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Tests of Hypotheses in Fixed Effects Linear Models

ABSTRACT

Using the concept of estimability, tests of hypotheses in
multifactor fixed-effects linear models are developed without
resorting to the usual assumptions. Three types of estimable
functions that are usable in SAS® are defined. Each type
handles unequal n's, missing cells, and any degree of
confounding for any fixed-effects linear model.

INTRODUCTION

The long-smoldering issue of which are the correct sums of
squares in a two-way, unbalanced model with interaction
resurfaced with Kutner's (1974) article. In numerous letters to
the editor in subsequent issues of The American Statistician,
Bryce (1975), Hinkelman (1975), Carlson (1975), Gianola
(1975), Kutner (1975), and Nelder (1975) took sides and split
into what can be referred to as the two camps of linear
modelers. In one camp are the R notationers, who do not
reparameterize the model and who compute the various SS in the
model using the R notation (Searle 1971). The R notationers
compute the reduction in SS due to a specific effect given all
effects except those containing the specified effect.

In the other camp are the R* notationers who reparameterize
the model using the usual assumptions (Searle 1976). Since the
reparameterized columns of the design matrix no longer have
the property that the columns associated with lower order

effects are linear functions of the higher level effect columns,
the R* notationers compute the reduction in SS due to a specific
effect given all other effects.

Urquhart et al. (1973) and Hocking and Speed (1975) have
suggested the formation of another camp that can be called the
u notationers. The u notationers abandon the overparameterized
model and use instead a uij model subject to a set of side

conditions on the uij's.

Hocking and Speed (1975) show for a particular model what the
R, R*, and u notationers are actually testing in terms of the
overparameterized model. As they point out, the usual
assumptions and the extension of the usual assumption concept
into the nonestimable functions concept of linear model theory
have caused considerable confusion among practitioners.



When missing cells occur in a two-way crossed model, for
example, the R* notationers in order to produce SS must not
only assume the usual assumptions but must also assume that
certain interaction parameters or estimates must be zero. This
is typical of the problems that face reparameterizers in a
general unbalanced, missing cells, and confounded design. To
properly reparameterize requires a complete analysis of the
design matrix, X, to determine exactly what can be estimated.

THE FIXED EFFECTS MODEL
The fixed effects model can be represented as:

Y=XB *+ € : (1

where Y is an n-vector of observations, X is a known n x k
matrix, B is a k x 1 vector of unknown parameters, and ¢ is an
n x 1 vector of random variables, distributed normally with

. 2
mean 0 and variance lc“.

In today's higher level statistical computing languages, model
(1) is represented by specifying the various effects that make
up the B parameter. A few examples of possible computer
language representation of models are given below. The
variables A, B, and C are classification variables, each having
one or more levels. The variables X, Y, and Z are continuous
variables. An intercept term is assumed in all models.

Model Represents

Y=X linear regression

Y=X Z multiple regression

Y=A B C main-effects model

Y=A B A*B two-factor crossed model

Y=A X main effect with covariable

Y=A X(A) separate slopes for each level of A
Y=A X X*A X*A used to test homogeneity of slopes
Y=X Z X*X Z*Z X*Z response surface model

Y=A B(A) C(A B) nested effects

Y=A B(A) C A*C B*C(A) mixture of crossed and nested effects

In general, an effect can be represented as a sequence of
continuous variables each separated by an *, followed by a
sequence of class variables also separated by an *, followed by
a sequence of class variables inside parentheses.



ADVANTAGES OF NOT REPARAMETERIZING

Some of the advantages of not reparameterizing have already
been mentioned. These as well as others are listed below:

* The X'X matrix can usually be constructed using additions
instead of multiplications.

. No distinction needs to be made between interaction and
nested effects. (The columns of X are the same.)

e The preprocessing annoyance of reparameterization is
avoided, including decisions about how to reparameterize
when missing cells occur, or when effects are confounded.

e All sums of squares may be computed for the testable
hypotheses Lf=0 using:

SS(HO:LB=0) = (Lb) (L(X'X) L) ! (Lb) 2)

where b is any solution to the normal equations (X'Xb=X'Y)

and (X'X) is any generalized inverse of X'X (Searle 1971).

