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Overview: FMM Procedure

The FMM procedure fits statistical models to data for which the distribution of the response is a finite
mixture of univariate distributions—that is, each response comes from one of several random univariate
distributions with unknown probabilities. You can use PROC FMM to model the component distributions
in addition to the mixing probabilities; see “A Gentle Introduction to Finite Mixture Models” on page 2490
for more precise definitions and discussion of similar but distinct modeling methodologies.

Classical statistical models are a special case of the finite mixture models in which the distribution of the
data has only a single component.

Finite mixture models are useful for the following applications:

e cstimating multimodal or heavy-tailed densities
o fitting zero-inflated or hurdle models to count data with excess zeros
e modeling overdispersed data

o fitting regression models with complex error distributions
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e classifying observations based on predicted component probabilities
e accounting for unobservable, omitted variables
e estimating switching regressions
The FMM procedure is designed to fit finite mixtures of regression models or finite mixtures of generalized

linear models in which the covariates and regression structure can be the same across components or might
be different. You can fit finite mixture models by maximum likelihood or Bayesian methods.

For more information about the differences between the FMM procedure and other statistical modeling
procedures in SAS/STAT software, see the section “PROC FMM Contrasted with Other SAS Procedures”
on page 2425.

Basic Features

The FMM procedure estimates the parameters in univariate finite mixture models and produces various
statistics to evaluate parameters and model fit. The following list summarizes some basic features of the
FMM procedure:

e maximum likelihood estimation for all models
e Markov chain Monte Carlo estimation for many models, including zero-inflated Poisson models

e many built-in link and distribution functions for modeling, including the beta, shifted 7, Weibull,
beta-binomial, and generalized Poisson distributions, in addition to many standard members of the
exponential family of distributions

e gspecialized built-in mixture models such as the binomial cluster model (Morel and Nagaraj 1993,
Morel and Neerchal 1997, Neerchal and Morel 1998)

e acceptance of multiple MODEL statements to build mixture models in which the model effects, dis-
tributions, or link functions vary across mixture components

e model-building syntax using CLASS and effect-based MODEL statements familiar from many other
SAS/STAT procedures (for example, the GLM, GLIMMIX, and MIXED procedures)

e cvaluation of sequences of mixture models when you specify ranges for the number of components
e simple syntax to impose linear equality and inequality constraints among parameters

e ability to model regression and classification effects in the mixing probabilities through the PROB-
MODEL statement

e ability to incorporate full or partially known component membership into the analysis through the
PARTIAL= option in the PROC FMM statement

e OUTPUT statement that produces a SAS data set with important statistics for interpreting mixture
models, such as component log likelihoods and prior and posterior probabilities
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e ability to add zero-inflation to any model
e output data set with posterior parameter values for the Markov chain
e high degree of multithreading for high-performance optimization and Monte Carlo sampling
The FMM procedure uses ODS Graphics to create graphs as part of its output. For general information

about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
statistical graphics available with the FMM procedure, see the PLOTS options in the PROC FMM statement.

Assumptions

The FMM procedure makes the following assumptions in fitting statistical models:
e The number of components k in the finite mixture is known a priori and is not a parameter to be
estimated.
e The parameters of the components are distinct a priori.

e The observations are uncorrelated.

Notation for the Finite Mixture Model

The general expression for the finite mixture model fitted with the FMM procedure is as follows:

k
fO) =) 7j@a;)p;(y:x;B;.¢))

Jj=1

The number of components in the mixture is denoted as k. The mixture probabilities 77; can depend on
regressor variables z and parameters o ;. By default, the FMM procedure models these probabilities using
a logit transform if k = 2 and as a generalized logit model if k > 2. The component distributions p;
can also depend on regressor variables in X, regression parameters B ;, and possibly scale parameters ¢ ;.
Notice that the component distributions p; are indexed by j since the distributions might belong to different
families. For example, in a two-component model, you might model one component as a normal (Gaussian)
variable and the second component as a variable with a ¢ distribution with low degrees of freedom to manage
overdispersion.

The mixture probabilities 7 ; satisfy 7; > 0, for all j, and

k
Y o miza) =1
j=1
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Homogeneous Mixtures

If the component distributions are of the same distributional form, the mixture is called homogeneous. In
most applications of homogeneous mixtures, the mixing probabilities do not depend on regression parame-
ters. The general model then simplifies to

k
f) =) mip(y:XBj.¢))

Jj=1

Since the component distributions depend on regression parameters B ;, this model is known as a homo-
geneous regression mixture. A homogeneous regression mixture assumes that the regression effects are
the same across the components, although the FMM procedure does not impose such a restriction. If the
component distributions do not contain regression effects, the model

k
FO) = mwip(yipg.¢5)
Jj=1

is the homogeneous mixture model. A classical case is the estimation of a continuous density as a k-
component mixture of normal distributions.

Special Mixtures

The FMM procedure enables you to fit several special mixture models. The Morel-Neerchal binomial cluster
model (Morel and Nagaraj 1993, Morel and Neerchal 1997, and Neerchal and Morel 1998) is a mixture of
binomial distributions in which the success probabilities depend on the mixing probabilities.

Zero-inflated count models are obtained as two-component mixtures where one component is a classical
count model—such as the Poisson or negative binomial model—and the other component is a distribution
that is concentrated at zero. If the nondegenerate part of this special mixture is a zero-truncated model, the
resulting two-component mixture is known as a hurdle model (Cameron and Trivedi 1998).

PROC FMM Contrasted with Other SAS Procedures

Since the FMM procedure fits finite mixtures of generalized linear models, it can also fit standard forms of
these models in which the distribution of the data does not follow a mixture. This enables you to use the
FMM procedure to estimate parameters in models that can be fit with the CATMOD, LOGISTIC, GEN-
MOD, or GLIMMIX procedures. However, the FMM procedure does not fit models for multinomial data
or models with random effects.

The FMM procedure has limited postprocessing capabilities compared to some other statistical procedures
that are based on linear models. Concepts that are well understood and commonplace in linear models, such
as (linear) estimable functions, estimability, and least squares means, do not apply to mixture models in
the same way. For example, even the computation of a predicted value is not without ambiguity. You can
estimate the means in the component distributions in addition to the overall mean of the mixture.
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The FMM procedure provides a limited number of built-in distributions and link functions. User-defined
distributions or link functions are not supported. Mixture models with component distributions that are not
supported by the FMM procedure can be fit with the NLMIXED procedure.

For Bayesian estimation, the FMM procedure implements a small number of highly specialized sampling
algorithms. These algorithms are very efficient and specifically designed for generalized linear models and
their mixtures. This limits, for example, the allowable specifications for prior distributions of the model
parameters. Models that do not fit the targeted algorithms of the FMM procedure can be fit with the MCMC
procedure.

Getting Started: FMM Procedure

Mixture Modeling for Binomial Overdispersion: “Student,” Pearson, Beer, and
Yeast

The following example demonstrates how you can model a complicated, two-component binomial mixture
distribution, either with maximum likelihood or with Bayesian methods, with a few simple PROC FMM
statements.

William Sealy Gosset, a chemist at the Arthur Guinness Son and Company brewery in Dublin, joined the
statistical laboratory of Karl Pearson in 1906—1907 to study statistics. At first Gosset—who published all
but one paper under the pseudonym “Student” because his employer forbade publications by employees
after a co-worker had disclosed trade secrets—worked on the Poisson limit to the binomial distribution,
using haemacytometer yeast cell counts. Gosset’s interest in studying small-sample (and limit) problems
was motivated by the small sample sizes he typically saw in his work at the brewery.

Subsequently, Gosset’s yeast count data have been examined and revisited by many authors. In 1915, Karl
Pearson undertook his own examination and realized that the variability in “Student’s” data exceeded that
consistent with a Poisson distribution. Pearson (1915) bemoans the fact that if this were so, “it is certainly
most unfortunate that such material should have been selected to illustrate Poisson’s limit to the binomial.”

Using a count of Gosset’s yeast cell counts on the 400 squares of a haemacytometer (Table 37.1), Pearson
argues that a mixture process would explain the heterogeneity (beyond the Poisson).

Table 37.1 “Student’s” Yeast Cell Counts
Number of Cells 0 1 2 3 4 5
Frequency 213 128 37 18 3 1

Pearson fits various models to these data, chief among them a mixture of two binomial series

vi(p1 4+ q1) + va2(p2 + ¢2)°
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where 6 is real-valued and thus the binomial series expands to

0 re+1 b Ok
(P +4) _kgr(kﬂ)r(@—kﬂ)” q

Pearson’s fitted model has 8 = 4.89997, v; = 356.986, v, = 43.014 (corresponding to a mixing proportion
of 356.986/(43.014 + 356.986) = 0.892), and estimated success probabilities in the binomial components
of 0.1017 and 0.4514, respectively. The success probabilities indicate that although the data have about a
90% chance of coming from a distribution with small success probability of about 0.1, there is a 10% chance
of coming from a distribution with a much larger success probability of about 0.45.

If 6 is an integer, the binomial series is the cumulative mass function of a binomial random variable. The
value of 6 suggests that a suitable model for these data could also be constructed as a two-component
mixture of binomial random variables as follows:

f(y) = m binomial(5, ;£1) + (1 — ) binomial(5, u2)

The binomial sample size n = 5 is suggested by Pearson’s estimate of 8 = 4.89997 and the fact that the
largest cell count in Table 37.1 is 5.

The following DATA step creates a SAS data set from the data in Table 37.1.

data yeast;
input count f£;

n =5;

datalines;
0 213
1 128
2 37
3 18
4 3
5 1

The two-component binomial model is fit with the FMM procedure with the following statements:

proc fmm data=yeast;

model count/n = / k=2;
freq f£;
run;

Because the events/trials syntax is used in the MODEL statement, PROC FMM defaults to the binomial
distribution. The K=2 option specifies that the number of components is fixed and known to be two. The
FREQ statement indicates that the data are grouped; for example, the first observation represents 213 squares
on the haemacytometer where no yeast cells were found.

The “Model Information” and “Number of Observations” tables in Figure 37.1 convey that the fitted model
is a two-component homogeneous binomial mixture with a logit link function. The mixture is homogeneous
because there are no model effects in the MODEL statement and because both component distributions
belong to the same distributional family. By default, PROC FMM estimates the model parameters by maxi-
mum likelihood.
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Although only six observations are read from the data set, the data represent 400 observations (squares
on the haemacytometer). Since a constant binomial sample size of 5 is assumed, the data represent 273
successes (finding a yeast cell) out of 2,000 Bernoulli trials.

Figure 37.1 Model Information for Yeast Cell Model

The FMM Procedure
Model Information
Data Set WORK. YEAST
Response Variable (Events) count
Response Variable (Trials) n
Frequency Variable £
Type of Model Homogeneous Mixture
Distribution Binomial
Components 2
Link Function Logit
Estimation Method Maximum Likelihood
Number of Observations Read 6
Number of Observations Used 6
Sum of Frequencies Read 400
Sum of Frequencies Used 400
Number of Events 273
Number of Trials 2000

The estimated intercepts (on the logit scale) for the two binomial means are —2.2316 and —0.2974, re-
spectively. These values correspond to binomial success probabilities of 0.09695 and 0.4262, respectively
(Figure 37.2). The two components mix with probabilities 0.8799 and 1 — 0.8799 = 0.1201. These values
are generally close to the values found by Pearson (1915) using infinite binomial series instead of binomial
mass functions.

Figure 37.2 Maximum Likelihood Estimates

Parameter Estimates for 'Binomial' Model
Inverse
Standard Linked
Component Parameter Estimate Error z Value Pr > |z| Estimate
1 Intercept -2.2316 0.1522 -14.66 <.0001 0.09695
2 Intercept -0.2974 0.3655 -0.81 0.4158 0.4262
Parameter Estimates for Mixing Probabilities
Linked Scale
Standard
Parameter Estimate Error z Value Pr > |z| Probability
Probability 1.9913 0.5725 3.48 0.0005 0.8799
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To obtain fitted values and other observationwise statistics under the stipulated two-component model, you
can add the OUTPUT statement to the previous PROC FMM run. The following statements request com-
ponentwise predicted values and the posterior probabilities:

proc fmm data=yeast;

model count/n = / k=2;

freq f£;

output out=fmmout pred(components) posterior;
run;
data fmmout; set fmmout;

PredCount_1 = post_1 * £f;

PredCount_2 = post_2 * £f;
proc print data=fmmout;
run;

The DATA step following the PROC FMM step computes the predicted cell counts in each component (Fig-
ure 37.3). The predicted means in the components, 0.48476 and 2.13099, are close to the values determined
by Pearson (0.4983 and 2.2118), as are the predicted cell counts.

