will be
derived from Rao's original work,and several computing methods will
be described which use these basic formulas. There should be little
difficulty in ascertaining that the resultant estimates from these

methods are equivalent to Hartley et al's(1978) method.
2. THE MODEL

Following Searle (1971) the mixed model is represented as:

k
Y=X8 + E X8, +e (1)
i=1
where,

(1) Y is an n-vector of observations

(2) Xo’ Xl""’ Xk are nxm, known matrices



(3) BO is a vector of fixed effects
(4) The vectors Bi(i=1,...,k) are assumed independent of each
other and e and are distributed N(O, oi Im )

i
(5) e is an n-vector assumed N(O, 02 I)

On making the above normality assumptions,

E(Y) = XOSO

k
Var(Y) = © X.X! o% + I 02

jop 11 e

3. MIVQUEO EQUATIONS
k
. - ' +

Letting H iil X, Xp v, + 1 (2)

where Y; are apriori estimates of oi/oz, the locally best (at y) MIVQUE

estimates of the variance components can be found by solving the following

system:
- - r-A2 T - '
S11 S12 R R oy B
S S S 52 T
21 22 Tt k+
2 k+1 2 |_| "2 3)
S S S 2 T
k+1 1 k+1 2 T k+1 k+1 e k+1
- e - - -

For ease of notation define Xk+1 to be an nxn identity matrix and
define the matrix operator SSQ(A) to equal the sum of squares of the

elements of A. Using this notation, the elements of (3) are:

= '
sij ssq(xi R xj)
= '
and T, SSQ(Xi R Y)
— - - -— ' -
where R = H 1. H 1 X (X'H lx ) X H 1 (4)
(o] [o] (o] (o]
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When the elements of v (yl, Yoseees yk) are all zero, then (4) reduces to

] - ]

R,=1T- xo(x0 X)) X (S)A
and the computational burden is reduced. In addition computing the
elements in the (k+1l)st row and column of the S matrix and the Tk+i

element of the T vector in (3) is simplified since Ro is idempotent.

These elements are:

1 \J \J
S, k41 = SSQ(X; R) = Tr(X,R R X.) = Tr(X,R X,) for i < k+l (6)

’ Sk+l,k+1 = SSQ(RO) = Tr(RoRo) Tr(RO) =n - Rank(Xo) (7

\
Tk+l = SSQ(ROY) = Tr(Y ROROY)

1 1
Tr(Y ROY) =Y ROY (8)
4., BASIC COMPUTING FORMULA

To summarize the above results and provide further computational

results, MIVQUEQO estimates may be computed as follows:

Step 1: Form the symmetric matrix:

_ -
1 A 1 \J
XOXO xoxl e . XOXk Xo Y
' ' X!
Xle « o e Xle 1 Y
T, . (9
1 ]
XX X ¥
Y'y
L -
Step 2: Apply any of the elimination methods...Gauss, Gauss-Jordan,

Doolittle, or Cheolesky (see for example Goodnight (1978)) ~- to the

entire matrix (9) by pivoting on each diagonal of XéXO, This reduces the



elements below and to the right of X(')Xo to the following:

P
\
XlRoXl

L

In the process of mapping (9) to (10),the rank of XO may be computed,

(see Goodnight (1978)).

1
XlRoXZ

1
XRo%,

\J 1
XlRoXk XlRoY
\J |
XZROXk XZROY
\ 1]
XkRoXk XkRoY
Y'RY
o

Step 3. Form the symmetric SSQ matrix from (10)

1
SSQ(XlRoXl)

1 \J
SSQ(XlRoXk) Tr(XlRoxl)

| \l
SSQ(XZRoXk) Tr(XZRoXZ)

Tr(XLRoXk)

-—

SSQ(XiROY)

SSQ(XEROY)

.

SSQ(X&ROY)

Y'R Y

o

Step 4. Reduce the left hand side of (11) to an identity using

pivoting operations,and providing no linear dependencies are found,

the MIVQUEO estimates are obtained.

When computer storage is not sufficient to hold the entire matrix
given by (9), then a multi-pass technique can be used to compute (11).

When multi-passing is needed, then two methods are considered.

5. LARGE DESIGNS

In the

(10)

(11)

discussion of both methods the terminology'"fixed rows'refers to the first



m rows of (9). The remaining rows are referred to as '"random rows."

The last row containing only Y'Y is computed and adjusted separately.

Method 1. When all of the fixed rows of (9) can be stored with enough

storage left to store one or more of the random rows then the following

steps may be taken to compute (11).

