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Abstract

The W transformation is needed at each step in the maximum likelihood
or restricted maximum likelihood procedure for estimation of the
parameters of the mixed A.O.V. model. This paper develops an

efficient algorithm for computing the W transformation needing only
about a dozen lines of Fortran or PL/1 code.
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1. Introduction

The W transformation was suggested by Hemmerle and Hartley [3]
for maximum likelihood (ML) estimation of the parameters of the
mixed analysis of variance model. This transformation was later
applied by Corbeil and Searle [1] to obtain restricted maximum
likelihood (REML) estimators and by Liu and Senturia [8] for MiNQUE
variance component estimators. Hemmerle and Downs [5] consider its
use with the mixed model when error variances are unequal. Formulas
were developed by Thompson [9] to reduce the computational burden
of the transformation by up to a factor of four. Hemmerle and
Lorens [4] achieved the same computational savings through an "in-
place" algorithm which considered non-negative constraints on
variance component estimators as an integral part. Jennrich and
Sampson [6], [7] have also develdped very effective algorithms for
both ML and REML estimation which utilize the W transformation.

For ML or REML estimation, the W transformation 1s needed at
each iterative step where it consumes a substantial amount of the
computations for the step. Consequently, it is important that the
algorithm for this transformation be as efficient as possible. 1In
this paper, we develop a simplified algorithm for the W transforma-
tion which has essentially the same computational efficlency and
storage economy as the Hemmerle and Lorenz algorithm with two decided
advantages:

a) The simplified algorithm requires only about a dozen

lines of FORTRAN or PL/1 code; and
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b) No row or column transpositions of the initial Wo
matrix are ever needed.
In what follows, we restrict the discussion to ML estimation and

consider the model
Y = Xa + € _(l)

where € has a multivariate normal distribution with variance-

covariance matrix o2H where

c

H=1I + I ¥y. U.U!
n g4=1 *+ 1 i>»

(2)

X is a known nxk matrix, Ui are known n Xx my matrices associated with
the variance components czYi, Y is an nxl vector of observations, and a

is a kxl vector of fixed but unknown parameters. Letting

C
m= I m
1=1 *
and V = [U1|U2l---|UC], the W-transformation maps the matrix
v'v]|v'x V'YT
W, o= X'vI|x'x |x'y (3)
y'v]iv'x|y'y
- -
into the matrix
r 1 -
vie v | v ix | vty
we= |x'g v xe x| xuly (L)
Ly'H‘lv v'a~ix | v'ely

Various functions of the elements of W are then employed in the

current ML step to arrive at new parameter estimates.
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The algorithm presented in [4] computes W in place, using only
the elements 6f the upper triangle of wo, using approximately
m(m+k+1)2/2 operations (multiplications and divisions); however,
there are several separate types of matrix operations involved in
so doing and rows and columns of Wo may require transposition when
any of the variance component estimates are near zero. The algo-
rithm developed in the next section consists, in essence, of a single
matrix operation and never requires row or column transformations of

Wo while using the same amount of storage as the algorithm presented
in [4].
2. Algorithm Developed
As described in [3], the algebraic definition of the W transforma-

tion is

W= - L'[V'V o+ p~1171L (5)

where L = [V'V|V'X|V'Y] and D is the mxm diagonal matrix

YZLIm:L

Y2Im2

_ c_
Suppose that we now consider the matrix

v'v + p~t I

(6)

L

\
o |
o



=4

It is well known (see for example Goodnight [2]) that any of the
sequential, in place elimination methods--Gauss, Gauss-Jordan,
sequential Doolittle, sequential Cholesky--applied to the entire

1 Wil

matrix (6) by pivoting (sweeping) on each diagonal of v'v+D~
overwrite or replace wo with W. For all of these procedures applied
to a symmetric matrix, an element aij of the matrix, prior to pivoting
on the (r,r) element, which is below the rth row and to the right of

the rth column is replaced algebraically with

(7)

a,. - a_.a_,
iJ ri rJ/arr

The manner of computing (7) varies with the procedure used; however,
in a2all cases only one multiplication is necessary. We will consider
the Gauss or sequential Doolittle procedure in which we pivot sequen-
tially on the diagonal elements of v'v+D™1 in (6). In so doing, all
elements in the rth (pivot) row or in those rows above the rth row
are left unchanged when we pivot on the (r,r) element.