Figure 37.3 Predicted Cell Counts

Pred Pred

Obs count f n Pred 1 Pred_ 2 Post_1 Post_2 Count_1 Count_2
1 0 213 5 0.48476 2.13099 0.98606 0.01394 210.030 2.9698
2 1 128 5 0.48476 2.13099 0.91089 0.08911 116.594 11.4058
3 2 37 5 0.48476 2.13099 0.59638 0.40362 22.066 14.9341
4 3 18 5 0.48476 2.13099 0.17598 0.82402 3.168 14.8323
5 4 3 5 0.48476 2.13099 0.02994 0.97006 0.090 2.9102
6 5 1 5 0.48476 2.13099 0.00444 0.99556 0.004 0.9956

Gosset, who was interested in small-sample statistical problems, investigated the use of prior knowledge in
mathematical-statistical analysis—for example, deriving the sampling distribution of the correlation coeffi-
cient after having assumed a uniform prior distribution for the coefficient in the population (Aldrich 1997).
Pearson also was not opposed to using prior information, especially uniform priors that reflect “equal distri-
bution of ignorance.” Fisher, on the other hand, would not have any of it: the best estimator in his opinion is
obtained by a criterion that is absolutely independent of prior assumptions about probabilities of particular
values. He objected to the insinuation that his derivations in the work on the correlation were deduced from
Bayes theorem (Fisher 1921).

The preceding analysis of the yeast cell count data uses maximum likelihood methods that are free of prior
assumptions. The following analysis takes instead a Bayesian approach, assuming a beta prior distribution
for the binomial success probabilities and a uniform prior distribution for the mixing probabilities. The
changes from the previous FMM run are the addition of the ODS GRAPHICS, PERFORMANCE, and
BAYES statements and the SEED=12345 option.
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ods graphics on;

proc fmm data=yeast seed=12345;
model count/n = / k=2;
freq £;
performance cpucount=2;
bayes;

run;

ods graphics off;

With ODS Graphics enabled, PROC FMM produces diagnostic trace plots for the posterior samples.
Bayesian analyses are sensitive to the random number seed and thread count; the SEED=and CPUCOUNT=
options ensure consistent results for the purposes of this example. The SEED=12345 option in the PROC
FMM statement determines the random number seed for the random number generator used in the analysis.
The CPUCOUNT=2 option in the PERFORMANCE statement sets the number of available processors to
two. The BAYES statement requests a Bayesian analysis.

The “Bayes Information” table in Figure 37.4 provides basic information about the Markov chain Monte
Carlo sampler. Because the model is a homogeneous mixture, the FMM procedure applies an efficient
conjugate sampling algorithm with a posterior sample size of 10,000 samples after a burn-in size of 2,000
samples. The “Prior Distributions” table displays the prior distribution for each parameter along with its
mean and variance and the initial value in the chain. Notice that in this situation all three prior distributions
reduce to a uniform distribution on (0, 1).

Figure 37.4 Basic Information about MCMC Sampler

The FMM Procedure

Bayes Information

Sampling Algorithm Conjugate

Data Augmentation Latent Variable
Initial Values of Chain Data Based
Burn—-In Size 2000

MC Sample Size 10000

MC Thinning

Parameters in Sampling
Mean Function Parameters
Scale Parameters

Mixing Prob Parameters
Number of Threads

NEFErODMDWHER

Prior Distributions

Initial

Component Parameter Distribution Mean Variance Value
1 Success Probability Beta(l, 1) 0.5000 0.08333 0.1365

2 Success Probability Beta(l, 1) 0.5000 0.08333 0.1365

1 Probability Dirichlet (1, 1) 0.5000 0.08333 0.6180

The FMM procedure produces a log note for this model, indicating that the sampled quantities are not the
linear predictors on the logit scale, but are the actual population parameters (on the data scale):
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NOTE: Bayesian results for this model (no regressor variables,

non-identity link) are displayed on the data scale, not the
linked scale. You can obtain results on the linked (=linear)
scale by requesting a Metropolis-Hastings sampling algorithm.

The trace panel for the success probability in the first binomial component is shown in Figure 37.5. Note
that the first component in this Bayesian analysis corresponds to the second component in the MLE analysis.
The graphics in this panel can be used to diagnose the convergence of the Markov chain. If the chain has
not converged, inferences cannot be made based on quantities derived from the chain. You generally look
for the following:

a smooth unimodal distribution of the posterior estimates in the density plot displayed on the lower
right

good mixing of the posterior samples in the trace plot at the top of the panel (good mixing is indicated
when the trace traverses the support of the distribution and appears to have reached a stationary
distribution)

Figure 37.5 Trace Panel for Success Probability in First Component

Markov Chain Diagnostics for Success Probability, Component 1
With 95% Equal-Tail Limits

0.8
0.6 .I|I| | |l|‘ | | I‘ 'IJ .| || l. II .L. .II ll | | | ||Wll l|| I ‘d |i I| || lIL 97.5%
0.4
H—H ,L ' ' ' : 2.5%
0.2 T T w .
2000 4000 6000 8000 10000 12000
Iteration
Autocorrelation Density
2.5% 97.5%
1.0
4
0.5
3
0.0 5
-0.5 1
-1.0 0
0 10 20 30 40 50 0.2 0.4 0.6 0.8

Lag Value



2432 4 Chapter 37: The FMM Procedure (Experimental)

The autocorrelation plot in Figure 37.5 shows fairly high and sustained autocorrelation among the posterior
estimates. While this is generally not a problem, you can affect the degree of autocorrelation among the
posterior estimates by running a longer chain and thinning the posterior estimates; see the NMC= and
THIN= options in the BAYES statement.

Both the trace plot and the density plot in Figure 37.5 are indications of successful convergence.

Figure 37.6 reports selected results that summarize the 10,000 posterior samples. The arithmetic means of
the success probabilities in the two components are 0.3884 and 0.0905, respectively. The posterior mean of
the mixing probability is 0.1771. These values are similar to the maximum likelihood parameter estimates
in Figure 37.2 (after swapping components).

Figure 37.6 Summaries for Posterior Estimates

Posterior Summaries
Standard
Component Parameter N Mean Deviation
1 Success Probability 10000 0.3884 0.0861
2 Success Probability 10000 0.0905 0.0162
1 Probability 10000 0.1771 0.0978
Posterior Summaries
Percentiles
Component Parameter 25% 50% 75%
1 Success Probability 0.3254 0.3835 0.4457
2 Success Probability 0.0811 0.0923 0.1017
1 Probability 0.1073 0.1534 0.2227
Posterior Intervals
Equal-Tail
Component Parameter Alpha Interval HPD Interval
1 Success Probability 0.050 0.2355 0.5663 0.2224 0.5494
2 Success Probability 0.050 0.0538 0.1171 0.0572 0.1187
1 Probability 0.050 0.0564 0.4311 0.0424 0.3780

Note that the standard errors in Figure 37.2 are not comparable to those in Figure 37.6, since the standard
errors for the MLEs are expressed on the logit scale and the Bayes estimates are expressed on the data scale.
You can add the METROPOLIS option in the BAYES statement to sample the quantities on the logit scale.

The “Posterior Intervals” table in Figure 37.6 displays 95% credible intervals (equal-tail intervals and inter-
vals of highest posterior density). It can be concluded that the component with the higher success probability
contributes less than 40% to the process.
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Modeling Zero-Inflation: Is it Better to Fish Poorly or Not to Have Fished At
All?

The following example shows how you can use PROC FMM to model data with more zero values than
expected.

Many count data show an excess of zeros relative to the frequency of zeros expected under a reference
model. An excess of zeros leads to overdispersion since the process is more variable than a standard count
data model. Different mechanisms can lead to excess zeros. For example, suppose that the data are generated
from two processes with different distribution functions—one process generates the zero counts, and the
other process generates nonzero counts. In the vernacular of Cameron and Trivedi (1998), such a model is
called a hurdle model. With a certain probability—the probability of a nonzero count—a hurdle is crossed,
and events are being generated. Hurdle models are useful, for example, to model the number of doctor
visits per year. Once the decision to see a doctor has been made—the hurdle has been overcome—a certain
number of visits follow.

Hurdle models are closely related to zero-inflated models. Both can be expressed as two-component mix-
tures in which one component has a degenerate distribution at zero and the other component is a count
model. In a hurdle model, the count model follows a zero-truncated distribution. In a zero-inflated model,
the count model has a nonzero probability of generating zeros. Formally, a zero-inflated model can be
written as

Pr(Y =y)=nap1 + (1 —m)p2(y, )
1 y=0

1= 0 otherwise

where p>(y, ) is a standard count model with mean p and support y € {0,1,2,---}.

The following data illustrates the use of a zero-inflated model. In a survey of park attendees, randomly
selected individuals were asked about the number of fish they caught in the last six months. Along with that
count, the gender and age of each sampled individual was recorded. The following DATA step displays the
data for the analysis:

data catch;
input gender $ age count Q@Q;

datalines;
F 54 18 M 37 0 F 48 12 M 27 0
M 55 0 M 32 0 F 49 12 F 45 11
M 39 0 F 34 1 F 50 0 M 52 4
M 33 0 M 32 0 F 23 1 F 17 0
F 44 5 M 44 0 F 26 0 F 30 0
F 38 0 F 38 0 F 52 18 M 23 1
F 23 0 M 32 0 F 33 3 M 26 0
F 46 8 M 45 5 M 51 10 F 48 5
F 31 2 F 25 1 M 22 0 M 41 0
M 19 0 M 23 0 M 31 1 M 17 0
F 21 0 F 44 7 M 28 0 M 47 3
M 23 0 F 29 3 F 24 0 M 34 1
F 19 0 F 35 2 M 39 0 M 43 6
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At first glance, the prevalence of zeros in the DATA set is apparent. Many park attendees did not catch any
fish. These zero counts are made up of two populations: attendees who do not fish and attendees who fish
poorly. A zero-inflation mechanism thus appears reasonable for this application since a zero count can be
produced by two separate distributions.

The following statements fit a standard Poisson regression model to these data. A common intercept is
assumed for men and women, and the regression slope varies with gender.

proc fmm data=catch;

class gender;

model count = genderxage / dist=Poisson;
run;

Figure 37.7 displays information about the model and data set. The “Model Information” table conveys
that the model is a single-component Poisson model (a Poisson GLM) and that parameters are estimated by
maximum likelihood. There are two levels in the CLASS variable gender, with females preceding males.

Figure 37.7 Model Information and Class Levels in Poisson Regression

The FMM Procedure

Model Information

Data Set WORK .CATCH

Response Variable count

Type of Model Generalized Linear (GLM)
Distribution Poisson

Components 1

Link Function Log

Estimation Method Maximum Likelihood

Class Level Information

Class Levels Values
gender 2 FM
Number of Observations Read 52
Number of Observations Used 52

The “Fit Statistics” and “Parameter Estimates” tables from the maximum likelihood estimation of the Pois-
son GLM are shown in Figure 37.8. If the model is not overdispersed, the Pearson statistic should roughly
equal the number of observations in the data set minus the number of parameters. With n = 52, there is
evidence of overdispersion in these data.
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Figure 37.8 Fit Results in Poisson Regression

Fit Statistics

-2 Log Likelihood 182.7
AIC (smaller is better) 188.7
AICC (smaller is better) 189.2
BIC (smaller is better) 194.6
Pearson Statistic 85.9573

Parameter Estimates for 'Poisson' Model

Standard
Effect gender Estimate Error z Value Pr > |z|
Intercept -3.9811 0.5439 -7.32 <.0001
agexgender F 0.1278 0.01149 11.12 <.0001
agexgender M 0.1044 0.01224 8.53 <.0001

Suppose that the cause of overdispersion is zero-inflation of the count data. The following statements fit a
zero-inflated Poisson model.

proc fmm data=catch;
class gender;
model count = genderxage / dist=Poisson ;
model + / dist=Constant;
run;

There are two MODEL statements, one for each component of the mixture. Because the distributions are
different for the components, you cannot specify the mixture model with a single MODEL statement. The
first MODEL statement identifies the response variable for the model (count) and defines a Poisson model
with intercept and gender-specific slopes. The second MODEL statement uses the continuation operator
(“+”) and adds a model with a degenerate distribution by using DIST=CONSTANT. Because the mass of
the constant is placed by default at zero, the second MODEL statement adds a zero-inflation component to

the model. It is sufficient to specify the response variable in one of the MODEL statements; you use the “=
sign in that statement to separate the response variable from the model effects.

