Chapter 84
The STDIZE Procedure

Overview: STDIZE Procedure

The STDIZE procedure standardizes one or more numeric variables in a SAS data set by subtracting a location measure and dividing by a scale measure. A variety of location and scale measures are provided, including estimates that are resistant to outliers and clustering. Some of the well-known standardization methods such as mean, median, standard deviation, range, Huber’s estimate, Tukey’s biweight estimate, and Andrew’s wave estimate are available in the STDIZE procedure.
In addition, you can multiply each standardized value by a constant and add a constant. Thus, the final output value is

\[
\text{result} = \text{add} + \text{multiply} \times \frac{\text{original} - \text{location}}{\text{scale}}
\]

where

- \(\text{result}\) = final output value
- \(\text{add}\) = constant to add (ADD= option)
- \(\text{multiply}\) = constant to multiply by (MULT= option)
- \(\text{original}\) = original input value
- \(\text{location}\) = location measure
- \(\text{scale}\) = scale measure

PROC STDIZE can also find quantiles in one pass of the data, a capability that is especially useful for very large data sets. With such data sets, the UNIVARIATE procedure might have high or excessive memory or time requirements.

Getting Started: STDIZE Procedure

The following example demonstrates how you can use the STDIZE procedure to obtain location and scale measures of your data.

In the following hypothetical data set, a random sample of grade twelve students is selected from a number of coeducational schools. Each school is classified as one of two types: Urban or Rural. There are 40 observations.

The variables are id (student identification), Type (type of school attended: ‘urban’=urban area and ‘rural’=rural area), and total (total assessment scores in History, Geometry, and Chemistry).

The following DATA step creates the SAS data set TotalScores.

```sas
data TotalScores;
  title 'High School Scores Data';
  input id Type $ total @@;
datalines;
  1 rural 135 2 rural 125 3 rural 223 4 rural 224 5 rural 133
  6 rural 253 7 rural 144 8 rural 193 9 rural 152 10 rural 178
  11 rural 120 12 rural 180 13 rural 154 14 rural 184 15 rural 187
  16 rural 111 17 rural 190 18 rural 128 19 rural 110 20 rural 217
  21 urban 192 22 urban 186 23 urban 64 24 urban 159 25 urban 133
  26 urban 163 27 urban 130 28 urban 163 29 urban 189 30 urban 144
  31 urban 154 32 urban 198 33 urban 150 34 urban 151 35 urban 152
  36 urban 151 37 urban 127 38 urban 167 39 urban 170 40 urban 123
;
```
Suppose you now want to standardize the total scores in different types of schools prior to any further analysis. Before standardizing the total scores, you can use the box plot from PROC BOXPLOT to summarize the total scores for both types of schools.

```sas
ods graphics on;
proc boxplot data=TotalScores;
   plot total*Type / boxstyle=schematic noserifs;
run;
```

The PLOT statement in the PROC BOXPLOT statement creates the schematic plots (without the serifs) when you specify `boxstyle=schematic noserifs`. Figure 84.1 displays a box plot for each type of school.

Figure 84.1 Schematic Plots from PROC BOXPLOT
Inspection reveals that one urban score is a low outlier. Also, if you compare the lengths of two box plots, there seems to be twice as much dispersion for the rural scores as for the urban scores.

The following PROC UNIVARIATE statement reports the information about the extreme values of the Score variable for each type of school:

``` PROC UNIVARIATE data=TotalScores;
  var total;
  by Type;
 run;
```

Figure 84.2 displays the table from PROC UNIVARIATE for the lowest and highest five total scores for urban schools. The outlier (Obs = 23), marked in Figure 84.2 by the symbol ‘0’, has a score of 64.

Figure 84.2 Table for Extreme Observations When Type=urban

<table>
<thead>
<tr>
<th>High School Scores Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type=urban</td>
</tr>
<tr>
<td>The UNIVARIATE Procedure</td>
</tr>
<tr>
<td>Variable: total</td>
</tr>
<tr>
<td>Extreme Observations</td>
</tr>
<tr>
<td>---Lowest---</td>
</tr>
<tr>
<td>Value</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>127</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>133</td>
</tr>
</tbody>
</table>

The following PROC STDIZE procedure requests the METHOD=STD option for computing the location and scale measures:

``` PROC STDIZE data=totalscores method=std pstat;
  title2 'METHOD=STD';
  var total;
  by Type;
 run;
```

Figure 84.3 displays the table of location and scale measures from the PROC STDIZE statement. PROC STDIZE uses the sample mean as the location measure and the sample standard deviation as the scale measure for standardizing. The PSTAT option displays a table containing these two measures.
The ratio of the scale of rural scores to the scale of urban scores is approximately 1.4 (41.96/30.07). This ratio is smaller than the dispersion ratio observed in the previous schematic plots.

The STDIZE procedure provides several location and scale measures that are resistant to outliers. The following statements invoke three different standardization methods and display the tables for the location and scale measures:

```plaintext
proc stdize data=totalscores method=mad pstat;
   title2 'METHOD=MAD';
   var total;
   by Type;
run;

proc stdize data=totalscores method=iqr pstat;
   title2 'METHOD=IQR';
   var total;
   by Type;
run;
```
proc stdize data=totalscores method=abw(4) pstat;
title2 'METHOD=ABW(4)';
var total;
by Type;
run;

Figure 84.4 displays the table of location and scale measures when the standardization method is median absolute deviation (MAD). The location measure is the median, and the scale measure is the median absolute deviation from the median. The ratio of the scale of rural scores to the scale of urban scores is approximately 2.06 (32.0/15.5) and is close to the dispersion ratio observed in the previous schematic plots.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Scale</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>166.000000</td>
<td>32.000000</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 84.5 displays the table of location and scale measures when the standardization method is IQR. The location measure is the median, and the scale measure is the interquartile range. The ratio of the scale of rural scores to the scale of urban scores is approximately 2.03 (61/30) and is, in fact, the dispersion ratio observed in the previous schematic plots.

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Scale</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>153.000000</td>
<td>15.500000</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 84.5 Location and Scale Measures Table When METHOD=IQR

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Scale</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>166.000000</td>
<td>61.000000</td>
<td>20</td>
</tr>
</tbody>
</table>

High School Scores Data
METHOD=IQR

<table>
<thead>
<tr>
<th>Type=rural</th>
</tr>
</thead>
</table>

The **STDIZE Procedure**

Location and Scale Measures

Location = median
Scale = interquartile range

Figure 84.6 displays the table of location and scale measures when the standardization method is ABW, for which the location measure is the biweight one-step M-estimate, and the scale measure is the biweight A-estimate. Note that the initial estimate for ABW is MAD. The following steps help to decide the value of the tuning constant:

1. For rural scores, the location estimate for MAD is 166.0, and the scale estimate for MAD is 32.0. The maximum of the rural scores is 253 (not shown), and the minimum is 110 (not shown). Thus, the tuning constant needs to be 3 so that it does not reject any observation that has a score between 110 to 253.

2. For urban scores, the location estimate for MAD is 153.0, and the scale estimate for MAD is 15.5. The maximum of the rural scores is 198, and the minimum (also an outlier) is 64. Thus, the tuning constant needs to be 4 so that it rejects the outlier (64) but includes the maximum (198) as a normal observation.