Obviously, the creation of the matrix (6) would greatly increase
the amount of computer storage needed to perform the transformation
and defeat the purpose of a compact algorithm; however, with the

1

exception of D™ -, all of the elements needed to compute (7) for the

elements in the lower right-hand corner of (6) are contained within
that submatrix itself. Consequently, there is no reason to construct

or store the matrix (6).

Let us denote the initial elements of WO by a§§) and the diagonal

elements of V'V+D_l by déo> so that as a result of the rth pivot

operation, these elements would become a§§) and dér)

Then it is easily seen that, corresponding to (7),

respectively.
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aig) = a§§'1) - aﬁi'l)'aég-l)/dir'l) 1< (8)
and
dér> = dér-l) - {%ﬁz'lﬁ'z/dér“l) L > r. (9)

A further simplification results by substituting i = j = & into (8)

and then subtracting this equation from (9) to obtain

(r) (r) _ (r-1) (r-1)
dy - &g, =4 - ag, L > r. (10)
Then
(1) (1) _ 4(0) (0) _ (-1 '
47" - agp =4, —ap,’ = (D" ")y 2 > 1. (11)
and, proceeding inductively, we determine that
(r) (r) _ -1
a, - ap,’ = (D )QQ 2 > r. (12)
Thus we may write
(r-1) _ _(r-1) -1
d, = al, + (D )rr (13)

(r)

and omit the storage and updating of the elements dz

by (9).

The simplified algorithm is then described by (8) and (13).

as suggested

In order to properly apply equation (8) for the rth plvotal step it

- -1 .
= I

in a temporary work vector. The elements of D will be needed, and

is necessary to store the elements a i <rand a

updated, by the optimization step and are part of the overall storage

requirements.
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3. Other Considerations

The W transformation algorithm in [4] included an extension to
handle zero or near zero components (;iéo); however, a potential re-
ordering of some of the rows and columns of wo was part of the logilc
of the algorithm in dealing with this situation. The simplified
algorithm described in the previous section will produce the same re-
sults as the algorithm in [4] without any re-ordering of WO. This 1is
accomplished merely by not pivoting on any diagonal element (13)
associated with a near zero component.

When none of the components Qi are zero or near zero, the deteré
‘minant of the matrix V'V+D"1 is needed for subsequent evaluation of
the 1likelihood function and is a by-product of the W transformation
(see [3]). We refer the reader to [4] for the form of this matrix
when zero components are involved and note that the proper log of the

determinant is calculated with the simplified algorithm by taking the

sum of the log of the elements (13) which are used as pivotal elements.
4., The Algorithm

Notation: M = Number of Random Columns in Wo

P = Total number of columns in Wé

W = The PxP matrix containing Wo elements in the upper
triangular portion - a two dimensional matrix is
used here for algorithmic simplicity.

A = a work vector of length P

D = vector of length M containing the diagonal elements
of D

EPSILON= the smallest value of a ?i which will be deemed

non-zero (usually .00l or smaller).
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The following PL/1 instructions form the nucleous of the simpli-
fied W-transformation. Declaration of the necessary arrays and

variables should be obvious and are omitted.

LOGDET = 0 (A1)
DO K =1 TO M; | (A2)
IF D(K) > EPSILON THEN DO; (A3)

S = W(XK,K)+1/D(K); (AL)
LOGDET = LOGDET + LOG(S); (A5)

DO J =1 TO P; (A6)

IF K < J THEN A(J) = W(K,J); (A7)

ELSE A(J) = W(J,K); END; (A8)

DO I =1TO P; B = A(I)/S; (A9)

DO J = I TO P; (A10)

W(I,J) = W(I,J) - B¥A(J); END; (A11)

END; END; END; (A12)

In the above algorithm statement, (Al) initializes the log of the
determinant to zero. Statement (A2) advances the index K over the range
of the D vector. Statement (A3) checks the value of the KI-C-E element of
D and only if it is greater than EPSILON does processing continue for
the current X index value. The pivotal element given by (13) is computéa
in statement (AL4). 1In statement (A5) the log of the determinant is
updated. Statements (A6-A8) extract the complete KEE row of W and store
it in the A vector and statements (A9-Al1l) make the adjustments given
by (8) to the W matrix. If a Cholesky algorithm is preferred, each element
of A could be divided by the square root of S as it is stored. The only
other change necessary would be to let B = A(I) in (A9) instead of B =

A(I)/s.
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5. Summary

The W transformation algorithm described here employs approximately
the same number of multiplications/divisions as does the algorithm
described in [4]. However, its simplicity reduces other overhead opera-
tions involving possible subroutine linkage and subscripting. Its

compactness makes it easily codable as an assembly language routine.
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