Figure 37.9 displays the “Model Information” and “Optimization Information” tables for this run of the
FMM procedure. The model is now identified as a zero-inflated Poisson (ZIP) model with two components,
and the parameters continue to be estimated by maximum likelihood. The “Optimization Information”
table shows that there are four parameters in the optimization (compared to three parameters in the Poisson
GLM model). The four parameters correspond to three parameters in the mean function (intercept and two
gender-specific slopes) and the mixing probability.
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Figure 37.9 Model and Optimization Information in the ZIP Model

The FMM Procedure

Model Information

Data Set WORK .CATCH

Response Variable
Type of Model
Components
Estimation Method

Optimization

Optimization Technique

count

Zero—-inflated Poisson
2

Maximum Likelihood

Information

Dual Quasi-Newton

Parameters in Optimization 4
Mean Function Parameters 3
Scale Parameters 0
Mixing Prob Parameters 1
Number of Threads 2

Results from fitting the ZIP model by maximum likelihood are shown in Figure 37.10. The —2 log like-
lihood and the information criteria suggest a much-improved fit over the single-component Poisson model
(compare Figure 37.10 to Figure 37.8). The Pearson statistic is reduced by factor 2 compared to the Poisson
model and suggests a better fit than the standard Poisson model.

Figure 37.10 Maximum Likelihood Results for the ZIP model

Fit Statistics

-2 Log Likelihood 145.6
AIC (smaller is better) 153.6
AICC (smaller is better) 154.5
BIC (smaller is better) 161.4
Pearson Statistic 43.4467
Effective Parameters 4
Effective Components 2

Parameter Estimates for 'Poisson' Model

Standard
Component Effect gender Estimate Error z Value Pr > |z|
1 Intercept -3.5215 0.6448 -5.46 <.0001
1 agexgender F 0.1216 0.01344 9.04 <.0001
1 agexgender M 0.1056 0.01394 7.58 <.0001
Parameter Estimates for Mixing Probabilities
Linked Scale
Standard
Effect Estimate Error z Value Pr > |z| Probability
Intercept 0.8342 0.4768 1.75 0.0802 0.6972
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The number of effective parameters and components shown in Figure 37.8 equals the values from Fig-
ure 37.9. This is not always the case because components can collapse (for example, when the mixing
probability approaches zero or when two components have identical parameter estimates). In this example,
both components and all four parameters are identifiable. The Poisson regression and the zero process mix,
with a probability of approximately 0.6972 attributed to the Poisson component.

The FMM procedure enables you to fit some mixture models by Bayesian techniques. The following state-
ments add the BAYES statement to the previous PROC FMM statements:

proc fmm data=catch seed=12345;
class gender;
model count = genderxage / dist=Poisson;

model + / dist=constant;
performance cpucount=2;
bayes;

run;

The “Model Information” table indicates that the model parameters are estimated by Markov chain Monte
Carlo techniques, and it displays the random number seed (Figure 37.11). This is useful if you did not
specify a seed to identify the seed value that reproduces the current analysis. The “Bayes Information”
table provides basic information about the Monte Carlo sampling scheme. The sampling method uses a
data augmentation scheme to impute component membership and then the Gamerman (1997) algorithm to
sample the component-specific parameters. The 2,000 burn-in samples are followed by 10,000 Monte Carlo
samples without thinning.

Figure 37.11 Model, Bayes, and Prior Information in the ZIP Model

The FMM Procedure

Model Information

Data Set WORK .CATCH

Response Variable count

Type of Model Zero-inflated Poisson
Components 2

Estimation Method Markov Chain Monte Carlo

Random Number Seed 12345

Bayes Information

Sampling Algorithm Gamerman

Data Augmentation Latent Variable
Initial Values of Chain ML Estimates
Burn—-In Size 2000

MC Sample Size 10000

MC Thinning

Parameters in Sampling
Mean Function Parameters
Scale Parameters

Mixing Prob Parameters
Number of Threads

N OWbBHR
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Figure 37.11 continued

Prior Distributions
Initial
Component Effect gender Distribution Mean Variance Value
1 Intercept Normal (0, 1000) 0 1000.00 -3.5215
1 agexgender F Normal (0, 1000) 0 1000.00 0.1216
1 agexgender M Normal (O, 1000) 0 1000.00 0.1056
1 Probability Dirichlet (1, 1) 0.5000 0.08333 0.6972

The “Prior Distributions” table identifies the prior distributions, their parameters for the sampled quanti-
ties, and their initial values. The prior distribution of parameters associated with model effects is a normal
distribution with mean 0 and variance 1,000. The prior distribution for the mixing probability is a Dirich-
let(1,1), which is identical to a uniform distribution (Figure 37.11). Since the second mixture component is
a degeneracy at zero with no associated parameters, it does not appear in the “Prior Distributions” table in
Figure 37.11.

Figure 37.12 displays descriptive statistics about the 10,000 posterior samples. Recall from Figure 37.10
that the maximum likelihood estimates were —3.5215, 0.1216, 0.1056, and 0.6972, respectively. With this
choice of prior, the means of the posterior samples are generally close to the MLEs in this example. The
“Posterior Intervals” table displays 95% intervals of equal-tail probability and 95% intervals of highest
posterior density (HPD) intervals.

Figure 37.12 Posterior Summaries and Intervals in the ZIP Model

Posterior Summaries
Standard
Component Effect gender N Mean Deviation
1 Intercept 10000 -3.5524 0.6509
1 agexgender F 10000 0.1220 0.0136
1 agexgender M 10000 0.1058 0.0140
1 Probability 10000 0.6938 0.0945
Posterior Summaries
Percentiles
Component Effect gender 25% 50% 75%
1 Intercept -3.9922 -3.5359 -3.0875
1 agexgender F 0.1124 0.1218 0.1314
1 agexgender M 0.0961 0.1055 0.1153
1 Probability 0.6293 0.6978 0.7605




Modeling Zero-Inflation: Is it Better to Fish Poorly or Not to Have Fished At All? 4 2439

Figure 37.12 continued

Posterior Intervals
Equal-Tail
Component Effect gender Alpha Interval HPD Interval
1 Intercept 0.050 -4.8693 -2.3222 -4.8927 -2.3464
1 agexgender F 0.050 0.0960 0.1494 0.0961 0.1494
1 agexgender M 0.050 0.0792 0.1339 0.0796 0.1341
1 Probability 0.050 0.5041 0.8688 0.5025 0.8666

You can generate trace plots for the posterior parameter estimates by enabling ODS Graphics:

ods graphics on;
ods select TADPanel;
proc fmm data=catch seed=12345;
class gender;
model count = genderx*age / dist=Poisson;

model + / dist=constant;
performance cpucount=2;
bayes;

run;

ods graphics off;

A separate trace panel is produced for each sampled parameter, and the panels for the gender-specific slopes
are shown in Figure 37.13. There is good mixing in the chains: the modest autocorrelation that diminishes
after about 10 successive samples. By default, the FMM procedure transfers the credible intervals for each
parameter from the “Posterior Intervals™ table to the trace plot and the density plot in the trace panel.



2440 4 Chapter 37: The FMM Procedure (Experimental)

Figure 37.13 Trace Panels for Gender-Specific Slopes

Markov Chain Diagnostics for age*gender F, Component 1
With 95% Equal-Tail Limits
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Figure 37.13 continued

Markov Chain Diagnostics for age*gender M, Component 1
With 95% Equal-Tail Limits
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Looking for Multiple Modes: Are Galaxies Clustered?

Mixture modeling is essentially a generalized form of one-dimensional cluster analysis. The following
example shows how you can use PROC FMM to explore the number and nature of Gaussian clusters in
univariate data.

Roeder (1990) presents data from the Corona Borealis sky survey with the velocities of 82 galaxies in a nar-
row slice of the sky. Cosmological theory suggests that the observed velocity of each galaxy is proportional
to its distance from the observer. Thus, the presence of multiple modes in the density of these velocities
could indicate a clustering of the galaxies at different distances.

The following DATA step recreates the data set in Roeder (1990). The computed variable v represents the
measured velocity in thousands of kilometers per second.
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title "FMM Analysis of Galaxies Data";
data galaxies;

input velocity Q@Q;

v = velocity / 1000;

datalines;
9172 9350 9483 9558 9775 10227 10406 16084 16170 18419
18552 18600 18927 19052 19070 19330 19343 19349 19440 19473
19529 19541 19547 19663 19846 19856 19863 19914 19918 19973
19989 20166 20175 20179 20196 20215 20221 20415 20629 20795
20821 20846 20875 20986 21137 21492 21701 21814 21921 21960
22185 22209 22242 22249 22314 22374 22495 22746 22747 22888
22914 23206 23241 23263 23484 23538 23542 23666 23706 23711
24129 24285 24289 24366 24717 24990 25633 26960 26995 32065
32789 34279

’

run;

Analysis of potentially multimodal data is a natural application of finite mixture models. In this case,
the modeling is complicated by the question of the variance for each of the components. Using identical
variances for each component could obscure underlying structure, but the additional flexibility granted by
component-specific variances might introduce spurious features.

You can use PROC FMM to prepare analyses for equal and unequal variances and use one of the available fit
statistics to compare the resulting models. You can use the model selection facility to explore models with
varying numbers of mixture components—say, from three to seven as investigated in Roeder (1990). The
following statements select the best unequal-variance model using Akaike’s information criterion (AIC),
which has a built-in penalty for model complexity:

title2 "Three to Seven Components, Unequal Variances";
ods graphics on;
ods select DensityPlot;
proc fmm data=galaxies criterion=AIC;
model v = / kmin=3 kmax=7;
ods exclude IterHistory OptInfo ComponentInfo;
run;

The KMIN= and KMAX= options indicate the smallest and largest number of components to consider. The
ODS GRAPHICS and ODS SELECT statements request a density plot. The output for unequal variances is
shown in Figure 37.14 and Figure 37.15.
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Figure 37.14 Model Selection for Galaxy Data Assuming Unequal Variances

FMM Analysis of Galaxies Data
Three to Seven Components, Unequal Variances

The FMM Procedure

Model Information

Data Set WORK . GALAXIES
Response Variable v

Type of Model Homogeneous Mixture
Distribution Normal

Min Components 3

Max Components 7

Link Function Identity
Estimation Method Maximum Likelihood

Component Evaluation for Mixture Models

———————— Number of —-—————-
Model —Components— —-Parameters-—

D Total Eff. Total Eff. -2 Log L AIC AICC BIC
1 3 3 8 8 406.96 422.96 424.94 442 .22
2 4 4 11 11 406.96 428.96 432.74 455.44
3 5 5 14 14 406.96 434.96 441.23 468.66
4 6 6 17 17 406.96 440.96 450.53 481.88
5 7 7 20 20 406.96 446.96 460.73 495.10

Component Evaluation for Mixture Models
-------- Number of —-——————-

Model —Components— —-Parameters— Max
ID Total Eff. Total Eff. Pearson Gradient

1 3 3 8 8 82.00 0.000024

2 4 4 11 11 82.00 0.00012

3 5 5 14 14 82.00 0.000039

4 6 6 17 17 82.00 0.00012

5 7 7 20 20 82.00 0.00024

The model with 3 components (ID=1) was selected as 'best' based on the AIC
statistic.

Fit Statistics

-2 Log Likelihood 407.0
AIC (smaller is better) 423.0
AICC (smaller is better) 424.9
BIC (smaller is better) 442 .2
Pearson Statistic 82.0002
Effective Parameters 8

Effective Components 3
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Figure 37.14 continued

Component Parameter Estimate

1 Probability -2.3308
2 Probability -3.1781

Parameter Estimates for

Component Parameter Estimate
1 Intercept 9.7101
2 Intercept 33.0444
3 Intercept 21.4039
1 Variance 0.1785
2 Variance 0.8496
3 Variance 4.8567

Linked Scale

'Normal'

Standard
Error

0.1597
0.5322
0.2597
0.09542
0.6937
0.8098

Model

z Value

60.80
62.09
82.41

Parameter Estimates for Mixing Probabilities

Standard
Error z Value Pr > |z|
0.3959 -5.89 <.0001
0.5893 -5.39 <.0001

Pr > |z|
<.0001

<.0001
<.0001

Probability

0.0854
0.0366
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Figure 37.15 Density Plot for Best (Three-Component) Model Assuming Unequal Variances

Distribution and Estimated Density for v
With Estimated Component Densities

80 :
Mixture
1: Normal(9.71,0.18)
2: Normal(33,0.85)
3: Normal(21.4,4.86)
60
€
Q
© 40
[0)
o
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9.2 14.2 19.2 242 29.2 34.2
v

To require that the separate components have identical variances, add the EQUATE=SCALE option in the
MODEL statement:

title2 "Three to Seven Components, Equal Variances";
ods select DensityPlot;
proc fmm data=galaxies criterion=AIC gconv=0;

model v = / kmin=3 kmax=7 equate=scale;

ods exclude IterHistory OptInfo ComponentInfo;
run;

The GCONV= convergence criterion is turned off in this PROC FMM run to avoid the early stoppage of
the iterations when the relative gradient changes little between iterations. Turning the criterion off usually
ensures that convergence is achieved with a small absolute gradient of the objective function.

