Chapter 51
The LIFETEST Procedure

Contents

Overview: LIFETEST Procedure .. 3848
Getting Started: LIFETEST Procedure .. 3849
Syntax: LIFETEST Procedure ... 3858
 PROC LIFETEST Statement .. 3858
 BY Statement ... 3872
 FREQ Statement .. 3873
 ID Statement .. 3873
 STRATA Statement .. 3874
 TEST Statement .. 3878
 TIME Statement .. 3879
Details: LIFETEST Procedure .. 3879
 Missing Values ... 3879
 Computational Formulas ... 3879
 Computer Resources ... 3895
 Output Data Sets ... 3896
 OUTSURV= Data Set ... 3896
 OUTTEST= Data Set ... 3898
Displayed Output .. 3898
 ODS Table Names .. 3905
 ODS Graphics ... 3907
 Modifying the ODS Template for Survival Plots 3909
Examples: LIFETEST Procedure .. 3910
 Example 51.1: Product-Limit Estimates and Tests of Association 3910
 Example 51.2: Enhanced Survival Plot and Multiple-Comparison Adjustments 3923
 Example 51.3: Life-Table Estimates for Males with Angina Pectoris 3926
References ... 3934
Overview: LIFETEST Procedure

A common feature of lifetime or survival data is the presence of right-censored observations due either to withdrawal of experimental units or to termination of the experiment. For such observations, you know only that the lifetime exceeded a given value; the exact lifetime remains unknown. Such data cannot be analyzed by ignoring the censored observations because, among other considerations, the longer-lived units are generally more likely to be censored. The analysis methodology must correctly use the censored observations in addition to the uncensored observations.

Usually, a first step in the analysis of survival data is the estimation of the distribution of the survival times. Survival times are often called failure times, and event times are uncensored survival times. The survival distribution function (SDF), also known as the survivor function, is used to describe the lifetimes of the population of interest. The SDF evaluated at \(t \) is the probability that an experimental unit from the population will have a lifetime that exceeds \(t \)—that is,

\[
S(t) = \Pr(T > t)
\]

where \(S(t) \) denotes the survivor function and \(T \) is the lifetime of a randomly selected experimental unit. The LIFETEST procedure can be used to compute nonparametric estimates of the survivor function either by the product-limit method (also called the Kaplan-Meier method) or by the life-table method (also called the actuarial method). The life-table estimator is a grouped-data analog of the Kaplan-Meier estimator. The procedure can also compute the Breslow estimator or the Fleming-Harrington estimator, which are asymptotic equivalent alternatives to the Kaplan-Meier estimator.

Some functions closely related to the SDF are the cumulative distribution function (CDF), the probability density function (PDF), and the hazard function. The CDF, denoted \(F(t) \), is defined as \(1 - S(t) \) and is the probability that a lifetime does not exceed \(t \). The PDF, denoted \(f(t) \), is defined as the derivative of \(F(t) \), and the hazard function, denoted \(h(t) \), is defined as \(f(t)/S(t) \). If the life-table method is chosen, the estimates of the probability density function can also be computed. Plots of these estimates can be produced by a graphical or line printer device, or based on the output delivery system (ODS).

An important task in the analysis of survival data is the comparison of survival curves. It is of interest to determine whether the underlying populations of \(k \) (\(k \geq 2 \)) samples have identical survivor functions. PROC LIFETEST provides nonparametric \(k \)-sample tests based on weighted comparisons of the estimated hazard rate of the individual population under the null and alternative hypotheses. Corresponding to various weight functions, a variety of tests can be specified, which include the log-rank test, Wilcoxon test, Tarone-Ware test, Peto-Peto test, modified Peto-Peto test, and Fleming-Harrington \(G_\rho \) family of tests. PROC LIFETEST also provides corresponding trend tests to detect ordered alternatives. Stratified tests can be specified to adjust for prognostic factors that affect the events rates in the various populations. A likelihood ratio test, based on an underlying exponential model, is also included to compare the survival curves of the samples.

There are other prognostic variables, called covariates, that are thought to be related to the failure time. These covariates can also be used to construct statistics to test for association between the covariates and the
lifetime variable. PROC LIFETEST can compute two such test statistics: censored data linear rank statistics based on the exponential scores and the Wilcoxon scores. The corresponding tests are known as the log-rank test and the Wilcoxon test, respectively. These tests are computed by pooling over any defined strata, thus adjusting for the stratum variables.

One change in SAS 9.2 and later is that the calculation of confidence limits for the quartiles of survival time is based on the transformation specified by the CONFTYPE= option. Another change is that the SURVIVAL statement in SAS 9.1 is folded into the PROC LIFETEST statement; that is, options that were in the SURVIVAL statement can now be specified in the PROC LIFETEST statement. The SURVIVAL statement is no longer needed and it is not documented.

Getting Started: LIFETEST Procedure

You can use the LIFETEST procedure to compute nonparametric estimates of the survivor functions, to compare survival curves, and to compute rank tests for association of the failure time variable with covariates.

For simple analyses, only the PROC LIFETEST and TIME statements are required. Consider a sample of survival data. Suppose that the time variable is \(T \) and the censoring variable is \(C \) with value 1 indicating censored observations. The following statements compute the product-limit estimate for the sample:

```sas
proc lifetest;
  time t*c(1);
run;
```

You can use the STRATA statement to divide the data into various strata. A separate survivor function is then estimated for each stratum, and tests of the homogeneity of strata are performed. However, if the GROUP= option is also specified in the STRATA statement, the GROUP= variable is used to identify the samples whose survivor functions are to be compared, and the STRATA variables are used to define the strata for the stratified tests. You can specify covariates (prognostic variables) in the TEST statement, and PROC LIFETEST computes linear rank statistics to test the effects of these covariates on survival.

For example, consider the results of a small randomized trial on rats. Suppose you randomize 40 rats that have been exposed to a carcinogen into two treatment groups (Drug X and Placebo). The event of interest is death from cancer induced by the carcinogen. The response is the time from randomization to death. Four rats died of other causes; their survival times are regarded as censored observations. Interest lies in whether the survival distributions differ between the two treatments.

The following DATA step creates the data set Exposed, which contains four variables: Days (survival time in days from treatment to death), Status (censoring indicator variable: 0 if censored and 1 if not censored), Treatment (treatment indicator), and Sex (gender: F if female and M if male).

```sas
proc format;
  value Rx 1='Drug X' 0='Placebo';
```
data exposed;
 input Days Status Treatment Sex $ @@;
 format Treatment Rx.;
 datalines;
 179 1 1 F 378 0 1 M
 256 1 1 F 355 1 1 M
 262 1 1 M 319 1 1 M
 256 1 1 F 256 1 1 M
 255 1 1 M 171 1 1 F
 224 0 1 F 325 1 1 M
 225 1 1 F 325 1 1 M
 287 1 1 M 217 1 1 F
 319 1 1 M 255 1 1 F
 264 1 1 M 256 1 1 F
 237 0 0 F 291 1 0 M
 156 1 0 F 323 1 0 M
 270 1 0 M 253 1 0 M
 257 1 0 M 206 1 0 F
 242 1 0 M 206 1 0 F
 157 1 0 F 237 1 0 M
 249 1 0 M 211 1 0 F
 180 1 0 F 229 1 0 F
 226 1 0 F 234 1 0 F
 268 0 0 M 209 1 0 F
 ;

PROC LIFETEST is invoked as follows to compute the product-limit estimate of the survivor function for each treatment and to compare the survivor functions between the two treatments:

 ods graphics on;
 proc lifetest data=Exposed plots=(survival(atrisk) logsurv);
 time Days*Status(0);
 strata Treatment;
 run;
 ods graphics off;

In the TIME statement, the survival time variable, Days, is crossed with the censoring variable, Status, with the value 0 indicating censoring. That is, the values of Days are considered censored if the corresponding values of Status are 0; otherwise, they are considered as event times. In the STRATA statement, the variable Treatment is specified, which indicates that the data are to be divided into strata based on the values of Treatment. ODS Graphics must be enabled before producing graphs. Two plots are requested through the PLOTS= option—a plot of the survival curves with at risk numbers and a plot of the negative log of the survival curves.

The results of the analysis are displayed in the following figures.

Figure 51.1 displays the product-limit survival estimate for the Drug X group (Treatment=1). The figure lists, for each observed time, the survival estimate, failure rate, standard error of the estimate, cumulative number of failures, and number of subjects remaining in the study.
Figure 51.1 Survivor Function Estimate for the Drug X-Treated Rats

<table>
<thead>
<tr>
<th>Days</th>
<th>Survival</th>
<th>Failure</th>
<th>Standard Error</th>
<th>Number Failed</th>
<th>Number Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>0</td>
<td>0.0000</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>171.000</td>
<td>0.9500</td>
<td>0.0500</td>
<td>0.0487</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>179.000</td>
<td>0.9000</td>
<td>0.1000</td>
<td>0.0671</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>217.000</td>
<td>0.8500</td>
<td>0.1500</td>
<td>0.0798</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>224.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>225.000</td>
<td>0.7969</td>
<td>0.2031</td>
<td>0.0908</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>255.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>255.000</td>
<td>0.6906</td>
<td>0.3094</td>
<td>0.1053</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>256.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>256.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>256.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>256.000</td>
<td>0.4781</td>
<td>0.5219</td>
<td>0.1146</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>262.000</td>
<td>0.4250</td>
<td>0.5750</td>
<td>0.1135</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>264.000</td>
<td>0.3719</td>
<td>0.6281</td>
<td>0.1111</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>287.000</td>
<td>0.3187</td>
<td>0.6813</td>
<td>0.1071</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>319.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>319.000</td>
<td>0.2125</td>
<td>0.7875</td>
<td>0.0942</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>325.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>325.000</td>
<td>0.1062</td>
<td>0.8938</td>
<td>0.0710</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>355.000</td>
<td>0.0531</td>
<td>0.9469</td>
<td>0.0517</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>378.000*</td>
<td>0.0531</td>
<td>.</td>
<td>.</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: The marked survival times are censored observations.

Figure 51.2 displays summary statistics of survival times for the Drug X group. It contains estimates of the 25th, 50th, and 75th percentiles and the corresponding 95% confidence limits. The median survival time for rats in this treatment is 256 days. The mean and standard error are also displayed; however, these values are underestimated because the largest observed time is censored and the estimation is restricted to the largest event time.

Figure 51.2 Summary Statistics of Survival Times for Drug X-Treated Rats

<table>
<thead>
<tr>
<th>Quartile Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
Figure 51.2 continued

<table>
<thead>
<tr>
<th>Mean</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>271.131</td>
<td>11.877</td>
</tr>
</tbody>
</table>

NOTE: The mean survival time and its standard error were underestimated because
the largest observation was censored and the estimation was restricted to
the largest event time.

Figure 51.3 and Figure 51.4 display the survival estimates and the summary statistics of the survival times
for Placebo (Treatment=0). The median survival time for rats in this treatment is 235 days.

Figure 51.3 Survivor Function Estimate for Placebo-Treated Rats

The LIFETEST Procedure

Stratum 2: Treatment = Placebo

Product-Limit Survival Estimates

<table>
<thead>
<tr>
<th>Days</th>
<th>Survival</th>
<th>Failure</th>
<th>Standard Error</th>
<th>Number Failed</th>
<th>Number Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>156.000</td>
<td>0.9500</td>
<td>0.0500</td>
<td>0.0487</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>157.000</td>
<td>0.9000</td>
<td>0.1000</td>
<td>0.0671</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>180.000</td>
<td>0.8500</td>
<td>0.1500</td>
<td>0.0798</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>206.000</td>
<td>0.7500</td>
<td>0.2500</td>
<td>0.0968</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>206.000</td>
<td>0.7500*</td>
<td>0.2500*</td>
<td>.</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>209.000</td>
<td>0.7000</td>
<td>0.3000</td>
<td>0.1025</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>211.000</td>
<td>0.6500</td>
<td>0.3500</td>
<td>0.1067</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>226.000</td>
<td>0.6000</td>
<td>0.4000</td>
<td>0.1095</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>229.000</td>
<td>0.5500</td>
<td>0.4500</td>
<td>0.1112</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>234.000</td>
<td>0.5000</td>
<td>0.5000</td>
<td>0.1118</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>237.000</td>
<td>0.4500</td>
<td>0.5500</td>
<td>0.1112</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>237.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>242.000</td>
<td>0.3938</td>
<td>0.6063</td>
<td>0.1106</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>249.000</td>
<td>0.3375</td>
<td>0.6625</td>
<td>0.1082</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>253.000</td>
<td>0.2813</td>
<td>0.7188</td>
<td>0.1038</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>257.000</td>
<td>0.2250</td>
<td>0.7750</td>
<td>0.0971</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>268.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>270.000</td>
<td>0.1500</td>
<td>0.8500</td>
<td>0.0891</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>291.000</td>
<td>0.0750</td>
<td>0.9250</td>
<td>0.0693</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>323.000</td>
<td>0</td>
<td>1.0000</td>
<td></td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: The marked survival times are censored observations.
Figure 51.4 Summary Statistics of Survival Times for Placebo-Treated Rats

<table>
<thead>
<tr>
<th>Percent</th>
<th>Point Estimate</th>
<th>95% Confidence Interval</th>
<th>Transform</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>257.000</td>
<td>LOGLOG</td>
<td>237.000</td>
<td>323.000</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>235.500</td>
<td>LOGLOG</td>
<td>206.000</td>
<td>253.000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>207.500</td>
<td>LOGLOG</td>
<td>156.000</td>
<td>229.000</td>
<td></td>
</tr>
</tbody>
</table>

Mean Standard Error

235.156 10.211

A summary of the number of censored and event observations is shown in **Figure 51.5**. The figure lists, for each stratum, the number of event and censored observations, and the percentage of censored observations.

Figure 51.5 Number of Event and Censored Observations

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Treatment</th>
<th>Total</th>
<th>Failed</th>
<th>Censored</th>
<th>Percent Censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drug X</td>
<td>20</td>
<td>18</td>
<td>2</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>Placebo</td>
<td>20</td>
<td>18</td>
<td>2</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Total 40 36 4 10.00

Figure 51.6 displays the graph of the product-limit survivor function estimates versus survival time. The two treatments differ primarily at larger survival times. Note the number of subjects at risk in the plot. You can display the number of subjects at risk at specific time points by using the ATRISK= option.
Figure 51.6 Plot of Estimated Survivor Functions

![Plot of Estimated Survivor Functions](image)

Figure 51.7 displays the graph of the log survivor function estimates versus survival time. Neither curve approximates a straight line through the origin—the exponential model is not appropriate for the survival data.

Note that these graphical displays are generated through ODS. For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.”
Results of the comparison of survival curves between the two treatments are shown in Figure 51.8. The rank tests for homogeneity indicate a significant difference between the treatments ($p=0.0175$ for the log-rank test and $p=0.0249$ for the Wilcoxon test). Rats treated with Drug X live significantly longer than those treated with Placebo. Since the survival curves for the two treatments differ primarily at longer survival times, the Wilcoxon test, which places more weight on shorter survival times, becomes less significant than the log-rank test. As noted earlier, the exponential model is not appropriate for the given survival data; consequently, the result of the likelihood ratio test should be ignored.
Next, suppose male rats and female rats are thought to have different survival rates, and you want to assess the treatment effect while adjusting for the gender differences. By specifying the variable Sex in the STRATA statement as a stratifying variable and by specifying the variable Treatment in the GROUP= option, you can carry out a stratified test to test Treatment while adjusting for Sex. The test statistics are computed by pooling over the strata defined by the values of Sex, thus controlling for the effect of Sex. The NOTABLE option is added to the PROC LIFETEST statement as follows to avoid estimating a survival curve for each gender:

```plaintext
proc lifetest data=Exposed notable;
  time Days*Status(0);
  strata Sex / group=Treatment;
run;
```

Results of the stratified tests are shown in Figure 51.9. The treatment effect is statistically significant for both the log-rank test \((p=0.0071)\) and the Wilcoxon test \((p=0.0150)\). As compared to the results of the unstratified tests in Figure 51.8, the significance of the treatment effect has been sharpened by controlling for the effect of the gender of the subjects.

Figure 51.9 Results of the Stratified Two-Sample Tests

<table>
<thead>
<tr>
<th>The LIFETEST Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratified Test of Equality over Group</td>
</tr>
<tr>
<td>Pr > Test</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Log-Rank</td>
</tr>
<tr>
<td>Wilcoxon</td>
</tr>
</tbody>
</table>

Since Treatment is a binary variable, another way to study the effect of Treatment is to carry out a censored linear rank test with Treatment as an independent variable. This test is less popular than the two-sample test; nevertheless, in situations where the independent variables are continuous and are difficult to discretize, it might be infeasible to perform a \(k\)-sample test. To compute the censored linear rank statistics to test the Treatment effect, Treatment is specified in the TEST statement as follows:

```plaintext
proc lifetest data=Exposed notable;
  time Days*Status(0);
  test Treatment;
run;
```

Results of the linear rank tests are shown Figure 51.10. The \(p\)-values are very similar to those of the two-sample tests in Figure 51.8.
Figure 51.10 Results of Linear Rank Tests of Treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Statistic</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>3.9525</td>
<td>1.7524</td>
<td>5.0875</td>
<td>0.0241</td>
</tr>
</tbody>
</table>

Univariate Chi-Squares for the Log-Rank Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Statistic</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>6.2708</td>
<td>2.6793</td>
<td>5.4779</td>
<td>0.0193</td>
</tr>
</tbody>
</table>

With Sex as a prognostic factor that you want to control, you can compute a stratified linear rank statistic to test the effect of Treatment by specifying Sex in the STRATA statement and Treatment in the TEST statement as in the following program. The TEST=NONE option is specified in the STRATA statement to suppress the two-sample tests for Sex.

```plaintext
proc lifetest data=Exposed notable;
  time Days*Status(0);
  strata Sex / test=none;
  test Treatment;
run;
```

Results of the stratified linear rank tests are shown in Figure 51.11. The p-values are very similar to those of the stratified tests in Figure 51.9.

Figure 51.11 Results of Stratified Linear Rank Tests of Treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Statistic</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>4.2372</td>
<td>1.7371</td>
<td>5.9503</td>
<td>0.0147</td>
</tr>
</tbody>
</table>

Univariate Chi-Squares for the Log-Rank Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Statistic</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>6.8021</td>
<td>2.5419</td>
<td>7.1609</td>
<td>0.0075</td>
</tr>
</tbody>
</table>
Syntax: LIFETEST Procedure

The following statements are available in PROC LIFETEST:

```plaintext
PROC LIFETEST < options > ;
   BY variables ;
   FREQ variable ;
   ID variables ;
   STRATA variable < (list) > < . . . variable < (list) > > < /options > ;
   TEST variables ;
   TIME variable < ^censor(list) > ;
```

The simplest use of PROC LIFETEST is to request the nonparametric estimates of the survivor function for a sample of survival times. In such a case, only the PROC LIFETEST statement and the TIME statement are required. You can use the STRATA statement to divide the data into various strata. A separate survivor function is then estimated for each stratum, and tests of the homogeneity of strata are performed. However, if the GROUP= option is also specified in the STRATA statement, stratified tests are carried out to test the \(k \) samples defined by the GROUP= variable while controlling for the effect of the STRATA variables. You can specify covariates in the TEST statement. PROC LIFETEST computes linear rank statistics to test the effects of these covariates on survival.

The PROC LIFETEST statement invokes the procedure. All statements except the TIME statement are optional, and there is no required order for the statements that follow the PROC LIFETEST statement. The TIME statement is used to specify the variables that define the survival time and censoring indicator. The STRATA statement specifies a variable or set of variables that define the strata for the analysis. The TEST statement specifies a list of numeric covariates to be tested for their association with the response survival time. Each variable is tested individually, and a joint test statistic is also computed. The ID statement provides a list of variables whose values are used to identify observations in the product-limit, Breslow, or Fleming-Harrington estimates. When only the TIME statement appears, no strata are defined and no tests of homogeneity are performed.

PROC LIFETEST Statement

```plaintext
PROC LIFETEST < options > ;
```

The PROC LIFETEST statement invokes the procedure. Optionally, this statement identifies an input and an OUTSURV= data set, and specifies the computation details of the survivor function estimation. The options listed in Table 51.1 are available in the PROC LIFETEST statement and are described in alphabetic order. If no options are requested, PROC LIFETEST computes and displays the product-limit estimate of the survivor function; and if ODS Graphics is enabled, a plot of the estimated survivor function is also displayed.
Table 51.1 Options Available in the PROC LIFETEST Statement

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input and Output Data Sets</td>
<td></td>
</tr>
<tr>
<td>DATA=</td>
<td>Specifies the input SAS data set</td>
</tr>
<tr>
<td>OUTSURV=</td>
<td>Names an output data set to contain survival estimates and confidence limits</td>
</tr>
<tr>
<td>OUTTEST=</td>
<td>Names an output data set to contain rank test statistics for association of survival time with covariates</td>
</tr>
<tr>
<td>Nonparametric Estimation</td>
<td></td>
</tr>
<tr>
<td>INTERVALS=</td>
<td>Specifies interval endpoints for life-table estimates</td>
</tr>
<tr>
<td>NELSON</td>
<td>Adds the Nelson-Aalen estimates</td>
</tr>
<tr>
<td>METHOD=</td>
<td>Specifies the method to compute survivor function</td>
</tr>
<tr>
<td>NINTERVAL=</td>
<td>Specifies the number of intervals for life-table estimates</td>
</tr>
<tr>
<td>WIDTH=</td>
<td>Specifies the width of intervals for life-table estimates</td>
</tr>
<tr>
<td>Confidence Limits for Survivorship</td>
<td></td>
</tr>
<tr>
<td>ALPHA=</td>
<td>Sets the confidence level for interval estimation estimates</td>
</tr>
<tr>
<td>BANDMAXTIME=</td>
<td>Specifies the maximum time for confidence band</td>
</tr>
<tr>
<td>BANDMINTIME=</td>
<td>Specifies the minimum time for confidence band</td>
</tr>
<tr>
<td>CONFBAND=</td>
<td>Specifies the type of confidence band in the OUTSURV= data set</td>
</tr>
<tr>
<td>CONFTYPE=</td>
<td>Specifies the transformation applied to the survivor function to obtain confidence limits</td>
</tr>
<tr>
<td>Line Printer Plots</td>
<td></td>
</tr>
<tr>
<td>FORMCHAR(1,2,7,9)=</td>
<td>Defines the characters used for line printer plot axes</td>
</tr>
<tr>
<td>LINEPRINTER</td>
<td>Specifies that plots be produced by a line printer</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time value for plotting</td>
</tr>
<tr>
<td>NOCENSPLT</td>
<td>Suppresses the plot of censored observations</td>
</tr>
<tr>
<td>PLOTS=</td>
<td>Specifies the plots to display</td>
</tr>
<tr>
<td>ODS Graphics</td>
<td></td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time value for plotting</td>
</tr>
<tr>
<td>PLOTS=</td>
<td>Specifies plots to display</td>
</tr>
<tr>
<td>Traditional Graphics</td>
<td></td>
</tr>
<tr>
<td>ANNOTATE=</td>
<td>Specifies an Annotate data set that adds features to plots</td>
</tr>
<tr>
<td>CENSOREDSYMBOL=</td>
<td>Defines the symbol used for censored observations in plots</td>
</tr>
<tr>
<td>DESCRIPTION=</td>
<td>Specifies the string that appears in the description field of the PROC GREPLAY master menu for the plots</td>
</tr>
<tr>
<td>EVENTSYMBOL=</td>
<td>Specifies the symbol used for event observations in plots</td>
</tr>
<tr>
<td>GOUT=</td>
<td>Specifies the graphics catalog name for saving graphics output</td>
</tr>
<tr>
<td>LANNOTATE=</td>
<td>Specifies an input data set that contains variables for local annotation</td>
</tr>
<tr>
<td>MAXTIME=</td>
<td>Specifies the maximum time value for plotting</td>
</tr>
<tr>
<td>PLOTS=</td>
<td>Specifies the plots to display</td>
</tr>
<tr>
<td>Control Output</td>
<td></td>
</tr>
<tr>
<td>ATRISK</td>
<td>Adds the number of subjects at risk to the survival estimate table</td>
</tr>
<tr>
<td>NOPRINT</td>
<td>Suppresses the display of printed output</td>
</tr>
</tbody>
</table>
Table 51.1 continued

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTABLE</td>
<td>Suppresses the display of survival function estimates</td>
</tr>
<tr>
<td>INTERVALS=</td>
<td>Displays only the estimate for the smallest time in each interval</td>
</tr>
<tr>
<td>NOLEFT</td>
<td>Suppresses the Number Left column in the survival estimate table</td>
</tr>
<tr>
<td>TIMELIST=</td>
<td>Specifies a list of time points to display the survival estimate</td>
</tr>
<tr>
<td>REDUCEOUT</td>
<td>Specifies that only INTERVAL= or TIMELIST= observations be listed in the OUTSURV= data set</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHAQT=</td>
<td>Sets the confidence level for survival time quartiles</td>
</tr>
<tr>
<td>MISSING</td>
<td>Allows missing values to be a stratum level</td>
</tr>
<tr>
<td>SINGULAR=</td>
<td>Sets the tolerance for testing singularity of covariance matrix of rank statistics</td>
</tr>
<tr>
<td>STDERR</td>
<td>Outputs the standard error for the survival estimators to the OUTSURV= data set</td>
</tr>
<tr>
<td>TIMELIM=</td>
<td>Specifies the time limit used to estimate the mean survival time and its standard error</td>
</tr>
</tbody>
</table>

The PLOTS= option in the PROC LIFETEST statement specifies the plots to display. You can select one of the following three types of graphics in PROC LIFETEST: line printer, traditional, and ODS. If you specify the LINEPRINTER option, line printer plots are produced; otherwise traditional graphics are produced if ODS Graphics is not enabled, or ODS Graphics plots are produced if the ODS Graphics is enabled.