3. The maximum of the tuning constants, obtained in steps 1 and 2, is 4.

See Goodall (1983, Chapter 11) for details about the tuning constant. The ratio of the scale of rural scores to the scale of urban scores is approximately 2.06 (32.0/15.5). It is also close to the dispersion ratio observed in the previous schematic plots.
The preceding analysis shows that METHOD=MAD, METHOD=IQR, and METHOD=ABW all provide better dispersion ratios than METHOD=STD does.

You can recompute the standard deviation after deleting the outlier from the original data set for comparison. The following statements create a data set NoOutlier that excludes the outlier from the TotalScores data set and invoke PROC STDIZE with METHOD=STD.

```sas
data NoOutlier;
  set totalscores;
  if (total = 64) then delete;
run;

proc stdize data=NoOutlier method=std pstat;
  title2 'After Removing Outlier, METHOD=STD';
  var total;
  by Type;
run;
```

Figure 84.7 displays the location and scale measures after deleting the outlier. The lack of resistance of the standard deviation to outliers is clearly illustrated: if you delete the outlier, the sample standard deviation of urban scores changes from 30.07 to 22.09. The new ratio of the scale of rural scores to the scale of urban scores is approximately 1.90 (41.96/22.09).
Syntax: STDIZE Procedure

The following statements are available in the STDIZE procedure:

```plaintext
PROC STDIZE <options> ;
   BY variables ;
   FREQ variable ;
   LOCATION variables ;
   SCALE variables ;
   VAR variables ;
   WEIGHT variable ;
```

The PROC STDIZE statement is required. The BY, LOCATION, FREQ, VAR, SCALE, and WEIGHT statements are described in alphabetical order following the PROC STDIZE statement.
PROC STDIZE Statement

PROC STDIZE <options> ;

The PROC STDIZE statement invokes the procedure. You can specify the following options in the PROC
STDIZE statement. Table 84.1 summarizes the options.

Table 84.1 Summary of PROC STDIZE Statement Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify standardization methods</td>
<td></td>
</tr>
<tr>
<td>METHOD=</td>
<td>Specifies the name of the standardization method</td>
</tr>
<tr>
<td>INITIAL=</td>
<td>Specifies the method for computing initial estimates for the A estimates</td>
</tr>
<tr>
<td>Unstandardize variables</td>
<td>Unstandardizes variables when you also specify the METHOD=IN option</td>
</tr>
<tr>
<td>UNSTD</td>
<td></td>
</tr>
<tr>
<td>Process missing values</td>
<td>Omits observations with any missing values from computation</td>
</tr>
<tr>
<td>NOMISS</td>
<td></td>
</tr>
<tr>
<td>MISSING=</td>
<td>Specifies the method or a numeric value for replacing missing values</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Replaces missing data with zero in the standardized data</td>
</tr>
<tr>
<td>REPONLY</td>
<td>Replaces missing data with the location measure (does not standardize the data)</td>
</tr>
<tr>
<td>Specify data set details</td>
<td>Specifies the input data set</td>
</tr>
<tr>
<td>DATA=</td>
<td></td>
</tr>
<tr>
<td>KEEPLEN</td>
<td>Specifies that output variables inherit the length of the analysis variable</td>
</tr>
<tr>
<td>OUT=</td>
<td>Specifies the output data set</td>
</tr>
<tr>
<td>OPREFIX=</td>
<td>Specifies that original variables appear in the OUT= data set</td>
</tr>
<tr>
<td>SPREFIX=</td>
<td>Specifies a prefix for the standardized variable names</td>
</tr>
<tr>
<td>OUTSTAT=</td>
<td>Specifies the output statistic data set</td>
</tr>
<tr>
<td>Specify computational settings</td>
<td>Specifies the variances divisor</td>
</tr>
<tr>
<td>VARDEF=</td>
<td></td>
</tr>
<tr>
<td>NMARKERS=</td>
<td>Specifies the number of markers when you also specify PCTLMTD=ONEPASS</td>
</tr>
<tr>
<td>MULT=</td>
<td>Specifies the constant to multiply each value by after standardizing</td>
</tr>
<tr>
<td>ADD=</td>
<td>Specifies the constant to add to each value after standardizing and multiplying by the value specified in the MULT= option</td>
</tr>
<tr>
<td>FUZZ=</td>
<td>Specifies the relative fuzz factor for writing the output</td>
</tr>
<tr>
<td>Specify percentiles</td>
<td>Specifies the definition of percentiles when you also specify the PCTLMTD=ORD_STAT option</td>
</tr>
<tr>
<td>PCTLDEF=</td>
<td></td>
</tr>
</tbody>
</table>
Table 84.1 continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCTLMTD=</td>
<td>Specifies the method used to estimate percentiles</td>
</tr>
<tr>
<td>PCTLPTS=</td>
<td>Writes observations containing percentiles to the data set specified in the OUTSTAT= option</td>
</tr>
</tbody>
</table>

Normalize scale estimators

- **NORM** Normalizes the scale estimator to be consistent for the standard deviation of a normal distribution
- **SNORM** Normalizes the scale estimator to have an expectation of approximately 1 for a standard normal distribution

Specify output

- **PSTAT** Displays the location and scale measures

These options and their abbreviations are described (in alphabetical order) in the remainder of this section.

ADD=c

specifies a constant, c, to add to each value after standardizing and multiplying by the value you specify in the MULT= option. The default value is 0.

DATA=SAS-data-set

specifies the input data set to be standardized. If you omit the DATA= option, the most recently created data set is used.

FUZZ=c

specifies the relative fuzz factor. The default value is 1E–14. For the OUT= data set, the score is computed as follows:

\[
\text{if } |\text{result}| < m \times c \text{ then } \text{result} = 0
\]

where m is the constant specified in the MULT= option, or 1 if MULT= option is not specified.

For the OUTSTAT= data set and the location and scale table, the scale and location values are computed as follows:

\[
\text{if scale} < |\text{location}| \times c \text{ then scale} = 0
\]

Otherwise,

\[
\text{if } |\text{location}| < m \times c \text{ then location} = 0
\]

INITIAL=method

specifies the method for computing initial estimates for the A estimates (ABW, AVALUE, and AHUBER). You cannot specify the following methods for initial estimates: INITIAL=ABW, INITIAL=AHUBER, INITIAL=AVALUE, and INITIAL=IN. The default is INITIAL=MAD.
KEEPLEN

specifies that the standardized variables inherit the lengths of the analysis variables that PROC STDIZE uses to derive them. PROC STDIZE stores numbers in double-precision without this option.

Caution: The KEEPLEN option causes the standardized variables to permanently lose numeric precision by truncating or rounding the values. However, the precision of the output variables will match that of the input.

METHOD=\textit{name}

specifies the name of the method for computing location and scale measures. Valid values for \textit{name} are as follows: MEAN, MEDIAN, SUM, EUCLEN, USTD, STD, RANGE, MIDRANGE, MAXABS, IQR, MAD, ABW, AHUBER, AWA2E, AGK, SPACING, L, and IN.

For details about these methods, see the descriptions in the section “Standardization Methods” on page 7124. The default is METHOD=STD.

MISSING=\textit{method} | \textit{value}

specifies the method (or a numeric value) for replacing missing values. If you omit the MISSING= option, the REPLACE option replaces missing values with the location measure given by the METHOD= option. Specify the MISSING= option when you want to replace missing values with a different value. You can specify any name that is valid in the METHOD= option except the name IN. The corresponding location measure is used to replace missing values.

If a numeric value is given, the value replaces missing values after standardizing the data. However, you can specify the REPONLY option with the MISSING= option to suppress standardization for cases in which you want only to replace missing values.