The output for equal variances is shown in Figure 37.16 and Figure 37.17.



2446 4 Chapter 37: The FMM Procedure (Experimental)

Figure 37.16 Model Selection for Galaxy Data Assuming Equal Variances

Model
ID

g Wb

———————— Number of —-—————-
—Components— —Parameters-—
Total Eff. Total Eff. -2 Log L AIC
3 3 6 6 478.74 490.74
4 4 8 8 416.49 432.49
5 5 10 10 416.49 436.49
6 6 12 12 416.49 440.49
7 7 14 14 416.49 444 .49
Component Evaluation for Mixture Models
-------- Number of —-——————-
Model —Components-— —-Parameters-
ID Total Eff. Total Eff. Pearson
1 3 3 6 6 82.00
2 4 4 8 8 82.00
3 5 5 10 10 82.00
4 6 6 12 12 82.00
5 7 7 14 14 82.00

FMM Analysis of Galaxies Data

Three to Seven Components,

Data Set

Response Variable

The FMM Procedure

Model Information

Type of Model
Distribution

Min Components
Max Components
Link Function

Estimation Method

Component Evaluation for Mixture Models

-2 Log Likelihood
AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)
Pearson Statistic

The model with 4 components (ID=2) was selected as
statistic.

WORK . GALAXIES
v

Homogeneous Mixture

Normal

3

7
Identity

Maximum Likelihood

Fit Statistics

416.5
432.5
434.5
451.7
82.0000

Effective Parameters
Effective Components

Equal Variances

AICC

491.
434.
439.
445.
450.

86
47
59
02
76

Max

Gradient

1.197E-6
6.967E-7
4.31E-6
3.03E-6
4.896E-6

BIC

505.
451.
.56

460

469.
478.

'best' based on the AIC

18
75

37
19
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Figure 37.16 continued

Parameter Estimates for 'Normal' Model
Standard
Component Parameter Estimate Error z Value Pr > |z|
1 Intercept 23.5058 0.3460 67.93 <.0001
2 Intercept 33.0440 0.7610 43.42 <.0001
3 Intercept 20.0086 0.3029 66.06 <.0001
4 Intercept 9.7103 0.4981 19.50 <.0001
1 Variance 1.7354 0.3905
2 Variance 1.7354 0.3905
3 Variance 1.7354 0.3905
4 Variance 1.7354 0.3905
Parameter Estimates for Mixing Probabilities
—————————————— Linked Scale
Standard
Component Parameter Estimate Error z Value Pr > |z| Probability
1 Probability 1.4118 0.4497 3.14 0.0017 0.3503
2 Probability -0.8473 0.6901 -1.23 0.2195 0.0366
3 Probability 1.8216 0.4205 4.33 <.0001 0.5277
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Figure 37.17 Density Plot for Best (Six-Component) Model Assuming Equal Variances

Distribution and Estimated Density for v
With Estimated Component Densities

80 —— Mixture
—— 1: Normal(23.5,1.74)
2: Normal(33,1.74)
3: Normal(20,1.74)
4: Normal(9.71,1.74)
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Not surprisingly, the two variance specifications produce different optimal models. The unequal vari-
ance specification favors a three-component model while the equal variance specification favors a four-
component model. Comparison of the AIC fit statistics, 423.0 and 432.5, indicates that the three-component,
unequal variance model provides the best overall fit.

Comparison with Roeder’s Method

It is important to note that Roeder’s original analysis proceeds in a different manner than the finite mixture
modeling presented here. The technique presented by Roeder first develops a “best” range of scale parame-
ters based on a specific criterion. Roeder then uses fixed scale parameters taken from this range to develop
optimal equal-scale Gaussian mixture models.

You can reproduce Roeder’s point estimate for the density by specifying a five-component Gaussian mixture.
In addition, use the EQUATE=SCALE option in the MODEL statement and a RESTRICT statement fixing
the first component’s scale parameter at 0.9025 (Roeder’s 7 = 0.95, scale= h?). The combination of
these options produces a mixture of five Gaussian components, each with variance 0.9025. The following
statements conduct this analysis:
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title2 "Five Components, Equal Variances = 0.9025";
ods select DensityPlot;
proc fmm data=galaxies;

model v = / K=5 equate=scale;

restrict int 0 (scale 1) = 0.9025;

ods exclude IterHistory OptInfo ComponentInfo;
run;
ods graphics off;

The output is shown in Figure 37.18 and Figure 37.19.

Figure 37.18 Reproduction of Roeder’s Five-Component Analysis of Galaxy Data

FMM Analysis of Galaxies Data
Five Components, Equal Variances = 0.9025

The FMM Procedure

Model Information

Data Set WORK .GALAXIES
Response Variable v

Type of Model Homogeneous Mixture
Distribution Normal

Components 5

Link Function Identity

Estimation Method Maximum Likelihood

Fit Statistics

-2 Log Likelihood 412.2
AIC (smaller is better) 430.2
AICC (smaller is better) 432.7
BIC (smaller is better) 451.9
Pearson Statistic 82.5549
Effective Parameters 9
Effective Components 5

Linear Constraints at Solution

Constraint
k=1 Active

Variance = 0.90 Yes
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Figure 37.18 continued

Parameter Estimates for 'Normal' Model
Standard
Component Parameter Estimate Error z Value
1 Intercept 26.3266 0.7778 33.85
2 Intercept 33.0443 0.5485 60.25
3 Intercept 9.7101 0.3591 27.04
4 Intercept 23.0295 0.2294 100.38
5 Intercept 19.7187 0.1784 110.55
1 Variance 0.9025 0
2 Variance 0.9025 0
3 Variance 0.9025 0
4 Variance 0.9025 0
5 Variance 0.9025 0
Parameter Estimates for Mixing Probabilities
—————————————— Linked Scale
Standard
Component Parameter Estimate Error z Value Pr > |z]|
1 Probability -2.4739 0.7084 -3.49 0.0005
2 Probability -2.5544 0.6016 -4.25 <.0001
3 Probability -1.7071 0.4141 -4.12 <.0001
4 Probability -0.2466 0.2699 -0.91 0.3609

Pr > |z|

.0001
.0001
.0001
.0001
.0001

A A A A A

Probability

0.0397
0.0366
0.0854
0.3678
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Figure 37.19 Density Plot for Roeder’s Analysis
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Syntax: FMM Procedure

You can specify the following statements in the FMM procedure:

PROC FMM < options > ;
BAYES bayes-options ;
BY variables ;
CLASS variables </ TRUNCATE > ;
FREQ variable ;
ID variables ;
MODEL response< (response-options) > = < effects > </ model-options > ;
MODEL events/trials = < effects > </ model-options > ;
MODEL + < effects > </ model-options > ;
OUTPUT <OUT=SAS-data-set>
< keyword< (keyword-options)> < =name>>. ..
< keyword< (keyword-options)> < =name> > </ options > ;
PERFORMANCE performance-options ;
PROBMODEL < effects > </ probmodel-options > ;
RESTRICT < 'label’> constraint-specification <, . . ., constraint-specification >
< operator < value> > </ option> ;
WEIGHT variable ;

The PROC FMM statement and at least one MODEL statement is required. The CLASS, RESTRICT and
MODEL statements can appear multiple times. If a CLASS statement is specified, it must precede the
MODEL statements. The RESTRICT statements must appear after the MODEL statements.

PROC FMM Statement

PROC FMM < options > ;

The PROC FMM statement invokes the procedure. Table 37.2 summarizes important options in the PROC
FMM statement by function. These and other options in the PROC FMM statement are then described fully
in alphabetical order.

Table 37.2 PROC FMM Statement Options

Option Description

Basic Options

DATA= Specifies the input data set

EXCLUSION= Specifies how the procedure responds to support violations in the
data

NAMELEN= Specifies the length of effect names

ORDER= Determines the sort order of CLASS variables

SEED= Specifies the random number seed for analyses that require random

number draws
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Option Description

Displayed Output

COMPONENTINFO Displays information about the mixture components

CORR Displays the asymptotic correlation matrix of the maximum like-
lihood parameter estimates or the empirical correlation matrix of
the Bayesian posterior estimates

60)Y Displays the asymptotic covariance matrix of the maximum like-
lihood parameter estimates or the empirical covariance matrix of
the Bayesian posterior estimates

COVI Displays the inverse of the covariance matrix of the parameter es-
timates

FITDETAILS Displays fit information for all examined models

ITDETAILS Adds estimates and gradients to the “Iteration History” table

NOCLPRINT Suppresses the “Class Level Information” table completely or par-
tially

NOITPRINT Suppresses the “Iteration History Information” table

NOPRINT Suppresses tabular and graphical output

PARMSTYLE= Specifies how parameters are displayed in ODS tables

PLOTS Produces ODS statistical graphics

Computational Options

CRITERION=
NOCENTER
PARTIAL=

Specifies the criterion used in model selection
Prevents centering and scaling of the regressor variables
Specifies a variable that defines a partial classification

Options Related to Optimization

ABSCONV=
ABSFCONV=
ABSGCONV=
FCONV=
GCONV=
MAXITER=
MAXFUNC=

MAXTIME=

MINITER=
TECHNIQUE=

Tunes an absolute function convergence criterion

Tunes an absolute function difference convergence criterion
Tunes the absolute gradient convergence criterion

Tunes the relative function convergence criterion

Tunes the relative gradient convergence criterion

Specifies the maximum number of iterations in any optimization
Specifies the maximum number of function evaluations in any op-
timization

Specifies the upper limit of CPU time in seconds for any optimiza-
tion

Specifies the minimum number of iterations in any optimization
Selects the optimization technique

Singularity Tolerances
INVALIDLOGL=
SINGCHOL=
SINGRES=
SINGULAR=

Tunes the value assigned to an invalid component log likelihood
Tunes singularity for Cholesky decompositions

Tunes singularity for the residual variance

Tunes general singularity criterion
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You can specify the following options in the PROC FMM statement.

ABSCONV=r

ABSTOL=r
specifies an absolute function convergence criterion. For minimization, termination requires
f(p®) < r, where ¢ is the vector of parameters in the optimization and f(-) is the objective
function. The default value of r is the negative square root of the largest double-precision value,
which serves only as a protection against overflows.

ABSFCONV=r <n>

ABSFTOL=r<n>
specifies an absolute function difference convergence criterion. For all techniques except NMSIMP,
termination requires a small change of the function value in successive iterations:

f@* D) — f®) <r

Here, ¥ denotes the vector of parameters that participate in the optimization, and f(-) is the objective
function. The same formula is used for the NMSIMP technique, but ¥ (k) is defined as the vertex with
the lowest function value, and ¥ ®~1) is defined as the vertex with the highest function value in the
simplex. The default value is r = 0. The optional integer value n specifies the number of successive
iterations for which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r <n>

ABSGTOL=r<n>

specifies an absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small:

max lg;(®) <7

Here, ¥ denotes the vector of parameters that participate in the optimization, and g ; (-) is the gradient
of the objective function with respect to the jth parameter. This criterion is not used by the NMSIMP
technique. The default value is r =1E—5. The optional integer value n specifies the number of
successive iterations for which the criterion must be satisfied before the process can be terminated.

COMPONENTINFO

COMPINFO

CINFO
produces a table with additional details about the fitted model components.

cov
produces the covariance matrix of the parameter estimates. For maximum likelihood estimation, this
matrix is based on the inverse (projected) Hessian matrix. For Bayesian estimation, it is the empirical
covariance matrix of the posterior estimates. The covariance matrix is shown for all parameters, even
if they did not participate in the optimization or sampling.

covi

produces the inverse of the covariance matrix of the parameter estimates. For maximum likelihood
estimation, the covariance matrix is based on the inverse (projected) Hessian matrix. For Bayesian
estimation, it is the empirical covariance matrix of the posterior estimates. This matrix is then inverted
by sweeping, and rows and columns that correspond to linear dependencies or singularities are zeroed.
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CORR
produces the correlation matrix of the parameter estimates. For maximum likelihood estimation this
matrix is based on the inverse (projected) Hessian matrix. For Bayesian estimation, it is based on the
empirical covariance matrix of the posterior estimates.