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

Table 51.2 shows whether graphics are produced, and the type of graphics, for all possible combinations:

Table 51.2 Ways of Displaying Graphics

<table>
<thead>
<tr>
<th>ODS Graphics</th>
<th>PLOTS= Option</th>
<th>LINEPRINTER Option</th>
<th>Graphics Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>No</td>
<td>No</td>
<td>No graphics</td>
</tr>
<tr>
<td>Disabled</td>
<td>No</td>
<td>Yes</td>
<td>No graphics</td>
</tr>
<tr>
<td>Disabled</td>
<td>Yes</td>
<td>No</td>
<td>Traditional graphics</td>
</tr>
<tr>
<td>Disabled</td>
<td>Yes</td>
<td>Yes</td>
<td>Line printer plot</td>
</tr>
<tr>
<td>Enabled</td>
<td>No</td>
<td>No</td>
<td>ODS Graphics survival plot</td>
</tr>
<tr>
<td>Enabled</td>
<td>No</td>
<td>Yes</td>
<td>No graphics</td>
</tr>
<tr>
<td>Enabled</td>
<td>Yes</td>
<td>No</td>
<td>ODS Graphics</td>
</tr>
<tr>
<td>Enabled</td>
<td>Yes</td>
<td>Yes</td>
<td>Line printer plot</td>
</tr>
</tbody>
</table>

ODS Graphics is the preferred method of creating graphs. Many new features have been added to the ODS Graphics plots in PROC LIFETEST. For example, you can display the number of subjects at risk in a survival plot through ODS Graphics, but such a feature is not available in traditional graphics or line printer plots. The PLOTS= option syntax is documented separately for each type of graphics and is preceded by a heading that indicates the graphics type.
ALPHA=α
specifies the level of significance α for the 100$(1 - \alpha)$% confidence intervals for the survivor, hazard, and density functions. For example, the option ALPHA=0.05 requests the 95% confidence limits for the survivor function. The default value is 0.05.

ALPHAQT=α
specifies the significance level α for the 100$(1 - \alpha)$% confidence intervals for the quartiles of the survival time. For example, the option ALPHAQT=0.05 requests a 95% confidence interval for the quartiles of the survival time. The default value is 0.05.

ANNOTATE=SAS-data-set
ANNO=SAS-data-set
specifies an input data set that contains appropriate variables for annotation of the traditional graphics. The ANNOTATE= option enables you to add features (for example, labels that explain extreme observations) to plots produced on graphics devices. The ANNOTATE= option cannot be used if the LINEPRINTER option is specified or if ODS Graphics is enabled. The data set specified must be an ANNOTATE= type data set, as described in SAS/GRAPH Software: Reference.

The data set specified with the ANNOTATE= option in the PROC LIFETEST statement is “global” in the sense that the information in this data set is displayed in every plot produced by a single invocation of PROC LIFETEST.

ATRISK
adds a column that represents the number of subjects at risk to the survival estimate table. Also added is a column that represents the number of events at each observed time. This option has no effect for the life-table method.

BANDMAXTIME=value
BANDMAX=value
specifies the maximum time for the confidence bands. The default is the largest observed event time. If the specified BANDMAX= time exceeds the largest observed event time, it is truncated to the largest observed event time.

BANDMINTIME=value
BANDMIN=value
specifies the minimum time for the confidence bands. The default is the smallest observed event time. For the equal-precision band, if the BANDMIN= value is less than the smallest observed event time, it is defaulted to the smallest observed event time.

CENSOREDSYMBOL=name | 'string'
CS=name | 'string'
specifies the symbol value for the censored observations in traditional graphics. The value, name or 'string', is the symbol value specification allowed in SAS/GRAPH software. The default is CS=CIRCLE. If you want to omit plotting the censored observations, specify CS=NONE. The CENSOREDSYMBOL= option cannot be used if the LINEPRINTER option is specified or if ODS Graphics is enabled.
CONFBAND=keyword
specifies the confidence bands to be output to the OUTSURV= data set. Confidence bands are available for METHOD=KM, METHOD=BRESLOW, or METHOD=FH. You can use the following keywords:

ALL outputs both the Hall-Wellner and the equal-precision confidence bands.
EP outputs the equal-precision confidence bands.
HW outputs the Hall-Wellner confidence bands.

CONFTYPE=keyword
specifies the transformation applied to $S(t)$ to obtain the pointwise confidence intervals and the confidence bands for the survivor function in addition to the confidence intervals for the quartiles of the survival times. The following keywords can be used; the default is CONFTYPE=LOGLOG.

ASINSQRT the arcsine-square root transformation,
$$g(x) = \sin^{-1}(\sqrt{x})$$

LOGLOG the log-log transformation,
$$g(x) = \log(-\log(x))$$
This is also referred to as the log cumulative hazard transformation since it applies the logarithmic function to the cumulative hazard function. Collett (1994) and Lachin (2000) refer to it as the complementary log-log transformation.

LINEAR the identity transformation,
$$g(x) = x$$

LOG the logarithmic transformation,
$$g(x) = \log(x)$$

LOGIT the logit transformation,
$$g(x) = \log\left(\frac{x}{1-x}\right)$$

DATA=SAS-data-set
names the SAS data set used by PROC LIFETEST. By default, the most recently created SAS data set is used.

DESCRIPTION='string'

DES='string'
specifies a descriptive string of up to 256 characters that appears in the “Description” field of the traditional graphics catalog. The description does not appear in the plots. By default, PROC LIFETEST assigns a description of the form PLOT OF vname versus hname, where vname and hname are the names of the y variable and the x variable, respectively. The DESCRIPTION= option cannot be used if the LINEPRINTER option is specified or if ODS Graphics is enabled.
EVENTSYMBOL=\texttt{name} | \texttt{string}

\texttt{ES=\texttt{name} | \texttt{string}}

specifies the symbol value for the event observations in traditional graphics. The value, \texttt{name} or \texttt{string}, is the symbol value specification allowed in SAS/GRAPH software. The default is \texttt{ES=NONE}. The \texttt{EVENTSYMBOL=} option cannot be used if the \texttt{LINEPRINTER} option is specified or if ODS Graphics is enabled.

\texttt{FORMCHAR(1,2,7,9)=\texttt{string}}

defines the characters used for constructing the vertical and horizontal axes of the line printer plots. The string should be four characters. The first and second characters define the vertical and horizontal bars, respectively, which are also used in drawing the steps of the Kaplan-Meier, Breslow, or Fleming-Harrington survival curve. The third character defines the tick mark for the axes, and the fourth character defines the lower left corner of the plot. The default is \texttt{FORMCHAR(1,2,7,9)=‘|-+-’}. Any character or hexadecimal string can be used to customize the plot appearance. If you use hexadecimals, you must put an \texttt{x} after the closing quote. For example, to send the plot output to a printer with the IBM graphics character set (1 or 2), specify the following:

\texttt{formchar(1,2,7,9)=’B3C4C5C0’x}

Refer to the chapter titled “The PLOT Procedure” in the \textit{Base SAS Procedures Guide} for further information.

\texttt{GOUT=\texttt{graphics-catalog}}

specifies the graphics catalog for saving traditional graphics output from PROC LIFETEST. The default is \texttt{Work.Gseg}. The \texttt{GOUT=} option cannot be used if the \texttt{LINEPRINTER} option is specified or if ODS Graphics is enabled. For more information, refer to the chapter titled “The GREPLAY Procedure” in \textit{SAS/GRAPH Software: Reference}.

\texttt{INTERVALS=values}

specifies a list of interval endpoints for the life-table method. These endpoints must all be nonnegative numbers. The initial interval is assumed to start at zero whether or not zero is specified in the list. Each interval contains its lower endpoint but does not contain its upper endpoint. When this option is used with \texttt{METHOD=KM}, \texttt{METHOD=BRESLOW}, or \texttt{METHOD=FH}, it reduces the number of survival estimates displayed by showing only the estimates for the smallest time within each specified interval. The \texttt{INTERVALS=} option can be specified in any of the following ways:

- A list separated by blanks \texttt{INTERVALS=1 3 5 7}
- A list separated by commas \texttt{INTERVALS=1,3,5,7}
- \texttt{x to y} \texttt{INTERVALS=1 to 7}
- \texttt{x to y BY z} \texttt{INTERVALS=1 to 7 by 1}
- A combination of the above \texttt{INTERVALS=1,3 to 5,7}

For example, the specification

\texttt{intervals=5,10 to 30 by 10}

produces the set of intervals

\{[0, 5), [5, 10), [10, 20), [20, 30), [30, \infty)\}
Chapter 51: The LIFETEST Procedure

LANNOTATE=SAS-data-set

LANN=SAS-data-set

specifies an input data set that contains variables for local annotation of traditional graphics. You can use the LANNOTATE= option to specify a different annotation for each BY group, in which case the BY variables must be included in the LANNOTATE= data set. The LANNOTATE= option cannot be used if the LINEPRINTER option is specified or if ODS Graphics is enabled. The data set specified must be an ANNOTATE= type data set, as described in SAS/GRAPH Software: Reference.

If there is no BY-group processing, the ANNOTATE= and LANNOTATE= options have the same effects.

LINEPRINTER

LS

specifies that plots are produced by a line printer instead of by a graphical device.

MAXTIME=value

specifies the maximum value of the time variable allowed on the plots so that outlying points do not determine the scale of the time axis of the plots. This option affects only the displayed plots and has no effect on any calculations.

METHOD=type

specifies the method to be used to compute the survival function estimates. Valid values for type are as follows:

BRESLOW

specifies that the Breslow estimates be computed. The Breslow estimator is the exponentiation of the negative Nelson-Aalen estimator of the cumulative hazard function.

FH

specifies that the Fleming-Harrington (FH) estimates be computed. The FH estimator is a tie-breaking modification of the Breslow estimator. If there are no tied event times, this estimator is the same as the Breslow estimator.

KM

specifies that Kaplan-Meier estimates (also known as the product-limit estimates) be computed.

PL

ACT

LIFE

LT

specifies that life-table estimates (also known as actuarial estimates) be computed.

By default, METHOD=KM.

MISSING

allows missing values for numeric variables and blank values for character variables as valid stratum levels. See the section “Missing Values” on page 3879 for details.

By default, PROC LIFETEST does not use observations with missing values for any stratum variables.
NELSON
AALEN

produces the Nelson-Aalen estimates of the cumulative hazards and the corresponding standard errors. This option is ignored if METHOD=LT is specified.

NINTERVAL=value

specifies the number of intervals used to compute the life-table estimates of the survivor function. This parameter is overridden by the WIDTH= option or the INTERVALS= option. When you specify the NINTERVAL= option, PROC LIFETEST tries to find an interval that results in round numbers for the endpoints. Consequently, the number of intervals can be different from the number requested. Use the INTERVALS= option to control the interval endpoints. The default is NINTERVAL=10.

NOCENSPLOT

requests that the plot of censored observations be suppressed when the LINEPRINTER and PLOTS= options are specified. This option is not needed when the life-table method is used to compute the survival estimates, because the plot of censored observations is not produced.

NOLEFT

suppresses the Number Left and Number Event columns in the survival estimate table. This option has no effect for the life-table estimate.

NOPRINT

suppresses the display of output. This option is useful when only an output data set is needed. It temporarily disables the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery System” for more information.

NOTABLE

suppresses the display of survival function estimates. Only the number of censored and event times, plots, and test results is displayed.

OUTSURV=SAS-data-set

OUTS=SAS-data-set

creates an output SAS data set to contain the estimates of the survival function and corresponding confidence limits for all strata. See the section “OUTSURV= Data Set” on page 3896 for more information about the contents of the OUTSURV= data set.

OUTTEST=SAS-data-set

OUTT=SAS-data-set

creates an output SAS data set to contain the overall chi-square test statistic for association with failure time for the variables in the TEST statement, the values of the univariate rank test statistics for each variable in the TEST statement, and the estimated covariance matrix of the univariate rank test statistics. See the section “OUTTEST= Data Set” on page 3898 for more information about the contents of the OUTTEST= data set.
Line Printer PLOTS= Option

\[\text{PLOTS=} \text{plot-request} \]
\[\text{PLOTS=} (\text{plot-requests}) \]

controls the line printer plots produced. You must also specify the `LINEPRINTER` option to obtain line printer plots. When you specify only one `plot-request`, you can omit the parentheses around the `plot-request`. Here are some examples:

\begin{verbatim}
plots=s
plots=(s ls lls)
\end{verbatim}

The `plot-requests` include the following:

- **CENSORED**
 - **C**: specifies a plot of censored observations. This option is available for `METHOD=KM`, `METHOD=BRESLOW`, or `METHOD=FH` only.

- **SURVIVAL**
 - **S**: specifies a plot of the estimated SDF versus time.

- **LOGSURV**
 - **LS**: specifies a plot of the negative log of the estimated SDF versus time.

- **LOGLOGS**
 - **LLS**: specifies a plot of the log of the negative log of the estimated SDF versus the log of time.

- **HAZARD**
 - **H**: specifies a plot of the estimated hazard function versus time (life-table method only).

- **PDF**
 - **P**: specifies a plot of the estimated probability density function versus time (life-table method only).

ODS Graphics PLOTS= Option

\[\text{PLOTS=} \text{plot-request} \]
\[\text{PLOTS=} (\text{plot-requests}) \]

controls the plots produced using ODS Graphics. When you specify only one `plot-request`, you can omit the parentheses around the `plot-request`. Here are some examples:

\begin{verbatim}
plots=none
plots=(survival(atrisk=100 to 350 by 50) logsurv)
plots(only)=hazard
\end{verbatim}
ODS Graphics must be enabled before requesting plots. For example:

```
ods graphics on;
proc lifetest plots=survival(atrisk);
  time T*Status(0);
run;
ods graphics off;
```

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS= option, then PROC LIFETEST produces a plot of the estimated survivor functions by default.

The only global-plot-option follows:

ONLY

specifies that only the specified plots in the list be produced; otherwise, the default survivor function plot is also displayed.

The plot-requests and plot-request options include the following.

ALL

produces all appropriate plots. For METHOD=KM, METHOD=BRESLOW, or METHOD=FH, specifying PLOTS=ALL is equivalent to specifying PLOTS=(SURVIVAL LOGSURV LOGLOGS HAZARD); for the life-table method, PLOTS=ALL is equivalent to specifying PLOTS=(SURVIVAL LOGSURV LOGLOGS DENSITY HAZARD).

HAZARD < (hazard-options) >

plots the estimated hazard functions. Kernel-smoothed estimates are produced for METHOD=KM, METHOD=BRESLOW, or METHOD=FH. You can specify the following hazard-options, but only the CL option can be used for the life-table method:

- **BANDWIDTH=bandwidth-option**
- **BW=bandwidth-option**

specifies what bandwidth is chosen for the kernel-smoothing and how it is chosen. You can specify one of the following bandwidth-options.

- **value**
 sets the bandwidth to the given value.

- **numeric-list**
 selects the bandwidth from the given numeric-list that minimizes the mean integrated squared error.

- **RANGE(lower,upper)**
 selects the bandwidth from the interval (lower, upper) that minimizes the mean integrated squared error. PROC LIFETEST uses the golden section search algorithm
to find the minimum. If there is more than one local minimum in the interval, there is no guarantee that the local minimum found is also the global minimum.

See the section “Optimal Bandwidth” on page 3889 for details about the mean integrated squared error. If the BANDWIDTH= option is not specified, the default is BANDWIDTH= RANGE(0.2b,20b), where \(b = \frac{g_u - g_l}{8n} \), \(g_l \) and \(g_u \) are the values of the GRIDL= and GRIDU= options, respectively, and \(n \) is the total number of noncensored observations.

GRIDL=number
specifies the lower grid limit for the kernel-smoothed estimate. The default value is the time origin.

GRIDU=number
specifies the upper grid limit for the kernel-smoothed estimate. The default value equals the maximum event time.

KERNEL=kernel-option
specifies the kernel used. The choices are as follows:

BIWEIGHT
 BW
\[
K_{BW}(x) = \frac{15}{16} (1 - x^2)^2, \quad -1 \leq x \leq 1
\]

EPANECHNIKOV
 E
\[
K_E(x) = \frac{3}{4} (1 - x^2), \quad -1 \leq x \leq 1
\]

UNIFORM
 U
\[
K_U(x) = \frac{1}{2}, \quad -1 \leq x \leq 1
\]

The default is KERNEL=EPANECHNIKOV.

NMINGRID=number
specifies the number of grid points in determining the mean integrated square error (MISE). The default value is 51.

NGRID=number
specifies the number of grid points. The default is 101.

CL
displays the pointwise confidence limits for the smoothed hazard.

LOGLOGS
LLS
plots the log of negative log of estimated survivor functions versus the log of time.
PROC LIFETEST Statement

LOGSURV
LS
plots the negative log of estimated survivor functions versus time.

NONE
suppresses all plots.

PDF < (CL) >
P < (CL) >
plots the estimated probability density functions (life-table method only). Pointwise confidence limits are displayed optionally by specifying the CL option.

SURVIVAL < (survival-options) >
S < (survival-options) >
plots the estimated survivor functions. Censored times are plotted as a plus sign on the Kaplan-Meier, Breslow, or Fleming-Harrington survival curves unless the NOCENSOR option is specified. You can customize the display by using the following survival-options. If these options are not sufficient for your purposes, you can customize the survival plot by modifying its graphical template (see the section “Modifying the ODS Template for Survival Plots” on page 3909 for more information).

ATRISK < = number-list >
displays the numbers of subjects at risk at the given times. The number-list identifies the times at which the numbers at risk are displayed. If the number-list is not specified, PROC LIFETEST uses the default list \{0, a, 2a, . . . , n \times a\}, where a and n are computed by the following algorithm. Let m be the MAXTIME= value or the largest observed time if the MAXTIME= option is not specified; let \(b = 10^{\text{ceil}(\log_{10}(m) - 1)} \), where ceil() is the ceiling function.

\[
a = \begin{cases}
\frac{b}{2} & \text{if } m < 0.25b \\
2b & \text{if } m > 0.75b \\
b & \text{otherwise}
\end{cases}
\]

n = integral value of \(m/a \)

ATRISK_TICK
ATRISK_LABEL
shows the time values at which the numbers of subjects at risk are displayed. This option is ignored if the ATRISK option is not specified.

CB < = keyword >
displays the confidence bands (that is, simultaneous confidence intervals) for the survivor functions. You can specify one of the following keywords. The default is CB=HW.

ALL
displays both the equal-precision and the Hall-Wellner bands.
displays the equal-precision band.

HW
displays the Hall-Wellner confidence band.

CL
displays the pointwise confidence limits for the survivor functions.

FAILURE
F
changes all the displays for survivor functions to those for the failure functions. For example, if both the FAILURE and CL options are specified, the plot displays the failure curves in addition to the pointwise confidence limits for the failure functions.

NOCENSOR
suppresses the plotting of the censored times on a Kaplan-Meier, Breslow, or Fleming-Harrington survival curve.

STRATA=strata-option
specifies how to display the survival/failure curves for multiple strata. This option has no effect if there is only one stratum. You can choose one of the following *strata options*:

INDIVIDUAL
UNPACK
specifies that a separate plot be displayed for each stratum.

OVERLAY
specifies that the survival/failure curves for the strata be overlaid in one plot.

PANEL
specifies that separate plots for the strata be organized into panels of two or four plots, depending on the number of strata.

The default is STRATA=OVERLAY.

TEST
displays the p-value of a homogeneity test specified in the STRATA statement. If more than one test is produced, the test is chosen in the following order: LOGRANK, WILCOXON, TARONE, PETO, MODPETO, FLEMING, and LR.

Traditional Graphics PLOTS= Option

PLOTS=plot-request < (NAME=name | ’string’)>
PLOTS=(plot-request < (NAME=name | ’string’)> < , . . . >)*
controls plots produced in traditional graphics. To obtain traditional graphics, you must neither enable ODS Graphics nor specify the LINEPRINTER option. For each *plot-request*, you can use the NAME=
option to specify a name to identify the plot. The name can be specified as a SAS name or as a quoted string of up to 256 characters. Only the first eight characters are used as the entry name in the GOUT= catalog. The plot-requests include the following:

SURVIVAL

S
plots the estimated survivor functions versus time.

LOGSURV

LS
plots the negative log of estimated survivor functions versus time.

LOGLOGS

LLS
plots the log of negative log of estimated survivor functions versus the log of time.

HAZARD

H
plots estimated hazard function versus time (life-table method only).

PDF

P
plots the estimated probability density function versus time (life-table method only).

When you specify only one plot-request, you can omit the parentheses around the plot-request. Here are some examples:

```
plots=s
plots=(s(name=Surv2), h(name=Haz2))
```

The latter requests a plot of the estimated survivor function versus time and a plot of the estimated hazard function versus time, with Surv2 and Haz2 as their names in the GOUT= catalog, respectively.

REDUCEOUT

specifies that the OUTSURV= data set contain only those observations that are included in the INTERVALS= or TIMELIST= option. This option has no effect if the OUTSURV= option is not specified. It also has no effect if neither the INTERVALS= option nor the TIMELIST= option is specified.

SINGULAR=value

specifies the tolerance for testing singularity of the covariance matrix for the rank test statistics. The test requires that a pivot for sweeping a covariance matrix be at least this number times a norm of the matrix. The default value is 1E–12.

STDERR

specifies that the standard error of the survivor function (SDF_STDERR) be output to the OUTSURV= data set. If the life-table method is used, the standard error of the density function (PDF_STDERR) and the standard error of the hazard function (HAZ_STDERR) are also output.
Chapter 51: The LIFETEST Procedure

TIMELIM=

Specify the time limit used in the estimation of the mean survival time and its standard error. The mean survival time can be shown to be the area under the Kaplan-Meier survival curve. However, if the largest observed time in the data is censored, the area under the survival curve is not a closed area. In such a situation, you can choose a time limit \(L \) and estimate the mean survival curve limited to a time \(L \) (Lee 1992, pp. 72–76). This option is ignored if the largest observed time is an event time.

Valid time-limit values are as follows:

EVENT

LET

specifies that the time limit \(L \) be the largest event time in the data. TIMELIM=EVENT is the default.

OBSERVED

LOT

specifies that the time limit \(L \) be the largest observed time in the data.

number

specifies that the time limit \(L \) be the given number. The number must be positive and at least as large as the largest event time in the data.

TIMELIST=

Specify a list of time points at which the Kaplan-Meier estimates are displayed. The time points are listed in the column labeled Timelist. Since the Kaplan-Meier survival curve is a decreasing step function, each given time point falls in an interval that has a constant survival estimate. The event time that corresponds to the beginning of the time interval is displayed along with its survival estimate.

WIDTH=

Set the width of the intervals used in the life-table calculation of the survival function. This parameter is overridden by the INTERVALS= option.

BY Statement

BY variables ;

You can specify a BY statement with PROC LIFETEST to obtain separate analyses on observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the LIFETEST procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are...
arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.

- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

The BY statement is more efficient than the STRATA statement for defining strata in large data sets. However, if you use the BY statement to define strata, PROC LIFETEST does not pool over strata for testing the association of survival time with covariates, nor does it test for homogeneity across the BY groups.

When the life-table method is used to estimate survivor functions, each BY group might have a different set of intervals. To make intervals the same across BY groups, use the INTERVALS= or WIDTH= option in the PROC LIFETEST statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement

```
FREQ variable < /option> ;
```

The FREQ statement identifies a variable that contains the frequency of occurrence of each observation. PROC LIFETEST treats each observation as if it appeared \(n \) times, where \(n \) is the value of the FREQ variable for the observation. The FREQ statement is useful for producing life tables when the data are already in the form of a summary data set. If it is not an integer, it is truncated to an integer unless the NOTRUNCATE option is specified. If it is missing or less than or equal zero, the observation is not used.

The following option can be specified in the FREQ statement after a slash (/):

- **NOTRUNCATE**
- **NOTRUNC**

 specifies that the frequency values are not truncated to integers. This option does not apply to the Fleming-Harrington estimator (METHOD=FH).

ID Statement

```
ID variables ;
```

The ID statement identifies variables whose values are used to label the observations of the Kaplan-Meier, Breslow, or Fleming-Harrington survivor function estimates. SAS format statements can be used to format the values of the ID variables.
STRATA Statement

```
STRATA variable < (list) > < . . . variable < (list) > > < /options > ;
```

The STRATA statement identifies the variables that determine the strata levels. Strata are formed according to the nonmissing values of these variables. The MISSING option can be used to allow missing values as a valid stratum level. Other options enable you to specify various k-sample tests, stratified tests, or trend tests and to make multiple-comparison adjustments for paired differences.

In the preceding syntax, `variable` is a variable whose values determine the stratum levels, and `list` is a list of endpoints for a numeric variable. The values for `variable` can be formatted or unformatted. If `variable` is a character variable, or if `variable` is numeric and no list appears, then the strata are defined by the unique values of the STRATA `variable`. More than one `variable` can be specified in the STRATA statement, and each numeric variable can be followed by a list. Each interval contains its lower endpoint but not its upper endpoint. The corresponding strata are formed by the combination of levels. If a variable is numeric and is followed by a list, then the levels for that variable correspond to the intervals defined by the list. The initial interval is assumed to start at $-\infty$, and the final interval is assumed to end at ∞.

The specification of a STRATA `variable` can have any of the following forms:

- A list separated by blanks: `Age(5 10 20 30)`
- A list separated by commas: `Age(5,10,20,30)`
- `x` to `y`: `Age(5 to 10)`
- `x` to `y` by `z`: `Age(5 to 30 by 10)`
- A combination of the above: `Age(5,10 to 50 by 10)`

For example, the specification

```
strata Age(5,20 to 50 by 10) Sex;
```

indicates the following levels for the `Age` variable:

$$\{(-\infty, 5), [5, 20), [20, 30), [30, 40), [40, 50), [50, \infty)\}$$

This statement also specifies that the `Age` strata be further subdivided by values of the variable `Sex`. In this example, there are six age groups by two sex groups, forming a total of 12 strata.

The specification of several STRATA `variables`, such as

```
strata A B C;
```

is equivalent to the A*B*C syntax of the TABLES statement in the FREQ procedure. The number of strata levels usually grows very rapidly with the number of STRATA variables, so you must be cautious when specifying the list of STRATA variables.