* The Ls mentioned above are easy to construct and can be
printed to show exactly what is being tested. The

difference in the hypotheses tested by the R and R* camps
can be readily seen.

* Linear model theory and methodology are unified.

* Extension of a fixed effects program to handle mixed and
random models is greatly simplified.

ESTIMABILITY

The concept of estimability has always been associated with

existence. That is, for any L we say that LB is estimable if a
linear combination of the Ys exists that has an expected value
of LB. Since any linear combination of the Ys, say KY, has
E(KY) = KXB, then for LB to be estimable, L must be a linear
combination of the rows of the X matrix. This leads to the

definition given by most authors: that LB is estimable if there
exists a K such that L=KX.

From the above definitions of estimability, it is clear that if an
L is to be constructed such that LB is estimable, then only
linear combinations of the rows of X need be considered. In fact



any linear combination of the rows of X yields an L such that LB
is estimable. Thus the X matrix or any matrix (with the same
row rank of X) constructed from the rows of X may be used as

a generating set for constructing any and all Ls. Some possible
generating sets for L are:

e X

e X'X

* the Forward Doolittle or Cholesky matrix of X'X
¢ (X'X)TX'X

* the Hermite canonical form of X'X

o any matrix produced from row operations on any of the
above if the row rank is preserved.

Obviously an infinite number of Ls can be constructed from

above generating sets. For a given model, an entire set of Ls
must be generated, one L for each effect in the model. It is

convenient to categorize a set of Ls generated for the effects in
a model based on the method of generation. Three types of

estimable functions (Ls) are described. Type | and Type |l are
for the R camp, and Type lll is for the R*¥* camp. The usual

assumptions and the concept of nonestimable functions are not
used for any of the three types. The theoretical development
relies only on the concept of estimability.

Type |--Estimable Functions

One of the simplest sets of Ls is generated by computing the
Forward Doolittle matrix from the X'X matrix (Goodnight 1978)
and letting the Ls for each effect be the nonzero rows
associated with that effect. For example, let

Yig™ W e T Byt ey

with i,j = 1,2 and k=1,..,nij. If n”=2 and Nio~ n21=n22=1, then
the X'X matrix is:



The X’'X Matrix

pal a2 B1 B2 afll afl2 afi21 af22
g5 3 2 3 7 7 1 I T
al 3 3 U 21 2 T 0 U
g2 2 0 2 1 1 0 0 1 1
f1 3 2 1T 3 0 2 0 1 0
B2 21 1 01 0 1 0 1
ofIT 22 0 20 2 0 0 0
af121 1 0 0 1 O 1 0 0.
211 0 1 1 0 O 0 1 0
3221 0 1 0 1 0 0 0 1

The Forward Doolittle matrix (with each nonzero row divided by
its diagonal) is:

The Forward Doolittle

p ol o2 Bl B2 afll afl2 aBf21 aB22

p 1 .3/52[53/5 2[5 2]5 2]5 1/5 1/5

el 0 1 -11/6-1/6 2/3 1/3 -1/2 =172
a2 0 0 0 0 0 0 0 0 0

Al 0 0 0 1 -1 4/7T =47 3/7 =3/7
B2 0 0 0 o0 0 0 0 0 0
afl1 0 0 0 O 0 1 -1 -1 1
afl20 0 0 O 0 0 0 0 0
af210 0 0 O 0 0 0 0 0
af22 0 0 0 O 0 0 0 0 0

The Type | Ls for each effect are:
L =0 1 -1 1/6 -1/6 2/3 1/3 -1/2 -1/2)
L,={0 0 0 1 -1 4/7 -4/7 3/7 -3/7)
La6={0 0O 0 oO 0 1 -1 -1 11}

Using the above Ls the Type | SS may be computed using (2).
Furthermore, the SS computed in this manner are equivalent to:

n

SS(HO: La B = 0) = R(e|u)

SS(H: LB B =0) = R(Bly,a)

SS(ho: Las B = 0) = R(eB|u,a,B)



The Type | Ls via (2) produce orthogonal quadratic forms

(additive SS) which for I02 error structures are thus

independent. However, the Type | hypotheses have several
drawbacks. First, they are not invariant with respect to the
ordering of effects in the model. Second, for unbalanced

designs, each hypotheses generally involves the parameters of
the effect being tested plus all remaining parameters that follow
in the model.statement. In the above example, LaB involves a,

B, and oB parameters. Third, as can be demonstrated by
varying the number of observations per cell, some of the Type
| hypotheses are dependent on the cell frequencies.