CRITERION=keyword

CRIT=keyword
specifies the criterion by which the FMM procedure ranks models when multiple models are evaluated
during maximum likelihood estimation. You can choose from the following keywords to rank models:

LOGL I LL based on the mixture log likelihood

AIC based on Akaike’s information criterion

AICC based on the bias-corrected AIC criterion

BIC based on the Bayesian information criterion

PEARSON based on the Pearson statistic

GRADIENT based on the largest element of the gradient (in absolute value)

The default is CRITERION=LOGL.

DATA=SAS-data-set
names the SAS data set to be used by PROC FMM. The default is the most recently created data set.

EXCLUSION=NONE | ANY | ALL

EXCLUDE=NONE | ANY | ALL
specifies how the FMM procedure handles support violations of observations. For example, in a
mixture of two Poisson variables, negative response values are not possible. However, in a mixture of
a Poisson and a normal variable, negative values are possible, and their likelihood contribution to the
Poisson component is zero. An observation that violates the support of one component distribution of
the model might be a valid response with respect to one or more other component distributions. This
requires some nuanced handling of support violations in mixture models.

The default exclusion technique, EXCLUSION=ALL, removes an observation from the analysis only
if it violates the support of all component distributions. The other extreme, EXCLUSION=NONE,
permits an observation into the analysis regardless of support violations. EXCLUSION=ANY re-
moves observations from the analysis if the response violates the support of any component distribu-
tions. In the single-component case, EXCLUSION=ALL and EXCLUSION=ANY are identical.

FCONV=r<n>

FTOL=r<n>
specifies a relative function convergence criterion. For all techniques except NMSIMP, termination
requires a small relative change of the function value in successive iterations,

S @O — f@® D)) _ .
| S &) B

Here, ¥ denotes the vector of parameters that participate in the optimization, and f'(-) is the objective
function. The same formula is used for the NMSIMP technique, but ¥ &) is defined as the vertex with
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the lowest function value, and ¥ ¥—1) is defined as the vertex with the highest function value in the
simplex. The

The default is » = 107FPISITS ' where FDIGITS is by default — log;{€}, and € is the machine preci-
sion. The optional integer value n specifies the number of successive iterations for which the criterion
must be satisfied before the process can terminate.

FITDETAILS
requests that the “Optimization Information,” “Iteration History,” and “Fit Statistics” tables be pro-
duced for all optimizations when models with different number of components are evaluated. For
example, the following statements fit a binomial regression model with up to three components and
produces fit and optimization information for all three:

proc fmm fitdetails;
model y/n = x / kmax=3;
run;

Without the FITDETAILS option, only the “Fit Statistics” table for the selected model is displayed.

GCONV=r<n>
GTOL=r<n>

specifies a relative gradient convergence criterion. For all techniques except CONGRA and NMSIMP,
termination requires that the normalized predicted function reduction be small,

&)y k-1 (k)
gy H l]{ s _,
| f (g ®)]
Here, ¥ denotes the vector of parameters that participate in the optimization, f(-) is the objective

function, and g(-) is the gradient. For the CONGRA technique (where a reliable Hessian estimate H
is not available), the following criterion is used:

e ®) 13 1s# )
126 ®) — @ &) [ /¥ ®)]

This criterion is not used by the NMSIMP technique. The default value is r =1E—8. The optional
integer value n specifies the number of successive iterations for which the criterion must be satisfied
before the process can terminate.

HESSIAN
displays the Hessian matrix of the model. This option is not available for Bayesian estimation.

INVALIDLOGL=r
specifies the value assumed by the FMM procedure if a log likelihood cannot be computed (for ex-

ample, because the value of the response variable falls outside of the response distribution’s support).
The default value is —1E20.

ITDETAILS
adds parameter estimates and gradients to the “Iteration History” table. If the FMM procedure centers
or scales the model variables (or both), the parameter estimates and gradients reported during the
iteration refer to that scale. You can suppress centering and scaling with the NOCENTER option.
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MAXFUNC=n

MAXFU=n
specifies the maximum number of function calls in the optimization process. The default values are
as follows, depending on the optimization technique:

e TRUREG, NRRIDG, and NEWRAP: 125
e QUANEW and DBLDOG: 500

e CONGRA: 1000

e NMSIMP: 3000

The optimization can terminate only after completing a full iteration. Therefore, the number of func-
tion calls that are actually performed can exceed the number that is specified by the MAXFUNC=
option. You can choose the optimization technique with the TECHNIQUE= option.

MAXITER=n

MAXIT=n
specifies the maximum number of iterations in the optimization process. The default values are as
follows, depending on the optimization technique:

e TRUREG, NRRIDG, and NEWRAP: 50
e QUANEW and DBLDOG: 200

e CONGRA: 400

e NMSIMP: 1000

These default values also apply when n is specified as a missing value. You can choose the optimiza-
tion technique with the TECHNIQUE-= option.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The default value is the
largest floating-point double representation of your computer. The time specified by the MAXTIME=
option is checked only once at the end of each iteration. Therefore, the actual running time can be
longer than that specified by the MAXTIME= option.

MINITER=n

MINIT=n
specifies the minimum number of iterations. The default value is 0. If you request more iterations
than are actually needed for convergence to a stationary point, the optimization algorithms can behave
strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for
the required number of iterations.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NOCENTER
requests that regressor variables not be centered or scaled. By default the FMM procedure centers
and scales columns of the X matrix if the models contain intercepts. If NOINT options in MODEL
statements are in effect, the columns of X are scaled but not centered. Centering and scaling can help
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with the stability of estimation and sampling algorithms. The FMM procedure does not produce a
table of the centered and scaled coefficients and provides no user control over the type of centering
and scaling that is applied. The NOCENTER option turns any centering and scaling off and processes
the raw values of the continuous variables.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number. If you
specify number, the values of the classification variables are displayed for only those variables whose
number of levels is less than number. Specifying a number helps to reduce the size of the “Class
Level Information” table if some classification variables have a large number of levels.

NOITPRINT
suppresses the display of the “Iteration History Information” table.

NOPRINT
suppresses the normal display of tabular and graphical results. The NOPRINT option is useful when
you want to create only one or more output data sets with the procedure. This option temporarily
disables the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery System,”
for more information.

ORDER-=order-type
specifies the sorting order for the levels of CLASS variables. This ordering determines which param-
eters in the model correspond to each level in the data.

You can specify the following values for order-type:

DATA
sorts the levels by order of appearance in the input data set.

FORMATTED
sorts the levels by external formatted value, except for numeric variables with no explicit format,
which are sorted by their unformatted (internal) value.

FREQ
sorts the levels by descending frequency count; levels with the most observations come first in
the order.

INTERNAL
sorts the levels by unformatted value.

FREQDATA
sorts the levels by order of descending frequency count, and within counts by order of appear-
ance in the input data set when counts are tied.

FREQFORMATTED

sorts the levels by order of descending frequency count, and within counts by formatted value
(as above) when counts are tied.

FREQINTERNAL
sorts the levels by order of descending frequency count, and within counts by unformatted value
when counts are tied.
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When the default ORDER=FORMATTED is in effect for numeric variables for which you have sup-
plied no explicit format, the levels are ordered by their internal values. To order numeric class levels

with no explicit format by their BEST12. formatted values, you can specify this format explicitly for
the CLASS variables.

When FORMATTED and INTERNAL values are involved, the sort order is machine-dependent.

When the response variable appears in a CLASS statement, the ORDER= option in the PROC FMM
statement applies to its sort order. For example, in the following statements the sort order of the
wheeze variable is determined by the order of appearance in the input data set because the response
variable appears in the CLASS statement:

proc fmm order=data;

class city wheeze;

model wheeze = city age / dist=binary s;
run;

However, in the following statements the sort order of the wheeze variable is determined by the
formatted value (the default response-option in the MODEL statement):

proc fmm order=data;

class city;

model wheeze = city age / dist=binary s;
run;

The ORDER= option in the PROC FMM statement has no effect on the sort order of the wheeze
variable because it does not appear in the CLASS statement.

When you specify a response-option in the MODEL statement, it overrides the ORDER= option in
the PROC FMM statement.

For more information about sorting order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

PARMSTYLE=EFFECT | LABEL
specifies the display style for parameters and effects. The FMM procedure can display parameters in
two styles:

e The EFFECT style (which is used by the MIXED and GLIMMIX procedure, for example) iden-
tifies a parameter with an “Effect” column and adds separate columns for the CLASS variables
in the model.

e The LABEL style creates one column, named Parameter, that combines the relevant information
about a parameter into a single column. If your model contains multiple CLASS variables, the
LABEL style might use space more economically.

The EFFECT style is the default for models that contain effects; otherwise the LABEL style is used
(for example, in homogeneous mixtures). You can change the display style with the PARMSTYLE=
option. Regardless of the display style, ODS output data sets that contain information about parameter
estimates contain columns for both styles.
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PARTIAL=variable

MEMBERSHIP=variable
specifies a variable in the input data set that identifies component membership. You can specify
missing values for observations whose component membership is undetermined; this is known as a
partial classification (McLachlan and Peel 2000, p. 75). For observations with known membership,
the likelihood contribution is no longer a mixture. If observation i is known to be a member of
component m, then its log likelihood contribution is

log {7Tm (. am) pm(y: X;nﬂm» ¢m)}
Otherwise, if membership is undertermined, it is

k
log Z wj(z,a;)pi(v;X;Bj. ;)

j=1

The variable specified in the PARTTAL= option can be numeric or character. In case of a character
variable, the variable must appear in the CLASS statement. If the PARTIAL= variable appears in the
CLASS statement, the membership assignment is made based on the levelized values of the variable,
as shown in the “Class Level Information” table. Invalid values of the PARTIAL= variable are ignored.

In a model in which label switching is a problem, the switching can sometimes be avoided by assign-
ing just a few observations to categories. For example, in a three-component model, switches might
be prevented by assigning the observation with the smallest response value to the first component and
the observation with the largest response value to the last component.

PLOTS < (global-plot-options) > < = plot-request < (options) > >
PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >

controls the plots produced through ODS Graphics.

ODS Graphics must be enabled before requesting plots. For example:

ods graphics on;

proc fmm data=yeast seed=12345;
model count/n = / k=2;
freq £;
performance cpucount=2;
bayes;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

Global Plot Options

The global-plot-options apply to all relevant plots generated by the FMM procedure. The global-plot-
options supported by the FMM procedure are as follows:
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UNPACKPANEL
UNPACK
breaks a graphic that is otherwise paneled into individual component plots.
ONLY
produces only the specified plots. This option is useful if you do not want the procedure to
generate all default graphics, but only the ones specified.
Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots appropriate for the analysis be produced.

NONE
requests that no ODS graphics be produced.

DENSITY < (density-options) >
requests a plot of the data histogram and mixture density function. This graphic is a default
graphic in models without effects in the MODEL statements and is available only in these
models. Furthermore, all distributions involved in the mixture must be continuous. You can
specify the following density-options to modify the plot:

CUMULATIVE

CDF
displays the histogram and densities in cumulative form.

NBINS=n

BINS=n
specifies the number of bins in the histogram; n is greater than or equal to 0. By default,
the FMM procedure computes a suitable bin width and number of bins, based on the
range of the response and the number of usable observations. The option has no effect
for binary data.

NOCOMPONENTS

NOCOMP
suppresses the component densities from the plot. If the component densities are dis-
played, they are scaled so that their sum equals the mixture density at any point on the
graph. In single-component models, this option has no effect.

NODENSITY

NODENS
suppresses the computation of the mixture density (and the component densities if the
COMPONENTS suboption is specified). If you specify the NOHISTOGRAM and the
NODENSITY option, no graphic is produced.
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NOLABEL

suppresses the component identification with labels. By default, the FMM procedure
labels component densities in the legend of the plot. If you do not specify a model label
with the LABEL= option in the MODEL statement, an identifying label is constructed
from the parameter estimates that are associated with the component. In this case the
parameter values are not necessarily the mean and variance of the distribution; the values
used to identify the densities on the plot are chosen to simplify linking between graphical
and tabular results.

NOHISTOGRAM

NOHIST
suppresses the computation of the histogram of the raw values. If you specify the NO-

HISTOGRAM and the NODENSITY option, no graphic is produced.