When comparing more than two survival curves, a k-sample test tells you whether the curves are significantly different from each other, but it does not identify which pairs of curves are different. A multiple-comparison adjustment of the p-values for the paired comparisons retains the same overall false positives as the k-sample test. Two types of paired comparisons can be made: comparisons between all pairs of curves
and comparisons between a control curve and all other curves. You use the DIFF= option to specify the comparison type, and you use the ADJUST= option to select a method of multiple-comparison adjustments.

Table 51.3 summaries the options available in the STRATA statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneity Tests</td>
<td></td>
</tr>
<tr>
<td>GROUP=</td>
<td>Specifies the group variable for stratified tests</td>
</tr>
<tr>
<td>NODETAIL</td>
<td>Suppresses printing the test statistic and covariance matrix</td>
</tr>
<tr>
<td>NOTEST</td>
<td>Suppresses any tests</td>
</tr>
<tr>
<td>TEST=</td>
<td>Specifies tests corresponding to various weight functions</td>
</tr>
<tr>
<td>TREND</td>
<td>Requests a trend test</td>
</tr>
<tr>
<td>Multiple Comparisons</td>
<td></td>
</tr>
<tr>
<td>ADJUST=</td>
<td>Requests a multiple-comparison adjustment</td>
</tr>
<tr>
<td>DIFF=</td>
<td>Specifies the type of differences to consider</td>
</tr>
<tr>
<td>Missing Strata Value</td>
<td></td>
</tr>
<tr>
<td>MISSING</td>
<td>Allows missing values as valid stratum values</td>
</tr>
</tbody>
</table>

You can specify options in the STRATA statement after a slash (“/”). The following list describes these options.

ADJUST=method

specifies the multiple-comparison method for adjusting the \(p\)-values of the paired tests. See the section “Multiple-Comparison Adjustments” on page 3891 for mathematical details; also see Westfall et al. (1999). The adjustment methods include the following:

BONFERRONI

BON

applies the Bonferroni correction to the raw \(p\)-values.

DUNNETT

performs Dunnett’s two-tailed comparisons of the control group with all other groups. PROC LIFETEST uses the factor-analytic covariance approximation described in Hsu (1992) and identifies the adjustment in the results as “Dunnett-Hsu.” Note that ADJUST=DUNNETT is incompatible with DIFF=ALL.

SCHEFFE

performs Scheffé’s multiple-comparison adjustment.

SIDAK

applies the Šidák correction to the raw \(p\)-values.

SMM

GTE

performs the paired comparisons based on the studentized maximum modulus test.
TUKEY
performs the paired comparisons based on Tukey’s studentized range test. PROC LIFETEST
uses the approximation described in Kramer (1956) and identifies the adjustment as "Tukey-
Kramer" in the results. Note that ADJUST=TUKEY is incompatible with DIFF=CONTROL.

SIMULATE < (simulate-options) >
computes the adjusted \(p \)-values from the simulated distribution of the maximum or maximum
absolute value of a multivariate normal random vector. The simulation estimates \(q \), the true
\((1 - \alpha)\)th quantile, where \(\alpha \) is the value of the ALPHAd simulate-option.

The number of samples for the SIMULATE adjustment is set so that the tail area for the simu-
lated \(q \) is within a certain accuracy radius \(\gamma \) of \(1 - \alpha \) with an accuracy confidence of \(100(1 - \epsilon)\% \).
In equation form,
\[
\Pr(|F(\hat{q}) - (1 - \alpha)| \leq \gamma) = 1 - \epsilon
\]
where \(\hat{q} \) is the simulated \(q \) and \(F \) is the true distribution function of the maximum; see Edwards
and Berry (1987) for details. By default, \(\gamma = 0.005 \) and \(\epsilon = 0.01 \) so that the tail area of \(\hat{q} \) is
within 0.005 of 0.95 with 99\% confidence.

The simulate-options include the following:

ACC= value
specifies the target accuracy radius \(\gamma \) of a \(100(1 - \epsilon)\% \) confidence interval for the true probability content of the estimated \((1 - \alpha)\)th quantile. The default value is ACC=0.005.

ALPHA= value
specifies the value \(\alpha \) for estimating the \((1 - \alpha)\)th quantile. The default value is the AL-
PHA= value in the PROC LIFETEST statement, or 0.05 if that option is not specified.

EPS= value
specifies the value \(\epsilon \) for a \(100(1 - \epsilon)\% \) confidence interval for the true probability content of the estimated \((1 - \alpha)\)th quantile. The default value for the accuracy confidence is 99\%,
corresponding to EPS=0.01.

NSAMP= \(n \)
specifies the sample size for the simulation. By default, \(n \) is set based on the values of the
target accuracy radius \(\gamma \) and accuracy confidence \(100(1 - \epsilon)\% \) for an interval for the true probability content of the estimated \((1 - \alpha)\)th quantile. With the default values for \(\gamma \), \(\epsilon \), and \(\alpha \) (0.005, 0.01, and 0.05, respectively), NSAMP=12604 by default.

REPORT
specifies that a report on the simulation should be displayed, including a listing of the pa-
rameters, such as \(\gamma \), \(\epsilon \), and \(\alpha \), in addition to an analysis of various methods for estimating
or approximating the quantile.

SEED= number
specifies an integer used to start the pseudorandom number generator for the simulation.
If you do not specify a seed, or if you specify a value less than or equal to zero, the seed
is generated by default from reading the time of day from the computer’s clock.
DIFF=ALL | CONTROL<(string' < . . . , 'string'>)>

specifies which pairs of survival curves are considered for the multiple comparisons.

DIFF=ALL

requests all paired comparisons

DIFF=CONTROL <(string' < . . . 'string'>)>

requests comparisons of the control curve with all other curves. To specify the control curve, you specify the quotes strings of formatted values that represent the curve in parentheses. For example, if Cell='large' identifies the control group, you specify

DIFF=CONTROL ('large')

If more than one variable is used to identify the curves (for example, if Cell='large' and Sex='F' represent the control), you specify

DIFF=CONTROL ('large' 'F')

The order of the quoted strings should correspond to the order of the stratum variables. If no specific curve is specified as the control, the first stratum or group value is used.

By default, DIFF=ALL unless you specify ADJUST=DUNNETT, in which case DIFF=CONTROL.

GROUP=variable

specifies the variable whose formatted values identify the various samples whose underlying survival curves are to be compared. The tests are stratified on the levels of the STRATA variables. For example, in a multicenter trial in which two forms of therapy are to be compared, you specify the variable that identifies therapies as the GROUP= variable and the variable that identifies centers as the STRATA variable, in order to perform a stratified test to compare the therapies while controlling the effect of the centers.

MISSING

allows missing values to be a stratum level or a valid value of the GROUP= variable.

NODETAIL

suppresses the display of the rank statistics and the corresponding covariance matrices for various strata. If the TREND option is specified, the display of the scores for computing the trend tests is suppressed.

NOTEST

suppresses the k-sample tests, stratified tests, and trend tests.

TREND

computes the trend tests for testing the null hypothesis that the k population hazards rate are the same versus an ordered alternatives. If there is only one STRATA variable and the variable is numeric, the unformatted values of the variable are used as the scores; otherwise, the scores are 1, 2, . . . , in the given order of the strata.
TEST=test-request
TEST=(test-request < . . . test-request >)

controls the tests produced. Each test corresponds to a different weight function (see the section “Non-
parametric Tests” on page 3890 for the weight functions). The test-requests include the following:

<table>
<thead>
<tr>
<th>Test Request</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>specifies all the nonparametric tests with $\rho_1=1$ and $\rho_2=0$ for the Fleming and Harrington test—FLEMING(1,0).</td>
</tr>
<tr>
<td>FLEMING(ρ_1, ρ_2)</td>
<td>specifies the family of tests in Harrington and Fleming (1982), where ρ_1 and ρ_2 are nonnegative numbers. FLEMING(ρ_1,ρ_2) reduces to the Fleming-Harrington G^p family (Fleming and Harrington 1981) when $\rho_2=0$, which you can specify as FLEMING(ρ) with one argument. When $\rho=0$, the test becomes the log-rank test. When $\rho=1$, the test should be very close to the Peto-Peto test.</td>
</tr>
<tr>
<td>LOGRANK</td>
<td>specifies the log-rank test.</td>
</tr>
<tr>
<td>NONE</td>
<td>suppresses all comparison tests. Specifying TEST=NONE is equivalent to specify NOTEST.</td>
</tr>
<tr>
<td>LR</td>
<td>specifies the likelihood ratio test based on the exponential model.</td>
</tr>
<tr>
<td>MODPETO</td>
<td>specifies the modified Peto-Peto test.</td>
</tr>
<tr>
<td>PETO</td>
<td>specifies the Peto-Peto test. The test is also referred to as the Peto-Peto-Prentice test.</td>
</tr>
<tr>
<td>WILCOXON</td>
<td>specifies the Wilcoxon test. The test is also referred to as the Gehan test or the Breslow test.</td>
</tr>
<tr>
<td>TARONE</td>
<td>specifies the Tarone-Ware test.</td>
</tr>
</tbody>
</table>

By default, TEST=(LOGRANK WILCOXON LR) for the k-sample tests, and TEST=(LOGRANK WILCOXON) for stratified and trend tests.

TEST Statement

TEST variables ;

The TEST statement specifies a list of numeric covariates (prognostic variables) that you want tested for association with the failure time.

Two sets of rank statistics are computed. These rank statistics and their variances are pooled over all strata. Univariate (marginal) test statistics are displayed for each of the covariates.

Additionally, a sequence of test statistics for joint effects of covariates is displayed. The first element of the sequence is the largest univariate test statistic. Other variables are then added on the basis of the largest increase in the joint test statistic. The process continues until all the variables have been added or until the remaining variables are linearly dependent on the previously added variables.

See the section “Rank Tests for the Association of Survival Time with Covariates” on page 3893 for more information.
TIME Statement

```
TIME variable < *censor(list) > ;
```

The TIME statement is required. It is used to indicate the failure time variable, where *variable* is the name of the failure time variable that can be optionally followed by an asterisk, the name of the censoring variable, and a parenthetical list of values that correspond to right censoring. The censoring values should be numeric, nonmissing values. For example, the statement

```
time T*Flag(1,2);
```

identifies the variable *T* as containing the observed failure times (event or censored). If the variable *Flag* has the value 1 or 2, the corresponding value of *T* is a right-censored value.

Details: LIFETEST Procedure

Missing Values

Observations with a missing value for either the failure time or the censoring variable are not used in the analysis. If a stratum variable value is missing, the observation is not used; however, the MISSING option can be used to request that missing values be treated as valid stratum values. If any variable specified in the TEST statement has a missing value, that observation is not used in the calculation of the rank statistics.

Computational Formulas

Breslow, Fleming-Harrington, and Kaplan-Meier Methods

Let $t_1 < t_2 < \cdots < t_D$ represent the distinct event times. For each $i = 1, \ldots, D$, let n_i be the number of surviving units (the size of the risk set) just prior to t_i. Let d_i be the number of units that fail at t_i, and let $s_i = n_i - d_i$. If the NOTRUNCATE option is specified in the FREQ statement, n_i, d_i, and s_i can be nonintegers.

The Breslow estimate of the survivor function is

$$
\hat{S}(t_i) = \exp\left(-\sum_{j=1}^{i} \frac{d_j}{n_j} \right)
$$

Note that the Breslow estimate is the exponentiation of the negative Nelson-Aalen estimate of the cumulative hazard function.
The Fleming-Harrington estimate (Fleming and Harrington 1984) of the survivor function is
\[
\hat{S}(t_i) = \exp \left(- \sum_{k=1}^{i} \sum_{j=0}^{d_k-1} \frac{1}{n_k - j} \right)
\]
If the frequency values are not integers, the Fleming-Harrington estimate cannot be computed.

The Kaplan-Meier (product-limit) estimate of the survivor function at \(t_i \) is the cumulative product
\[
\hat{S}(t_i) = \prod_{j=1}^{i} \left(1 - \frac{d_j}{n_j} \right)
\]
Notice that all the estimators are defined to be right continuous; that is, the events at \(t_i \) are included in the estimate of \(S(t_i) \). The corresponding estimate of the standard error is computed using Greenwood’s formula (Kalbfleisch and Prentice 1980) as
\[
\hat{\sigma} \left(\hat{S}(t_i) \right) = \hat{S}(t_i) \sqrt{ \sum_{j=1}^{i} \frac{d_j}{n_j s_j} }
\]

The first quartile (or the 25th percentile) of the survival time is the time beyond which 75% of the subjects in the population under study are expected to survive. It is estimated by
\[
q_{0.25} = \min \{ t_j \mid \hat{S}(t_j) < 0.75 \}
\]
If \(\hat{S}(t) \) is exactly equal to 0.75 from \(t_j \) to \(t_{j+1} \), the first quartile is taken to be \((t_j + t_{j+1})/2 \). If it happens that \(\hat{S}(t) \) is greater than 0.75 for all values of \(t \), the first quartile cannot be estimated and is represented by a missing value in the printed output.

The general formula for estimating the 100\(p \)th percentile point is
\[
q_p = \min \{ t_j \mid \hat{S}(t_j) < 1 - p \}
\]
The second quartile (the median) and the third quartile of survival times correspond to \(p=0.5 \) and \(p=0.75 \), respectively.

Brookmeyer and Crowley (1982) have constructed the confidence interval for the median survival time based on the confidence interval for the \(S(t) \). The methodology is generalized to construct the confidence interval for the 100\(p \)th percentile based on a \(g \)-transformed confidence interval for \(S(t) \) (Klein and Moeschberger 1997). You can use the CONFTYPE= option to specify the \(g \)-transformation. The 100(1 - \(\alpha \))\% confidence interval for the first quartile survival time is the set of all points \(t \) that satisfy
\[
\left| \frac{g(\hat{S}(t)) - g(1 - 0.25)}{g'(\hat{S}(t))\hat{\sigma}(\hat{S}(t))} \right| \leq z_{1-\frac{\alpha}{2}}
\]
where \(g'(x) \) is the first derivative of \(g(x) \) and \(z_{1-\frac{\alpha}{2}} \) is the 100(1 - \(\frac{\alpha}{2} \))th percentile of the standard normal distribution.

Consider the bone marrow transplant data described in Example 51.2. The following table illustrates the construction of the confidence limits for the first quartile in the ALL group. Values of \(\frac{g(\hat{S}(t)) - g(1 - 0.25)}{g'(\hat{S}(t))\hat{\sigma}(\hat{S}(t))} \) that lie between \(\pm z_{1-0.05} = \pm 1.965 \) are highlighted.
Consider the LINEAR transformation where \(g(x) = x \). The event times that satisfy
\[
\left| \frac{g(\hat{S}(t)) - g(1 - 0.25)}{g'(\hat{S}(t)) \sqrt{V(\hat{S}(t))}} \right| \leq 1.9599
\]
include 107, 109, 110, 122, 129, 172, 192, 194, and 230. The confidence of the interval [107, 230] is less than 95%. Brookmeyer and Crowley (1982) suggest extending the confidence interval to but not including the next event time. As such the 95% confidence interval for the first quartile based on the linear transform is [107, 276). The following table lists the confidence intervals for the various transforms.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\hat{S}(t))</th>
<th>(\hat{\sigma}(\hat{S}(t)))</th>
<th>(\bar{g}(\hat{S}(t)) - g(1 - 0.25))</th>
<th>(g'(\hat{S}(t)))</th>
<th>(\sqrt{V(\hat{S}(t))})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.97368</td>
<td>0.025967</td>
<td>8.6141</td>
<td>2.37381</td>
<td>9.7871</td>
</tr>
<tr>
<td>55</td>
<td>0.94737</td>
<td>0.036224</td>
<td>5.4486</td>
<td>2.36375</td>
<td>6.1098</td>
</tr>
<tr>
<td>74</td>
<td>0.9105</td>
<td>0.047344</td>
<td>3.9103</td>
<td>2.16338</td>
<td>4.3257</td>
</tr>
<tr>
<td>86</td>
<td>0.89474</td>
<td>0.049784</td>
<td>2.9073</td>
<td>1.89901</td>
<td>3.217</td>
</tr>
<tr>
<td>104</td>
<td>0.86842</td>
<td>0.054836</td>
<td>2.1595</td>
<td>1.59196</td>
<td>1.6490</td>
</tr>
<tr>
<td>107</td>
<td>0.84211</td>
<td>0.059153</td>
<td>1.5571</td>
<td>1.26050</td>
<td>1.4173</td>
</tr>
<tr>
<td>109</td>
<td>0.81579</td>
<td>0.062886</td>
<td>1.0462</td>
<td>0.91307</td>
<td>0.93069</td>
</tr>
<tr>
<td>110</td>
<td>0.78947</td>
<td>0.066135</td>
<td>0.5969</td>
<td>0.55415</td>
<td>0.57846</td>
</tr>
<tr>
<td>122</td>
<td>0.73684</td>
<td>0.071343</td>
<td>-0.1842</td>
<td>-0.18808</td>
<td>-0.18573</td>
</tr>
<tr>
<td>129</td>
<td>0.71053</td>
<td>0.073570</td>
<td>-0.5365</td>
<td>-0.56842</td>
<td>-0.54859</td>
</tr>
<tr>
<td>172</td>
<td>0.68421</td>
<td>0.075405</td>
<td>-0.8725</td>
<td>-0.95372</td>
<td>-0.90178</td>
</tr>
<tr>
<td>192</td>
<td>0.65789</td>
<td>0.076960</td>
<td>-1.1968</td>
<td>-1.34341</td>
<td>-1.24712</td>
</tr>
<tr>
<td>194</td>
<td>0.63158</td>
<td>0.078252</td>
<td>-1.5133</td>
<td>-1.73709</td>
<td>-1.58613</td>
</tr>
<tr>
<td>230</td>
<td>0.60412</td>
<td>0.079522</td>
<td>-1.8345</td>
<td>-2.14672</td>
<td>-1.92995</td>
</tr>
<tr>
<td>276</td>
<td>0.57666</td>
<td>0.080509</td>
<td>-2.1531</td>
<td>-2.55898</td>
<td>-2.26871</td>
</tr>
<tr>
<td>332</td>
<td>0.54920</td>
<td>0.081223</td>
<td>-2.4722</td>
<td>-2.97389</td>
<td>-2.60380</td>
</tr>
<tr>
<td>383</td>
<td>0.52174</td>
<td>0.081672</td>
<td>-3.1233</td>
<td>-3.81166</td>
<td>-3.26782</td>
</tr>
<tr>
<td>418</td>
<td>0.49428</td>
<td>0.081860</td>
<td>-3.1239</td>
<td>-3.81166</td>
<td>-3.26782</td>
</tr>
<tr>
<td>466</td>
<td>0.46682</td>
<td>0.081788</td>
<td>-3.4624</td>
<td>-4.23445</td>
<td>-3.59898</td>
</tr>
<tr>
<td>487</td>
<td>0.43936</td>
<td>0.081457</td>
<td>-3.8136</td>
<td>-4.69571</td>
<td>-3.93103</td>
</tr>
<tr>
<td>526</td>
<td>0.41190</td>
<td>0.080862</td>
<td>-4.1812</td>
<td>-5.08726</td>
<td>-4.26507</td>
</tr>
<tr>
<td>609</td>
<td>0.38248</td>
<td>0.080260</td>
<td>-4.5791</td>
<td>-5.52446</td>
<td>-4.60719</td>
</tr>
<tr>
<td>662</td>
<td>0.35306</td>
<td>0.079296</td>
<td>-5.0059</td>
<td>-5.96222</td>
<td>-4.95358</td>
</tr>
</tbody>
</table>

Constructing 95% Confidence Limits for the 25th Percentile

<table>
<thead>
<tr>
<th>CONFTYPE</th>
<th>(\text{Lower Upper) })</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR</td>
<td>107 276</td>
</tr>
<tr>
<td>LOG</td>
<td>86 230</td>
</tr>
<tr>
<td>LOG</td>
<td>107 332</td>
</tr>
<tr>
<td>ASINSQRT</td>
<td>104 276</td>
</tr>
<tr>
<td>LOGIT</td>
<td>104 230</td>
</tr>
</tbody>
</table>

Sometimes, the confidence limits for the quartiles cannot be estimated. For convenience of explanation, consider the linear transform \(g(x) = x \). If the curve that represents the upper confidence limits for the survivor function lies above 0.75, the upper confidence limit for first quartile cannot be estimated. On the other hand, if the curve that represents the lower confidence limits for the survivor function lies above 0.75, the lower confidence limit for the quartile cannot be estimated.
The estimated mean survival time is

\[\hat{\mu} = \sum_{i=1}^{D} \hat{S}(t_{i-1})(t_i - t_{i-1}) \]

where \(t_0 \) is defined to be zero. When the largest observed time is censored, this sum underestimates the mean. The standard error of \(\hat{\mu} \) is estimated as

\[\hat{\sigma}(\hat{\mu}) = \sqrt{\frac{m}{m-1} \sum_{i=1}^{D-1} \frac{A_i^2}{n_is_i}} \]

where

\[A_i = \sum_{j=i}^{D-1} \hat{S}(t_j)(t_{j+1} - t_j) \]

\[m = \sum_{j=1}^{D} d_j \]

If the largest observed time is not an event, you can use the TIMELIM= option to specify a time limit \(L \) and estimate the mean survival time limited to the time \(L \) and its standard error by replacing \(k \) by \(k + 1 \) with \(t_{k+1} = L \).

Nelson-Aalen Estimate of the Cumulative Hazard Function

The Nelson-Aalen cumulative hazard estimator, defined up to the largest observed time on study, is

\[\tilde{H}(t) = \sum_{t_i \leq t} \frac{d_i}{n_i} \]

and its estimated variance is

\[\hat{V}(\tilde{H}(t)) = \sum_{t_i \leq t} \frac{d_i^2}{n_i^2} \]

Life-Table Method

The life-table estimates are computed by counting the numbers of censored and uncensored observations that fall into each of the time intervals \([t_{i-1}, t_i)\), \(i = 1, 2, \ldots, k + 1 \), where \(t_0 = 0 \) and \(t_{k+1} = \infty \). Let \(n_i \) be the number of units that enter the interval \([t_{i-1}, t_i)\), and let \(d_i \) be the number of events that occur in the interval. Let \(b_i = t_i - t_{i-1} \), and let \(n'_i = n_i - w_i/2 \), where \(w_i \) is the number of units censored in the interval. The effective sample size of the interval \([t_{i-1}, t_i)\) is denoted by \(n'_i \). Let \(t_{mi} \) denote the midpoint of \([t_{i-1}, t_i)\).

The conditional probability of an event in \([t_{i-1}, t_i)\) is estimated by

\[\hat{q}_i = \frac{d_i}{n'_i} \]
and its estimated standard error is

\[\hat{\sigma}(\hat{q}_i) = \sqrt{\frac{\hat{q}_i \hat{p}_i}{n_i'}} \]

where \(\hat{p}_i = 1 - \hat{q}_i \).

The estimate of the survival function at \(t_i \) is

\[\hat{S}(t_i) = \begin{cases} 1 & i = 0 \\ \hat{S}(t_{i-1})p_{i-1} & i > 0 \end{cases} \]

and its estimated standard error is

\[\hat{\sigma} \left(\hat{S}(t_i) \right) = \hat{S}(t_i) \sqrt{\sum_{j=1}^{i-1} \frac{\hat{q}_j}{n'_j \hat{p}_j}} \]

The density function at \(t_{mi} \) is estimated by

\[\hat{f}(t_{mi}) = \frac{\hat{S}(t_{mi}) \hat{q}_i}{b_i} \]

and its estimated standard error is

\[\hat{\sigma} \left(\hat{f}(t_{mi}) \right) = \hat{f}(t_{mi}) \sqrt{\sum_{j=1}^{i-1} \frac{\hat{q}_j}{n'_j \hat{p}_j} + \frac{\hat{p}_i}{n'_i \hat{q}_i}} \]

The estimated hazard function at \(t_{mi} \) is

\[\hat{h}(t_{mi}) = \frac{2\hat{q}_i}{b_i(1 + \hat{p}_i)} \]

and its estimated standard error is

\[\hat{\sigma} \left(\hat{h}(t_{mi}) \right) = \hat{h}(t_{mi}) \sqrt{\frac{1 - (b_i\hat{h}(t_{mi})/2)^2}{n'_i \hat{q}_i}} \]

Let \([t_{j-1}, t_j] \) be the interval in which \(\hat{S}(t_{j-1}) \geq \hat{S}(t_i)/2 > \hat{S}(t_j) \). The median residual lifetime at \(t_i \) is estimated by

\[\hat{M}_i = t_{j-1} - t_i + b_j \frac{\hat{S}(t_{j-1}) - \hat{S}(t_i)/2}{\hat{S}(t_{j-1}) - \hat{S}(t_j)} \]

and the corresponding standard error is estimated by

\[\hat{\sigma}(\hat{M}_i) = \frac{\hat{S}(t_i)}{2\hat{f}(t_{mi}) \sqrt{n'_i}} \]
Interval Determination

If you want to determine the intervals exactly, use the INTERVALS= option in the PROC LIFETEST statement to specify the interval endpoints. Use the WIDTH= option to specify the width of the intervals, thus indirectly determining the number of intervals. If neither the INTERVALS= option nor the WIDTH= option is specified in the life-table estimation, the number of intervals is determined by the NINTERVAL= option. The width of the time intervals is 2, 5, or 10 times an integer (possibly a negative integer) power of 10. Let \(c = \log_{10}(\text{maximum observed time/number of intervals}) \), and let \(b \) be the largest integer not exceeding \(c \). Let \(d = 10^{c-b} \) and let

\[
a = 2 \times I(d \leq 2) + 5 \times I(2 < d \leq 5) + 10 \times I(d > 5)
\]

with \(I \) being the indicator function. The width is then given by

\[
\text{width} = a \times 10^b
\]

By default, NINTERVAL=10.

Pointwise Confidence Limits in the OUTSURV= Data Set

Pointwise confidence limits are computed for the survivor function, and for the density function and hazard function when the life-table method is used. Let \(\alpha \) be specified by the ALPHA= option. Let \(z_{\alpha/2} \) be the critical value for the standard normal distribution. That is, \(\Phi(-z_{\alpha/2}) = \alpha/2 \), where \(\Phi \) is the cumulative distribution function of the standard normal random variable.