MULT=\textit{c}

specifies a constant, \textit{c}, by which to multiply each value after standardizing. The default value is 1.

NMARKERS=\textit{n}

specifies the number of markers used when you specify the one-pass algorithm (PCTLMTD=ONEPASS). The value \textit{n} must be greater than or equal to 5. The default value is 105.

NOMISS

omits observations with missing values for any of the analyzed variables from calculation of the location and scale measures. If you omit the NOMISS option, all nonmissing values are used.

NORM

normalizes the scale estimator to be consistent for the standard deviation of a normal distribution when you specify the option METHOD=AGK, METHOD=IQR, METHOD=MAD, or METHOD=SPACING.

OPREFIX<=\textit{o-prefix}>

specifies that the original variables should appear in the OUT= data set. You can optionally specify an equal sign and a prefix. For example, if OPREFIX=Original, then the names of the variables are Original\textit{VAR1}, Original\textit{VAR2}, and so on, where \textit{VAR1} and \textit{VAR2} are the original variable names. The value of OPREFIX= must be different from the value of SPREFIX=. If you specify OPREFIX, without an equal sign and a prefix, then the default prefix is null and you must specify SPREFIX=\textit{s-prefix}.
OUT=SAS-data-set
specifies the name of the SAS data set created by PROC STDIZE. By default, the output data set is a copy of the DATA= data set except that the analyzed variables have been standardized. Analyzed variables are those specified in the VAR statement or, if there is no VAR statement, all numeric variables not listed in any other statement. However, you can use the OPREFIX option to request that both the original and standardized variables be included in the output data set. You can change variable names by specifying prefixes with the OPREFIX= and SPREFIX= options. See the section “Output Data Sets” on page 7129 for more information.

If you want to create a permanent SAS data set, you must specify a two-level name. See SAS Language Reference: Concepts for more information about permanent SAS data sets.

If you omit the OUT= option, PROC STDIZE creates an output data set named according to the DATA_n convention.

OUTSTAT=SAS-data-set
specifies the name of the SAS data set containing the location and scale measures and other computed statistics. See the section “Output Data Sets” on page 7129 for more information.

PCTLDEF=percentiles
specifies which of five definitions is used to calculate percentiles when you specify the option PCTLMTD=ORD_STAT. By default, PCTLDEF=5. Note that the option PCTLMTD=ONEPASS implies PCTLDEF=5. See the section “Computational Methods for the PCTLDEF= Option” on page 7127 for details about percentile definition.

You cannot use PCTLDEF= when you compute weighted quantiles.

PCTLMTD=ORD_STAT | ONEPASS | P2
specifies the method used to estimate percentiles. Specify the PCTLMTD=ORD_STAT option to compute the percentiles by the order statistics method.

The PCTLMTD=ONEPASS option modifies an algorithm invented by Jain and Chlamtac (1985). See the section “Computing Quantiles” on page 7127 for more details about this algorithm.

PCTLPTS=n
writes percentiles to the OUTSTAT= data set. Values of n can be any decimal number between 0 and 100, inclusive.

A requested percentile is identified by the _TYPE_ variable in the OUTSTAT= data set with a value of Pn. For example, suppose you specify the option PCTLPTS=10, 30. The corresponding observations in the OUTSTAT= data set that contain the 10th and the 30th percentiles would then have values _TYPE_=P10 and _TYPE_=P30, respectively.

PSTAT
displays the location and scale measures.

REPLACE
replaces missing data with the value 0 in the standardized data (this value corresponds to the location measure before standardizing). To replace missing data by other values, see the preceding description of the MISSING= option. You cannot specify both the REPLACE and REPONLY options.
Chapter 84: The STDIZE Procedure

REPONLY

replaces missing data only; PROC STDIZE does not standardize the data. Missing values are replaced with the location measure unless you also specify the MISSING=value option, in which case missing values are replaced with value. You cannot specify both the REPLACE and REPONLY options.

SNORM

normalizes the scale estimator to have an expectation of approximately 1 for a standard normal distribution when you specify the METHOD=SPACING option.

SPREFIX<=s-prefix>

specifies a prefix for the standardized variables. For example, if SPREFIX=Std, then the names of the standardized variables are StdVAR1, StdVAR2, and so on, where VAR1 and VAR2 are the original variable names. The value of SPREFIX= must be different from the value of OPREFIX=. The default prefix is null. If you omit the SPREFIX option, the standardized variables still appear in the OUT= data set by default and the variable names remain the same. If you want to have the variable names changed, you need to specify a prefix with SPREFIX=s-prefix.

UNSTD

UNSTDIZE

unstandardizes variables when you specify the METHOD=IN(ds) option. The location and scale measures, along with constants for addition and multiplication that the unstandardization is based on, are identified by the _TYPE_ variable in the _ds_ data set.

The _ds_ data set must have a _TYPE_ variable and contain the following two observations: a _TYPE_ = 'LOCATION' observation and a _TYPE_ = 'SCALE' observation. The variable _TYPE_ can also contain the optional observations, 'ADD' and 'MULT'; if these observations are not found in the _ds_ data set, the constants specified in the ADD= and MULT= options (or their default values) are used for unstandardization.

See the section “OUTSTAT= Data Set” on page 7129 for details about the statistics that each value of _TYPE_ represents. The formula used for unstandardization is as follows: If the final output value from the previous standardization is calculated as

\[
\text{result} = \text{add} + \text{multiply} \times \frac{\text{original} - \text{location}}{\text{scale}}
\]

The unstandardized variable is computed as

\[
\text{original} = \text{scale} \times \frac{\text{result} - \text{add}}{\text{multiply}} + \text{location}
\]

VARDEF=DF | N | WDF | WEIGHT | WGT

specifies the divisor to be used in the calculation of variances. By default, VARDEF=DF. The values and associated divisors are as follows.

<table>
<thead>
<tr>
<th>Value</th>
<th>Divisor</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>Degrees of freedom</td>
<td>(n - 1)</td>
</tr>
<tr>
<td>N</td>
<td>Number of observations</td>
<td>(n)</td>
</tr>
<tr>
<td>WDF</td>
<td>Sum of weights minus 1</td>
<td>(\sum w_i - 1)</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Sum of weights</td>
<td>(\sum w_i)</td>
</tr>
<tr>
<td>WGT</td>
<td>Sum of weights</td>
<td>(\sum w_i)</td>
</tr>
</tbody>
</table>
BY Statement

```
BY variables ;
```

You can specify a BY statement with PROC STDIZE to obtain separate analyses on observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the STDIZE procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

When you specify the option METHOD=IN(ds), the following rules are applied to BY-group processing:

- If the ds data set does not contain any of the BY variables, the entire DATA= data set is standardized by the location and scale measures (along with the constants for addition and multiplication) in the ds data set.
- If the ds data set contains some, but not all, of the BY variables or if some BY variables do not have the same type or length in the ds data set that they have in the DATA= data set, PROC STDIZE displays an error message and stops.
- If all of the BY variables appear in the ds data set with the same type and length as in the DATA= data set, each BY group in the DATA= data set is standardized using the location and scale measures (along with the constants for addition and multiplication) from the corresponding BY group in the ds data set. The BY groups in the ds data set must be in the same order in which they appear in the DATA= data set. All BY groups in the DATA= data set must also appear in the ds data set. If you do not specify the NOTSORTED option, some BY groups can appear in the ds data set but not in the DATA= data set; such BY groups are not used in standardizing data.