NPOINTS=n

N=n
specifies the number of values used to compute the density functions; n is greater than or
equal to 0. The default is N=200.

WIDTH=value

BINWIDTH=value
specifies the bin width for the histogram. The value is specified in units of the response
variable and must be positive. The option has no effect for binary data.

TRACE < (tadpanel-options) >
requests a trace panel with posterior diagnostics for a Bayesian analysis. If a BAYES statement
is present, the trace panel plots are generated by default, one for each sampled parameter. You
can specify the following tadpanel-options to modify the graphic:

BOX

BOXPLOT
replaces the autocorrelation plot with a box plot of the posterior sample.

SMOOTH=NONE | MEAN | SPLINE
adds a reference estimate to the trace plot. By default, SMOOTH=NONE.
SMOOTH=MEAN uses the arithmetic mean of the trace as the reference.
SMOOTH=SPLINE adds a penalized B-spline.

REFERENCE-= reference-style
adds vertical reference lines to the density plot, trace plot, and box plot. The available
options for the reference-style are:

NONE suppresses the reference lines
EQT requests equal-tail intervals
HPD requests intervals of highest posterior density. The level for the credi-

ble or HPD intervals is chosen based on the “Posterior Interval Statis-
tics” table.



PROC FMM Statement 4 2463

PERCENTILES (or PERC) for percentiles. Up to three percentiles can be displayed,
as based on the “Posterior Summary Statistics” table.

The default is REFERENCE=CREDIBLE.

UNPACK
unpacks the panel graphic and displays its elements as separate plots.

SEED=n
determines the random number seed for analyses that depend on a random number stream. If you
do not specify a seed or if you specify a value less than or equal to zero, the seed is generated from
reading the time of day from the computer clock. The largest possible value for the seed is 23! — 1.
The seed value is reported in the “Model Information™ table.

You can use the SYSRANDOM and SYSRANEND macro variables after a PROC FMM run to query
the initial and final seed values. However, using the final seed value as the starting seed for a sub-
sequent analysis does not continue the random number stream where the previous analysis left off.
The SYSRANEND macro variable provides a mechanism to pass on seed values to ensure that the
sequence of random numbers is the same every time you run an entire program.

Analyses that use the same (nonzero) seed are not completely reproducible if they are executed with
a different number of threads since the random number streams in separate threads are independent.
You can control the number of threads used by the FMM procedure with system options or through
the PERFORMANCE statement in the FMM procedure.

SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default is 1E4 times the machine
epsilon; this product is approximately 1E—12 on most computers.

SINGRES=number
sets the tolerance for which the residual variance or scale parameter is considered to be zero. The
default is 1E4 times the machine epsilon; this product is approximately 1E—12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the FMM procedure in sweeps and inversions. The
default is 1E4 times the machine epsilon; this product is approximately 1E—12 on most computers.

TECHNIQUE=keyword

TECH=keyword
specifies the optimization technique to obtain maximum likelihood estimates. You can choose from
the following techniques by specifying the appropriate keyword:

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization combining a line-search algorithm with
ridging.

NMSIMP performs a Nelder-Mead simplex optimization.

NONE performs no optimization.
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NRRIDG performs a Newton-Raphson optimization with ridging.
QUANEW performs a dual quasi-Newton optimization.
TRUREG performs a trust-region optimization.

The default is TECH=QUANEW.

For more details about these optimization methods, see the section “Choosing an Optimization Algo-
rithm” on page 505 of Chapter 19, “Shared Concepts and Topics.”

BAYES Statement

BAYES bayes-options ;

The BAYES statement requests that the parameters of the model be estimated by Markov chain Monte
Carlo sampling techniques. The FMM procedure can estimate by maximum likelihood the parameters of all
models supported by the procedure. Bayes estimation, on the other hand, is available for only a subset of
these models.

In Bayesian analysis, it is essential to examine the convergence of the Markov chains before you proceed
with posterior inference. With ODS Graphics turned on, the FMM procedure produces graphs at the end of
the procedure output; these graphs enable you to visually examine the convergence of the chain. Inferences
cannot be made if the Markov chain has not converged.

The output produced for a Bayesian analysis is markedly different from that for a frequentist (maximum
likelihood) analysis for the following reasons:

e Parameter estimates do not have the same interpretation in the two analyses. Parameters are fixed
unknown constants in the frequentist context and random variables in a Bayesian analysis.

e The results of a Bayesian analysis are summarized through chain diagnostics and posterior summary
statistics and intervals.

e The FMM procedure samples the mixing probabilities in Bayesian models directly, rather than map-
ping them onto a logistic (or other) scale.

The FMM procedure applies highly specialized sampling algorithms in Bayesian models. For single-
component models without effects, a conjugate sampling algorithm is used where possible. For models
in the exponential family that contain effects, the sampling algorithm is based on Gamerman (1997). For
the normal and ¢ distributions, a conjugate sampler is the default sampling algorithm for models with and
without effects. In multi-component models, the sampling algorithm is based on latent variable sampling
through data augmentation (Frithwirth-Schnatter 2006) and the Gamerman or conjugate sampler. Because
of this specialization, the options for controlling the prior distributions of the parameters are limited.

Table 37.3 summarizes important bayes-options in the BAYES statement by function. The full assortment
of options is then described in alphabetical order.
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Table 37.3 BAYES Statement Options

Option Description

Options Related to Sampling

INITIAL= Specifies how to construct initial values

NBI= Specifies the number of burn-in samples

NMC= Specifies the number of samples after burn-in

METROPOLIS Forces a Metropolis-Hastings sampling algorithm even if conju-
gate sampling is possible

OUTPOST= Generates a data set that contains the posterior estimates

THIN= Controls the thinning of the Markov chain

Specification of Prior Information

MIXPRIORPARMS Specifies the prior parameters for the Dirichlet distribution of the
mixing probabilities

BETAPRIORPARMS=  Specifies the parameters of the normal prior distribution for indi-
vidual parameters in the 8 vector

MUPRIORPARMS= Specifies the parameters of the prior distribution for the means in
homogeneous mixtures without effects

PHIPRIORPARMS= Specifies the parameters of the inverse gamma prior distribution
for the scale parameters in homogeneous mixtures

PRIOROPTIONS Specifies additional options used in the determination of the prior
distribution

Posterior Summary Statistics and Convergence Diagnostics

DIAGNOSTICS Displays convergence diagnostics for the Markov chain

STATISTICS Displays posterior summary information for the Markov chain

Other Options

ESTIMATE= Specifies which estimate is used for the computation of OUTPUT
statistics and graphics

TIMEINC= Specifies the time interval to report on sampling progress (in sec-
onds)

You can specify the following options in the BAYES statement.

BETAPRIORPARMS=pair-specification

BETAPRIORPARMS(pair-specification . .. pair-specification)
specifies the parameters for the normal prior distribution of the parameters that are associated with
model effects (8s). The pair-specification is of the form (a, b), and the values a and b are the mean
and variance of the normal distribution, respectively.

The form of the BETAPRIORPARMS with an equal sign and a single pair is used to specify one pair
of prior parameters that applies to all components in the mixture. In the following example, the two
intercepts and the two regression coefficients all have a N (0, 100) prior distribution:

proc fmm;

model y = x / k=2;

bayes betapriorparms=(0,100);
run;
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You can also provide a list of pairs to specify different sets of prior parameters for the various regres-
sion parameters and components. For example:

proc fmm;

model y = x/ k=2;

bayes betapriorparms( (0,10) (0,20) (.,.) (3,100) );
run;

The simple linear regression in the first component has a N(0, 10) prior for the intercept and a
N(0,20) prior for the slope. The prior for the intercept in the second component uses the FMM
default, whereas the prior for the slope is N (3, 100).

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls the computation of diagnostics for the posterior chain. You can request all posterior diag-
nostics by specifying DIAGNOSTICS=ALL or suppress the computation of posterior diagnostics by
specifying DIAGNOSTICS=NONE. The following keywords enable you to select subsets of posterior
diagnostics; the default is DIAGNOSTICS=(AUTOCORR).

AUTOCORR < (LAGS= numeric-list) >
computes for each sampled parameter the autocorrelations of lags specified in the LAGS= list.
Elements in the list are truncated to integers, and repeated values are removed. If the LAGS=
option is not specified, autocorrelations are computed by default for lags 1, 5, 10, and 50. See
the section “Autocorrelations” on page 156 for details.

ESS
computes an estimate of the effective sample size (Kass et al. 1998), the correlation time, and
the efficiency of the chain for each parameter. See the section “Effective Sample Size” on
page 156 for details.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics (Geweke 1992), which are essentially a two-
sample ¢ test between the first f; portion and the last f> portion of the chain. The default is
f1 = 0.1 and f> = 0.5, but you can choose other fractions by using the following geweke-
options:

FRAC1=value
specifies the fraction f; for the first window.

FRAC2=value
specifies the fraction f, for the second window.

See the section “Geweke Diagnostics” on page 150 for details.

HEIDELBERGER < (Heidel-options) >

HEIDEL < (Heidel-options) >
computes the Heidelberger and Welch diagnostic (which consists of a stationarity test and a
half-width test) for each variable. The stationary diagnostic test tests the null hypothesis that
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the posterior samples are generated from a stationary process. If the stationarity test is passed,
a half-width test is then carried out. See the section “Heidelberger and Welch Diagnostics” on
page 152 for more details.

These diagnostics are not performed by default.  You can specify the DIAGNOS-
TICS=HEIDELBERGER option to request these diagnostics, and you can also specify
suboptions, such as DIAGNOSTICS=HEIDELBERGER(EPS=0.05), as follows:

SALPHA=value

specifies the « level (0 < « < 1) for the stationarity test. By default, SALPHA=0.05.

HALPHA=value

specifies the « level (0 < @ < 1) for the half-width test. By default, HALPHA=0.05.

EPS=value

specifies a small positive number € such that if the half-width is less than € times the
sample mean of the retaining iterates, the half-width test is passed. By default, EPS=0.1.

MCERROR

MCSE
computes an estimate of the Monte Carlo standard error for each sampled parameter. See the
section “Standard Error of the Mean Estimate” on page 157 for details.

MAXLAG=n
specifies the largest lag used in computing the effective sample size and the Monte Carlo stan-
dard error. Specifying this option implies the ESS and MCERROR options. The default is
MAXLAG=250.

RAFTERY < (Raftery-options) >

RL < (Raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the estimated
quantile (6p for a given Q € (0, 1)) of a chain. 6p can achieve any degree of accuracy when
the chain is allowed to run for a long time. The algorithm stops when the estimated probability
13Q = Pr(d < éQ) reaches within £R of the value Q with probability S; that is, Pr(Q —
R =< ISQ < Q + R) = S. See the section “Raftery and Lewis Diagnostics” on page 153 for
more details. The Raftery-options enable you to specify Q, R, S, and a precision level € for a
stationary test.

These diagnostics are not performed by default.  You can specify the DIAGNOS-
TICS=RAFERTY option to request these diagnostics, and you can also specify suboptions,
such as DIAGNOSTICS=RAFERTY (QUANTILE=0.05), as follows:

QUANTILE=value
Q=value

specifies the order (a value between O and 1) of the quantile of interest. By default,
QUANTILE=0.025.
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ACCURACY=value
R=value

specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, ACCURACY=0.005.

PROB=value
S=value

specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, PROB=0.95.

EPS=value

specifies the tolerance level (a small positive number between 0 and 1) for the stationary
test. By default, EPS=0.001.

MIXPRIORPARMS=K

MIXPRIORPARMS(value-list)

specifies the parameters used in constructing the Dirichlet prior distribution for the mixing parameters.
If you specify MIXPRIORPARMS=K, the parameters of the k-dimensional Dirichlet distribution are
a vector that contains the number of components in the model (k), whatever that might be. You can
specify an explicit list of parameters in value-list. If the MIXPRIORPARMS option is not specified,
the default Dirichlet parameter vector is a vector of length k of ones. This results in a uniform prior
over the unit simplex; for k = 2, this is the uniform distribution. See the section “Prior Distributions”
on page 2500 for the distribution function of the Dirichlet as used by the FMM procedure.

ESTIMATE=MEAN | MAP
determines which overall estimate is used, based on the posterior sample, in the computation of OUT-
PUT statistics and certain ODS graphics. By default, the arithmetic average of the (thinned) posterior
sample is used. If you specify ESTIMATE=MAP, the parameter vector is used that corresponds to the
maximum log posterior density in the posterior sample. In any event, a message is written to the SAS
log if postprocessing results depend on a summary estimate of the posterior sample.