Survivor Function

When the computation of confidence limits for the survivor function \(S(t) \) is based on the asymptotic normality of the survival estimator \(\hat{S}(t) \), the approximate confidence interval might include impossible values outside the range \([0,1]\) at extreme values of \(t \). This problem can be avoided by applying the asymptotic normality to a transformation of \(S(t) \) for which the range is unrestricted. In addition, certain transformed confidence intervals for \(S(t) \) perform better than the usual linear confidence intervals (Borgan and Liestøl 1990). The CONFTYPE= option enables you to pick one of the following transformations: the log-log function (Kalbfleisch and Prentice 1980), the arcsine-square root function (Nair 1984), the logit function (Meeker and Escobar 1998), the log function, and the linear function.

Let \(g \) be the transformation that is being applied to the survivor function \(S(t) \). By the delta method, the standard error of \(g(\hat{S}(t)) \) is estimated by

\[
\tau(t) = \hat{\sigma} \left[g(\hat{S}(t)) \right] = g'(\hat{S}(t)) \hat{\sigma}[\hat{S}(t)]
\]

where \(g' \) is the first derivative of the function \(g \). The 100(1–\(\alpha \))% confidence interval for \(S(t) \) is given by

\[
g^{-1} \left\{ g[\hat{S}(t)] \pm z_{\alpha/2} g'[\hat{S}(t)]\hat{\sigma}[\hat{S}(t)] \right\}
\]
where \(g^{-1} \) is the inverse function of \(g \). That choices of the transformation \(g \) are as follows:

- **arcsine-square root transformation:** The estimated variance of \(\sin^{-1}\left(\sqrt{\hat{S}(t)}\right) \) is \(\hat{\tau}^2(t) = \frac{\hat{\sigma}^2[\hat{S}(t)]}{4\hat{S}(t)[1-\hat{S}(t)]} \). The 100(1–\(\alpha \))% confidence interval for \(S(t) \) is given by
 \[
 \sin^2\left\{\max\left[0, \sin^{-1}\left(\sqrt{\hat{S}(t)}\right) - \frac{z_{\alpha/2}\hat{\tau}(t)}{2}\right]\right\} \leq S(t) \leq \sin^2\left\{\min\left[\frac{\pi}{2}, \sin^{-1}\left(\sqrt{\hat{S}(t)}\right) + \frac{z_{\alpha/2}\hat{\tau}(t)}{2}\right]\right\}
 \]

- **linear transformation:** This is the same as having no transformation in which \(g \) is the identity. The 100(1–\(\alpha \))% confidence interval for \(S(t) \) is given by
 \[
 \hat{S}(t) - \frac{z_{\alpha/2}\hat{\sigma}}{2} \leq S(t) \leq \hat{S}(t) + \frac{z_{\alpha/2}\hat{\sigma}}{2}
 \]

- **log transformation:** The estimated variance of \(\log(\hat{S}(t)) \) is \(\hat{\tau}^2(t) = \frac{\hat{\sigma}^2[\hat{S}(t)]}{S^2(t)} \). The 100(1–\(\alpha \))% confidence interval for \(S(t) \) is given by
 \[
 \hat{S}(t) \exp\left(-z_{\alpha/2}\hat{\tau}(t)\right) \leq S(t) \leq \hat{S}(t) \exp\left(z_{\alpha/2}\hat{\tau}(t)\right)
 \]

- **log-log transformation:** The estimated variance of \(\log(-\log(\hat{S}(t))) \) is \(\hat{\tau}^2(t) = \frac{\hat{\sigma}^2[\hat{S}(t)]}{[S(t)\log(\hat{S}(t))]^2} \). The 100(1–\(\alpha \))% confidence interval for \(S(t) \) is given by
 \[
 \left[\hat{S}(t)\right]^{\exp\left(\frac{z_{\alpha/2}\hat{\tau}(t)}{2}\right)} \leq S(t) \leq \left[\hat{S}(t)\right]^{\exp\left(-\frac{z_{\alpha/2}\hat{\tau}(t)}{2}\right)}
 \]

- **logit transformation:** The estimated variance of \(\log\left(\frac{\hat{S}(t)}{1-\hat{S}(t)}\right) \) is
 \[
 \hat{\tau}^2(t) = \frac{\hat{\sigma}^2[\hat{S}(t)]}{S^2(t)[1-\hat{S}(t)]^2}.
 \]

The 100(1–\(\alpha \))% confidence limits for \(S(t) \) are given by
\[
\frac{\hat{S}(t)}{\hat{S}(t) + [1-\hat{S}(t)]\exp\left(z_{\alpha/2}\hat{\tau}(t)\right)} \leq S(t) \leq \frac{\hat{S}(t)}{\hat{S}(t) + [1-\hat{S}(t)]\exp\left(-z_{\alpha/2}\hat{\tau}(t)\right)}
\]

Density and Hazard Functions

For the life-table method, a 100(1–\(\alpha \))% confidence interval for hazard function or density function at time \(t \) is computed as
\[
\hat{g}(t) \pm z_{\alpha/2}\hat{\sigma}[\hat{g}(t)]
\]
where \(\hat{g}(t) \) is the estimate of either the hazard function or the density function at time \(t \), and \(\hat{\sigma}[\hat{g}(t)] \) is the corresponding standard error estimate.
Simultaneous Confidence Intervals for Kaplan-Meier Curves

The pointwise confidence interval for the survivor function \(S(t) \) is valid for a single fixed time at which the inference is to be made. In some applications, it is of interest to find the upper and lower confidence bands that guarantee, with a given confidence level, that the survivor function falls within the band for all \(t \) in some interval. Hall and Wellner (1980) and Nair (1984) provide two different approaches for deriving the confidence bands. An excellent review can be found in Klein and Moeschberger (1997). You can use the CONFBAND= option in the SURVIVAL statement to select the confidence bands. The EP confidence band provides confidence bounds that are proportional to the pointwise confidence interval, while those of the HW band are not proportional to the pointwise confidence bounds. The maximum time, \(t_U \), for the bands can be specified by the BANDMAX= option; the minimum time, \(t_L \), can be specified by the BANDMIN= option. Transformations that are used to improve the pointwise confidence intervals can be applied to improve the confidence bands. It might turn out that the upper and lower bounds of the confidence bands are not decreasing in \(t_L < t < t_U \), which is contrary to the nonincreasing characteristic of survivor function. Meeker and Escobar (1998) suggest making an adjustment so that the bounds do not increase: if the upper bound is increasing on the right, it is made flat from the minimum to \(t_U \); if the lower bound is increasing from the right, it is made flat from \(t_L \) to the maximum. PROC LIFETEST does not make any adjustment for the nondecreasing behavior of the confidence bands in the OUTSURV= data set. However, the adjustment was made in the display of the confidence bands by using ODS Graphics.

For Kaplan-Meier estimation, let \(t_1 < t_2 < \ldots < t_D \) be the \(D \) distinct events times, and at time \(t_i \), there are \(d_i \) events. Let \(Y_i \) be the number of individuals who are at risk at time \(t_i \). The variance of \(\hat{S}(t) \), given by the Greenwood formula, is \(\sigma^2 S(t) \sum_{i \leq t} \frac{d_i}{Y_i(Y_i - d_i)} \).

Let \(t_L < t_U \) be the time range for the confidence band so that \(t_U \) is less than or equal to the largest event time. For the Hall-Wellner band, \(t_L \) can be zero, but for the equal-precision band, \(t_L \) is greater than or equal to the smallest event time. Let

\[
\begin{align*}
 a_L &= \frac{n \sigma^2 S(t_L)}{1 + n \sigma^2 S(t_L)} \quad \text{and} \quad a_U = \frac{n \sigma^2 S(t_U)}{1 + n \sigma^2 S(t_U)}
\end{align*}
\]

Let \(\{W^0(u), 0 \leq u \leq 1\} \) be a Brownian bridge.

Hall-Wellner Band

The 100(1–\(\alpha \))% HW band of Hall and Wellner (1980) is

\[
\hat{S}(t) - h_\alpha(a_L, a_U) n^{-\frac{1}{2}} [1 + n \sigma^2 S(t)] \hat{S}(t) \leq S(t) \leq \hat{S}(t) + h_\alpha(a_L, a_U) n^{-\frac{1}{2}} [1 + n \sigma^2 S(t)] \hat{S}(t)
\]

for all \(t_L \leq t \leq t_U \), where the critical value \(h_\alpha(a_L, a_U) \) is given by

\[
\alpha = \Pr \left\{ \sup_{a_L \leq u \leq a_U} |W^0(u)| > h_\alpha(a_L, a_U) \right\}
\]

The critical values are computed from the results in Chung (1986).
Note that the given confidence band has a formula similar to that of the (linear) pointwise confidence interval, where \(h_\alpha(a_L, a_U) \) and \(n^{-\frac{1}{2}}[1 + n\sigma^2_S(t)]\hat{S}(t) \) in the former correspond to \(z_\frac{\alpha}{2} \) and \(\hat{\sigma}(\hat{S}(t)) \) in the latter, respectively. You can obtain the other transformations (arcsine-square root, log-log, log, and logit) for the confidence bands by replacing \(z_\frac{\alpha}{2} \) and \(\hat{\sigma}(\hat{S}(t)) \) in the corresponding pointwise confidence interval formula by \(h_\alpha(a_L, a_U) \) and the following \(\hat{\sigma}(\hat{S}(t)) \), respectively:

- **arcsine-square root transformation:**
 \[
 \hat{\tau}(t) = \frac{1 + n\sigma^2_S(t)}{2} \sqrt{\frac{S(t)}{n[1 - S(t)]}}
 \]

- **log transformation:**
 \[
 \hat{\tau}(t) = \frac{1 + n\sigma^2_S(t)}{\sqrt{n}}
 \]

- **log-log transformation:**
 \[
 \hat{\tau}(t) = \frac{1 + n\sigma^2_S(t)}{\sqrt{n} \log[\hat{S}(t)]]}
 \]

- **logit transformation:**
 \[
 \hat{\tau}(t) = \frac{1 + n\sigma^2_S(t)}{\sqrt{n}[1 - S(t)]}
 \]

Equal-Precision Band

The 100(1–\(\alpha \))% EP band of Nair (1984) is

\[
\hat{S}(t) - e_\alpha(a_L, a_U)\hat{S}(t)\sigma_S(t) \leq S(t) \leq \hat{S}(t) + e_\alpha(a_L, a_U)\hat{S}(t)\sigma_S(t)
\]

for all \(t_L \leq t \leq t_U \), where \(e_\alpha(a_L, a_U) \) is obtained by solving \(x \) in

\[
\alpha = \Pr\{ \sup_{a_L \leq u \leq a_U} \frac{|W^0(u)|}{[u(1 - u)]^\frac{1}{2}} > e_\alpha(a_L, a_U) \}\]

PROC LIFETEST uses the approximation of Miller and Siegmund (1982, Equation 8) to approximate the tail probability in which \(e_\alpha(a_L, a_U) \) is obtained by solving \(x \) in

\[
\frac{4x\phi(x)}{x} + \phi(x) \left(x - \frac{1}{x}\right) \log \left[\frac{a_U(1 - a_L)}{a_L(1 - a_U)}\right] = \alpha
\]

where \(\phi(x) \) is the standard normal density function evaluated at \(x \). Note that the confidence bounds given are proportional to the pointwise confidence intervals. As a matter of fact, this confidence band and the (linear) pointwise confidence interval have the same formula except for the critical values (\(z_\frac{\alpha}{2} \) for the pointwise confidence interval and \(e_\alpha(a_L, a_U) \) for the band). You can obtain the other transformations (arcsine-square root, log-log, log, and logit) for the confidence bands by replacing \(z_\frac{\alpha}{2} \) by \(e_\alpha(a_L, a_U) \) in the formula of the pointwise confidence intervals.
Kernel-Smoothed Hazard Estimate

Kernel-smoothed estimators of the hazard function $h(t)$ are based on the Nelson-Aalen estimator $\tilde{H}(t)$ and its variance $\tilde{V}(\tilde{H}(t))$. Consider the jumps of $\tilde{H}(t)$ and $\tilde{V}(\tilde{H}(t))$ at the event times $t_1 < t_2 < \ldots < t_D$ as follows:

$$\Delta \tilde{H}(t_i) = \tilde{H}(t_i) - \tilde{H}(t_{i-1})$$
$$\hat{V}(\tilde{H}(t_i)) = \hat{V}(\tilde{H}(t_i)) - \hat{V}(\tilde{H}(t_{i-1}))$$

where $t_0 = 0$.

The kernel-smoothed estimator of $h(t)$ is a weighted average of $\Delta \tilde{H}(t)$ over event times that are within a bandwidth distance b of t. The weights are controlled by the choice of kernel function, $K()$, defined on the interval $[-1,1]$. The choices are as follows:

- **uniform kernel:**
 $$K_U(x) = \frac{1}{2}, \quad -1 \leq x \leq 1$$

- **Epanechnikov kernel:**
 $$K_E(x) = \frac{3}{4}(1 - x^2), \quad -1 \leq x \leq 1$$

- **biweight kernel:**
 $$K_{BW}(x) = \frac{15}{16}(1 - x^2)^2, \quad -1 \leq x \leq 1$$

The kernel-smoothed hazard rate estimator is defined for all time points on $(0, t_D)$. For time points t for which $b \leq t \leq t_D - b$, the kernel-smoothed estimated of $h(t)$ based on the kernel $K()$ is given by

$$\hat{h}(t) = \frac{1}{b} \sum_{i=1}^{D} K\left(\frac{t - t_i}{b}\right) \Delta \tilde{H}(t_i)$$

The variance of $\hat{h}(t)$ is estimated by

$$\hat{\sigma}^2(\hat{h}(t)) = \frac{1}{b^2} \sum_{i=1}^{D} K\left(\frac{t - t_i}{b}\right)^2 \Delta \hat{V}(\tilde{H}(t_i))$$

For $t < b$, the symmetric kernels $K()$ are replaced by the corresponding asymmetric kernels of Gasser and Müller (1979). Let $q = \frac{t}{b}$. The modified kernels are as follows:

- **uniform kernel:**
 $$K_{U,q}(x) = \frac{4(1 + q^2)}{(1 + q)^4} + \frac{6(1 - q)}{(1 + q)^3} x, \quad -1 \leq x \leq q$$
Computational Formulas

- Epanechnikov kernel:
 \[
 K_{E,q}(x) = K_{E}(x) \frac{64(2 - 4q + 6q^2 - 3q^3) + 240(1 - q)^2x}{(1 + q)^4(19 - 18q + 3q^2)}, \quad -1 \leq x \leq q
 \]

- byweight kernel:
 \[
 K_{BW,q}(x) = K_{BW}(x) \frac{64(8 - 24q + 48q^2 - 45q^3 + 15q^4) + 1120(1 - q)^3x}{(1 + q)^5(81 - 168q + 126q^2 - 40q^3 + 5q^4)}, \quad -1 \leq x \leq q
 \]

For \(t_D - b \leq t \leq t_D \), let \(q = \frac{t_D - t}{b} \). The asymmetric kernels for \(t < b \) are used with \(x \) replaced by \(-x \).

Using the log transform on the smoothed hazard rate, the \(100(1-\alpha)\% \) pointwise confidence interval for the smoothed hazard rate \(\hat{h}(t) \) is given by

\[
\hat{h}(t) = \hat{h}(t) \exp \left(\pm \frac{z_{1-\alpha/2} \hat{\sigma}(\hat{h}(t))}{\hat{h}(t)} \right)
\]

where \(z_{1-\alpha/2} \) is the \(100(1-\frac{\alpha}{2}) \)th percentile of the standard normal distribution.

Optimal Bandwidth

The following mean integrated squared error (MISE) over the range \(\tau_L \) and \(\tau_U \) is used as a measure of the global performance of the kernel function estimator:

\[
MISE(b) = E \int_{\tau_L}^{\tau_U} (\hat{h}(i) - h(u))^2 du
\]

\[
= E \int_{\tau_L}^{\tau_U} \hat{h}^2(u) du - 2E \int_{\tau_L}^{\tau_U} \hat{h}(u)h(u) du + E \int_{\tau_L}^{\tau_U} h^2(u) du
\]

The last term is independent of the choice of the kernel and bandwidth and can be ignored when you are looking for the best value of \(b \). The first integral can be approximated by using the trapezoid rule by evaluating \(\hat{h}(t) \) at a grid of points \(\tau_L = u_1 < \ldots < u_M = \tau_U \). You can specify \(\tau_L, \tau_R, \) and \(M \) by using the options GRIDL=, GRIDU=, and NMINGRID=, respectively, of the HAZARD plot. The second integral can be estimated by the Ramlau-Hansen (1983a, b) cross-validation estimate:

\[
\frac{1}{b} \sum_{i \neq j} K \left(\frac{t_i - t_j}{b} \right) \Delta \hat{H}(t_i) \Delta \hat{H}(t_j)
\]

Therefore, for a fixed kernel, the optimal bandwidth is the quantity \(b \) that minimizes

\[
g(b) = \sum_{i=1}^{M-1} \left[\frac{u_{i+1} - u_k}{2} \left(\hat{h}^2(u_i) + \hat{h}^2(u_{i+1}) \right) \right] - \frac{2}{b} \sum_{i \neq j} K \left(\frac{t_i - t_j}{b} \right) \Delta \hat{H}(t_i) \Delta \hat{H}(t_j)
\]

The minimization is carried out by the golden section search algorithm.
Comparison of Two or More Groups of Survival Data

Let \(k \) be the number of groups. Let \(S_i(t) \) be the underlying survivor function \(i \)th group, \(i = 1, \ldots, k \). The null and alternative hypotheses to be tested are

\[
H_0 : S_1(t) = S_2(t) = \ldots = S_k(t) \text{ for all } t \leq \tau
\]

versus

\[
H_1 : \text{at least one of the } S_i(t) \text{'s is different for some } t \leq \tau
\]

respectively, where \(\tau \) is the largest observed time.

Likelihood Ratio Test

The likelihood ratio test statistic (Lawless 1982) for test \(H_0 \) versus \(H_1 \) assumes that the data in the various samples are exponentially distributed and tests that the scale parameters are equal. The test statistic is computed as

\[
\chi^2 = 2N \log \left(\frac{T}{N} \right) - 2 \sum_{j=1}^{k} N_j \log \left(\frac{T_j}{N_j} \right)
\]

where \(N_j \) is the total number of events in the \(j \)th stratum, \(N = \sum_{j=1}^{k} N_j \), \(T_j \) is the total time on test in the \(j \)th stratum, and \(T = \sum_{j=1}^{k} T_j \). The approximate probability value is computed by treating \(\chi^2 \) as having a chi-square distribution with \(k-1 \) degrees of freedom.

Nonparametric Tests

Let \(t_1 < t_2 < \ldots < t_D \) be the distinct event times in the pooled sample. At time \(t_i \), let \(W(t_i) \) be a positive weight function, and let \(n_{ij} \) and \(d_{ij} \) be the size of the risk set and the number of events in the \(j \)th sample, respectively. Let \(n_i = \sum_{j=1}^{k} n_{ij} \), \(d_i = \sum_{j=1}^{k} d_{ij} \), and \(s_i = n_i - d_i \).

The choices of the weight function \(W(t_i) \) are given in Table 51.4.

<table>
<thead>
<tr>
<th>Test</th>
<th>(W(t_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-rank</td>
<td>1.0</td>
</tr>
<tr>
<td>Wilcoxon</td>
<td>(n_i)</td>
</tr>
<tr>
<td>Tarone-Ware</td>
<td>(\sqrt{n_i})</td>
</tr>
<tr>
<td>Peto-Peto</td>
<td>(\hat{S}(t_i))</td>
</tr>
<tr>
<td>Modified Peto-Peto</td>
<td>(\hat{S}(t_i) \frac{n_i}{n_i+1})</td>
</tr>
<tr>
<td>Harrington-Fleming ((p,q))</td>
<td>([\hat{S}(t_i)]^p[1 - \hat{S}(t_i)]^q), (p \geq 0, q \geq 0)</td>
</tr>
</tbody>
</table>

where \(\hat{S}(t) \) is the product-limit estimate at \(t \) for the pooled sample, and \(\hat{S}(t) \) is a survivor function estimate
close to \(\hat{S}(t) \) given by
\[
\hat{S}(t) = \prod_{t_i \leq t} \left(1 - \frac{d_i}{n_i + 1}\right)
\]

Unstratified Tests
The rank statistics (Klein and Moeschberger 1997, Section 7.3) for testing \(H_0 \) versus \(H_1 \) have the form of a \(k \)-vector \(\mathbf{v} = (v_1, v_2, \ldots, v_k)' \) with
\[
v_j = \sum_{i=1}^{D} W(t_i) \left\{ d_{ij} - \frac{n_{ij} d_i}{n_i} \right\}
\]
and the estimated covariance matrix, \(\mathbf{V} = (V_{jl}) \), is given by
\[
V_{jl} = \sum_{i=1}^{D} W^2(t_i) \left\{ \frac{d_i s_i (n_i n_{ij} \delta_{jl} - n_{ij} n_{il})}{n_i^2 (n_i - 1)} \right\}
\]
where \(\delta_{jl} = 1 \) if \(j = l \) and 0 otherwise. The term \(v_j \) can be interpreted as a weighted sum of observed minus expected numbers of failure under the null hypothesis of identical survival curves. The overall test statistic for homogeneity is \(\mathbf{v}' \mathbf{V}^{-1} \mathbf{v} \), where \(\mathbf{V}^{-1} \) denotes a generalized inverse of \(\mathbf{V} \). This statistic is treated as having a chi-square distribution with degrees of freedom equal to the rank of \(\mathbf{V} \) for the purposes of computing an approximate probability level.

Stratified Tests
Suppose the test is to be stratified on \(M \) levels of a set of STRATA variables. Based only on the data of the \(s \)th stratum \((s = 1 \ldots M) \), let \(v_s \) be the test statistic (Klein and Moeschberger 1997, Section 7.5) for the \(s \)th stratum, and let \(\mathbf{V}_s \) be its covariance matrix. Let
\[
\mathbf{v} = \sum_{s=1}^{M} v_s \quad \mathbf{V} = \sum_{s=1}^{M} \mathbf{V}_s
\]
A global test statistic is constructed as
\[
\chi^2 = \mathbf{v}' \mathbf{V} \mathbf{v}
\]
Under the null hypothesis, the test statistic has a \(\chi^2 \) distribution with the same degrees of freedom as the individual test for each stratum.

Multiple-Comparison Adjustments
Let \(\chi^2_r \) denote a chi-squared random variable with \(r \) degrees of freedom. Denote \(\phi \) and \(\Phi \) as the density function and the cumulative distribution function of a standard normal distribution, respectively. Let \(m \) be the number of comparisons; that is,
\[
m = \begin{cases}
\frac{k(k-1)}{2} & \text{DIFF = ALL} \\
\frac{k-1}{2} & \text{DIFF = CONTROL}
\end{cases}
\]
For a two-sided test that compares the survival of the jth group with that of lth group, $1 \leq j \neq l \leq r$, the test statistic is
\[z_{jl}^2 = \frac{(v_j - v_l)^2}{V_{jj} + V_{ll} - 2V_{jl}} \]
and the raw p-value is
\[p = \Pr(\chi_1^2 > z_{jl}^2) \]
Adjusted p-values for various multiple-comparison adjustments are computed as follows:

- **Bonferroni adjustment:**
 \[p = \min\{1, m\Pr(\chi_1^2 > z_{jl}^2)\} \]

- **Dunnett-Hsu adjustment:** With the first group being the control, let $C = (c_{ij})$ be the $(r-1) \times r$ matrix of contrasts; that is,
 \[c_{ij} = \begin{cases} 1 & i = 1, \ldots, r-1, j = 2, \ldots, r \\ -1 & j = i + 1, i = 2, \ldots, r \\ 0 & \text{otherwise} \end{cases} \]
Let $\Sigma = (\sigma_{ij})$ and $R = (r_{ij})$ be covariance and correlation matrices of Cv, respectively; that is,
\[\Sigma = CVC' \]
and
\[r_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \]
The factor-analytic covariance approximation of Hsu (1992) is to find $\lambda_1, \ldots, \lambda_{r-1}$ such that
\[R = D + \lambda\lambda' \]
where D is a diagonal matrix with the jth diagonal element being $1 - \lambda_j$ and $\lambda = (\lambda_1, \ldots, \lambda_{r-1})'$. The adjusted p-value is
\[p = 1 - \int_{-\infty}^{\infty} \phi(y) \prod_{i=1}^{r-1} \left[\Phi\left(\frac{\lambda_i y + z_{jl}}{\sqrt{1 - \lambda_i^2}}\right) - \Phi\left(\frac{\lambda_i y - z_{jl}}{\sqrt{1 - \lambda_i^2}}\right)\right] dy \]
which can be obtained in a DATA step as
\[p = \text{PROBMC}('\text{DUNNETT2}', z_{ij}, \ldots, r-1, \lambda_1, \ldots, \lambda_{r-1}). \]

- **Scheffé adjustment:**
 \[p = \Pr(\chi_{r-1}^2 > z_{jl}^2) \]
Computational Formulas

- Šidák adjustment:
 \[p = 1 - \{1 - \Pr(\chi_1^2 > z_j^2)\}^m \]

- SMM adjustment:
 \[p = 1 - [2\Phi(z_{jl}) - 1]^m \]
 which can also be evaluated in a DATA step as
 \[p = 1 - \text{PROBMC}('\text{MAXMOD}', z_{jl}, \ldots, m). \]

- Tukey adjustment:
 \[p = 1 - \int_{-\infty}^{\infty} r\phi(y)[\Phi(y) - \Phi(y - \sqrt{2}z_{jl})]^{r-1} dy \]
 which can also be evaluated in a DATA step as
 \[p = 1 - \text{PROBMC}('\text{RANGE}', \sqrt{2}z_{jl}, \ldots, r). \]

Trend Tests Trend tests (Klein and Moeschberger 1997, Section 7.4) have more power to detect ordered alternatives as

\[H_2 : S_1(t) \geq S_2(t) \geq \ldots \geq S_k(t), t \leq \tau, \text{ with at least one inequality} \]

or

\[H_2 : S_1(t) \leq S_2(t) \leq \ldots \leq S_k(t), t \leq \tau, \text{ with at least one inequality} \]

Let \(a_1 < a_2 < \ldots < a_k\) be a sequence of scores associated with the \(k\) samples. The test statistic and its standard error are given by \(\sum_{j=1}^k a_j v_j\) and \(\sum_{j=1}^k \sum_{l=1}^k a_j a_l V_{jl}\), respectively. Under \(H_0\), the \(z\)-score

\[Z = \frac{\sum_{j=1}^k a_j v_j}{\sqrt{\sum_{j=1}^k \sum_{l=1}^k a_j a_l V_{jl}}} \]

has, asymptotically, a standard normal distribution. PROC LIFETEST provides both one-tail and two-tail \(p\)-values for the test.