For more information about BY-group processing, see the discussion in *SAS Language Reference: Concepts*. For more information about the DATASETS procedure, see the discussion in the *Base SAS Procedures Guide*.

BY Statement
FREQ Statement

```
FREQ variable ;
```

If one variable in the input data set represents the frequency of occurrence for other values in the observation, specify the variable name in a FREQ statement. PROC STDIZE treats the data set as if each observation appeared \(n \) times, where \(n \) is the value of the FREQ variable for the observation. Nonintegral values of the FREQ variable are truncated to the largest integer less than the FREQ value. If the FREQ variable has a value that is less than 1 or is missing, the observation is not used in the analysis.

NOTRUNCATE

```
NOTRUNC
```

specifies that frequency values are not truncated to integers.

The nonintegral values of the FREQ variable can be used for the following standardization methods: AGK, ABW, AHUBER, AWA, EUCL, IQR, L, MAD, MEAN, MEDIAN, SPACING, STD, SUM, and USTD. The nonintegral frequency values are used for the MAD, MEDIAN, or IQR method only when PCTLMTD=ORD_STAT is specified. If PCTLMTD=ONEPASS is specified, the NOTRUNCATE option is ignored.

LOCATION Statement

```
LOCATION variables ;
```

The LOCATION statement specifies a list of numeric variables that contain location measures in the input data set specified by the METHOD=IN option.

SCALE Statement

```
SCALE variables ;
```

The SCALE statement specifies the list of numeric variables that contain scale measures in the input data set specified by the METHOD=IN option.

VAR Statement

```
VAR variable ;
```

The VAR statement lists numeric variables to be standardized. If you omit the VAR statement, all numeric variables not listed in the BY, FREQ, and WEIGHT statements are used.
WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement specifies a numeric variable in the input data set with values that are used to weight each observation. Only one variable can be specified.

The WEIGHT variable values can be nonintegers. An observation is used in the analysis only if the value of the WEIGHT variable is greater than zero.

The WEIGHT variable applies only when you specify the following standardization methods: AGK, EUCLEN, IQR, L, MAD, MEAN, MEDIAN, STD, SUM, and USTD. Weights are used for the METHOD=MAD, MEDIAN, or IQR only when PCTLMTD=ORD_STAT is specified; if PCTLMTD=ONEPASS is specified, the WEIGHT statement is ignored.

PROC STDIZE uses the value of the WEIGHT variable to calculate the sample mean and sample variances:

\[
\bar{x}_w = \frac{\sum_i w_i x_i}{\sum_i w_i} \quad \text{(sample mean)}
\]

\[
u s_w^2 = \frac{\sum_i w_i x_i^2}{d} \quad \text{(uncorrected sample variances)}
\]

\[
s_w^2 = \frac{\sum_i w_i (x_i - \bar{x}_w)^2}{d} \quad \text{(sample variances)}
\]

where \(w_i\) is the weight value of the \(i\)th observation, \(x_i\) is the value of the \(i\)th observation, and \(d\) is the divisor controlled by the VARDEF= option (see the VARDEF= option for details).

The following weighted statistics are defined accordingly:

- **MEAN** the weighted mean, \(\bar{x}_w\)
- **SUM** the weighted sum, \(\sum_i w_i x_i\)
- **USTD** the weighted uncorrected standard deviation, \(\sqrt{\nu s_w^2}\)
- **STD** the weighted standard deviation, \(\sqrt{s_w^2}\)
- **EUCLEN** the weighted Euclidean length, computed as the square root of the weighted uncorrected sum of squares:

 \[
 \sqrt{\sum_i w_i x_i^2}
 \]

- **MEDIAN** the weighted median. See the section “Weighted Percentiles” on page 7128 for the formulas and descriptions.
- **MAD** the weighted median absolute deviation from the weighted median. See the section “Weighted Percentiles” on page 7128 for the formulas and descriptions.
- **IQR** the weighted median, 25th percentile, and the 75th percentile. See the section “Weighted Percentiles” on page 7128 for the formulas and descriptions.
the AGK estimate. This estimate is documented further in the ACECLUS procedure as the METHOD=COUNT option. See the discussion of the WEIGHT statement in Chapter 23, “The ACECLUS Procedure,” for information about how the WEIGHT variable is applied to the AGK estimate.

the L_p estimate. This estimate is documented further in the FASTCLUS procedure as the LEAST= option. See the discussion of the WEIGHT statement in Chapter 35, “The FASTCLUS Procedure,” for information about how the WEIGHT variable is used to compute weighted cluster means. The number of clusters is always 1.

Details: STDIZE Procedure

Standardization Methods

The following table lists standardization methods and their corresponding location and scale measures available with the METHOD= option.

<table>
<thead>
<tr>
<th>Method</th>
<th>Location</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>Mean</td>
<td>1</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>Median</td>
<td>1</td>
</tr>
<tr>
<td>SUM</td>
<td>0</td>
<td>Sum</td>
</tr>
<tr>
<td>EUCLEN</td>
<td>0</td>
<td>Euclidean length</td>
</tr>
<tr>
<td>USTD</td>
<td>0</td>
<td>Standard deviation about origin</td>
</tr>
<tr>
<td>STD</td>
<td>Mean</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>RANGE</td>
<td>Minimum</td>
<td>Range</td>
</tr>
<tr>
<td>MIDRANGE</td>
<td>Midrange</td>
<td>Range/2</td>
</tr>
<tr>
<td>MAXABS</td>
<td>0</td>
<td>Maximum absolute value</td>
</tr>
<tr>
<td>IQR</td>
<td>Median</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>MAD</td>
<td>Median</td>
<td>Median absolute deviation from median</td>
</tr>
<tr>
<td>ABW(c)</td>
<td>Biweight one-step M-estimate</td>
<td>Biweight A-estimate</td>
</tr>
<tr>
<td>AHUBER(c)</td>
<td>Huber one-step M-estimate</td>
<td>Huber A-estimate</td>
</tr>
<tr>
<td>AWAVERE(c)</td>
<td>Wave one-step M-estimate</td>
<td>Wave A-estimate</td>
</tr>
<tr>
<td>AGK(p)</td>
<td>Mean</td>
<td>AGK estimate (ACECLUS)</td>
</tr>
<tr>
<td>SPACING(p)</td>
<td>Mid-minimum spacing</td>
<td>Minimum spacing</td>
</tr>
<tr>
<td>L(p)</td>
<td>L(p)</td>
<td>L(p)</td>
</tr>
<tr>
<td>IN(ds)</td>
<td>Read from data set</td>
<td>Read from data set</td>
</tr>
</tbody>
</table>
For METHOD=ABW, METHOD=AHUBER, or METHOD=AWE, c is a positive numeric tuning constant.

For METHOD=AGK, p is a numeric constant that gives the proportion of pairs to be included in the estimation of the within-cluster variances.

For METHOD=SPACING, p is a numeric constant that gives the proportion of data to be contained in the spacing.

For METHOD=L(p), p is a numeric constant greater than or equal to 1 that specifies the power to which differences are to be raised in computing an L(p) or Minkowski metric.

For METHOD=IN(ds), ds is the name of a SAS data set that meets either of the following two conditions:

- The data set contains a _TYPE_ variable. The observation that contains the location measure corresponds to the value _TYPE_ = ‘LOCATION’, and the observation that contains the scale measure corresponds to the value _TYPE_ = ‘SCALE’. You can also use a data set created by the OUTSTAT= option from another PROC STDIZE statement as the ds data set. See the section “Output Data Sets” on page 7129 for the contents of the OUTSTAT= data set.