INITIAL=DATA | MLE | MODE | RANDOM

determines how initial values for the Markov chain are obtained. The default when a conjugate sam-
pler is used is INITIAL=DATA, in which case the FMM procedure uses the same algorithm to obtain
data-dependent starting values as it uses for maximum likelihood estimation. If no conjugate sampler
is available or if you use the METROPOLIS option to explicitly request that it not be used, then the
default is INITIAL=MLE, in which case the maximum likelihood estimates are used as the initial
values. If the maximum likelihood optimization fails, the FMM procedure switches to the default
INITIAL=DATA.

The options INITTAL=MODE and INITIAL=RANDOM use the mode and random draws from the
prior distribution, respectively, to obtain initial values. If the mode does not exist or if it falls on the
boundary of the parameter space, the prior mean is used instead.

METROPOLIS
requests that the FMM procedure use the Metropolis-Hastings sampling algorithm based on Gamer-
man (1997), even in situations where a conjugate sampler is available.
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MUPRIORPARMS=pair-specification

MUPRIORPARMS( pair-specification . .. pair-specification)

specifies the parameters for the means in homogeneous mixtures without regression coefficients. The
pair-specification is of the form (a, b), where a and b are the two parameters of the prior distribu-
tion, optionally delimited with a comma. The actual distribution of the parameter is implied by the
distribution selected in the MODEL statement. For example, it is a normal distribution for a mixture
of normals, a gamma distribution for a mixture of Poisson variables, a beta distribution for a mixture
of binary variables, and an inverse gamma distribution for a mixture of exponential variables. The
parameters correspond as follows:

Beta: The parameters correspond to the & and B parameters of the beta prior distribution
such that its mean is u = /(e + B) and its variance is (1 — w) /(e + g + 1).

Normal: The parameters correspond to the mean and variance of the normal prior distribu-
tion.

Gamma: The parameters correspond to the @ and B parameters of the gamma prior distribu-

tion such that its mean is o/ and its variance is ot/ 2.

Inverse gamma: The parameters correspond to the o and B parameters of the inverse gamma prior
distribution such that its mean is 4 = B/(a — 1) and its variance is 2/ (o — 2).

The two techniques for specifying the prior parameters with the MUPRIORPARMS option are as
follows:

e Specify an equal sign and a single pair of values:

proc fmm seed=12345;

model y = / k=2;

bayes mupriorparms=(0,50);
run;

e Specify a list of parameter pairs within parentheses:

proc fmm seed=12345;

model y = / k=2;

bayes mupriorparms( (.,.) (1.4,10.5));
run;

If you specify an invalid value (outside of the parameter space for the prior distribution), the FMM
procedure chooses the default value and writes a message to the SAS log. If you want to use the
default values for a particular parameter, you can also specify missing values in the pair-specification.
For example, the preceding list specification assigns default values for the first component and uses
the values 1.4 and 10.5 for the mean and variance of the normal prior distribution in the second
component. The first example assigns a N (0, 50) prior distribution to the means in both components.

NBI=n
specifies the number of burn-in samples. During the burn-in phase, chains are not saved. The default
is NBI=2000.
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NMC=n
SAMPLE=n

specifies the number of Monte Carlo samples after the burn-in. Samples after the burn-in phase are
saved unless they are thinned with the THIN= option. The default is NMC=10000.

OUTPOST< (outpost-options) >=data-set
requests that the posterior sample be saved to a SAS data set. In addition to variables that contain
log likelihood and log posterior values, the OUTPOST data set contains variables for the parameters.
The variable names for the parameters are generic (Parm_1, Parm_2, ---, Parm_p). The labels of the
parameters are descriptive and correspond to the “Parameter Mapping” table that is produced when
the OUTPOST= option is in effect.

You can specify the following outpost-options in parentheses:

LOGPRIOR
adds the value of the log prior distribution to the data set.

NONSINGULAR | NONSING | COMPRESS
eliminates parameters that correspond to singular columns in the design matrix (and were not
sampled) from the posterior data set. This is the default.

SINGULAR | SING
adds columns of zeros to the data set in positions that correspond to singularities in the model
or to parameters that were not sampled for other reasons. By default, these columns of zeros
are not written to the posterior data set.

PHIPRIORPARMS=pair-specification

PHIPRIORPARMS( pair-specification ... pair-specification)
specifies the parameters for the inverse gamma prior distribution of the scale parameters (¢’s) in the
model. The pair-specification is of the form (a, b), and the values are chosen such that the prior
distribution has mean p = b/(a — 1) and variance 2 /(a — 2).

The form of the PHIPRIORPARMS with an equal sign and a single pair is used to specify one pair of
prior parameters that applies to all components in the mixture. For example:

proc fmm seed=12345;

model y = / k=2;

bayes phipriorparms=(2.001,1.001);
run;

The form with a list of pairs is used to specify different prior parameters for the scale parameters in
different components. For example:

proc fmm seed=12345;

model y = / k=2;

bayes phipriorparms( (.,1.001) (3.001,2.001) );
run;
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If you specify an invalid value (outside of the parameter space for the prior distribution), the FMM
procedure chooses the default value and writes a message to the SAS log. If you want to use the
default values for a particular parameter, you can also specify missing values in the pair-specification.
For example, the preceding list specification assigns default values for the first component a prior
parameter and uses the value 1.001 for the b prior parameter. The second pair assigns 3.001 and
2.001 for the a and b prior parameters, respectively.

PRIOROPTIONS < =>(prior-options)

PRIOROPTS < =>(prior-options)
specifies options related to the construction of the prior distribution and the choice of their parameters.
Some prior-options apply only in particular models.

You can specify the following prior-options:

CONDITIONAL | COND
chooses a conditional prior specification for the homogeneous normal and ¢ distribution re-
sponse components. The default prior specification in these models is an independence prior
where the mean of the Ath component has prior j, ~ N(a, b). The conditional prior is charac-
terized by up ~ N(a, U}f/b).

DEPENDENT | DEP
chooses a data-dependent prior for the homogeneous models without effects. The prior param-
eters a and b are chosen as follows, based on the distribution in the MODEL statement:

Binary and binomial: a = y/(1 —¥), b = 1, and the prior distribution for the success proba-
bility is beta(a, b).

Poisson: a = 1,b = 1/, and the prior distribution for u is gamma(a, b). See
Frithwirth-Schnatter (2006, p. 280) and Viallefont, Richardson, and Greene
(2002).

Exponential: a = 3, b = 2y, and the prior distribution for p is inverse gamma with

parameters @ and b.

Normal and #: Under the default independence prior, the prior distribution for p is
N(¥, fs?) where f is the variance factor from the VAR= option and

1 & _
== =)

i=1

Under the default conditional prior specification, the prior for wuj; is
N(a,a,f/b) where ¢ = y and b = 2.6/(max{y} — min{y}). The prior
for the scale parameter is inverse gamma with parameters 1.28 and 0.36s2.
For further details, see Raftery (1996) and Frithwirth-Schnatter (2006, p.
179).

VAR=f
specifies the variance for normal prior distributions. The default is VAR=1000. This factor is
used, for example, in determining the prior variance of regression coefficients or in determining
the prior variance of means in homogeneous mixtures of ¢ or normal distributions (unless a
data-dependent prior is used).
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MLE<=r>
specifies that the prior distribution for regression variables be based on a multivariate nor-
mal distribution centered at the MLEs and whose dispersion is a multiple r of the asymp-
totic MLE covariance matrix. The default is MLE=10. In other words, if you specify PRI-
OROPTS(MLE), the FMM procedure chooses the prior distribution for the regression variables
as N (,3 IOVar[,B]) where ,B is the vector of maximum likelihood estimates. The prior for the
scale parameter is inverse gamma with parameters 1.28 and 0.36s2 where

DM

i=1
For further details, see Raftery (1996) and Frithwirth-Schnatter (2006, p. 179).

The MLE option is not available for mixture models in which the parameters are estimated
directly on the data scale, such as homogeneous mixture models or mixtures of distributions
without model effects for which a conjugate sampler is available. By using the METROPOLIS
option, you can always force the FMM procedure to abandon a conjugate sampler in favor of a
Metropolis-Hastings sampling algorithm to which the MLE option applies.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

SUMMARIES < (global-options)> = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent to
specifying STATISTICS=(SUMMARY INTERVAL). To suppress the computation of posterior statis-
tics, specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY INTERVAL). See the
section “Summary Statistics” on page 157 for more details.

The global-options include the following:

ALPHA=numeric-list
controls the coverage levels of the equal-tail credible intervals and the credible intervals of high-
est posterior density (HPD) credible intervals. The ALPHA= values must be between 0 and 1.
Each ALPHA= value produces a pair of 100(1 — «)% equal-tail and HPD credible intervals for
each sampled parameter. The default is ALPHA=0.05, which results in 95% credible intervals
for the parameters.

PERCENT=numeric-list
requests the percentile points of the posterior samples. The values in numeric-list must be
between 0 and 100. The default is PERCENT=(25 50 75), which yields for each parameter the
25th, 50th, and 75th percentiles, respectively.

The list of keywords includes the following:

SUMMARY
produces the means, standard deviations, and percentile points for the posterior samples. The
default is to produce the 25th, 50th, and 75th percentiles; you can modify this list with the
global PERCENT= option.

INTERVAL
produces equal-tail and HPD credible intervals. The default is to produce the 95% equal-tail
credible intervals and 95% HPD credible intervals, but you can use the ALPHA= global-option
to request credible intervals for any probabilities.
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THIN=n

THINNING=n
controls the thinning of the Markov chain after the burn-in. Only one in every k samples is used when
THIN=k, and if NBI=ny and NMC=n, the number of samples kept is

no +n no
k k
where [a] represents the integer part of the number a. The default is THIN=1—that is, all samples
are kept after the burn-in phase.

TIMEINC=n
specifies a time interval in seconds to report progress during the burn-in and sampling phase. The time
interval is approximate, since the minimum time interval in which the FMM procedure can respond
depends on the multithreading configuration.

BY Statement

BY variables ;

You can specify a BY statement with PROC FMM to obtain separate analyses on observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

e Specify the NOTSORTED or DESCENDING option in the BY statement for the FMM procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are ar-
ranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Because sorting the data changes the order in which PROC FMM reads observations, the sorting order for
the levels of the CLASS variable might be affected if you have specified ORDER=DATA in the PROC FMM
statement.

For more information about B Y-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures
Guide.
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CLASS Statement

CLASS variables </ TRUNCATE > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must
appear before the MODEL statement.

Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC FMM statement. You can specify the following option in the CLASS statement after a
slash (/):

TRUNCATE
specifies that class levels should be determined by using only up to the first 16 characters of the
formatted values of CLASS variables. When formatted values are longer than 16 characters, you can
use this option to revert to the levels as determined in releases prior to SAS 9.

FREQ Statement

FREQ variable ;

The variable in the FREQ statement identifies a numeric variable in the data set that contains the frequency
of occurrence for each observation. PROC FMM treats each observation as if it appears f times, where f
is the value of the FREQ variable for the observation. If it is not an integer, the frequency value is truncated
to an integer. If the frequency value is less than 1 or missing, the observation is not used in the analysis.
When the FREQ statement is not specified, each observation is assigned a frequency of 1.

ID Statement

ID variables ;

The ID statement specifies a list of variables that are included in the OUT= data set of the OUTPUT state-
ment. If no ID statement is specified, all variables from the input data set are copied into the output data
set.
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MODEL Statement

MODEL response < (response-options) > = < effects > </ model-options > ;
MODEL events/trials = < effects >< / model-options > ;
MODEL + < effects >< / model-options > ;

The MODEL statement defines elements of the mixture model, such as the model effects, the distribution,
and the link function. At least one MODEL statement is required. You can specify more than one MODEL
statement. Each MODEL statement identifies one or more components of a mixture. For example, if
components differ in their distributions, link functions, or regressor variables, then you can use separate
MODEL statements to define the components. If the finite mixture model is homogeneous—in the sense
that all components share the same regressors, distribution, and link function—then you can specify the
mixture model with a single MODEL statement by using the K= option.

An intercept is included in each model by default. It can be removed with the NOINT option.

The dependent variable can be specified by using either the response syntax or the events/trials syntax. The
events/trials syntax is specific to models for binomial-type data. A binomial(n, &) variable is the sum of
n independent Bernoulli trials with event probability 7z. Each Bernoulli trial results in either an event or a
nonevent (with probability 1 — 7). The value of the second variable, frials, gives the number n of Bernoulli
trials. The value of the first variable, events, is the number of events out of n. The values of both events
and (frials—events) must be nonnegative, and the value of trials must be positive. Other distributions that
allow the events/trials syntax are the beta-binomial distribution and the binomial cluster model.