Rank Tests for the Association of Survival Time with Covariates

The rank tests for the association of covariates (Kalbfleisch and Prentice 1980, Chapter 6) are more general cases of the rank tests for homogeneity. In this section, the index \(\alpha\) is used to label all observations, \(\alpha = 1, 2, \ldots, n\), and the indices \(i, j\) range only over the observations that correspond to events, \(i, j = 1, 2, \ldots, k\). The ordered event times are denoted as \(t_{(i)}\), the corresponding vectors of covariates are denoted as \(z_{(i)}\), and the ordered times, both censored and event times, are denoted as \(t_{\alpha}\).

The rank test statistics have the form

\[v = \sum_{\alpha=1}^n c_{\alpha, \delta_{\alpha}} z_{\alpha} \]
where \(n \) is the total number of observations, \(c_{\alpha, \delta_\alpha} \) are rank scores, which can be either log-rank or Wilcoxon rank scores, \(\delta_\alpha \) is 1 if the observation is an event and 0 if the observation is censored, and \(z_\alpha \) is the vector of covariates in the TEST statement for the \(\alpha \)th observation. Notice that the scores, \(c_{\alpha, \delta_\alpha} \), depend on the censoring pattern and that the terms are summed up over all observations.

The log-rank scores are

\[
c_{\alpha, \delta_\alpha} = \sum_{(j: t(j) \leq t_\alpha)} \left(\frac{1}{n_j} - \delta_\alpha \right)
\]

and the Wilcoxon scores are

\[
c_{\alpha, \delta_\alpha} = 1 - (1 + \delta_\alpha) \prod_{(j: t(j) \leq t_\alpha)} \frac{n_j}{n_j + 1}
\]

where \(n_j \) is the number at risk just prior to \(t(j) \).

The estimates used for the covariance matrix of the log-rank statistics are

\[
V = \sum_{i=1}^k \frac{V_i}{n_i}
\]

where \(V_i \) is the corrected sum of squares and crossproducts matrix for the risk set at time \(t(i) \); that is,

\[
V_i = \sum_{(\alpha: t_\alpha \geq t(i))} (z_\alpha - \bar{z}_i)(z_\alpha - \bar{z}_i)
\]

where

\[
\bar{z}_i = \sum_{(\alpha: t_\alpha \geq t(i))} \frac{z_\alpha}{n_i}
\]

The estimate used for the covariance matrix of the Wilcoxon statistics is

\[
V = \sum_{i=1}^k \left[a_i (1 - a_i^*) (2z_{(i)}z_{(i)}' + S_i) - (a_i^* - a_i) \left(a_i x_i x_i' + \sum_{j=i+1}^k a_j (x_j x_j' + x_j x_i') \right) \right]
\]

where

\[
a_i = \prod_{j=1}^i \frac{n_j}{n_j + 1}
\]

\[
a_i^* = \prod_{j=1}^i \frac{n_j + 1}{n_j + 2}
\]

\[
S_i = \sum_{(\alpha: t(i+1) > t_\alpha > t(i))} z_\alpha z_{\alpha}'
\]

\[
x_i = 2z_{(i)} + \sum_{(\alpha: t(i+1) > t_\alpha > t(i))} z_\alpha
\]
In the case of tied failure times, the statistics v are averaged over the possible orderings of the tied failure times. The covariance matrices are also averaged over the tied failure times. Averaging the covariance matrices over the tied orderings produces functions with appropriate symmetries for the tied observations; however, the actual variances of the v statistics would be smaller than the preceding estimates. Unless the proportion of ties is large, it is unlikely that this will be a problem.

The univariate tests for each covariate are formed from each component of v and the corresponding diagonal element of V as v_i^2 / V_{ii}. These statistics are treated as coming from a chi-square distribution for calculation of probability values.

The statistic $v'V^{-1}v$ is computed by sweeping each pivot of the V matrix in the order of greatest increase to the statistic. The corresponding sequence of partial statistics is tabulated. Sequential increments for including a given covariate and the corresponding probabilities are also included in the same table. These probabilities are calculated as the tail probabilities of a chi-square distribution with one degree of freedom. Because of the selection process, these probabilities should not be interpreted as p-values.

If desired for data screening purposes, the output data set requested by the OUTTEST= option can be treated as a sum of squares and crossproducts matrix and processed by the REG procedure by using the option METHOD=RSQUARE. Then the sets of variables of a given size can be found that give the largest test statistics. Output 51.1 illustrates this process.

Computer Resources

The data are first read and sorted into strata. If the data are originally sorted by failure time and censoring state, with smaller failure times coming first and event values preceding censored values in cases of ties, the data can be processed by strata without additional sorting. Otherwise, the data are read into memory by strata and sorted.

Memory Requirements

For a given BY group, define the following:

- N: the total number of observations
- V: the number of STRATA variables
- C: the number of covariates listed in the TEST statement
- L: total length of the ID variables in bytes
- S: number of strata
- n: maximum number of observations within strata
The memory, in bytes, required to process the BY group is at least
\[m_1 + \max(m_2, m_3) + m_4 \]

The test of equality of survival functions across strata requires additional memory (\(m_5 \) bytes). However, if this additional memory is not available, PROC LIFETEST skips the test for equality of survival functions and finishes the other computations. Additional memory is required for the PLOTS= option. Temporary storage of \(16n \) bytes is required to store the product-limit estimates for plotting.

Output Data Sets

OUTSURV= Data Set

You can specify the OUTSURV= option in the PROC LIFETEST statement to create an output data set that contains the following columns:

- any specified BY variables
- any specified STRATA variables, their values coming from either their original values or the midpoints of the stratum intervals if endpoints are used to define strata (semi-infinite intervals are labeled by their finite endpoint)
- STRATUM, a numeric variable that numbers the strata
- the time variable as given in the TIME statement. For METHOD=KM, METHOD=BRESLOW, or METHOD=FH, it contains the observed failure or censored times. For the life-table estimates, it contains the lower endpoints of the time intervals.
- SURVIVAL, a variable that contains the survivor function estimates
- CONFTYPE, a variable that contains the name of the transformation applied to the survival time in the computation of confidence intervals (if the OUT= option is specified in the SURVIVAL statement)
- SDF_LCL, a variable that contains the lower limits of the pointwise confidence intervals for the survivor function
- SDF_UCL, a variable that contains the upper limits of the pointwise confidence intervals for the survivor function
If the estimation uses the product-limit, Breslow, or Fleming-Harrington method, then the data set also contains the following:

- `_CENSOR_`, an indicator variable that has a value 1 for a censored observation and a value 0 for an event observation
- `SDF_STDERR`, a variable that contains the standard error of the survivor function estimator (if the `STDERR` option is specified in the `PROC LIFETEST` statement)
- `HW_LCL`, a variable that contains the lower limits of the Hall-Wellner confidence bands (if the `CONF=BAND=HW` option or the `CONF=BAND=ALL` option is specified in the `PROC LIFETEST` statement)
- `HW_UCL`, a variable that contains the upper limits of the Hall-Wellner confidence bands (if the `CONF=BAND=HW` option or the `CONF=BAND=ALL` option is specified in the `PROC LIFETEST` statement)
- `EP_LCL`, a variable that contains the lower limits of the equal-precision confidence bands (if the `CONF=BAND=EP` option or the `CONF=BAND=ALL` option is specified in the `PROC LIFETEST` statement)
- `EP_UCL`, a variable that contains the upper limits of the equal-precision confidence bands (if the `CONF=BAND=EP` option or the `CONF=BAND=ALL` option is specified in the `PROC LIFETEST` statement)

If the estimation uses the life-table method, then the data set also contains the following:

- `MIDPOINT`, a variable that contains the value of the midpoint of the time interval
- `PDF`, a variable that contains the density function estimates
- `PDF_LCL`, a variable that contains the lower endpoints of the PDF confidence intervals
- `PDF_UCL`, a variable that contains the upper endpoints of the PDF confidence intervals
- `HAZARD`, a variable that contains the hazard estimates
- `HAZ_LCL`, a variable that contains the lower endpoints of the hazard confidence intervals
- `HAZ_UCL`, a variable that contains the upper endpoints of the hazard confidence intervals

Each survival function contains an initial observation with the value 1 for the SDF and the value 0 for the time. The output data set contains an observation for each distinct failure time if the product-limit, Breslow, or Fleming-Harrington method is used, or it contains an observation for each time interval if the life-table method is used. The product-limit, Breslow, or Fleming-Harrington survival estimates are defined to be right continuous; that is, the estimates at a given time include the factor for the failure events that occur at that time.

Labels are assigned to all the variables in the output data set except the BY variable and the STRATA variable.
OUTTEST= Data Set

The OUTTEST= option in the LIFETEST statement creates an output data set that contains the rank statistics for testing the association of failure time with covariates. It contains the following:

- any specified BY variables
- _TYPE_, a character variable of length 8 that labels the type of rank test, either “LOG-RANK” or “WILCOXON”
- _NAME_, a character variable of length 8 that labels the rows of the covariance matrix and the test statistics
- the TIME variable, containing the overall test statistic in the observation that has _NAME_ equal to the name of the time variable and the univariate test statistics under their respective covariates.
- all variables listed in the TEST statement

The output is in the form of a symmetric matrix formed by the covariance matrix of the rank statistics bordered by the rank statistics and the overall chi-square statistic. If the value of _NAME_ is the name of a variable in the TEST statement, the observation contains a row of the covariance matrix and the value of the rank statistic in the time variable. If the value of _NAME_ is the name of the TIME variable, the observation contains the values of the rank statistics in the variables from the TEST list and the value of the overall chi-square test statistic in the TIME variable.

Two complete sets of statistics labeled by the _TYPE_ variable are produced, one for the log-rank test and one for the Wilcoxon test.

Displayed Output

If you use the NOPRINT option in the PROC LIFETEST statement, the procedure does not display any output.

Product-Limit Survival Estimates

The “Product-Limit Survival Estimates” table is displayed if you request the product-limit method of estimation. The table displays the following:

- the observed (event or censored) time
- the number of units at risk (if you specify the ATRISK option in the PROC LIFETEST statement)
- the number of events (if you specify the ATRISK option in the PROC LIFETEST statement)
- the product-limit estimate of the survivor function
• the corresponding estimate of the cumulative distribution function of the failure time
• the standard error estimate of the survivor function estimator
• the Nelson-Aalen cumulative hazard function estimate (if the NELSON option is specified in the PROC LIFETEST statement)
• the standard error of the Nelson-Aalen estimator (if the NELSON option is specified in the PROC LIFETEST statement)
• the number of event times that have been observed
• the number of event or censored times that remain to be observed
• the frequency of the observed times (if you specify the FREQ statement)
• values of the ID variables (if you specify the ID statement)

For ODS purposes, the name of this table is “ProductLimitEstimates.”

Breslow Survival Estimates

The “Breslow Survival Estimates” table is displayed if you request the Breslow method of estimation. The table displays the following:

• the observed (event or censored) time
• the number of units at risk (if you specify the ATRISK option in the PROC LIFETEST statement)
• the number of events (if you specify the ATRISK option in the PROC LIFETEST statement)
• the Breslow estimate of the survivor function
• the corresponding estimate of the cumulative distribution function of the failure time
• the standard error estimate of the survivor function estimator
• the Nelson-Aalen cumulative hazard function estimate (if the NELSON option is specified in the PROC LIFETEST statement)
• the standard error of the Nelson-Aalen estimator (if the NELSON option is specified in the PROC LIFETEST statement)
• the number of event times that have been observed
• the number of event or censored times that remain to be observed
• the frequency of the observed times (if you specify the FREQ statement)
• values of the ID variables (if you specify the ID statement)

For ODS purposes, the name of this table is “BreslowEstimates.”
Fleming-Harrington Survival Estimates

The “Fleming-Harrington Survival Estimates” table is displayed if you request the Fleming-Harrington method of estimation. The table displays the following:

- the observed (event or censored) time
- the number of units at risk (if you specify the ATRISK option in the PROC LIFETEST statement)
- the number of events (if you specify the ATRISK option in the PROC LIFETEST statement)
- the Fleming-Harrington estimate of the survivor function
- the corresponding estimate of the cumulative distribution function of the failure time
- the standard error estimate of the survivor function estimator
- the Nelson-Aalen cumulative hazard function estimate (if the NELSON option is specified in the PROC LIFETEST statement)
- the standard error of the Nelson-Aalen estimator (if the NELSON option is specified in the PROC LIFETEST statement)
- the number of event times that have been observed
- the number of event or censored times that remain to be observed
- the frequency of the observed times (if you specify the FREQ statement)
- values of the ID variables (if you specify the ID statement)

For ODS purposes, the name of this table is “FlemingEstimates.”

Quartile Estimates

The “Quartiles Estimates” table is displayed if you request the product-limit, Breslow, or Fleming-Harrington method of estimation. The table displays the following:

- point estimates of the quartiles of the survival times
- the lower and upper confidence limits for the quartiles

For ODS purposes, the name of this table is “Quartiles.”
Mean Estimate

The “Mean Estimate” table is displayed if you request the product-limit, Breslow, or Fleming-Harrington method of estimation. The table displays the following:

- the estimated mean survival time
- the estimated standard error of the mean estimator

For ODS purposes, the name of this table is “Means.”

Life-Table Survival Estimates

The “Life-Table Survival Estimates” table is displayed if you request the life-table method of estimation. The table displays the following:

- the time intervals into which the failure and censored times are distributed. Each interval is from the lower limit, up to but not including the upper limit; if the upper limit is infinity, the missing value is printed.
- the number of events that occur in the interval
- the number of censored observations that fall into the interval
- the effective sample size for the interval
- the estimate of conditional probability of events (failures) in the interval
- the standard error of the conditional probability estimator
- the estimate of the survival function at the beginning of the interval
- the estimate of the cumulative distribution function of the failure time at the beginning of the interval
- the standard error estimate of the survivor function estimator
- the estimate of the median residual lifetime, which is the amount of time elapsed before reducing the number of at-risk units to one-half. This is also known as the median future lifetime in Elandt-Johnson and Johnson (1980)).
- the estimated standard error of the median residual lifetime estimator
- the density function estimated at the midpoint of the interval
- the standard error estimate of the density estimator
- the hazard rate estimated at the midpoint of the interval
- the standard error estimate of the hazard estimator

For ODS purposes, the name of this table is “LifetableEstimates.”
Summary of the Number of Censored and Uncensored Values

The “Summary of the Number of Censored and Uncensored Values” table displays following:

- the stratum identification (if the STRATA statement is specified)
- the total number of observations
- the number of event observations
- the number of censored observations
- the percentage of censored observations

For ODS purposes, the name of this table is “CensoredSummary.”

Rank Statistics

The “Rank Statistics” table contains the test statistics of the nonparametric k-sample tests. For ODS purposes, the name of this table is “HomStats.”

Covariance Matrix for the Log-Rank Statistics

The “Covariance Matrix for the Log-Rank Statistics” table is displayed if the log-rank k-sample test is requested. For ODS purposes, the name of this table is “LogrankHomCov.”

Covariance Matrix for the Wilcoxon Statistics

The “Covariance Matrix for the Wilcoxon Statistics” table is displayed if the Wilcoxon k-sample test is requested. For ODS purposes, the name of this table is “WilHomCov.”

Covariance Matrix for the Tarone Statistics

The “Covariance Matrix for the Tarone Statistics” table is displayed if the Tarone-Ware k-sample test is requested. For ODS purposes, the name of this table is “TaroneHomCov.”

Covariance Matrix for the Peto Statistics

The “Covariance Matrix for the Peto Statistics” table is displayed if the Peto-Peto k-sample test is requested. For ODS purposes, the name of this table is “PetoHomCov.”
Covariance Matrix for the ModPeto Statistics

The “Covariance Matrix for the ModPeto Statistics” table is displayed if the modified Peto-Peto k-sample test is requested. For ODS purposes, the name of this table is “ModPetoHomCov.”

Covariance Matrix for the Fleming Statistics

The “Covariance Matrix for the Fleming Statistics” table is displayed if the Fleming-Harrington k-sample test is requested. For ODS purposes, the name of this table is “FlemingHomCov.”

Test of Equality over Strata

The “Test of Equality over Strata” table is displayed if an unstratified k-sample test is carried out. The table contains the chi-square statistics, degrees of freedom, and p-values of the nonparametric tests and the likelihood ratio test (which is based on the exponential distribution). For ODS purposes, the name of this table is “HomTests.”

Stratified Test of Equality over Group

The “Stratified Test of Equality over Group” table is displayed if a stratified test is carried out. The table contains the chi-square statistics, degrees of freedom, and p-values of the stratified tests. For ODS purposes, the name of this table is “HomTests.”

Scores for Trend Test

The “Scores for Trend Test” table is displayed if the TREND option is specified in the STRATA statement. The table contains the set of scores used to construct the trend tests. For ODS purposes, the name of this table is “TrendScores.”

Trend Tests

The “Trend Tests” table is displayed if the TREND option is specified in the STRATA statement. The table contains the results of the trend tests. For ODS purposes, the name of this table is “TrendTests.”

Adjustment for Multiple Comparisons for the Log-Rank Test

The “Adjustment for Multiple Comparisons for the Log-Rank Test” table is displayed if the log-rank test and a multiple-comparison adjustment method are specified. The table contains the chi-square statistics and the raw and adjusted p-values of the paired comparisons. For ODS purposes, the name of this table is “SurvDiff.”
Adjustment for Multiple Comparisons for the Wilcoxon Test

The “Adjustment for Multiple Comparisons for the Wilcoxon Test” table is displayed if the Wilcoxon test and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and adjusted p-values of the paired comparisons. For ODS purposes, the name of this table is “SurvDiff.”

Adjustment for Multiple Comparisons for the Tarone Test

The “Adjustment for Multiple Comparisons for the Tarone Test” table is displayed if the Tarone-Ware test and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and adjusted p-values of the paired comparisons. For ODS purposes, the name of this table is “SurvDiff.”

Adjustment for Multiple Comparisons for the Peto Test

The “Adjustment for Multiple Comparisons for the Peto Test” table is displayed if the Peto-Peto test and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and adjusted p-values of the paired comparisons. For ODS purposes, the name of this table is “SurvDiff.”

Adjustment for Multiple Comparisons for the ModPeto Test

The “Adjustment for Multiple Comparisons for the ModPeto Test” table is displayed if the modified Peto-Peto test and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and adjusted p-values of the paired comparisons. For ODS purposes, the name of this table is “SurvDiff.”

Adjustment for Multiple Comparisons for the Fleming Test

The “Adjustment for Multiple Comparisons for the Fleming Test” table is displayed if the Fleming-Harrington test and a multiple-comparison method are specified. The table contains the chi-square statistics and the raw and adjusted p-values of the paired comparisons. For ODS purposes, the name of this table is “SurvDiff.”

Univariate Chi-Squares for the Log-Rank Test

The “Univariate Chi-Squares for the Log-Rank Test” table is displayed if the TEST statement is specified. The table displays the log-rank test results for individual variables in the TEST statement. For ODS purposes, the name of this table is “LogUniChiSq.”
Covariance Matrix of the Log-Rank Statistics

The “Covariance Matrix of the Log-Rank Statistics” table is displayed if the TEST statement is specified. The table displays the estimated covariance matrix of the log-rank statistics for association. For ODS purposes, the name of this table is “LogTestCov.”

Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test

The “Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test” table is displayed if the TEST statement is specified. The table contains the sequence of partial chi-square statistics for the log-rank test in the order of the greatest increase to the overall test statistic, the degrees of freedom of the partial chi-square statistics, the approximate probability values of the partial chi-square statistics, the chi-square increments for including the given variables, and the probability values of the chi-square increments. For ODS purposes, the name of this table is “LogForStepSeq.”

Univariate Chi-Squares for the Wilcoxon Test

The “Univariate Chi-Squares for the Wilcoxon Test” table displays the Wilcoxon test results for individual variables in the TEST statement. For ODS purposes, the name of this table is “WilUniChiSq.”

Covariance Matrix of the Wilcoxon Statistics

The “Covariance Matrix of the Wilcoxon Statistics” table is displayed if the TEST statement is specified. The table displays the estimated covariance matrix of the Wilcoxon statistics for association. For ODS purposes, the name of this table is “WilTestCov.”

Forward Stepwise Sequence of Chi-Squares for the Wilcoxon Test

The “Forward Stepwise Sequence of Chi-Squares for the Wilcoxon Test” table is displayed if the TEST statement is specified. The table contains the sequence of partial chi-square statistics for the Wilcoxon test in the order of the greatest increase to the overall test statistic, the degrees of freedom of the partial chi-square statistics, the approximate probability values of the partial chi-square statistics, the chi-square increments for including the given variables, and the probability values of the chi-square increments. For ODS purposes, the name of this table is “WilForStepSeq.”

ODS Table Names

PROC LIFETEST assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 51.5. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
Table 51.5 ODS Tables Produced by PROC LIFETEST

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement / Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>BreslowEstimates</td>
<td>Breslow estimates</td>
<td>PROC LIFETEST METHOD=B</td>
</tr>
<tr>
<td>CensoredSummary</td>
<td>Number of event and censored observations</td>
<td>PROC LIFETEST METHOD=PL B</td>
</tr>
<tr>
<td>FlemingEstimates</td>
<td>Fleming-Harrington estimates</td>
<td>PROC LIFETEST METHOD=FH</td>
</tr>
<tr>
<td>FlemingHomCov</td>
<td>Covariance matrix for (k)-sample FLEMING statistics</td>
<td>STRATA / TEST=FLEMING</td>
</tr>
<tr>
<td>HomStats</td>
<td>Test statistics for (k)-sample tests</td>
<td>STRATA / TEST=</td>
</tr>
<tr>
<td>HomTests</td>
<td>Results of (k)-sample tests</td>
<td>STRATA / TEST=</td>
</tr>
<tr>
<td>LifetableEstimates</td>
<td>Life-table survival estimates</td>
<td>PROC LIFETEST METHOD=LT</td>
</tr>
<tr>
<td>LogForStepSeq</td>
<td>Forward stepwise sequence for the log-rank statistics for association</td>
<td>TEST</td>
</tr>
<tr>
<td>LogHomCov</td>
<td>Covariance matrix for (k)-sample LOGRANK statistics</td>
<td>STRATA / TEST=LOGRANK</td>
</tr>
<tr>
<td>LogTestCov</td>
<td>Covariance matrix for log-rank statistics for association</td>
<td>TEST</td>
</tr>
<tr>
<td>LogUniChisq</td>
<td>Univariate chi-squares for log-rank statistics for association</td>
<td>TEST</td>
</tr>
<tr>
<td>Means</td>
<td>Mean and standard error of survival times</td>
<td>PROC LIFETEST METHOD=PL</td>
</tr>
<tr>
<td>ModPetoHomCov</td>
<td>Covariance matrix for (k)-sample MODPETO statistics</td>
<td>STRATA / TEST=MODPETO</td>
</tr>
<tr>
<td>PetoHomCov</td>
<td>Covariance matrix for (k)-sample PETO statistics</td>
<td>STRATA / TEST=PETO</td>
</tr>
<tr>
<td>ProductLimitEstimates</td>
<td>Product-limit survival estimates</td>
<td>PROC LIFETEST METHOD=PL</td>
</tr>
<tr>
<td>Quartiles</td>
<td>Quartiles of the survival times</td>
<td>PROC LIFETEST METHOD=PL</td>
</tr>
<tr>
<td>SurvDiff</td>
<td>Adjustments for multiple comparisons</td>
<td>STRATA / ADJUST= and DIFF=</td>
</tr>
<tr>
<td>TaroneHomCov</td>
<td>Covariance matrix for (k)-sample TARONE statistics</td>
<td>STRATA / TEST=TARONE</td>
</tr>
<tr>
<td>TrendScores</td>
<td>Scores used to construct trend tests</td>
<td>STRATA / TREND</td>
</tr>
<tr>
<td>TrendTests</td>
<td>Results of trend tests</td>
<td>STRATA / TREND</td>
</tr>
<tr>
<td>WilForStepSeq</td>
<td>Forward stepwise sequence for the log-rank statistics for association</td>
<td>TEST</td>
</tr>
<tr>
<td>WilHomCov</td>
<td>Covariance matrix for (k)-sample WILCOXON statistics</td>
<td>STRATA / TEST=WILCOXON</td>
</tr>
<tr>
<td>WilTestCov</td>
<td>Covariance matrix for log-rank statistics for association</td>
<td>TEST</td>
</tr>
</tbody>
</table>
ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 608 in Chapter 21, “Statistical Graphics Using ODS.”

The survival plot is produced by default; other graphs are produced by using the PLOTS= option in the PROC LIFETEST statement. You can reference every graph produced through ODS Graphics with a name. The names of the graphs that PROC LIFETEST generates are listed in Table 51.6, along with the required keywords for the PLOTS= option.