- The data set contains the location and scale variables specified by the LOCATION and SCALE statements.

PROC STDIZE reads in the location and scale variables in the ds data set by first looking for the _TYPE_ variable in the ds data set. If it finds this variable, PROC STDIZE continues to search for all variables specified in the VAR statement. If it does not find the _TYPE_ variable, PROC STDIZE searches for the location variables specified in the LOCATION statement and the scale variables specified in the SCALE statement.

The variable _TYPE_ can also contain the optional observations, ‘ADD’ and ‘MULT’. If these observations are found in the ds data set, the values in the observation of _TYPE_ = ‘MULT’ are the multiplication constants, and the values in the observation of _TYPE_ = ‘ADD’ are the addition constants; otherwise, the constants specified in the ADD= and MULT= options (or their default values) are used.

For robust estimators, refer to Goodall (1983) and Iglewicz (1983). The MAD method has the highest breakdown point (50%), but it is somewhat inefficient. The ABW, AHUBER, and AWE methods provide a good compromise between breakdown and efficiency. The L(p) location estimates are increasingly robust as p drops from 2 (which corresponds to least squares, or mean estimation) to 1 (which corresponds to least absolute value, or median estimation). However, the L(p) scale estimates are not robust.

The SPACING method is robust to both outliers and clustering (Jannsen et al. 1995) and is, therefore, a good choice for cluster analysis or nonparametric density estimation. The mid-minimum spacing method estimates the mode for small p. The AGK method is also robust to clustering and more efficient than the SPACING method, but it is not as robust to outliers and takes longer to compute. If you expect g clusters, the argument to METHOD=SPACING or METHOD=AGK should be 1/g or less. The AGK method is less biased than the SPACING method for small samples. As a general guide, it is reasonable to use AGK for samples of size 100 or less and SPACING for samples of size 1,000 or more, with the treatment of intermediate sample sizes depending on the available computer resources.
Computation of the Statistics

Formulas for statistics of METHOD=MEAN, METHOD=MEDIAN, METHOD=SUM, METHOD=USTD, METHOD=STD, METHOD=RANGE, and METHOD=IQR are given in the chapter “Elementary Statistics Procedures” (Base SAS Procedures Guide).

Note that the computations of median and upper and lower quartiles depend on the PCTLMTD= option.

The other statistics listed in Table 84.2, except for METHOD=IN, are described as follows:

EUCLEN
Euclidean length.
\[\sqrt{\sum_{i=1}^{n} x_i^2} \], where \(x_i \) is the \(i \)th observation and \(n \) is the total number of observations in the sample.

L(p)
Minkowski metric. This metric is documented as the LEAST=\(p \) option in the PROC FASTCLUS statement of the FASTCLUS procedure (see Chapter 35, “The FASTCLUS Procedure”).

If you specify METHOD=L(\(p \)) in the PROC STDIZE statement, your results are similar to those obtained from PROC FASTCLUS if you specify the LEAST=\(p \) option with MAXCLUS=1 (and use the default values of the MAXITER= option). The difference between the two types of calculations concerns the maximum number of iterations. In PROC STDIZE, it is a criterion for convergence on all variables; in PROC FASTCLUS, it is a criterion for convergence on a single variable.

The location and scale measures for L(\(p \)) are output to the OUTSEED= data set in PROC FASTCLUS.

MIDRANGE
\(\frac{\text{maximum} + \text{minimum}}{2} \)

ABW(\(c \))

AHUBER(\(c \))

AWAVE(\(c \))

AGK(\(p \))
The noniterative univariate form of the estimator described by Art, Gnanadesikan, and Kettenring (1982).

The AGK estimate is documented in the section on the METHOD= option in the PROC ACECLUS statement of the ACECLUS procedure (also see the section “Background” on page 820 in Chapter 23, “The ACECLUS Procedure”). Specifying METHOD=AGK(\(p \)) in the PROC STDIZE statement is the same as specifying METHOD=COUNT and P=\(p \) in the PROC ACECLUS statement.

SPACING(\(p \))
The absolute difference between two data values. The minimum spacing for a proportion \(p \) is the minimum absolute difference between two data values that contain a proportion \(p \) of the data between them. The mid-minimum spacing is the mean of these two data values.
Computing Quantiles

PROC STDIZE offers two methods for computing quantiles: the one-pass approach and the order-statistics approach (like that used in the UNIVARIATE procedure).

The one-pass approach used in PROC STDIZE modifies the P^2 algorithm for histograms proposed by Jain and Chlamtac (1985). The primary difference comes from the movement of markers. The one-pass method allows a marker to move to the right (or left) by more than one position (to the largest possible integer) as long as it does not result in two markers being in the same position. The modification is necessary in order to incorporate the FREQ variable.

You might obtain inaccurate results if you use the one-pass approach to estimate quantiles beyond the quartiles (that is, when you estimate quantiles < P25 or quantiles > P75). A large sample size (10,000 or more) is often required if the tail quantiles (quantiles \leq P10 or quantiles \geq P90) are requested. Note that, for variables with highly skewed or heavy-tailed distributions, tail quantile estimates might be inaccurate.

The order-statistics approach for estimating quantiles is faster than the one-pass method but requires that the entire data set be stored in memory. The accuracy in estimating the quantiles is comparable for both methods when the requested percentiles are between the lower and upper quartiles. The default is PCTLMTD=ORD_STAT if enough memory is available; otherwise, PCTLMTD=ONEPASS.

Computational Methods for the PCTLDEF= Option

You can specify one of five methods for computing quantile statistics when you use the order-statistics approach (PCTLMTD=ORD_STAT); otherwise, the PCTLDEF=5 method is used when you use the one-pass approach (PCTLMTD=ONEPASS).

Percentile Definitions Let n be the number of nonmissing values for a variable, and let x_1, x_2, \ldots, x_n represent the ordered values of the variable. For the tth percentile, let $p = t/100$. In the following definitions numbered 1, 2, 3, and 5, let

\[np = j + g \]

where j is the integer part and g is the fractional part of np. For definition 4, let

\[(n + 1)p = j + g \]

Given the preceding definitions, the tth percentile, y, is defined as follows:

- **PCTLDEF=1** weighted average at x_{np}
 \[y = (1 - g)x_j + gx_{j+1} \]
 where x_0 is taken to be x_1

- **PCTLDEF=2** observation numbered closest to np
 \[y = x_i \]
where \(i \) is the integer part of \(np + 1/2 \) if \(g \neq 1/2 \). If \(g = 1/2 \), then
\[
y = x_j \text{ if } j \text{ is even, or } y = x_{j+1} \text{ if } j \text{ is odd}
\]

PCTLDEF=3 empirical distribution function
\[
y = x_j \text{ if } g = 0 \\
y = x_{j+1} \text{ if } g > 0
\]

PCTLDEF=4 weighted average aimed at \(x_{p(n+1)} \)
\[
y = (1 - g)x_j + gx_{j+1}
\]
where \(x_{n+1} \) is taken to be \(x_n \)

PCTLDEF=5 empirical distribution function with averaging
\[
y = (x_j + x_{j+1})/2 \text{ if } g = 0 \\
y = x_{j+1} \text{ if } g > 0
\]

Weighted Percentiles

When you specify a WEIGHT statement, or specify the NOTRUNCATE option in a FREQ statement, the percentiles are computed differently. The 100\(p \)th weighted percentile \(y \) is computed from the empirical distribution function with averaging

\[
y = \begin{cases}
\frac{1}{2}(x_i + x_{i+1}) & \text{if } \sum_{j=1}^{i} w_j = pW \\
x_{i+1} & \text{if } \sum_{j=1}^{i} w_j < pW < \sum_{j=1}^{i+1} w_j
\end{cases}
\]

where \(w_i \) is the weight associated with \(x_i \), and where \(W = \sum_{i=1}^{n} w_i \) is the sum of the weights.