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Compute and store all fixed rows and as many random rows as

possible. Also compute Y'Y.

Adjust each fixed row for the fixed rows preceeding it using

the Cholesky operator. Also adjust Y'Y for the fixed effects

and compute rank(Xo) in this step.

Adjust each random row in core for the fixed effects. Then
square each element of the adjusted random rows and add it
to the appropriate element of (11). If an element of a random

row is a diagonal element of (9), add it to the appropriate

element in the k+1 column of (9).

If all random rows have been computed, go to Step 5. Otherwise,
re-initiatize the random rows storage locations, assign the
next set of random rows to be computed in this storage area,

and compute and store this next set of random rows. Go to

Step 3.

Store n—rank(Xo) and Y'ROY in (11) and solve the system

for the MIVQUEO estimates.



The virtue of implementing Method 1 is two fold. First, for a large
class of designs the only fixed effect is the intercept; thus only one
fixed row is held in core. Secondly, no auxiliary storage is used since
once a set of random rows is computed, adjusted, and the elements

squared and stored they are no longer needed.

Method 2. When all of the fixed rows of (9) cannot be stored, then

auxillary storage must be used to compute and adjust (9) and the following

steps may be taken.

Steﬁii. Multipass the original data set, computing at each pass as
many rows of (9) as will fit in storage. After each pass, store the
rows computed in auxillary storage. Also compute Y'Y during the first
data pass. Once all rows have been computed and written to auxillary

storage, set the current row designator M equal to 1.

Step 2. Leaving space for one additional row of (9) read and store
(beginning with row M ) as many fixed rows as is possible from auxiliary
storage. Adjust these rows for each preceeding row using a Cholesky
algorithim. Also adjust Y'Y. If all of the fixed rows have been read

then go to Step 4. Otherwise:

Step 3. Denote by M the number of the next row on auxiliary storage
and read each remaining row of (9) from auxiliary storage one at a time.
Adjust each of these rows for the fixed rows in storage and rewrite the

row to auxiliary storage. Go to Step 2.

Step 4. Read each remaining row of (9) one at a time from auxiliary

storage, adjust it for the fixed rows in storage, square each element



and add to the appropriate element of (11). Add any adjusted diagonal

elements of (9) to the appropriate element in the(k+1l)st column of (9).
v 6. COMPUTING SPEED

For most models as specified by (1), the random incidence matrices,
Xi will consist of rows whose elements are all zeros except for a single
element which has the value one. Thus the computation of the random by
random portion of (9) can be accomplished by k(k+1l)/2 additions per
observation. The computing time needed for solving (11) to get the
MIVQUEO estimates is trivial compared to the time needed to compute (11)
regardless of the number of random effects. The number of rows in (9),
and the number of observations are the critical factors determining
computing speed.

To demonstrate the computing speed for large designs several two

way crossed models of the form:

y=u+a+ Bj + (aB)ij + € (12)

were run. In (12) p is fixed, and a, B, (aB), and € are random. This
model (12) was chosen because of the ease in which large numbers of
levels can be generated for (af), @ critical factor in computing speed.
For each set of data generated,there was only one observation per cell,
except for those cells involving a; which contained two observatioms.
The problem size below, represents the number of levels of a and B.

For a 10x10 there are 10 + 10 + 100 randon rows in (9). Timings for

several different region sizes are shown.



Computing Speeds on an IBM 370/168

with Virtual Storage

CPU Time in Seconds

Problem Number of Number of 200K 300K 400K 500K

size random rows observations region region | region | region
10 x10 120 110 44

20 x 20 440 420 1.94

30 x 30 960 930 11.01 7.66 7.04

40 x 40 1680 1640 28.75 23.09 20.18
50 x 50 2600 2550 65.60 53.96

The largest problem tested to date involved 23 random effects with

30,491 random levels.

7. CONCLUSION

It ran in 221 CPU seconds in a region of 900 K.

For large scale experiments, MIVQUEO affords the unbeatable com-

bination of unbiasedness, admissibility, consistency and computational

efficiency.

None of the other methods currently competing in this arena

(see Searle (1978)) can approach the computational efficiency achievable

by MIVQUEO.
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SUMMARY

This paper suggests computing methods for variance component

. estimation which are designed to handle large sample survey or animal
breeding experiments where the random effects may have thousands of
levels. The underlying theoretical technique is MIVQUE (with V=I)
which has been shown to yield unbiased, locally best, admissible, and

asymptotically consistent estimators.
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