<table>
<thead>
<tr>
<th>Table 51.6 Graphs Produced by PROC LIFETEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS Graph Name</td>
</tr>
<tr>
<td>DensityPlot</td>
</tr>
<tr>
<td>FailurePlot</td>
</tr>
<tr>
<td>HazardPlot</td>
</tr>
<tr>
<td>LogNegLogSurvivalPlot</td>
</tr>
<tr>
<td>NegLogSurvivalPlot</td>
</tr>
<tr>
<td>SurvivalPlot</td>
</tr>
</tbody>
</table>
Table 51.6 continued

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>PLOTS=Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SurvivalPlot</td>
<td>Estimated survivor function with homogeneity test p-value</td>
<td>SURVIVAL(TEST)</td>
</tr>
</tbody>
</table>

Additional Dynamic Variables for Survival Plots Using ODS Graphics

PROC LIFETEST passes a number of summary statistics as dynamic variables to the ODS Graphics for survival plots. Table 51.7 and Table 51.8 list these additional dynamic variables for the Kaplan-Meier curves and the life-table curves, respectively. These dynamic variables are not declared in the templates for the survival curves, but you can declare them and use them to enhance the default plots. The names of the dynamic variables depend on the STRATA= suboption of the PLOTS=SURVIVAL option: STRATA=INDIVIDUAL produces a separate plot for each stratum, and STRATA=OVERALL produces one plot with overlaid curves.

<table>
<thead>
<tr>
<th>STRATA=</th>
<th>Dynamic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERLAY</td>
<td>StrValj</td>
<td>Label for the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>NObs(j_j)</td>
<td>Number of observations in the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>NEvent(j_j)</td>
<td>Number of events in the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>Median(j_j)</td>
<td>Median survival time of the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>LowerMedian(j_j)</td>
<td>Lower median survival time of the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>UpperMedian(j_j)</td>
<td>Upper median survival time of the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>PctMedianConfid</td>
<td>Confidence of the median intervals in percent</td>
</tr>
<tr>
<td>INDIVIDUAL</td>
<td>NObs</td>
<td>Number of observations</td>
</tr>
<tr>
<td></td>
<td>NEvent</td>
<td>Number of events</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>Median survival time</td>
</tr>
<tr>
<td></td>
<td>LowerMedian</td>
<td>Lower median survival time</td>
</tr>
<tr>
<td></td>
<td>UpperMedian</td>
<td>Upper median survival time</td>
</tr>
<tr>
<td></td>
<td>PctMedianConfid</td>
<td>Confidence of the median interval in percent</td>
</tr>
</tbody>
</table>

Table 51.8 Additional Dynamic Variables for Stat.Graphics.LifetableSurvival

<table>
<thead>
<tr>
<th>STRATA=</th>
<th>Dynamic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERLAY</td>
<td>StrValj</td>
<td>Label for the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>NObs(j_j)</td>
<td>Number of observations in the (j)th stratum</td>
</tr>
<tr>
<td></td>
<td>NEvent(j_j)</td>
<td>Number of events in the (j)th stratum</td>
</tr>
<tr>
<td>INDIVIDUAL</td>
<td>NObs</td>
<td>Number of observations</td>
</tr>
<tr>
<td></td>
<td>NEvent</td>
<td>Number of events</td>
</tr>
</tbody>
</table>

See the section “The Graph Template Language” on page 712 in Chapter 22, “ODS Graphics Template Modification,” for the general use of dynamic variables. For the use of the particular dynamic variables shown in this section, see the sections “Modifying the Layout and Adding a New Inset Table” on page 773 and “Displaying Survival Summary Statistics” on page 790 in Chapter 22, “ODS Graphics Template Modification.”
Modifying the ODS Template for Survival Plots

PROC LIFETEST, like other statistical procedures, provides a PLOTS= option and other options for modifying its output without requiring template changes. Those options are sufficient for most purposes. When those options are not sufficient, you can change a graph by changing the graph template. “Example 22.3: Customizing Survival Plots” on page 755 in Chapter 22, “ODS Graphics Template Modification,” shows how to find the name of the template, display the template by using PROC TEMPLATE and the SOURCE statement, and make a series of template changes.

The example consists of the following parts:

- **Modifying the plot title:** This part identifies the template, displays it, explains its overall structure, and modifies the titles. See the section “Modifying the Plot Title” on page 756 in Chapter 22, “ODS Graphics Template Modification.”

- **Modifying the axes:** This part explains the options that control the X and Y axes, and shows how to modify the ticks and axis labels. See the section “Modifying the Axes” on page 760 in Chapter 22, “ODS Graphics Template Modification.”

- **Creating a template that is easy to modify:** This part shows how you can reorganize and modularize the entire template to make it easy to customize in various ways. See the section “Creating a Template That is Easy to Modify” on page 763 in Chapter 22, “ODS Graphics Template Modification.”

- **Modifying the plot title in the revised template:** This part shows how to change the title by using the revised template. See the section “Modifying the Plot Title in the Revised Template” on page 769 in Chapter 22, “ODS Graphics Template Modification.”

- **Modifying the legend and inset table:** This part removes the small inset table and moves the legend inside the graph. The censoring information above the X axis is moved outside the graph. See the section “Modifying the Legend and Inset Table” on page 770 in Chapter 22, “ODS Graphics Template Modification.”

- **Modifying the layout and adding a new inset table:** This part moves the event and total information out of the graph and the legend in. It also moves the small inset table. See the section “Modifying the Layout and Adding a New Inset Table” on page 773 in Chapter 22, “ODS Graphics Template Modification.”

- **Changing line styles:** This part shows how to modify a style template to change line colors and styles. See the section “Changing Line Styles” on page 779 in Chapter 22, “ODS Graphics Template Modification.”

- **Changing fonts:** This part shows how to change the graph template and the style template to change some of the fonts that are used in the graph. See the section “Changing Fonts” on page 782 in Chapter 22, “ODS Graphics Template Modification.”

- **Changing how censored data are displayed:** This part shows how to change or remove the plus marks that are used to display censored observations. See the section “Changing How Censored Data Are Displayed” on page 787 in Chapter 22, “ODS Graphics Template Modification.”
• **Displaying survival summary statistics:** This part adds to the graph a table with event, censoring, and survival information. See the section “Displaying Survival Summary Statistics” on page 790 in Chapter 22, “ODS Graphics Template Modification.”

Examples: LIFETEST Procedure

Example 51.1: Product-Limit Estimates and Tests of Association

The data presented in Appendix I of Kalbfleisch and Prentice (1980) are coded in the following DATA step. The response variable, SurvTime, is the survival time in days of a lung cancer patient. Negative values of SurvTime are censored values. The covariates are Cell (type of cancer cell), Therapy (type of therapy: standard or test), Prior (prior therapy: 0=no, 10=yes), Age (age in years), DiagTime (time in months from diagnosis to entry into the trial), and Kps (performance status). A censoring indicator variable Censor is created from the data, with the value 1 indicating a censored time and the value 0 indicating an event time. Since there are only two types of therapy, an indicator variable, Treatment, is constructed for therapy type, with value 0 for standard therapy and value 1 for test therapy.

```sas
data VALung;
  drop check m;
  retain Therapy Cell;
  infile cards column=column;
  length Check $ 1;
  label SurvTime='failure or censoring time'
    Kps='karnofsky index'
    DiagTime='months till randomization'
    Age='age in years'
    Prior='prior treatment?'
    Cell='cell type'
    Therapy='type of treatment'
    Treatment='treatment indicator';
  M=Column;
  input Check $ @@;
  if M>Column then M=1;
  if Check='s'|Check='t' then input @M Therapy $ Cell $ ;
  else input @M SurvTime Kps DiagTime Age Prior @@;
  if SurvTime > .;
    censor=(SurvTime<0);
    SurvTime=abs(SurvTime);
    Treatment=(Therapy='test');
  datalines;
standard squamous
  72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10
118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
```

```sas```
Example 51.1: Product-Limit Estimates and Tests of Association

In the following statements, PROC LIFETEST is invoked to compute the product-limit estimate of the survivor function for each type of cancer cell and to analyze the effects of the variables Age, Prior, DiagTime, Kps, and Treatment on the survival of the patients. These prognostic factors are specified in the TEST statement, and the variable Cell is specified in the STRATA statement. ODS Graphics must be enabled before producing graphs. Graphical displays of the product-limit estimates (S), the negative log estimates (LS), and the log of negative log estimates (LLS) are requested through the PLOTS= option in the PROC LIFETEST statement. Because of a few large survival times, a MAXTIME of 600 is used to set the scale of the time axis; that is, the time scale extends from 0 to a maximum of 600 days in the plots. The variable Therapy is specified in the ID statement to identify the type of therapy for each observation in the product-limit estimates. The OUTTEST option specifies the creation of an output data set named Test to contain the rank test matrices for the covariates.

```
standard small
 30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
 13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
 59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
 22 60 4 68 0 56 80 12 43 10 21 40 2 55 0 52 70 2 55 0
 287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
 27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0
 139 80 2 64 0 20 30 5 67 0 31 75 3 65 0 52 70 2 55 0
 287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
 27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0
 392 40 4 68 0 10 40 23 67 10
standard adeno
 8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
 132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0
 95 80 4 34 0
standard large
 177 50 16 66 10 162 80 5 64 0 216 50 15 52 0 553 70 2 47 0
 278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
 156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
 103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
test squamous
 999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
 242 50 1 70 0 991 70 7 50 0 111 70 3 62 0 1 20 21 65 10
 587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
 357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0
 30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10
test small
 25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
 87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
 24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
 61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
 51 30 87 59 10 29 40 8 67 0
test adeno
 24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
 51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0
 8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0
 140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0
 45 40 3 69 0 80 40 4 63 0
test large
 52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
 15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0
 111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
```

;
odds graphics on;
proc lifetest data=VALung plots=(s,ls,lls) outtest=Test maxtime=600;
  time SurvTime*Censor(1);
  id Therapy;
  strata Cell;
  test Age Prior DiagTime Kps Treatment;
run;
ods graphics off;

Output 51.1.1 through Output 51.1.4 display the product-limit estimates of the survivor functions for the four cell types. Summary statistics of the survival times are also shown. The median survival times are 51 days, 156 days, 51 days, and 118 days for patients with adeno cells, large cells, small cells, and squamous cells, respectively.

Output 51.1.1 Estimation Results for Cell=adeno

<table>
<thead>
<tr>
<th>SurvTime</th>
<th>Survival</th>
<th>Failure</th>
<th>Standard Error</th>
<th>Number Failed</th>
<th>Number Left</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>3.000</td>
<td>0.9630</td>
<td>0.0370</td>
<td>0.0363</td>
<td>1</td>
<td>26</td>
<td>standard</td>
</tr>
<tr>
<td>7.000</td>
<td>0.9259</td>
<td>0.0741</td>
<td>0.0504</td>
<td>2</td>
<td>25</td>
<td>test</td>
</tr>
<tr>
<td>8.000</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>8.000</td>
<td>0.8519</td>
<td>0.1481</td>
<td>0.0684</td>
<td>4</td>
<td>23</td>
<td>test</td>
</tr>
<tr>
<td>12.000</td>
<td>0.8148</td>
<td>0.1852</td>
<td>0.0748</td>
<td>5</td>
<td>22</td>
<td>standard</td>
</tr>
<tr>
<td>18.000</td>
<td>0.7778</td>
<td>0.2222</td>
<td>0.0800</td>
<td>6</td>
<td>21</td>
<td>test</td>
</tr>
<tr>
<td>19.000</td>
<td>0.7407</td>
<td>0.2593</td>
<td>0.0843</td>
<td>7</td>
<td>20</td>
<td>test</td>
</tr>
<tr>
<td>24.000</td>
<td>0.7037</td>
<td>0.2963</td>
<td>0.0879</td>
<td>8</td>
<td>19</td>
<td>test</td>
</tr>
<tr>
<td>31.000</td>
<td>0.6667</td>
<td>0.3333</td>
<td>0.0907</td>
<td>9</td>
<td>18</td>
<td>test</td>
</tr>
<tr>
<td>35.000</td>
<td>0.6296</td>
<td>0.3704</td>
<td>0.0929</td>
<td>10</td>
<td>17</td>
<td>standard</td>
</tr>
<tr>
<td>36.000</td>
<td>0.5926</td>
<td>0.4074</td>
<td>0.0946</td>
<td>11</td>
<td>16</td>
<td>test</td>
</tr>
<tr>
<td>45.000</td>
<td>0.5556</td>
<td>0.4444</td>
<td>0.0956</td>
<td>12</td>
<td>15</td>
<td>test</td>
</tr>
<tr>
<td>48.000</td>
<td>0.5185</td>
<td>0.4815</td>
<td>0.0962</td>
<td>13</td>
<td>14</td>
<td>test</td>
</tr>
<tr>
<td>51.000</td>
<td>0.4815</td>
<td>0.5185</td>
<td>0.0962</td>
<td>14</td>
<td>13</td>
<td>test</td>
</tr>
<tr>
<td>52.000</td>
<td>0.4444</td>
<td>0.5556</td>
<td>0.0956</td>
<td>15</td>
<td>12</td>
<td>test</td>
</tr>
<tr>
<td>73.000</td>
<td>0.4074</td>
<td>0.5926</td>
<td>0.0946</td>
<td>16</td>
<td>11</td>
<td>test</td>
</tr>
<tr>
<td>80.000</td>
<td>0.3704</td>
<td>0.6296</td>
<td>0.0929</td>
<td>17</td>
<td>10</td>
<td>test</td>
</tr>
<tr>
<td>83.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>17</td>
<td>test</td>
</tr>
<tr>
<td>84.000</td>
<td>0.3292</td>
<td>0.6708</td>
<td>0.0913</td>
<td>18</td>
<td>8</td>
<td>test</td>
</tr>
<tr>
<td>90.000</td>
<td>0.2881</td>
<td>0.7119</td>
<td>0.0887</td>
<td>19</td>
<td>7</td>
<td>test</td>
</tr>
<tr>
<td>92.000</td>
<td>0.2469</td>
<td>0.7531</td>
<td>0.0850</td>
<td>20</td>
<td>6</td>
<td>standard</td>
</tr>
<tr>
<td>95.000</td>
<td>0.2058</td>
<td>0.7942</td>
<td>0.0802</td>
<td>21</td>
<td>5</td>
<td>standard</td>
</tr>
<tr>
<td>117.000</td>
<td>0.1646</td>
<td>0.8354</td>
<td>0.0740</td>
<td>22</td>
<td>4</td>
<td>standard</td>
</tr>
<tr>
<td>132.000</td>
<td>0.1235</td>
<td>0.8765</td>
<td>0.0659</td>
<td>23</td>
<td>3</td>
<td>standard</td>
</tr>
<tr>
<td>140.000</td>
<td>0.0823</td>
<td>0.9177</td>
<td>0.0553</td>
<td>24</td>
<td>2</td>
<td>test</td>
</tr>
<tr>
<td>162.000</td>
<td>0.0412</td>
<td>0.9588</td>
<td>0.0401</td>
<td>25</td>
<td>1</td>
<td>standard</td>
</tr>
<tr>
<td>186.000</td>
<td>0</td>
<td>1.0000</td>
<td>.</td>
<td>.</td>
<td>26</td>
<td>test</td>
</tr>
</tbody>
</table>

NOTE: The marked survival times are censored observations.
## Output 51.1.2  Estimation Results for Cell=large

The **LIFETEST** Procedure

**Stratum 2: Cell = large**

**Product-Limit Survival Estimates**

<table>
<thead>
<tr>
<th>SurvTime</th>
<th>Survival</th>
<th>Failure</th>
<th>Error</th>
<th>Number Failed</th>
<th>Number Left</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>12.000</td>
<td>0.9630</td>
<td>0.0370</td>
<td>0.0363</td>
<td>1</td>
<td>26</td>
<td>standard</td>
</tr>
<tr>
<td>15.000</td>
<td>0.9259</td>
<td>0.0741</td>
<td>0.0604</td>
<td>2</td>
<td>25</td>
<td>test</td>
</tr>
<tr>
<td>19.000</td>
<td>0.8889</td>
<td>0.1111</td>
<td>0.0505</td>
<td>3</td>
<td>24</td>
<td>test</td>
</tr>
<tr>
<td>43.000</td>
<td>0.8519</td>
<td>0.1481</td>
<td>0.0684</td>
<td>4</td>
<td>23</td>
<td>test</td>
</tr>
<tr>
<td>49.000</td>
<td>0.8148</td>
<td>0.1852</td>
<td>0.0748</td>
<td>5</td>
<td>22</td>
<td>test</td>
</tr>
<tr>
<td>52.000</td>
<td>0.7778</td>
<td>0.2222</td>
<td>0.0800</td>
<td>6</td>
<td>21</td>
<td>test</td>
</tr>
<tr>
<td>53.000</td>
<td>0.7407</td>
<td>0.2593</td>
<td>0.0843</td>
<td>7</td>
<td>20</td>
<td>test</td>
</tr>
<tr>
<td>100.000</td>
<td>0.7037</td>
<td>0.2963</td>
<td>0.0879</td>
<td>8</td>
<td>19</td>
<td>standard</td>
</tr>
<tr>
<td>103.000</td>
<td>0.6667</td>
<td>0.3333</td>
<td>0.0907</td>
<td>9</td>
<td>18</td>
<td>standard</td>
</tr>
<tr>
<td>105.000</td>
<td>0.6296</td>
<td>0.3704</td>
<td>0.0929</td>
<td>10</td>
<td>17</td>
<td>standard</td>
</tr>
<tr>
<td>111.000</td>
<td>0.5926</td>
<td>0.4074</td>
<td>0.0946</td>
<td>11</td>
<td>16</td>
<td>test</td>
</tr>
<tr>
<td>133.000</td>
<td>0.5556</td>
<td>0.4444</td>
<td>0.0956</td>
<td>12</td>
<td>15</td>
<td>test</td>
</tr>
<tr>
<td>143.000</td>
<td>0.5185</td>
<td>0.4815</td>
<td>0.0962</td>
<td>13</td>
<td>14</td>
<td>standard</td>
</tr>
<tr>
<td>156.000</td>
<td>0.4815</td>
<td>0.5185</td>
<td>0.0962</td>
<td>14</td>
<td>13</td>
<td>standard</td>
</tr>
<tr>
<td>162.000</td>
<td>0.4444</td>
<td>0.5556</td>
<td>0.0956</td>
<td>15</td>
<td>12</td>
<td>standard</td>
</tr>
<tr>
<td>164.000</td>
<td>0.4074</td>
<td>0.5926</td>
<td>0.0946</td>
<td>16</td>
<td>11</td>
<td>test</td>
</tr>
<tr>
<td>177.000</td>
<td>0.3704</td>
<td>0.6296</td>
<td>0.0929</td>
<td>17</td>
<td>10</td>
<td>standard</td>
</tr>
<tr>
<td>182.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>17</td>
<td>9</td>
<td>standard</td>
</tr>
<tr>
<td>200.000</td>
<td>0.3292</td>
<td>0.6708</td>
<td>0.0913</td>
<td>18</td>
<td>8</td>
<td>standard</td>
</tr>
<tr>
<td>216.000</td>
<td>0.2881</td>
<td>0.7119</td>
<td>0.0887</td>
<td>19</td>
<td>7</td>
<td>standard</td>
</tr>
<tr>
<td>231.000</td>
<td>0.2469</td>
<td>0.7531</td>
<td>0.0850</td>
<td>20</td>
<td>6</td>
<td>test</td>
</tr>
<tr>
<td>250.000</td>
<td>0.2058</td>
<td>0.7942</td>
<td>0.0802</td>
<td>21</td>
<td>5</td>
<td>standard</td>
</tr>
<tr>
<td>260.000</td>
<td>0.1646</td>
<td>0.8354</td>
<td>0.0740</td>
<td>22</td>
<td>4</td>
<td>standard</td>
</tr>
<tr>
<td>278.000</td>
<td>0.1235</td>
<td>0.8765</td>
<td>0.0659</td>
<td>23</td>
<td>3</td>
<td>standard</td>
</tr>
<tr>
<td>340.000</td>
<td>0.0823</td>
<td>0.9177</td>
<td>0.0553</td>
<td>24</td>
<td>2</td>
<td>test</td>
</tr>
<tr>
<td>378.000</td>
<td>0.0412</td>
<td>0.9588</td>
<td>0.0401</td>
<td>25</td>
<td>1</td>
<td>test</td>
</tr>
<tr>
<td>553.000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>.</td>
<td>26</td>
<td>0</td>
<td>standard</td>
</tr>
</tbody>
</table>

*NOTE: The marked survival times are censored observations.*
### Output 51.1.3  Estimation Results for Cell=small

The LIFETEST Procedure

Stratum 3: Cell = small

Product-Limit Survival Estimates

<table>
<thead>
<tr>
<th>SurvTime</th>
<th>Survival</th>
<th>Failure</th>
<th>Error</th>
<th>Number Failed</th>
<th>Number Left</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2.000</td>
<td>0.9792</td>
<td>0.0208</td>
<td>0.0206</td>
<td>1</td>
<td>47</td>
<td>test</td>
</tr>
<tr>
<td>4.000</td>
<td>0.9583</td>
<td>0.0417</td>
<td>0.0288</td>
<td>2</td>
<td>46</td>
<td>standard</td>
</tr>
<tr>
<td>7.000</td>
<td>.</td>
<td>.</td>
<td>0.0206</td>
<td>3</td>
<td>45</td>
<td>standard</td>
</tr>
<tr>
<td>7.000</td>
<td>0.9167</td>
<td>0.0833</td>
<td>0.0399</td>
<td>4</td>
<td>44</td>
<td>test</td>
</tr>
<tr>
<td>8.000</td>
<td>0.8958</td>
<td>0.1042</td>
<td>0.0441</td>
<td>5</td>
<td>43</td>
<td>test</td>
</tr>
<tr>
<td>10.000</td>
<td>0.8750</td>
<td>0.1250</td>
<td>0.0477</td>
<td>6</td>
<td>42</td>
<td>standard</td>
</tr>
<tr>
<td>13.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>7</td>
<td>41</td>
<td>standard</td>
</tr>
<tr>
<td>13.000</td>
<td>0.8333</td>
<td>0.1667</td>
<td>0.0538</td>
<td>8</td>
<td>40</td>
<td>test</td>
</tr>
<tr>
<td>16.000</td>
<td>0.8125</td>
<td>0.1875</td>
<td>0.0563</td>
<td>9</td>
<td>39</td>
<td>standard</td>
</tr>
<tr>
<td>18.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>10</td>
<td>38</td>
<td>standard</td>
</tr>
<tr>
<td>18.000</td>
<td>0.7708</td>
<td>0.2292</td>
<td>0.0607</td>
<td>11</td>
<td>37</td>
<td>standard</td>
</tr>
<tr>
<td>20.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>12</td>
<td>36</td>
<td>standard</td>
</tr>
<tr>
<td>20.000</td>
<td>0.7292</td>
<td>0.2708</td>
<td>0.0641</td>
<td>13</td>
<td>35</td>
<td>test</td>
</tr>
<tr>
<td>21.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>14</td>
<td>34</td>
<td>standard</td>
</tr>
<tr>
<td>21.000</td>
<td>0.6875</td>
<td>0.3125</td>
<td>0.0669</td>
<td>15</td>
<td>33</td>
<td>test</td>
</tr>
<tr>
<td>22.000</td>
<td>0.6667</td>
<td>0.3333</td>
<td>0.0680</td>
<td>16</td>
<td>32</td>
<td>standard</td>
</tr>
<tr>
<td>24.000</td>
<td>0.6458</td>
<td>0.3542</td>
<td>0.0690</td>
<td>17</td>
<td>31</td>
<td>test</td>
</tr>
<tr>
<td>25.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>18</td>
<td>30</td>
<td>test</td>
</tr>
<tr>
<td>25.000</td>
<td>0.6042</td>
<td>0.3958</td>
<td>0.0706</td>
<td>19</td>
<td>29</td>
<td>test</td>
</tr>
<tr>
<td>27.000</td>
<td>0.5833</td>
<td>0.4167</td>
<td>0.0712</td>
<td>20</td>
<td>28</td>
<td>standard</td>
</tr>
<tr>
<td>29.000</td>
<td>0.5625</td>
<td>0.4375</td>
<td>0.0716</td>
<td>21</td>
<td>27</td>
<td>test</td>
</tr>
<tr>
<td>30.000</td>
<td>0.5417</td>
<td>0.4583</td>
<td>0.0719</td>
<td>22</td>
<td>26</td>
<td>standard</td>
</tr>
<tr>
<td>31.000</td>
<td>0.5208</td>
<td>0.4792</td>
<td>0.0721</td>
<td>23</td>
<td>25</td>
<td>test</td>
</tr>
<tr>
<td>51.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>24</td>
<td>24</td>
<td>standard</td>
</tr>
<tr>
<td>51.000</td>
<td>0.4792</td>
<td>0.5208</td>
<td>0.0721</td>
<td>25</td>
<td>23</td>
<td>test</td>
</tr>
<tr>
<td>52.000</td>
<td>0.4583</td>
<td>0.5417</td>
<td>0.0719</td>
<td>26</td>
<td>22</td>
<td>standard</td>
</tr>
<tr>
<td>54.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>27</td>
<td>21</td>
<td>standard</td>
</tr>
<tr>
<td>54.000</td>
<td>0.4167</td>
<td>0.5833</td>
<td>0.0712</td>
<td>28</td>
<td>20</td>
<td>standard</td>
</tr>
<tr>
<td>56.000</td>
<td>0.3958</td>
<td>0.6042</td>
<td>0.0706</td>
<td>29</td>
<td>19</td>
<td>standard</td>
</tr>
<tr>
<td>59.000</td>
<td>0.3750</td>
<td>0.6250</td>
<td>0.0699</td>
<td>30</td>
<td>18</td>
<td>standard</td>
</tr>
<tr>
<td>61.000</td>
<td>0.3542</td>
<td>0.6458</td>
<td>0.0690</td>
<td>31</td>
<td>17</td>
<td>test</td>
</tr>
<tr>
<td>63.000</td>
<td>0.3333</td>
<td>0.6667</td>
<td>0.0680</td>
<td>32</td>
<td>16</td>
<td>standard</td>
</tr>
<tr>
<td>80.000</td>
<td>0.3125</td>
<td>0.6875</td>
<td>0.0669</td>
<td>33</td>
<td>15</td>
<td>test</td>
</tr>
<tr>
<td>87.000</td>
<td>0.2917</td>
<td>0.7083</td>
<td>0.0656</td>
<td>34</td>
<td>14</td>
<td>test</td>
</tr>
<tr>
<td>95.000</td>
<td>0.2708</td>
<td>0.7292</td>
<td>0.0641</td>
<td>35</td>
<td>13</td>
<td>test</td>
</tr>
<tr>
<td>97.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>35</td>
<td>12</td>
<td>standard</td>
</tr>
<tr>
<td>99.000</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>36</td>
<td>11</td>
<td>test</td>
</tr>
<tr>
<td>99.000</td>
<td>0.2257</td>
<td>0.7743</td>
<td>0.0609</td>
<td>37</td>
<td>10</td>
<td>test</td>
</tr>
<tr>
<td>103.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>37</td>
<td>9</td>
<td>test</td>
</tr>
<tr>
<td>117.000</td>
<td>0.2006</td>
<td>0.7994</td>
<td>0.0591</td>
<td>38</td>
<td>8</td>
<td>standard</td>
</tr>
<tr>
<td>122.000</td>
<td>0.1755</td>
<td>0.8245</td>
<td>0.0567</td>
<td>39</td>
<td>7</td>
<td>standard</td>
</tr>
<tr>
<td>123.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>39</td>
<td>6</td>
<td>standard</td>
</tr>
<tr>
<td>139.000</td>
<td>0.1463</td>
<td>0.8537</td>
<td>0.0543</td>
<td>40</td>
<td>5</td>
<td>standard</td>
</tr>
<tr>
<td>151.000</td>
<td>0.1170</td>
<td>0.8830</td>
<td>0.0507</td>
<td>41</td>
<td>4</td>
<td>standard</td>
</tr>
<tr>
<td>153.000</td>
<td>0.0878</td>
<td>0.9122</td>
<td>0.0457</td>
<td>42</td>
<td>3</td>
<td>standard</td>
</tr>
<tr>
<td>287.000</td>
<td>0.0585</td>
<td>0.9415</td>
<td>0.0387</td>
<td>43</td>
<td>2</td>
<td>standard</td>
</tr>
<tr>
<td>384.000</td>
<td>0.0293</td>
<td>0.9707</td>
<td>0.0283</td>
<td>44</td>
<td>1</td>
<td>standard</td>
</tr>
<tr>
<td>392.000</td>
<td>0</td>
<td>1.0000</td>
<td>.</td>
<td>45</td>
<td>0</td>
<td>standard</td>
</tr>
</tbody>
</table>

NOTE: The marked survival times are censored observations.
Output 51.1.4  Estimation Results for Cell=squamous

<table>
<thead>
<tr>
<th>SurvTime</th>
<th>Survival</th>
<th>Failure</th>
<th>Error</th>
<th>Number Failed</th>
<th>Number Left</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1.000</td>
<td>0.9429</td>
<td>0.0571</td>
<td>0.0392</td>
<td>2</td>
<td>33</td>
<td>test</td>
</tr>
<tr>
<td>8.000</td>
<td>0.9143</td>
<td>0.0857</td>
<td>0.0473</td>
<td>3</td>
<td>32</td>
<td>standard</td>
</tr>
<tr>
<td>10.000</td>
<td>0.8857</td>
<td>0.1143</td>
<td>0.0538</td>
<td>4</td>
<td>31</td>
<td>standard</td>
</tr>
<tr>
<td>11.000</td>
<td>0.8571</td>
<td>0.1429</td>
<td>0.0591</td>
<td>5</td>
<td>30</td>
<td>standard</td>
</tr>
<tr>
<td>15.000</td>
<td>0.8286</td>
<td>0.1714</td>
<td>0.0637</td>
<td>6</td>
<td>29</td>
<td>test</td>
</tr>
<tr>
<td>25.000</td>
<td>0.8000</td>
<td>0.2000</td>
<td>0.0676</td>
<td>7</td>
<td>28</td>
<td>test</td>
</tr>
<tr>
<td>25.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>7</td>
<td>27</td>
<td>standard</td>
</tr>
<tr>
<td>30.000</td>
<td>0.7704</td>
<td>0.2296</td>
<td>0.0713</td>
<td>8</td>
<td>26</td>
<td>test</td>
</tr>
<tr>
<td>33.000</td>
<td>0.7407</td>
<td>0.2593</td>
<td>0.0745</td>
<td>9</td>
<td>25</td>
<td>test</td>
</tr>
<tr>
<td>42.000</td>
<td>0.7111</td>
<td>0.2889</td>
<td>0.0772</td>
<td>10</td>
<td>24</td>
<td>standard</td>
</tr>
<tr>
<td>44.000</td>
<td>0.6815</td>
<td>0.3185</td>
<td>0.0794</td>
<td>11</td>
<td>23</td>
<td>test</td>
</tr>
<tr>
<td>72.000</td>
<td>0.6519</td>
<td>0.3481</td>
<td>0.0813</td>
<td>12</td>
<td>22</td>
<td>standard</td>
</tr>
<tr>
<td>82.000</td>
<td>0.6222</td>
<td>0.3778</td>
<td>0.0828</td>
<td>13</td>
<td>21</td>
<td>standard</td>
</tr>
<tr>
<td>87.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>13</td>
<td>20</td>
<td>test</td>
</tr>
<tr>
<td>100.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>13</td>
<td>19</td>
<td>standard</td>
</tr>
<tr>
<td>110.000</td>
<td>0.5895</td>
<td>0.4105</td>
<td>0.0847</td>
<td>14</td>
<td>18</td>
<td>standard</td>
</tr>
<tr>
<td>111.000</td>
<td>0.5567</td>
<td>0.4433</td>
<td>0.0861</td>
<td>15</td>
<td>17</td>
<td>test</td>
</tr>
<tr>
<td>112.000</td>
<td>0.5240</td>
<td>0.4760</td>
<td>0.0870</td>
<td>16</td>
<td>16</td>
<td>test</td>
</tr>
<tr>
<td>118.000</td>
<td>0.4912</td>
<td>0.5088</td>
<td>0.0875</td>
<td>17</td>
<td>15</td>
<td>standard</td>
</tr>
<tr>
<td>126.000</td>
<td>0.4585</td>
<td>0.5415</td>
<td>0.0876</td>
<td>18</td>
<td>14</td>
<td>standard</td>
</tr>
<tr>
<td>144.000</td>
<td>0.4257</td>
<td>0.5743</td>
<td>0.0873</td>
<td>19</td>
<td>13</td>
<td>standard</td>
</tr>
<tr>
<td>201.000</td>
<td>0.3930</td>
<td>0.6070</td>
<td>0.0865</td>
<td>20</td>
<td>12</td>
<td>test</td>
</tr>
<tr>
<td>228.000</td>
<td>0.3602</td>
<td>0.6398</td>
<td>0.0852</td>
<td>21</td>
<td>11</td>
<td>standard</td>
</tr>
<tr>
<td>231.000*</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>21</td>
<td>10</td>
<td>test</td>
</tr>
<tr>
<td>242.000</td>
<td>0.3242</td>
<td>0.6758</td>
<td>0.0840</td>
<td>22</td>
<td>9</td>
<td>test</td>
</tr>
<tr>
<td>283.000</td>
<td>0.2882</td>
<td>0.7118</td>
<td>0.0820</td>
<td>23</td>
<td>8</td>
<td>test</td>
</tr>
<tr>
<td>314.000</td>
<td>0.2522</td>
<td>0.7478</td>
<td>0.0793</td>
<td>24</td>
<td>7</td>
<td>standard</td>
</tr>
<tr>
<td>357.000</td>
<td>0.2161</td>
<td>0.7839</td>
<td>0.0757</td>
<td>25</td>
<td>6</td>
<td>test</td>
</tr>
<tr>
<td>389.000</td>
<td>0.1801</td>
<td>0.8199</td>
<td>0.0711</td>
<td>26</td>
<td>5</td>
<td>test</td>
</tr>
<tr>
<td>411.000</td>
<td>0.1441</td>
<td>0.8559</td>
<td>0.0654</td>
<td>27</td>
<td>4</td>
<td>standard</td>
</tr>
<tr>
<td>467.000</td>
<td>0.1081</td>
<td>0.8919</td>
<td>0.0581</td>
<td>28</td>
<td>3</td>
<td>test</td>
</tr>
<tr>
<td>587.000</td>
<td>0.0720</td>
<td>0.9280</td>
<td>0.0487</td>
<td>29</td>
<td>2</td>
<td>test</td>
</tr>
<tr>
<td>991.000</td>
<td>0.0360</td>
<td>0.9640</td>
<td>0.0352</td>
<td>30</td>
<td>1</td>
<td>test</td>
</tr>
<tr>
<td>999.000</td>
<td>0</td>
<td>1.0000</td>
<td>.</td>
<td>31</td>
<td>0</td>
<td>test</td>
</tr>
</tbody>
</table>

NOTE: The marked survival times are censored observations.

The distribution of event and censored observations among the four cell types is summarized in Output 51.1.5.
Output 51.1.5 Summary of Censored and Uncensored Values

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Cell</th>
<th>Total</th>
<th>Failed</th>
<th>Censored</th>
<th>Percent Censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>adeno</td>
<td>27</td>
<td>26</td>
<td>1</td>
<td>3.70</td>
</tr>
<tr>
<td>2</td>
<td>large</td>
<td>27</td>
<td>26</td>
<td>1</td>
<td>3.70</td>
</tr>
<tr>
<td>3</td>
<td>small</td>
<td>48</td>
<td>45</td>
<td>3</td>
<td>6.25</td>
</tr>
<tr>
<td>4</td>
<td>squamous</td>
<td>35</td>
<td>31</td>
<td>4</td>
<td>11.43</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>137</td>
<td>128</td>
<td>9</td>
<td>6.57</td>
</tr>
</tbody>
</table>

The graph of the estimated survivor functions is shown in Output 51.1.6. The adeno cell curve and the small cell curve are much closer to each other than they are to the large cell curve or the squamous cell curve. The survival rates of the adeno cell patients and the small cell patients decrease rapidly to approximately 29% in 90 days. Shapes of the large cell curve and the squamous cell curve are quite different, although both decrease less rapidly than those of the adeno and small cells. The squamous cell curve decreases more rapidly initially than the large cell curve, but the role is reversed in the later period.

Output 51.1.6 Graph of the Estimated Survivor Functions
The graph of the negative log of the estimated survivor functions is displayed in Output 51.1.7. Output 51.1.8 displays the log of the negative log of the estimated survivor functions against the log of time.

**Output 51.1.7** Graph of Negative Log of the Estimated Survivor Functions
Results of the homogeneity tests across cell types are given in **Output 51.1.9**. The log-rank and Wilcoxon statistics and their corresponding covariance matrices are displayed. Also given is a table that consists of the approximate chi-square statistics, degrees of freedom, and $p$-values for the log-rank, Wilcoxon, and likelihood ratio tests. All three tests indicate strong evidence of a significant difference among the survival curves for the four types of cancer cells ($p < 0.0001$).

**Output 51.1.9** Homogeneity Tests across Cell Types

<table>
<thead>
<tr>
<th>Cell</th>
<th>Log-Rank</th>
<th>Wilcoxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>adeno</td>
<td>10.306</td>
<td>697.0</td>
</tr>
<tr>
<td>large</td>
<td>-8.549</td>
<td>-1085.0</td>
</tr>
<tr>
<td>small</td>
<td>14.898</td>
<td>1278.0</td>
</tr>
<tr>
<td>squamous</td>
<td>-16.655</td>
<td>-890.0</td>
</tr>
</tbody>
</table>
Results of the log-rank test of the prognostic variables are shown in Output 51.1.10. The univariate test results correspond to testing each prognostic factor marginally. The joint covariance matrix of these univariate test statistics is also displayed. In computing the overall chi-square statistic, the partial chi-square statistics following a forward stepwise entry approach are tabulated.

Consider the log-rank test in Output 51.1.10. Since the univariate test for Kps has the largest chi-square (43.4747) among all the covariates, Kps is entered first. At this stage, the partial chi-square and the chi-square increment for Kps are the same as the univariate chi-square. Among all the covariates not in the model (Age, Prior, DiagTime, Treatment), Treatment has the largest approximate chi-square increment (1.7261) and is entered next. The approximate chi-square for the model that contains Kps and Treatment is 43.4747+1.7261=45.2008 with 2 degrees of freedom. The third covariate entered is Age. The fourth is Prior, and the fifth is DiagTime. The overall chi-square statistic in the last line of the output is the partial chi-square for including all the covariates. It has a value of 46.4200 with 5 degrees of freedom, which is highly significant (p<0.0001).
Output 51.1.10 Log-Rank Test of the Prognostic Factors

### Univariate Chi-Squares for the Log-Rank Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Test Statistic</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr &gt; Chi-Square</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-40.7383</td>
<td>105.7</td>
<td>0.1485</td>
<td>0.7000</td>
<td>age in years</td>
</tr>
<tr>
<td>Prior</td>
<td>-19.9435</td>
<td>46.9836</td>
<td>0.1802</td>
<td>0.6712</td>
<td>prior treatment?</td>
</tr>
<tr>
<td>DiagTime</td>
<td>-115.9</td>
<td>97.8708</td>
<td>1.4013</td>
<td>0.2365</td>
<td>months till randomization</td>
</tr>
<tr>
<td>Kps</td>
<td>1123.1</td>
<td>170.3</td>
<td>43.4747</td>
<td>&lt;.0001</td>
<td>karnofsky index</td>
</tr>
<tr>
<td>Treatment</td>
<td>-4.2076</td>
<td>5.0407</td>
<td>0.6967</td>
<td>0.4039</td>
<td>treatment indicator</td>
</tr>
</tbody>
</table>

### Covariance Matrix for the Log-Rank Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Age</th>
<th>Prior</th>
<th>DiagTime</th>
<th>Kps</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>11175.4</td>
<td>-301.2</td>
<td>-892.2</td>
<td>-2948.4</td>
<td>119.3</td>
</tr>
<tr>
<td>Prior</td>
<td>-301.2</td>
<td>2207.5</td>
<td>2010.9</td>
<td>78.6</td>
<td>13.9</td>
</tr>
<tr>
<td>DiagTime</td>
<td>-892.2</td>
<td>2010.9</td>
<td>9578.7</td>
<td>-2295.3</td>
<td>21.9</td>
</tr>
<tr>
<td>Kps</td>
<td>-2948.4</td>
<td>78.6</td>
<td>-2295.3</td>
<td>29015.6</td>
<td>61.9</td>
</tr>
<tr>
<td>Treatment</td>
<td>119.3</td>
<td>13.9</td>
<td>21.9</td>
<td>61.9</td>
<td>25.4</td>
</tr>
</tbody>
</table>

### Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr &gt; Chi-Square</th>
<th>Chi-Square Increment</th>
<th>Pr &gt; Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kps</td>
<td>1</td>
<td>43.4747</td>
<td>&lt;.0001</td>
<td>43.4747</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Treatment</td>
<td>2</td>
<td>45.2008</td>
<td>&lt;.0001</td>
<td>1.7261</td>
<td>0.1889</td>
</tr>
<tr>
<td>Age</td>
<td>3</td>
<td>46.3012</td>
<td>&lt;.0001</td>
<td>1.1004</td>
<td>0.2942</td>
</tr>
<tr>
<td>Prior</td>
<td>4</td>
<td>46.4134</td>
<td>&lt;.0001</td>
<td>0.1122</td>
<td>0.7377</td>
</tr>
<tr>
<td>DiagTime</td>
<td>5</td>
<td>46.4200</td>
<td>&lt;.0001</td>
<td>0.00665</td>
<td>0.9350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kps</td>
<td>karnofsky index</td>
</tr>
<tr>
<td>Treatment</td>
<td>treatment indicator</td>
</tr>
<tr>
<td>Age</td>
<td>age in years</td>
</tr>
<tr>
<td>Prior</td>
<td>prior treatment?</td>
</tr>
<tr>
<td>DiagTime</td>
<td>months till randomization</td>
</tr>
</tbody>
</table>

You can establish this forward stepwise entry of prognostic factors by passing the matrix corresponding to the log-rank test to the RSQUARE method in the REG procedure, as follows. PROC REG finds the sets of variables that yield the largest chi-square statistics.
Example 51.1: Product-Limit Estimates and Tests of Association