For PCTLMTD= ORD_STAT, the PCTLDEF= option is not applicable when a WEIGHT statement is used, or when a NOTRUNCATE option is specified in a FREQ statement. However, in this case, if all the weights are identical, the weighted percentiles are the same as the percentiles that would be computed without a WEIGHT statement and with PCTLDEF=5.

For PCTLMTD= ONEPASS, the quantile computation currently does not use any weights.

Constant Data

Constant variables are not standardized. The scale value is set to missing when the data are constant.
Missing Values

Missing values can be replaced by the location measure or by any specified constant (see the REPLACE option and the MISSING= option). You can also suppress standardization if you want only to replace missing values (see the REPONLY option).

If you specify the NOMISS option, PROC STDIZE omits observations with any missing values in the analyzed variables from computation of the location and scale measures.

Output Data Sets

OUT= Data Set

By default, the output data set is a copy of the DATA= data set except that the analyzed variables have been standardized. Analyzed variables are those specified in the VAR statement or, if there is no VAR statement, all numeric variables not listed in any other statement. However, you can use the OPREFIX option to request that both the original and standardized variables be included in the output data set. You can change variable names by specifying prefixes with the OPREFIX=o-prefix and SPREFIX=s-prefix options, but keep in mind that the two prefixes must be different. See OPREFIX and SPREFIX for more information.

OUTSTAT= Data Set

The new data set contains the following variables:

- the BY variables, if any
- _TYPE_, a character variable
- the analyzed variables

Each observation in the new data set contains a type of statistic as indicated by the _TYPE_ variable. The values of the _TYPE_ variable are as follows:

- LOCATION: location measure of each variable
- SCALE: scale measure of each variable
- ADD: constant specified in the ADD= option. This value is the same for each variable.
- MULT: constant specified in the MULT= option. This value is the same for each variable.
- N: total number of nonmissing positive frequencies of each variable
- NORM: norm measure of each variable. This observation is produced only when you specify the NORM option with METHOD=AGK, METHOD=IQR, METHOD=MAD, or METHOD=SPACING or when you specify the SNORM option with METHOD=SPACING.
NObsRead number of physical records read

NObsUsed number of physical records used in the analysis

NObsMiss number of physical records containing missing values

Pn percentiles of each variable, as specified by the PCTLPTS= option. The argument n is any real number such that 0 ≤ n ≤ 100

SumFreqsRead sum of the frequency variable (or the sum of NObsUsed ones when there is no frequency variable) for all observations read

SumFreqsUsed sum of the frequency variable (or the sum of NObsUsed ones when there is no frequency variable) for all observations used in the analysis

SumWeightsRead sum of the weight variable (or the sum of NObsUsed ones when there is no weight variable) for all observations read

SumWeightsUsed sum of the weight variable (or the sum of NObsUsed ones when there is no weight variable) for all observations used in the analysis

Displayed Output

If you specify the PSTAT option, PROC STDIZE displays the following statistics for each variable:

- the name of the variable, Name
- the location estimate, Location
- the scale estimate, Scale
- the norm estimate, Norm (when you specify the NORM option with METHOD=AGK, METHOD=IQR, METHOD=MAD, or METHOD=SPACING or when you specify the SNORM option with METHOD=SPACING)
- sum of nonmissing positive frequencies, N
- sum of nonmissing positive weights if the WEIGHT statement is specified, Sum of Weights

ODS Table Names

PROC STDIZE assigns a name to the single table it creates. You can use this name to reference the table when using the Output Delivery System (ODS) to select a table or create an output data set. This name is listed in Table 84.3. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>Location and Scale Measures</td>
<td>PROC</td>
<td>PSTAT</td>
</tr>
</tbody>
</table>
Example: STDIZE Procedure

Example 84.1: Standardization of Variables in Cluster Analysis

To illustrate the effect of standardization in cluster analysis, this example uses the Fish data set described in the “Getting Started” section of Chapter 35, “The FASTCLUS Procedure.” The numbers are measurements taken on 159 fish caught from the same lake (Laengelmavesi) near Tampere in Finland (Puranen 1917). The fish data set is available from the Sashelp library.

The species (bream, parkki, pike, perch, roach, smelt, and whitefish), weight, three different length measurements (measured from the nose of the fish to the beginning of its tail, the notch of its tail, and the end of its tail), height, and width of each fish are recorded.

A couple of new variables are created in the Fish data set: Weight3 and logLengthRatio. The weight of a fish indicates its size—a heavier pike tends to be larger than a lighter pike. To get a one-dimensional measure of the size of a fish, take the cubic root of the weight (Weight3). The variables Height, Width, Length1, Length2, and Length3 are rescaled in order to adjust for dimensionality. The logLengthRatio variable measures the tail length.

Because the new variables Weight3–logLengthRatio depend on the variable Weight, observations with missing values for Weight are not added to the data set. Consequently, there are 157 observations in the SAS data set Sashelp.Fish.

Before you perform a cluster analysis on coordinate data, it is necessary to consider scaling or transforming the variables since variables with large variances tend to have a larger effect on the resulting clusters than variables with small variances do.

This example uses three different approaches to standardize or transform the data prior to the cluster analysis. The first approach uses several standardization methods provided in the STDIZE procedure. However, since standardization is not always appropriate prior to the clustering (refer to Milligan and Cooper (1987) for a Monte Carlo study on various methods of variable standardization), the second approach performs the cluster analysis with no standardization. The third approach invokes the ACECLUS procedure to transform the data into a within-cluster covariance matrix.

The clustering is performed by the FASTCLUS procedure to find seven clusters. Note that the variables Length2 and Length3 are eliminated from this analysis since they both are significantly and highly correlated with the variable Length1. The correlation coefficients are 0.9958 and 0.9604, respectively. An output data set is created, and the FREQ procedure is invoked to compare the clusters with the species classification.
The DATA step is as follows:

```
title 'Fish Measurement Data';

data Fish;
  set sashelp.fish;
  if Weight <= 0 or Weight = . then delete;
  Weight3 = Weight ** (1/3);
  Height = Height / Weight3;
  Width = Width / Weight3;
  Length1 = Length1 / Weight3;
  Length2 = Length2 / Weight3;
  Length3 = Length3 / Weight3;
  LogLengthRatio = log(Length3 / Length1);
run;
```

The following macro, Std, standardizes the Fish data. The macro reads a single argument, mtd, which selects the METHOD= specification to be used in PROC STDIZE.

```
/**** macro for standardization ****/

%macro Std(mtd);
  title2 "Data are Standardized by PROC STDIZE with METHOD= &mtd";
  proc stdize data=fish out=sdzout method=&mtd;
    var Length1 logLengthRatio Height Width Weight3;
  run;
%mend Std;
```