Type Il--Estimable Functions

An excellent use of Type | estimable functions is for the study
of the nature of hypotheses being tested in balanced designs.
The Type | Ls for a balanced design are unique (providing no
higher level effects precede associated lower-order effects in
the model). If the preceding example had been balanced, then
La would involve only a and «B parameters. LB would involve

only B and of parameters, and LaB would involve only of

parameters. For balanced designs, the hypotheses normally
computed for an effect are a function only of the parameters of-
that effect and the parameters of effects which contain that
effect. For balanced as well as unbalanced designs, containment
may be defined as follows: an effect E:2 is said to contain the

effect E1 if it is known, by observing only the model statement,

that all of the columns of the X matrix associated with E1 can be
represented as linear combinations of the columns associated
with E2.
For example, in the model Y = A B A*B:

u is contained in A, B, A*B

A is contained in A*B

B is contained in A*B

A*B is not contained in any other effect.

Furthermore, in the unreparameterized model, if E2 contains E1
then R(E]IEZ) = 0. If E2 appears in the model statement before

E], then the Type | L associated with E] is zero. It is clear

then that to generate Ls, which for each effect involves only
the parameters of that effect and the parameters of effects

containing that effect, several orderings of the model could be
made and a Doolittle performed.



The Type Il Ls for an effect E] are the associated rows of the

Doolittle for the model that has been arranged to put all effects
which do not contain E] before E]' The columns of each L, once

generated, are naturally rearranged to reflect the original
order of the model. Goodnight (1978) describes a reversible
Sweep Operator which allows the computation of Type Il Ls
without actually rearranging the terms in the model.

For the previous example, the Type Il Ls are given below:

L ={(0 1 -1 0 0 4/7 3/7 -4/7 -3/7)

a

LB =0 0 0 1-1 4/7 -4/7 3/1 -3/7}
LaB={0 0 0. 00 1 =1 -1 11}

Type Il Ls, in general, no longer produce orthogonal quadratic
forms. However, the hypotheses they test are more in line with
hypotheses being tested in the balanced case, at least in the
sense that only an effects parameters and parameters of effects
-containing that effect are involved in the hypothesis. If an
effect E1 is contained in no other effect, then the Type I L

generated for that effect is such that LB is a maximum rank
hypothesis involving only the parameters of E1. However, if an

effect E] is contained in higher-level effects, then the elements

of L associated with those higher-level parameters are functions
of the cell frequencies; this can be demonstrated by computing
the Type Il Ls for the previous example under differing cell
frequencies. Additional discussion on the related R notation
may be found in Hocking and Speed (1975) and Speed and
Hocking (1976). '

Type Ill--Estimable Functions

For most unbalanced designs it is usually possible to test the

same set of hypotheses (estimable functions) that would have
been tested if the design had been balanced. For those designs
which started out balanced, but for which observations were
lost due to external forces, there is no reason to alter the

hypotheses. Type Il hypotheses, for an effect that is contained
in other effects do vary depending on the cell frequencies. The
Type Il hypotheses developed here do not vary, but designs
with no missing cells do correspond to the estimable function
used in the balanced case.