```sas
data RSq;
 set Test;
 if _type_='LOG RANK';
 type='cov';
 proc print data=RSq;
 run;
 proc reg data=RSq(type=COV);
 model SurvTime=Age Prior DiagTime Kps Treatment /
 selection=rsquare;
 title 'All Possible Subsets of Covariates for the log-rank Test';
 run;
```

Output 51.1.11 displays the univariate statistics and their covariance matrix for the log-rank test.

**Output 51.1.11 Log-Rank Statistics and Covariance Matrix**

<table>
<thead>
<tr>
<th>Obs</th>
<th><em>TYPE</em></th>
<th><em>NAME</em></th>
<th>SurvTime</th>
<th>Age</th>
<th>Prior</th>
<th>DiagTime</th>
<th>Kps</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cov</td>
<td>SurvTime</td>
<td>46.42</td>
<td>-40.74</td>
<td>-19.94</td>
<td>-115.86</td>
<td>1123.14</td>
<td>-4.208</td>
</tr>
<tr>
<td>2</td>
<td>cov</td>
<td>Age</td>
<td>-40.74</td>
<td>11175.44</td>
<td>-301.23</td>
<td>-892.24</td>
<td>-2948.45</td>
<td>119.297</td>
</tr>
<tr>
<td>3</td>
<td>cov</td>
<td>Prior</td>
<td>-19.94</td>
<td>-301.23</td>
<td>2207.46</td>
<td>2010.85</td>
<td>78.64</td>
<td>13.875</td>
</tr>
<tr>
<td>5</td>
<td>cov</td>
<td>Kps</td>
<td>1123.14</td>
<td>-2948.45</td>
<td>78.64</td>
<td>-2295.32</td>
<td>29015.62</td>
<td>61.945</td>
</tr>
<tr>
<td>6</td>
<td>cov</td>
<td>Treatment</td>
<td>-4.21</td>
<td>119.30</td>
<td>13.87</td>
<td>21.86</td>
<td>61.95</td>
<td>25.409</td>
</tr>
</tbody>
</table>

Results of the best subset regression are shown in Output 51.1.12. The variable Kps generates the largest univariate test statistic among all the covariates, the pair Kps and Age generate the largest test statistic among any other pairs of covariates, and so on. The entry order of covariates is identical to that of PROC LIFETEST.
**Output 51.1.12** Best Subset Regression from the REG Procedure

All Possible Subsets of Covariates for the log-rank Test

The REG Procedure
Model: MODEL1
Dependent Variable: SurvTime

R-Square Selection Method

<table>
<thead>
<tr>
<th>Number in Model</th>
<th>R-Square</th>
<th>Variables in Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9366</td>
<td>Kps</td>
</tr>
<tr>
<td>1</td>
<td>0.0302</td>
<td>DiagTime</td>
</tr>
<tr>
<td>1</td>
<td>0.0150</td>
<td>Treatment</td>
</tr>
<tr>
<td>1</td>
<td>0.0039</td>
<td>Prior</td>
</tr>
<tr>
<td>1</td>
<td>0.0032</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>----------------------------</td>
</tr>
<tr>
<td>2</td>
<td>0.9737</td>
<td>Kps Treatment</td>
</tr>
<tr>
<td>2</td>
<td>0.9472</td>
<td>Age Kps</td>
</tr>
<tr>
<td>2</td>
<td>0.9417</td>
<td>Prior Kps</td>
</tr>
<tr>
<td>2</td>
<td>0.9382</td>
<td>DiagTime Kps</td>
</tr>
<tr>
<td>2</td>
<td>0.0434</td>
<td>DiagTime Treatment</td>
</tr>
<tr>
<td>2</td>
<td>0.0353</td>
<td>Age DiagTime</td>
</tr>
<tr>
<td>2</td>
<td>0.0304</td>
<td>Prior DiagTime</td>
</tr>
<tr>
<td>2</td>
<td>0.0181</td>
<td>Prior Treatment</td>
</tr>
<tr>
<td>2</td>
<td>0.0159</td>
<td>Age Treatment</td>
</tr>
<tr>
<td>2</td>
<td>0.0075</td>
<td>Age Prior</td>
</tr>
<tr>
<td></td>
<td></td>
<td>----------------------------</td>
</tr>
<tr>
<td>3</td>
<td>0.9974</td>
<td>Age Kps Treatment</td>
</tr>
<tr>
<td>3</td>
<td>0.9774</td>
<td>Prior Kps Treatment</td>
</tr>
<tr>
<td>3</td>
<td>0.9747</td>
<td>DiagTime Kps Treatment</td>
</tr>
<tr>
<td>3</td>
<td>0.9515</td>
<td>Age Prior Kps</td>
</tr>
<tr>
<td>3</td>
<td>0.9481</td>
<td>Age DiagTime Kps</td>
</tr>
<tr>
<td>3</td>
<td>0.9418</td>
<td>Prior DiagTime Kps</td>
</tr>
<tr>
<td>3</td>
<td>0.0456</td>
<td>Age DiagTime Treatment</td>
</tr>
<tr>
<td>3</td>
<td>0.0438</td>
<td>Prior DiagTime Treatment</td>
</tr>
<tr>
<td>3</td>
<td>0.0355</td>
<td>Age Prior DiagTime</td>
</tr>
<tr>
<td>3</td>
<td>0.0192</td>
<td>Age Prior Treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>----------------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.9999</td>
<td>Age Prior Kps Treatment</td>
</tr>
<tr>
<td>4</td>
<td>0.9976</td>
<td>Age DiagTime Kps Treatment</td>
</tr>
<tr>
<td>4</td>
<td>0.9774</td>
<td>Prior DiagTime Kps Treatment</td>
</tr>
<tr>
<td>4</td>
<td>0.9515</td>
<td>Age Prior DiagTime Kps</td>
</tr>
<tr>
<td>4</td>
<td>0.0459</td>
<td>Age Prior DiagTime Treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>----------------------------</td>
</tr>
<tr>
<td>5</td>
<td>1.0000</td>
<td>Age Prior DiagTime Kps Treatment</td>
</tr>
</tbody>
</table>
Example 51.2: Enhanced Survival Plot and Multiple-Comparison Adjustments

This example highlights a number of features in the survival plot that uses ODS Graphics. Also shown in this example are comparisons of survival curves based on multiple comparison adjustments. Data of 137 bone marrow transplant patients extracted from Klein and Moeschberger (1997) have been saved in the data set BMT in the Sashelp library. At the time of transplant, each patient is classified into one of three risk categories: ALL (acute lymphoblastic leukemia), AML (acute myelocytic leukemia)-Low Risk, and AML-High Risk. The endpoint of interest is the disease-free survival time, which is the time to death or relapse or to the end of the study in days. In this data set, the variable Group represents the patient’s risk category, the variable T represents the disease-free survival time, and the variable Status is the censoring indicator, with the value 1 indicating an event time and the value 0 a censored time.

The following step displays the first 10 observations of the BMT data set in Output 51.2.1. The data set is available in the Sashelp library.

```plaintext
proc print data=Sashelp.BMT(obs=10);
run;
```

**Output 51.2.1** A Subset of the Bone Marrow Transplant Data

<table>
<thead>
<tr>
<th>Obs</th>
<th>Group</th>
<th>T</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALL</td>
<td>2081</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>ALL</td>
<td>1602</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ALL</td>
<td>1496</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>ALL</td>
<td>1462</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>ALL</td>
<td>1433</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>ALL</td>
<td>1377</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>ALL</td>
<td>1330</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>ALL</td>
<td>996</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>ALL</td>
<td>226</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>ALL</td>
<td>1199</td>
<td>0</td>
</tr>
</tbody>
</table>
```

In the following statements, PROC LIFETEST is invoked to compute the product-limit estimate of the survivor function for each risk category. Using ODS Graphics, you can display the number of subjects at risk in the survival plot. The PLOTS= option requests that the survival curves be plotted, and the ATRISK= suboption specifies the time points at which the at-risk numbers are displayed. In the STRATA statement, the ADJUST=Sidak option requests the Šidák multiple-comparison adjustment, and by default, all paired comparisons are carried out.

```plaintext
ods graphics on;
proc lifetest data=sashelp.BMT plots=survival(atrisk=0 to 2500 by 500);
   time T * Status(0);
   strata Group / test=logrank adjust=sidak;
run;
```

Output 51.2.2 displays the estimated disease-free survival for the three leukemia groups with the number of subjects at risk at 0, 500, 1,000, 1,500, 2,000, and 2,500 days. Patients in the AML-Low Risk group experience a longer disease-free survival than those in the ALL group, who in turn fare better than those in the AML-High Risk group.
Output 51.2.2 Estimated Disease-Free Survival for 137 Bone Marrow Transplant Patients

The log-rank test (Output 51.2.3) shows that the disease-free survival times for these three risk groups are significantly different ($p=0.001$).

Output 51.2.3 Log-Rank Test of Disease Group Homogeneity

The Šidák multiple-comparison results are shown in Output 51.2.4. There is no significant difference in disease-free survivor functions between the ALL and AML-High Risk groups ($p=0.2779$). The difference between the ALL and AML-Low Risk groups is marginal ($p=0.0685$), but the AML-Low Risk and AML-High Risk groups have significantly different disease-free survivor functions ($p=0.0006$).
Output 51.2.4 All Paired Comparisons

<table>
<thead>
<tr>
<th>Group</th>
<th>Group</th>
<th>Chi-Square</th>
<th>Raw</th>
<th>Sidak</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>AML-High Risk</td>
<td>2.6610</td>
<td>0.1028</td>
<td>0.2779</td>
</tr>
<tr>
<td>ALL</td>
<td>AML-Low Risk</td>
<td>5.1400</td>
<td>0.0234</td>
<td>0.0685</td>
</tr>
<tr>
<td>AML-High Risk</td>
<td>AML-Low Risk</td>
<td>13.8011</td>
<td>0.0002</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Suppose you consider the AML-Low Risk group as the reference group. You can use the DIFF= option in the STRATA statement to designate this risk group as the control and apply a multiple-comparison adjustment to the p-values for the paired comparison between the AML-Low Risk group with each of the other groups. Consider the Šidák correction again. You specify the ADJUST= and DIFF= options as in the following statements:

```sas
proc lifetest data=sashelp.BMT notable plots=none;
  time T * Status(0);
  strata Group / test=logrank adjust=sidak diff=control('AML-Low Risk');
run;
```

Output 51.2.5 shows that although both the ALL and AML-High Risk groups differ from the AML-Low Risk group at the 0.05 level, the difference between the AML-High Risk and the AML-Low Risk group is highly significant (p=0.0004).