The following macro, FastFreq, includes a PROC FASTCLUS statement for performing cluster analysis and a PROC FREQ statement for crosstabulating species with the cluster membership information that is derived from the previous PROC FASTCLUS statement. The macro reads a single argument, ds, which selects the input data set to be used in PROC FASTCLUS.

```
/**** macro for clustering and crosstabulating ****/
/**** cluster membership with species ****/

%macro FastFreq(ds);
  proc fastclus data=&ds out=clust maxclusters=7 maxiter=100 noprint;
    var Length1 logLengthRatio Height Width Weight3;
  run;

  proc freq data=clust;
    tables species*cluster;
  run;
%mend FastFreq;
```

The following analysis (labeled ‘Approach 1’) includes 18 different methods of standardization followed by clustering. Since there is a large amount of output from this approach, only results from METHOD=STD, METHOD=RANGE, METHOD=AGK(0.14), and METHOD=SPACING(0.14) are shown. The following statements produce Output 84.1.1 through Output 84.1.4.
Example 84.1: Standardization of Variables in Cluster Analysis

/* Approach 1: data are standardized by PROC STDIZE */

%Std(MEAN);
%FastFreq(sdzout);

%Std(MEDIAN);
%FastFreq(sdzout);

%Std(SUM);
%FastFreq(sdzout);

%Std(EUCLEN);
%FastFreq(sdzout);

%Std(USTD);
%FastFreq(sdzout);

%Std(STD);
%FastFreq(sdzout);

%Std(RANGE);
%FastFreq(sdzout);

%Std(MIDRANGE);
%FastFreq(sdzout);

%Std(MAXABS);
%FastFreq(sdzout);

%Std(IQR);
%FastFreq(sdzout);

%Std(MAD);
%FastFreq(sdzout);

%Std(AGK(.14));
%FastFreq(sdzout);

%Std(SPACING(.14));
%FastFreq(sdzout);

%Std(ABW(5));
%FastFreq(sdzout);

%Std(AWAVE(5));
%FastFreq(sdzout);

%Std(L(1));
%FastFreq(sdzout);

%Std(L(1.5));
%FastFreq(sdzout);
Chapter 84: The STDIZE Procedure

%Std(L(2));
%FastFreq(sdzout);

Output 84.1.1 Data Are Standardized by PROC STDIZE with METHOD=STD

Fish Measurement Data

Data are Standardized by PROC STDIZE with METHOD=STD

The FREQ Procedure

Table of Species by CLUSTER

<table>
<thead>
<tr>
<th>Species</th>
<th>CLUSTER(Cluster)</th>
<th>Frequency</th>
<th>Percent</th>
<th>Row Pct</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>----------+--------+--------+--------+--------+--------+--------+--------+--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bream</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Parkki</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Perch</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>30.36</td>
<td>0.00</td>
<td>21.43</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>89.47</td>
<td>0.00</td>
<td>92.31</td>
<td>0.00</td>
</tr>
<tr>
<td>Pike</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Roach</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Smelt</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>92.86</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Whitefish</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>33.33</td>
<td>0.00</td>
<td>16.67</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>10.53</td>
<td>0.00</td>
<td>7.69</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>19</td>
<td>13</td>
<td>13</td>
<td>11</td>
</tr>
</tbody>
</table>
Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= RANGE

The FREQ Procedure

Table of Species by CLUSTER

<table>
<thead>
<tr>
<th>Species</th>
<th>CLUSTER(Cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>Bream</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Parkki</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Perch</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Pike</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>10.83</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
</tr>
<tr>
<td>Roach</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Smelt</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Whitefish</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>10.83</td>
</tr>
</tbody>
</table>
Output 84.1.3 Data Are Standardized by PROC STDIZE with METHOD=AGK(0.14)

Fish Measurement Data
Data are Standardized by PROC STDIZE with METHOD= AGK(.14)

The FREQ Procedure

Table of Species by CLUSTER

<table>
<thead>
<tr>
<th>Species</th>
<th>CLUSTER(Cluster)</th>
<th>Frequency</th>
<th>Percent</th>
<th>Row Pct</th>
<th>Col Pct</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Bream</td>
<td></td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>21.66</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Parkki</td>
<td></td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Perch</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.91</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.36</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>13.04</td>
<td>0.00</td>
</tr>
<tr>
<td>Pike</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Roach</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>10.83</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>89.47</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>73.91</td>
<td>0.00</td>
</tr>
<tr>
<td>Smelt</td>
<td></td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>8.92</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>100.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Whitefish</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.91</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>50.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>13.04</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11</td>
<td>14</td>
<td>34</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.01</td>
<td>8.92</td>
<td>21.66</td>
<td>14.65</td>
<td>10.83</td>
</tr>
</tbody>
</table>
Output 84.1.4 Data Are Standardized by PROC STDIZE with METHOD=SPACING(0.14)

Fish Measurement Data

Data are standardized by PROC STDIZE with METHOD= SPACING(.14)

The FREQ Procedure

Table of Species by CLUSTER

<table>
<thead>
<tr>
<th>Species</th>
<th>CLUSTER(Cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Frequency</td>
<td>23</td>
</tr>
<tr>
<td>Percent</td>
<td>14.65</td>
</tr>
<tr>
<td>Row Pct</td>
<td>1</td>
</tr>
<tr>
<td>Col Pct</td>
<td>1</td>
</tr>
</tbody>
</table>

Data

- **Bream**: Frequency 0, Percent 0.00, Row Pct 0.00, Col Pct 0.00 (100.00), Total 34
- **Parkki**: Frequency 0, Percent 0.00, Row Pct 0.00, Col Pct 0.00 (100.00), Total 11
- **Perch**: Frequency 20, Percent 12.74, Row Pct 35.71, Col Pct 86.96, Total 56
- **Pike**: Frequency 0, Percent 0.00, Row Pct 0.00, Col Pct 0.00 (100.00), Total 17
- **Roach**: Frequency 0, Percent 0.00, Row Pct 0.00, Col Pct 0.00 (100.00), Total 19
- **Smelt**: Frequency 0, Percent 0.00, Row Pct 0.00, Col Pct 0.00 (100.00), Total 14
- **Whitefish**: Frequency 3, Percent 1.91, Row Pct 50.00, Col Pct 13.04, Total 6
The following analysis (labeled ‘Approach 2’) applies the cluster analysis directly to the original data. The
following statements produce Output 84.1.5.

/* Approach 2: data are untransformed */
title2 'Data are Untransformed';
%FastFreq(fish);

Output 84.1.5 Untransformed Data

<table>
<thead>
<tr>
<th>Species</th>
<th>CLUSTER(Cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bream</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8.28</td>
</tr>
<tr>
<td></td>
<td>38.24</td>
</tr>
<tr>
<td></td>
<td>44.83</td>
</tr>
<tr>
<td>Parkki</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>18.18</td>
</tr>
<tr>
<td></td>
<td>6.90</td>
</tr>
<tr>
<td>Perch</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td>14.29</td>
</tr>
<tr>
<td></td>
<td>27.59</td>
</tr>
<tr>
<td>Pike</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Roach</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>15.79</td>
</tr>
<tr>
<td></td>
<td>10.34</td>
</tr>
<tr>
<td>Smelt</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Whitefish</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>10.34</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>18.47</td>
</tr>
</tbody>
</table>
The following analysis (labeled ‘Approach 3’) transforms the original data with the ACECLUS procedure and creates a TYPE=ACE output data set that is used as an input data set for the cluster analysis. The following statements produce Output 84.1.6.

```
/* Approach 3: data are transformed by PROC ACECLUS */

title2 'Data are Transformed by PROC ACECLUS';
proc aceclus data=fish out=ace p=.02 noprint;
   var Length1 logLengthRatio Height Width Weight3;
run;
%FastFreq(ace);
```
Chapter 84: The STDIZE Procedure