Had the 2x2 example been balanced, the Type Il Ls would have
been:

La =0 1 -1 0 0 1/2 1/2 -1/2 -1/2}
LB =0 0 0 1-1 1/2 -1/2 1/2 -1/2}
LaB={0 0 000 1 -1 -1 11}

Note that in each of the above Ls only the effect being tested
and any effect that contains it are involved. Also, note that
both La and LB are orthogonal to LuS' In fact for any balanced

design the Type Il L for any effect is orthogonal to the Ls of
effects that contain it. This leads to the following definition: a
set of Ls, one for each effect in the model, is Type |l if each L
is a maximum rank hypothesis involving only the parameters of
the effect in question and parameters of effects that contain it;
and each L is orthogonal to all Ls of effects that contain the
effect in question.

The above definition implies that Type |l Ls may be converted
to Type Ill Ls by simply making each lower-order L orthogonal
to the Ls of all effects that contain the lower-order effect.

Furthermore if an effect is not contained in any other effect,

then the Type Il and Il Ls for that effect are the same.

Type Ill Ls can be computed directly from any generating set
(Goodnight 1976) and need not be computed from the Type Il
Ls. For designs with no missing cells, the sums of squares
generated by the Type |lIl hypotheses correspond to the SS
computed in the reparameterized model for which the usual

assumptions were made.

SYMBOLIC REPRESENTATION OF A GENERATING SET

Since all Ls can be computed from linear combinations of the
rows of any generating set, the general form of all Ls can be
represented symbolically by multiplying each row of the

generating set by a symbolic constant and then adding the
resultant rows together.

The following matrix is a generating set for the 2x2 example:

ko a B Bz abn  afi: afa, aflzg
L1 - 0
L2 o
L3 0
L4 O
L5 O
L6 0
0
0
0

[y

1
-1
0
-1

|-
[y

[

(o=
—

L7
L8
19
SUM L1 L2 L1

cocoomooO
coocool cow

0
1 0
0 0
0 0
0 0
0 1
0 0
0 0
0 0

|l bcoocoococoo

l bool coo~o
boo !l omooco
Coo=o

L2 L4L1-L4 L6 L2-16 L4—-L6 L1-L2—

L4+ 16



The symbolic sum, representing the general form of all

estimable functions, is best written beside the parameters as
foilows: )

u L1
al L2
a2 L1-L2
B1 L4
B2 L1-L4
aB11 L6
af12 L2-L6
aB21 L4-L6

af22 L1-L2-L4+L6

Note that any values for L1, L2, L4, and L6 prod'uce an L for
which LB is estimable.

The symbolic notation can be manipulated. For example, by
letting L1 and L4 represent zero, the general form of all

estimable functions not involving u, B1, and B2 can be seen as
follows:

U 0

al L2

a2 -L2
B1 0

B2 0
aB11 L6
afl12 L2-L6
af21 -L6

af22 -L2+L6

For a one degree-of-freedom contrast that involves the
comparison al vs a2, a logical necessity is determining the
value of L6. This, in essence, is the difference between Type
Il and Type |ll. Estimable functions involving only interaction
parameters can be achieved by setting L1=L2=14=0.

The generating set used to represent the general form of
estimable functions should, for simplicity, be as sparse as
possible with the number of nonzero rows equaling the rank of
X'X. The Hermite canonical form of X'X (as used in the
previous example) meets the simplicity requirements as well as
any other matrix does. The Hermite canonical form of X'X can
be computed by pivoting on each nonzero diagonal in sequence

of X'X, the Forward Doolittle, or Cholesky matrix (Goodnight
1978).



CONCLUSION

Each of the three types of estimable functions defined handles
unequal n's, missing cells, and any degree of confounding.
Unlike Type | and Type Il estimable functions, the general
philosophy behind the Type Il estimable functions is that tests
of hypotheses made for any given effect should be the same for

all designs that have the same general form of estimable
functions.

Using a unified approach to define the different types of

estimable functions allows for meaningful comparisons to be
made between the R and R* camps. It also eliminates the need
to try to justify a particular computing approach through the
use of buzz words and ambiguous jargon. Although an infinitive
number of types of estimable functions exists for a given set of
data, only three were defined here. A fourth type of estimable
function is given in Barr et al. (1976) and Goodnight (1976).
This fourth type of estimable function deals primarily with

designs involving missing cells, and provides alternative tests
of hypotheses to the three types defined here.
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