Output 51.2.5 Comparisons with the Reference Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Group</th>
<th>Chi-Square</th>
<th>Raw</th>
<th>Sidak</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>AML-Low Risk</td>
<td>5.1400</td>
<td>0.0234</td>
<td>0.0462</td>
</tr>
<tr>
<td>AML-High Risk</td>
<td>AML-Low Risk</td>
<td>13.8011</td>
<td>0.0002</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Klein and Moeschberger (1997, Section 4.4) describe in detail how to compute the Hall-Wellner (HW) and equal-precision (EP) confidence bands for the survivor function. You can output these simultaneous confidence intervals to a SAS data set by using the CONFBAND= and OUTSURV= options in the PROC LIFETEST statement. You can display survival curves with pointwise and simultaneous confidence limits through ODS Graphics. When the survival data are stratified, displaying all the survival curves and their confidence limits in the same plot can make the plot appear cluttered. In the following statements, the PLOTS= specification requests that the survivor functions be displayed along with their pointwise confidence limits (CL) and Hall-Wellner confidence bands (CB=HW). The STRATA=PANEL specification requests that the survival curves be displayed in a panel of three plots, one for each risk group.
Example 51.3: Life-Table Estimates for Males with Angina Pectoris

The data in this example come from Lee (1992, p. 91) and represent the survival rates of males with angina pectoris. Survival time is measured as years from the time of diagnosis. In the following DATA step, the data are read as number of events and number of withdrawals in each one-year time interval for 16 intervals. Three variables are constructed from the data: Years (an artificial time variable with values that are the midpoints of the time intervals), Censored (a censoring indicator variable with the value 1 indicating censored observations and the value 0 indicating event observations), and Freq (the frequency
variable). Two observations are created for each interval, one representing the event observations and the other representing the censored observations.

```
title 'Survival of Males with Angina Pectoris';
data Males;
  keep Freq Years Censored;
  retain Years -.5;
  input fail withdraw @@;
  Years + 1;
  Censored=0;
  Freq=fail;
  output;
  Censored=1;
  Freq=withdraw;
  output;
datalines;
456  0  226 39 152 22 171 23 135 24 125 107
  83 133 74 102 51 68 42 64 43 45 34 53
  18 33 9 27 6 23 0 30
;
```

In the following statements, the ODS GRAPHICS ON specification enables ODS Graphics. PROC LIFETEST is invoked to compute the various life-table survival estimates, the median residual time, and their standard errors. The life-table method of computing estimates is requested by specifying METHOD=LT. The intervals are specified by the INTERVAL= option. Graphical displays of the life-table survivor function estimate, negative log of the estimate, log of negative log of the estimate, estimated density function, and estimated hazard function are requested by the PLOTS= option. No tests for homogeneity are carried out because the data are not stratified.

```
ods graphics on;
proc lifetest data=Males method=lt intervals=(0 to 15 by 1)
  plots=(s,ls,lls,h,p);
  time Years*Censored(1);
  freq Freq;
run;
ods graphics off;
```

Results of the life-table estimation are shown in Output 51.3.1. The five-year survival rate is 0.5193 with a standard error of 0.0103. The estimated median residual lifetime, which is 5.33 years initially, reaches a maximum of 6.34 years at the beginning of the second year and decreases gradually to a value lower than the initial 5.33 years at the beginning of the seventh year.
Output 51.3.1 Life-Table Survivor Function Estimate

<table>
<thead>
<tr>
<th>Interval [Lower, Upper)</th>
<th>Number Failed</th>
<th>Number Censored</th>
<th>Effective Sample Size</th>
<th>Conditional Probability of Failure</th>
<th>Conditional Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2418.0</td>
<td>0.1886</td>
<td>0.00796</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>39</td>
<td>1942.5</td>
<td>0.1163</td>
<td>0.00728</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>22</td>
<td>1686.0</td>
<td>0.0902</td>
<td>0.00698</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>23</td>
<td>1511.5</td>
<td>0.1131</td>
<td>0.00815</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>24</td>
<td>1317.0</td>
<td>0.1025</td>
<td>0.00836</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>107</td>
<td>1116.5</td>
<td>0.1120</td>
<td>0.00944</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>133</td>
<td>871.5</td>
<td>0.0952</td>
<td>0.00994</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>102</td>
<td>671.0</td>
<td>0.1103</td>
<td>0.0121</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>68</td>
<td>512.0</td>
<td>0.0996</td>
<td>0.0132</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>64</td>
<td>395.0</td>
<td>0.1063</td>
<td>0.0155</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>45</td>
<td>298.5</td>
<td>0.1441</td>
<td>0.0203</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>53</td>
<td>206.5</td>
<td>0.1646</td>
<td>0.0258</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>33</td>
<td>129.5</td>
<td>0.1390</td>
<td>0.0304</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>27</td>
<td>81.5</td>
<td>0.1104</td>
<td>0.0347</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>23</td>
<td>47.5</td>
<td>0.1263</td>
<td>0.0482</td>
</tr>
<tr>
<td>15</td>
<td>.</td>
<td>30</td>
<td>15.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval [Lower, Upper)</th>
<th>Survival Standard Error</th>
<th>Failure Standard Error</th>
<th>Median Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000</td>
<td>0</td>
<td>5.3313</td>
</tr>
<tr>
<td>1</td>
<td>0.8114</td>
<td>0.1886</td>
<td>6.2499</td>
</tr>
<tr>
<td>2</td>
<td>0.7170</td>
<td>0.2830</td>
<td>6.3432</td>
</tr>
<tr>
<td>3</td>
<td>0.6524</td>
<td>0.3476</td>
<td>6.2262</td>
</tr>
<tr>
<td>4</td>
<td>0.5786</td>
<td>0.4214</td>
<td>6.2185</td>
</tr>
<tr>
<td>5</td>
<td>0.5193</td>
<td>0.4807</td>
<td>5.9077</td>
</tr>
<tr>
<td>6</td>
<td>0.4611</td>
<td>0.5389</td>
<td>5.5962</td>
</tr>
<tr>
<td>7</td>
<td>0.4172</td>
<td>0.5828</td>
<td>5.1671</td>
</tr>
<tr>
<td>8</td>
<td>0.3712</td>
<td>0.6288</td>
<td>4.9421</td>
</tr>
<tr>
<td>9</td>
<td>0.3342</td>
<td>0.6658</td>
<td>4.8258</td>
</tr>
<tr>
<td>10</td>
<td>0.2987</td>
<td>0.7013</td>
<td>4.6888</td>
</tr>
<tr>
<td>11</td>
<td>0.2557</td>
<td>0.7443</td>
<td>.</td>
</tr>
<tr>
<td>12</td>
<td>0.2136</td>
<td>0.7864</td>
<td>.</td>
</tr>
<tr>
<td>13</td>
<td>0.1839</td>
<td>0.8161</td>
<td>.</td>
</tr>
<tr>
<td>14</td>
<td>0.1636</td>
<td>0.8364</td>
<td>.</td>
</tr>
</tbody>
</table>
Output 51.3.1 continued

<table>
<thead>
<tr>
<th>Interval [Lower, Upper)</th>
<th>Survival</th>
<th>Median Survival</th>
<th>Median Failure</th>
<th>Standard Error</th>
<th>Standard Life-Time Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>.</td>
<td>0.1429</td>
<td>0.8571</td>
<td>0.0133</td>
<td>.</td>
</tr>
</tbody>
</table>

Evaluated at the Midpoint of the Interval

<table>
<thead>
<tr>
<th>Interval [Lower, Upper)</th>
<th>PDF</th>
<th>Median PDF</th>
<th>Median Hazard</th>
<th>Standard Error</th>
<th>Standard Hazard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.1886</td>
<td>0.00796</td>
<td>0.208219</td>
<td>0.009698</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.0944</td>
<td>0.00598</td>
<td>0.123531</td>
<td>0.008201</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.0646</td>
<td>0.00507</td>
<td>0.09441</td>
<td>0.007649</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.0738</td>
<td>0.00543</td>
<td>0.119916</td>
<td>0.009154</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.0593</td>
<td>0.00495</td>
<td>0.108043</td>
<td>0.009285</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.0581</td>
<td>0.00503</td>
<td>0.118596</td>
<td>0.010589</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>0.0439</td>
<td>0.00469</td>
<td>0.101963</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0.0460</td>
<td>0.00518</td>
<td>0.116719</td>
<td>0.013545</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.0370</td>
<td>0.00502</td>
<td>0.10483</td>
<td>0.014659</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.0355</td>
<td>0.00531</td>
<td>0.112299</td>
<td>0.017301</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0.0430</td>
<td>0.00627</td>
<td>0.155235</td>
<td>0.023602</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>0.0421</td>
<td>0.00685</td>
<td>0.17942</td>
<td>0.030646</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>0.0297</td>
<td>0.00668</td>
<td>0.149378</td>
<td>0.03511</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>0.0203</td>
<td>0.00651</td>
<td>0.116883</td>
<td>0.038894</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>0.0207</td>
<td>0.00804</td>
<td>0.134831</td>
<td>0.054919</td>
</tr>
<tr>
<td>15</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

The breakdown of event and censored observations in the data is shown in Output 51.3.2. Note that 32.8% of the patients have withdrawn from the study.

Output 51.3.2 Summary of Censored and Event Observations

<table>
<thead>
<tr>
<th>Summary of the Number of Censored and Uncensored Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Failed Censored Percent Censored</td>
</tr>
<tr>
<td>2418 1625 793 32.80</td>
</tr>
</tbody>
</table>

NOTE: 2 observations with invalid time, censoring, or frequency values were deleted.
Output 51.3.3 displays the graph of the life-table survivor function estimate. The median survival time, read from the survivor function curve, is 5.33 years, and the 25th and 75th percentiles are 1.04 and 11.13 years, respectively.

Output 51.3.3 Life-Table Survivor Function Estimate

An exponential model might be appropriate for the survival of these male patients with angina pectoris since the curve of the negative log of the survivor function estimate versus the survival time (Output 51.3.4) approximates a straight line through the origin. Note that the graph of the log of the negative log of the survivor function estimate versus the log of time (Output 51.3.5) is practically a straight line.
As discussed in Lee (1992), the graph of the estimated hazard function (Output 51.3.6) shows that the death rate is highest in the first year of diagnosis. From the end of the first year to the end of the tenth year, the death rate remains relatively constant, fluctuating between 0.09 and 0.12. The death rate is generally higher after the tenth year. This could indicate that a patient who has survived the first year has a better chance than a patient who has just been diagnosed. The profile of the median residual lifetimes also supports this interpretation.
Output 51.3.5 Log of Negative Log of Survivor Function Estimate
Output 51.3.6 Hazard Function Estimate

The density estimate is shown in (Output 51.3.7). Visually, it resembles the density function of an exponential distribution.
Output 51.3.7 Density Function Estimate

References

Subject Index

A

actuarial estimates, see life-table estimates
alpha level
 LIFETEST procedure, 3861
annotate
 traditional graphics (LIFETEST), 3861
arcsine-square root transformation
 confidence intervals (LIFETEST), 3862, 3885, 3887
association tests
 LIFETEST procedure, 3849, 3856, 3919
at-risk
 product-limit estimates (LIFETEST), 3861

B

Bonferroni adjustment
 LIFETEST procedure, 3875
Breslow estimates
 LIFETEST procedure, 3848, 3879
Breslow test, see Wilcoxon test for homogeneity

C

catalog
 traditional graphics (LIFETEST), 3863
CDF, see cumulative distribution function
censored
 LIFETEST procedure, 3848, 3879
censored symbol
 traditional graphics (LIFETEST), 3861
character set
 line printer plots (LIFETEST), 3863
confidence bands
 LIFETEST procedure, 3862, 3886
confidence limits
 LIFETEST procedure, 3884, 3896, 3897
cumulative distribution function
 LIFETEST procedure, 3848

D

density function, see probability density function
description
 traditional graphics (LIFETEST), 3862
Dunnett’s adjustment
 LIFETEST procedure, 3875

effective sample size
 LIFETEST procedure, 3882
equal-precision bands
 LIFETEST procedure, 3862, 3887, 3925
event symbol
 traditional graphics (LIFETEST), 3863

F

Fleming-Harrington G_p test for homogeneity
 LIFETEST procedure, 3848, 3878
Fleming-Harrington estimates
 LIFETEST procedure, 3848, 3879

G

Gehan test, see Wilcoxon test for homogeneity

H

Hall-Wellner bands
 LIFETEST procedure, 3862, 3886, 3925
hazard function
 LIFETEST procedure, 3848, 3933
homogeneity tests
 LIFETEST procedure, 3848, 3855, 3890, 3918

I

interval determination
 LIFETEST procedure, 3884
interval width
 life-table method (LIFETEST), 3872
intervals
 life-table estimates (LIFETEST), 3863

K

k-sample tests, see homogeneity tests
Kaplan-Meier estimates, see product-limit estimates
kernel-smoothed hazard
 LIFETEST procedure, 3867, 3888

L

life-table estimates
LIFETEST procedure, 3848, 3901, 3930

LIFETEST procedure
alpha level, 3861
association tests, 3849, 3856, 3893, 3910, 3919
Bonferroni adjustment, 3875
Breslow estimates, 3848, 3864, 3879
censored, 3848, 3879
computational formulas, 3879
certainty bands, 3862, 3886
certainty limits, 3884, 3896, 3897
cumulative distribution function, 3848
Dunnett’s adjustment, 3875
effective sample size, 3882
equal-precision bands, 3887, 3925
estimation method, 3864
Fleming-Harrington \(G_p\) test for homogeneity, 3848, 3878
Fleming-Harrington estimates, 3848, 3864, 3879
Hall-Wellner bands, 3886, 3925
hazard function, 3848, 3933
homogeneity tests, 3848, 3855, 3890, 3918
input data set, 3862
interval determination, 3884
kernel-smoothed hazard, 3867, 3888
life-table estimates, 3848, 3864, 3882, 3901, 3926, 3930
likelihood ratio test for homogeneity, 3848, 3890
line printer plots, 3859
log-rank test for association, 3849, 3894
log-rank test for homogeneity, 3848, 3878, 3890
maximum time, 3861, 3864
median residual time, 3901
minimum time, 3861
missing stratum values, 3864, 3874, 3877
missing values, 3879
modified Peto-Peto test for homogeneity, 3848, 3878
Nelson-Aalen estimates, 3865
ODS graph names, 3907
ODS Graphics, 3859
ODS table names, 3905
output data sets, 3896
partial listing, 3872
Peto-Peto test for homogeneity, 3848, 3878
probability density function, 3848, 3934
product-limit estimates, 3848, 3850, 3864, 3879, 3898–3900, 3910
Scheffe’s adjustment, 3875
Sidak’s adjustment, 3875
simulated adjustment, 3876
stratified tests, 3848, 3849, 3856, 3858, 3877, 3891, 3903
studentized maximum modulus adjustment, 3875
survival distribution function, 3848, 3879
Tarone-Ware test for homogeneity, 3848, 3878
transformations for confidence intervals, 3862
trend tests, 3848, 3877, 3878, 3893, 3903
Tukey’s adjustment, 3876
Wilcoxon test for association, 3849, 3894
Wilcoxon test for homogeneity, 3848, 3878, 3890
likelihood ratio test for homogeneity
LIFETEST procedure, 3848
line printer plots
LIFETEST procedure, 3859
linear rank tests, see association tests
linear transformation
confidence intervals (LIFETEST), 3862, 3885
local annotate
traditional graphics (LIFETEST), 3864
log transformation
certainty intervals (LIFETEST), 3862, 3885, 3887
log-log transformation
certainty intervals (LIFETEST), 3862, 3885, 3887
log-rank test for association
LIFETEST procedure, 3849
log-rank test for homogeneity
LIFETEST procedure, 3848, 3878, 3890
logit transformation
certainty intervals (LIFETEST), 3862, 3885, 3887

M
maximum time
certainty bands (LIFETEST), 3861
plots (LIFETEST), 3864
mean survival time
time limit (LIFETEST), 3872
median residual time
LIFETEST procedure, 3901
minimum time
certainty bands (LIFETEST), 3861
missing stratum values
LIFETEST procedure, 3864, 3874, 3877
missing values
LIFETEST procedure, 3879
modified Peto-Peto test for homogeneity
LIFETEST procedure, 3848, 3878
multiplicity adjustment
Bonferroni (LIFETEST), 3875
Dunnett (LIFETEST), 3875
Scheffe (LIFETEST), 3875
Sidak (LIFETEST), 3875
simulated (LIFETEST), 3876
studentized maximum modulus (LIFETEST), 3875
Tukey (LIFETEST), 3876

N

Nelson-Aalen estimates
 LIFETEST procedure, 3865

number of intervals
 life-table estimates (LIFETEST), 3865

O

ODS graph names
 LIFETEST procedure, 3907
ODS Graphics
 LIFETEST procedure, 3859
output data sets
 LIFETEST procedure, 3896

P

partial listing
 product-limit estimate (LIFETEST), 3872
PDF, see probability density function
Peto-Peto test for homogeneity
 LIFETEST procedure, 3848, 3878
Peto-Peto-Prentice, see Peto-Peto test for homogeneity
probability density function
 LIFETEST procedure, 3848, 3934
product-limit estimates
 LIFETEST procedure, 3848, 3850, 3879, 3898–3900

S

Scheffe’s adjustment
 LIFETEST procedure, 3875
SDF, see survival distribution function
Sidak’s adjustment
 LIFETEST procedure, 3875
simulated adjustment
 LIFETEST procedure, 3876
stratified tests
 LIFETEST procedure, 3848, 3849, 3856, 3858, 3877, 3891, 3903
studentized maximum modulus adjustment
 LIFETEST procedure, 3875
survival distribution function
 LIFETEST procedure, 3848, 3879, 3897
survivor function, see survival distribution function

T

Tarone-Ware test for homogeneity
 LIFETEST procedure, 3848, 3878
traditional graphics
 LIFETEST procedure, 3859
transformations for confidence intervals
 LIFETEST procedure, 3862
trend tests
 LIFETEST procedure, 3848, 3877, 3878, 3893, 3903
Tukey’s adjustment
 LIFETEST procedure, 3876

W

Wilcoxon test for association
 LIFETEST procedure, 3849
Wilcoxon test for homogeneity
 LIFETEST procedure, 3848, 3878, 3890
Syntax Index

A

ADJUST= option
 STRATA statement (LIFETEST), 3875
ALPHA= option
 PROC LIFETEST statement, 3861
ALPHAQT= option
 PROC LIFETEST statement, 3861
ANNOTATE= option
 PROC LIFETEST statement, 3861
ATRISK option
 PROC LIFETEST statement, 3861

B

BANDMAX= option, see BANDMAXTIME= option
BANDMAXTIME= option
 PROC LIFETEST statement, 3861
BANDMIN= option, see BANDMINTIME= option
BANDMINTIME= option
 PROC LIFETEST statement, 3861
BY statement
 LIFETEST procedure, 3872

C

CENSOREDSYMBOL= option
 PROC LIFETEST statement, 3861
CONFBAND= option
 PROC LIFETEST statement, 3862
CONFTYPE= option
 PROC LIFETEST statement, 3862

D

DATA= option
 PROC LIFETEST statement, 3862
DESCRIPTION= option
 PROC LIFETEST statement, 3862
DIFF= option
 STRATA statement (LIFETEST), 3877

E

EVENTSYMBOL= option
 PROC LIFETEST statement, 3863

F

FORMCHAR= option
 PROC LIFETEST statement, 3863
FREQ statement
 LIFETEST procedure, 3873

G

GOUT= option
 PROC LIFETEST statement, 3863
GROUP= option
 STRATA statement (LIFETEST), 3877

I

ID statement
 LIFETEST procedure, 3873
INTERVALS= option
 PROC LIFETEST statement, 3863

L

LANNOTATE= option
 PROC LIFETEST statement, 3864
LIFETEST procedure, 3847
 BY statement, 3872
 FREQ statement, 3873
 ID statement, 3873
 PROC LIFETEST statement, 3858
 STRATA statement, 3874
 syntax, 3858
 TEST statement, 3878
 TIME statement, 3879
 LIFETEST procedure, BY statement, 3872
 LIFETEST procedure, FREQ statement, 3873
 NOTRUNCATE option, 3873
 LIFETEST procedure, ID statement, 3873
 LIFETEST procedure, PROC LIFETEST statement, 3858
 ALPHA= option, 3861
 ALPHAQT= option, 3861
 ANNOTATE= option, 3861
 ATRISK option, 3861
 BANDMAXTIME= option, 3861
 BANDMINTIME= option, 3861
 CENSOREDSYMBOL= option, 3861
 CONFBAND= option, 3862
 CONFTYPE= option, 3862
 DATA= option, 3862
<table>
<thead>
<tr>
<th>Option</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION= option, 3862</td>
<td></td>
</tr>
<tr>
<td>EVENTSYMBOL= option, 3863</td>
<td></td>
</tr>
<tr>
<td>FORMCHAR= option, 3863</td>
<td></td>
</tr>
<tr>
<td>GOUT= option, 3863</td>
<td></td>
</tr>
<tr>
<td>INTERVALS= option, 3863</td>
<td></td>
</tr>
<tr>
<td>LANNOTATE= option, 3864</td>
<td></td>
</tr>
<tr>
<td>LINEPRINTER option, 3864</td>
<td></td>
</tr>
<tr>
<td>MAXTIME= option, 3864</td>
<td></td>
</tr>
<tr>
<td>METHOD= option, 3864</td>
<td></td>
</tr>
<tr>
<td>MISSING option, 3864</td>
<td></td>
</tr>
<tr>
<td>NELSON option, 3865</td>
<td></td>
</tr>
<tr>
<td>NINTERVAL= option, 3865</td>
<td></td>
</tr>
<tr>
<td>NOCENS PLOT option, 3865</td>
<td></td>
</tr>
<tr>
<td>NOTABLE option, 3865</td>
<td></td>
</tr>
<tr>
<td>NOPRINT option, 3865</td>
<td></td>
</tr>
<tr>
<td>NPRINT option, 3865</td>
<td></td>
</tr>
<tr>
<td>OUTSURV= option, 3865</td>
<td></td>
</tr>
<tr>
<td>OUTTEST= option, 3865</td>
<td></td>
</tr>
<tr>
<td>PLOTS= option, 3865</td>
<td></td>
</tr>
<tr>
<td>REDUCEOUT option, 3871</td>
<td></td>
</tr>
<tr>
<td>SINGULAR= option, 3871</td>
<td></td>
</tr>
<tr>
<td>STDERR option, 3871</td>
<td></td>
</tr>
<tr>
<td>TIMELIM= option, 3872</td>
<td></td>
</tr>
<tr>
<td>TIME LIST= option, 3872</td>
<td></td>
</tr>
<tr>
<td>WIDTH= option, 3872</td>
<td></td>
</tr>
<tr>
<td>LIFETEST procedure, STRATA statement, 3874</td>
<td></td>
</tr>
<tr>
<td>ADJUST= option, 3875</td>
<td></td>
</tr>
<tr>
<td>DIFF= option, 3877</td>
<td></td>
</tr>
<tr>
<td>GROUP= option, 3877</td>
<td></td>
</tr>
<tr>
<td>MISSING option, 3877</td>
<td></td>
</tr>
<tr>
<td>NODETAIL option, 3877</td>
<td></td>
</tr>
<tr>
<td>NOTEST option, 3877</td>
<td></td>
</tr>
<tr>
<td>TEST= option, 3878</td>
<td></td>
</tr>
<tr>
<td>TREND option, 3877</td>
<td></td>
</tr>
<tr>
<td>LIFETEST procedure, TEST statement, 3878</td>
<td></td>
</tr>
<tr>
<td>LIFETEST procedure, TIME statement, 3879</td>
<td></td>
</tr>
<tr>
<td>LINEPRINTER option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3864</td>
<td></td>
</tr>
<tr>
<td>MAXTIME= option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3864</td>
<td></td>
</tr>
<tr>
<td>METHOD= option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3864</td>
<td></td>
</tr>
<tr>
<td>MISSING option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3864</td>
<td></td>
</tr>
<tr>
<td>STRATA statement (LIFETEST), 3877</td>
<td></td>
</tr>
<tr>
<td>NELSON option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3865</td>
<td></td>
</tr>
<tr>
<td>NINTERVAL= option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3865</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3865</td>
<td></td>
</tr>
<tr>
<td>NOTABLE option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3865</td>
<td></td>
</tr>
<tr>
<td>REDUCEOUT option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3871</td>
<td></td>
</tr>
<tr>
<td>SINGULAR= option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3871</td>
<td></td>
</tr>
<tr>
<td>STDERR option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3871</td>
<td></td>
</tr>
<tr>
<td>STRATA statement</td>
<td></td>
</tr>
<tr>
<td>LIFETEST procedure, 3874</td>
<td></td>
</tr>
<tr>
<td>TEST statement</td>
<td></td>
</tr>
<tr>
<td>LIFETEST procedure, 3878</td>
<td></td>
</tr>
<tr>
<td>TEST= option</td>
<td></td>
</tr>
<tr>
<td>STRATA statement (LIFETEST), 3878</td>
<td></td>
</tr>
<tr>
<td>TIME statement</td>
<td></td>
</tr>
<tr>
<td>LIFETEST procedure, 3879</td>
<td></td>
</tr>
<tr>
<td>TIMELIM= option</td>
<td></td>
</tr>
<tr>
<td>PROC LIFETEST statement, 3872</td>
<td></td>
</tr>
</tbody>
</table>
TIMELIST= option
 PROC LIFETEST statement, 3872
TREND option
 STRATA statement (LIFETEST), 3877

W

WIDTH= option
 PROC LIFETEST statement, 3872
Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.
Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press
Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

SAS® Documentation
To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:
- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF – free on the Web.
- Hard-copy books.

SAS® Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

support.sas.com/bookstore