Output 84.1.6 Data Are Transformed by PROC ACECLUS

Fish Measurement Data
Data are Transformed by PROC ACECLUS

The FREQ Procedure

Table of Species by CLUSTER

<table>
<thead>
<tr>
<th>Species</th>
<th>CLUSTER(Cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bream</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8.28</td>
</tr>
<tr>
<td></td>
<td>38.24</td>
</tr>
<tr>
<td></td>
<td>44.83</td>
</tr>
<tr>
<td>Parkki</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>18.18</td>
</tr>
<tr>
<td></td>
<td>6.90</td>
</tr>
<tr>
<td>Perch</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td>14.29</td>
</tr>
<tr>
<td></td>
<td>27.59</td>
</tr>
<tr>
<td>Pike</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Roach</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>15.79</td>
</tr>
<tr>
<td></td>
<td>10.34</td>
</tr>
<tr>
<td>Smelt</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>Whitefish</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>10.34</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>18.47</td>
</tr>
</tbody>
</table>

Table 84.4 displays a table summarizing each classification results. In this table, the first column represents the standardization method, the second column represents the number of clusters that the seven species are
classified into, and the third column represents the total number of observations that are misclassified.

<table>
<thead>
<tr>
<th>Method of Standardization</th>
<th>Number of Clusters</th>
<th>Misclassification</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td>MEDIAN</td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td>SUM</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>EUCLEN</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>USTD</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>STD</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>RANGE</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>MIDRANGE</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>MAXABS</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>IQR</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>MAD</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>ABW(5)</td>
<td>6</td>
<td>34</td>
</tr>
<tr>
<td>AWAVE(5)</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>AGK(0.14)</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>SPACING(0.14)</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>L(1)</td>
<td>6</td>
<td>41</td>
</tr>
<tr>
<td>L(1.5)</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>L(2)</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>untransformed</td>
<td>5</td>
<td>71</td>
</tr>
<tr>
<td>PROC ACECLUS</td>
<td>5</td>
<td>71</td>
</tr>
</tbody>
</table>

Consider the results displayed in Output 84.1.1. In that analysis, the method of standardization is STD, and the number of clusters and the number of misclassifications are computed as shown in Table 84.5.

<table>
<thead>
<tr>
<th>Species</th>
<th>Cluster Number</th>
<th>Misclassification in Each Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bream</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Parkki</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Perch</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>Pike</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Roach</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Smelt</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Whitefish</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

In Output 84.1.1, the bream species is classified as cluster 6 since all 34 bream are categorized into cluster 6 with no misclassification. A similar pattern is seen with the roach, parkki, pike, and smelt species.
For the whitefish species, two fish are categorized into cluster 2, one fish is categorized into cluster 4, and three fish are categorized into cluster 7. Because the majority of this species is categorized into cluster 7, it is recorded in Table 84.5 as being classified as cluster 7 with 3 misclassifications. A similar pattern is seen with the perch species: it is classified as cluster 7 with 29 misclassifications.

In summary, when the standardization method is STD, seven species of fish are classified into only five clusters and the total number of misclassified observations is 33.

The result of this analysis demonstrates that when variables are standardized by the STDIZE procedure with methods including RANGE, MIDRANGE, MAXABS, AGK(0.14), and SPACING(0.14), the FASTCLUS procedure produces the correct number of clusters and less misclassification than it does when other standardization methods are used. The SPACING method attains the best result, probably because the variables Length1 and Height both exhibit marked groupings (bimodality) in their distributions.

References

Subject Index

A
AGK estimate
 STDIZE procedure, 7126
C
cluster analysis (STDIZE)
 standardizing, 7131
clustering and scaling
 STDIZE procedure, example, 7131
E
Euclidean length
 STDIZE procedure, 7126
F
fractional frequencies
 STDIZE procedure, 7122
M
Minkowski metric
 STDIZE procedure, 7126
missing values
 STDIZE procedure, 7118–7120
P
percentiles
 weighted, 7128
Q
quantile computation
 STDIZE procedure, 7108, 7127
R
robust
 estimators (STDIZE), 7125
S
scaling variables
 STDIZE procedure, 7131
W
weighted percentiles, 7128
Syntax Index

A

ADD= option
PROC STDIZE statement, 7117

B

BY statement
STDIZE procedure, 7121

D

DATA= option
PROC STDIZE statement, 7117

F

FREQ statement
STDIZE procedure, 7122

FUZZ= option
PROC STDIZE statement, 7117

I

INITIAL= option
PROC STDIZE statement, 7117

K

KEEPLEN option
PROC STDIZE statement, 7118

M

METHOD= option
PROC STDIZE statement, 7118

MISSING= option
PROC STDIZE statement, 7118

MULT= option
PROC STDIZE statement, 7118

N

NMARKERS= option
PROC STDIZE statement, 7118

NOMISS option
PROC STDIZE statement, 7118

NORM option

PROC STDIZE statement, 7118

NOTRUNCATE option

FREQ statement (STDIZE), 7122

O

OPREFIX option
PROC STDIZE statement, 7118

OUT= option
PROC STDIZE statement, 7119

OUTSTAT= option
PROC STDIZE statement, 7119

P

PCTLDEF= option
PROC STDIZE statement, 7119

PCTLMTD option
PROC STDIZE statement, 7119

PCTLPTS option
PROC STDIZE statement, see STDIZE procedure

PSTAT option
PROC STDIZE statement, 7119

R

REPLACE option
PROC STDIZE statement, 7119

REPOONLY option
PROC STDIZE statement, 7120

S

SNORM option
PROC STDIZE statement, 7120

SPREFIX option
PROC STDIZE statement, 7120

STDIZE procedure
syntax, 7115

STDIZE procedure, BY statement, 7121

STDIZE procedure, FREQ statement, 7122

NOTRUNCATE option, 7122

STDIZE procedure, LOCATION statement, 7122

STDIZE procedure, PROC STDIZE statement, 7116

ADD= option, 7117

DATA= option, 7117

FUZZ= option, 7117
INITIAL= option, 7117
KEEPLEN, 7118
METHOD= option, 7118
MISSING= option, 7118
MULT= option, 7118
NMARKERS= option, 7118
NOMISS option, 7118
NORM option, 7118
OPREFIX option, 7118
OUT= option, 7119
OUTSTAT= option, 7119
PCTLDEF= option, 7119
PCTLMTD option, 7119
PCTLPTS option, 7119
PSTAT option, 7119
REPLACE option, 7119
REPONLY option, 7120
SNORM option, 7120
SPREFIX option, 7120
UNSTD option, 7120
VARDEF option, 7120
STDIZE procedure, SCALE statement, 7122
STDIZE procedure, VAR statement, 7122
STDIZE procedure, WGT statement, 7123

U
UNSTD option
 PROC STDIZE statement, 7120

V
VAR statement
 STDIZE procedure, 7122
VARDEF option
 PROC STDIZE statement, 7120

W
WGT statement
 STDIZE procedure, 7123
Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).

- If you have comments about the software, please send them to suggest@sas.com.
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press

Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

SAS® Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF – **free** on the Web.
- Hard-copy books.

SAS® Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109