If the events/trials syntax is used, the FMM procedure defaults to the binomial distribution. If you use the
response syntax, the procedure defaults to the normal distribution unless the response variable is a character
variable or listed in the CLASS statement.

The FMM procedure supports a continuation-style syntax in MODEL statements. Since a mixture has only
one response variable, it is sufficient to specify the response variable in one MODEL statement. Other
MODEL statements can use the continuation symbol “+” before the specification of effects. For example,
the following statements fit a three-component binomial mixture model:

class A;
model y/n = x / k=2;
model + A;

The first MODEL statement uses the “=" sign to separate response from effect information and specifies
the response variable by using the events/trials syntax. This determines the distribution as binomial. This
MODEL statement adds two components to the mixture models with different intercepts and regression
slopes. The second MODEL statement adds another component to the mixture where the mean is a function
of the classification main effect for variable A. The response is also binomial; it is a continuation from the
previous MODEL statement.

There are two sets of options in the MODEL statement. The response-options determine how the FMM
procedure models probabilities for binary data. The model-options control other aspects of model for-
mation and inference. Table 37.4 summarizes important response-options and model-options. These are
subsequently discussed in detail in alphabetical order by option category.
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Table 37.4 Summary of Important MODEL Statement Options

Option Description

Response Variable Options

DESCENDING Reverses the order of response categories

EVENT= Specifies the event category in binary models
ORDER= Specifies the sort order for the response variable
REFERENCE= Specifies the reference category in categorical models
Model Building

DIST= Specifies the response distribution

LINK= Specifies the link function

K= Specifies the number of mixture components

KMAX= Specifies the maximum number of mixture components
KMIN= Specifies the minimum number of mixture components
NOINT Excludes fixed-effect intercept from model

OFFSET= Specifies the offset variable for linear predictor

Statistical Computations and Output

ALPHA=« Determines the confidence level (1 — «)

CL Displays confidence limits for fixed-effects parameter estimates
EQUATE= Imposes simple equality constraints on parameters in this model
LABEL= Identifies the model

PARMS Provides starting values for the parameters in this model

Response Variable Options

Response variable options determine how the FMM procedure models probabilities for binary data.

You can specify the following response-options by enclosing them in parentheses after the response vari-
able. The default is ORDER=FORMATTED.

DESCENDING

DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC FMM orders the response categories according to the ORDER= option and then
reverses that order.

EVENT='category’ | keyword
specifies the event category for the binary response model. PROC FMM models the probability of the
event category. You can specify the value (formatted, if a format is applied) of the event category in
quotes, or you can specify one of the following keywords:

FIRST
designates the first ordered category as the event. This is the default.
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LAST
designates the last ordered category as the event.

ORDER=order-type
specifies the sort order for the levels of the response variable. You can specify the following values
for order-type:

DATA
sorts the levels by order of appearance in the input data set.

FORMATTED
sorts the levels by external formatted value, except for numeric variables with no explicit format,
which are sorted by their unformatted (internal) value.

FREQ
sorts the levels by descending frequency count; levels with the most observations come first in
the order.

INTERNAL
sorts the levels by unformatted value.

FREQDATA
sorts the levels by order of descending frequency count, and within counts by order of appear-
ance in the input data set when counts are tied.

FREQFORMATTED
sorts the levels by order of descending frequency count, and within counts by formatted value
(as above) when counts are tied.

FREQINTERNAL
sorts the levels by order of descending frequency count, and within counts by unformatted value
when counts are tied.

When ORDER=FORMATTED (the default) for numeric variables for which you have supplied no
explicit format (that is, for which there is no corresponding FORMAT statement in the current PROC
FMM run or in the DATA step that created the data set), the levels are ordered by their internal
(numeric) value. If you specify the ORDER= option in the MODEL statement and the ORDER=
option in the PROC FMM statement, the former takes precedence.

By default, ORDER=FORMATTED. For the FORMATTED and INTERNAL values, the sort order
is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS Pro-
cedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE-="category’ | keyword

REF=’category’ | keyword
specifies the reference category for categorical models. For the binary response model, specifying
one response category as the reference is the same as specifying the other response category as the
event category. You can specify the value (formatted if a format is applied) of the reference category
in quotes, or you can specify one of the following keywords:
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FIRST

LAST

designates the first ordered category as the reference category.

designates the last ordered category as the reference category. This is the default.

Model Options

ALPHA=number
requests that confidence intervals be constructed for each of the parameters with confidence level
1 — number. The value of number must be between 0 and 1; the default is 0.05.

CL

requests that confidence limits be constructed for each of the parameter estimates. The confidence
level is 0.95 by default; this can be changed with the ALPHA= option.

DISTRIBUTION=keyword

DIST=keyword
specifies the probability distribution for a mixture component.

If you specify the DIST= option and you do not specify a link function with the LINK= option, a
default link function is chosen according to Table 37.5. If you do not specify a distribution, the FMM
procedure defaults to the normal distribution for continuous response variables and to the binary dis-
tribution for classification or character variables, unless the events/trial syntax is used in the MODEL
statement. If you choose the events/trial syntax, the FMM procedure defaults to the binomial distri-
bution.

Table 37.5 lists the values of the DIST= option and the corresponding default link functions. For
the case of generalized linear models with these distributions, you can find expressions for the
log-likelihood functions in the section “Log-Likelihood Functions for Response Distributions” on
page 2493.

Table 37.5 Keyword Values of the DIST= Option

Default Link
DIST= Alias Distribution Function
BETA Beta Logit
BETABINOMIAL BETABIN Beta-binomial Logit
BINARY BERNOULLI Binary Logit
BINOMIAL BIN Binomial Logit
BINOMCLUSTER  BINOMCLUS Binomial cluster Logit
CONSTANT DEGENERATE Degenerate N/A
EXPONENTIAL EXPO Exponential Log
FOLDEDNORMAL FNORMAL Folded normal Identity
GAMMA GAM Gamma Log
GAUSSIAN NORMAL Normal Identity
GENPOISSON GPOISSON Generalized Poisson Log
GEOMETRIC GEOM Geometric Log
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Table 37.5 continued

Default Link
DIST= Alias Distribution Function
INVGAUSS IGAUSSIAN, IG Inverse Gaussian Inverse squared

(power(~2))
LOGNORMAL LOGN Lognormal Identity
NEGBINOMIAL NEGBIN, NB Negative binomial Log
POISSON POI Poisson Log
T STUDENT t Identity
TRUNCPOISSON TPOISSON, TPOI  Truncated Poisson Log
UNIFORM UNIF Uniform N/A
WEIBULL Weibull Log

Note that the PROC FMM default link for the gamma or exponential distribution is not the canonical
link (the reciprocal link).

The binomial cluster model is a two-component model described in Morel and Nagaraj (1993), Morel
and Neerchal (1997), and Neerchal and Morel (1998). See Example 37.1 for an application of the
binomial cluster model in a teratological experiment.

If the events/trials syntax is used, the default distribution is the binomial and only the following
choices are available: DIST=BINOMIAL, DIST=BETABINOMIAL, and DIST=BINOMCLUSTER.
The trials variable is ignored for all other distributions. This enables you to fit models in which some
components have a binomial or binomial-like distribution. For example, suppose that variable n is
a binomial denominator and variable logn is its logarithm. Then the following statements model a
two-component mixture of a binomial and Poisson count model:

model y/n = ;
model + / dist=Poisson offset=logn;

The OFFSET= option is used in the second MODEL statement to specify that the Poisson counts refer
to different base counts, since the trial variable » is ignored in the second model.

If DIST=BINOMIAL is specified without the events/trials syntax, then n = 1 is used for the default
number of trials.

For several distributional specifications you can provide additional parameters to further define the
distribution. These optional parameters are listed in the following:

DIST=CONSTANT<(c)> The number c specifies the value where the mass is concentrated.
The default is DIST=CONSTANT(0), so that adding a MODEL statement with
DIST=CONSTANT can be used to add zero-inflation to any model.

DIST=T<(v)>  The number v specifies the degrees of freedom for the (shifted) ¢ distribution.
The default is DIST=T(3), and this leads to a heavy-tailed distribution for which
the variance is defined. See the section “Log-Likelihood Functions for Response
Distributions” on page 2493 for the density function of the shifted ¢, distribution.
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DIST=UNIFORMx< (a,b)> The values a and b define the support of the uniform distribution, a < b.
By default,a = 0and b = 1.

EQUATE=MEAN | SCALE | NONE

EQUATE=EFFECTS(effect-list)

specifies simple sets of parameter constraints across the components in a MODEL statement; the
default is EQUATE=NONE. This option is available only for maximum likelihood estimation. If
you specify EQUATE=MEAN, the parameters that determine the mean are reduced to a single set
that is applicable to all components in the MODEL statement. If you specify EQUATE=SCALE,
a single parameter represents the common scale for all components in the MODEL statement. The
EFFECTS option enables you to force the parameters for the chosen model effects to be equal across
components; however, the number of parameters is unaffected.

For example, the following statements fit a two-component multiple regression model in which the
coefficients for variable logd vary by component and the intercepts and coefficients for variable dose
are the same for the two components:

proc fmm;
model num = dose logd / equate=effects(int dose) k=2;
run;

To fix all coefficients across the two components, you can write the MODEL statement as

model num dose logd / equate=effects(int dose logd) k=2;

or

model num dose logd / equate=mean k=2;
If you restrict all parameters in a k-component MODEL statement to be equal, the FMM procedure
reduces the model to k = 1.

K=n

NUMBER=n
specifies the number of components the MODEL statement contributes to the overall mixture. For the
binomial cluster model, this option is not available, since this model is a two-component model by
definition.

KMAX=n
specifies the maximum number of components the MODEL statement contributes to the overall mix-
ture.

If the maximum number of components in the mixture, as determined by all KMAX= options, is
larger than the minimum number of components, the FMM procedure fits all possible models and
displays summary fit information for the sequence of evaluated models. The “best” model according
to the CRITERION= option in the PROC FMM statement is then chosen, and the remaining output
and analyses performed by PROC FMM pertain to this “best” model.
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The KMAX= option is available only for maximum likelihood estimation. When you estimate the
parameters of a mixture by MCMC methods, you need to ensure that the chain for a given value of
k has converged; otherwise, comparisons among models with varying number of components might
not be meaningful.

KMIN=n
specifies the minimum number of components the MODEL statement contributes to the overall mix-
ture. This option is available only for maximum likelihood estimation. When you estimate the pa-
rameters of a mixture by MCMC methods, you need to ensure that the chain for a given value of k has
converged; otherwise comparisons among models with varying number of components might not be
meaningful.

LABEL=’/abel
specifies an optional label for the model that is used to identify the model in printed output, on
graphics, and in data sets created from ODS tables.

LINK=keyword
specifies the link function in the model. The keywords and expressions for the associated link func-
tions are shown in Table 37.6.

Table 37.6 Link Functions in MODEL Statement of the FMM Procedure

Link

LINK= Alias Function guw)y=n=
CLOGLOG CLL Complementary log-log log(—log(1 — w))
IDENTITY ID Identity I
LOG Log log(w)
LOGIT Logit log(u/(1 — )
LOGLOG Log-log —log(—1log(u))
PROBIT NORMIT  Probit o~ (n)
POWER(A POW(A) P ith t A= numb w itA#0

\) ) ower with exponent A= number log(i) ifA = 0
POWERMINUS2 Power with exponent -2 1/u?
RECIPROCAL INVERSE Reciprocal 1/

The default link functions for the various distributions are shown in Table 37.5.

NOINT
requests that no intercept be included in the model. An intercept is included by default, unless the
distribution is DIST=CONSTANT or DIST=UNIFORM.

OFFSET=variable
specifies the offset variable function for the linear predictor in the model. An offset variable can be
thought of as a regressor variable whose regression coefficient is known to be 1. For example, you
can use an offset in a Poisson model when counts have been obtained in time intervals of different
lengths. With a log link function, you can model the counts as Poisson variables with the logarithm
of the time interval as the offset variable.
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PARAMETERS(parameter-specification)

PARMS(parameter-specification)
specifies starting values for the model parameters. If no PARMS option is given, the FMM procedure
determines starting values by a data-dependent algorithm. To determine initial values for the Markov
chain with Bayes estimation, see also the INITIAL= option in the BAYES statement. The specifica-
tion of the parameters takes the following form: parameters in the mean function precede the scale
parameters, and parameters for different components are separated by commas.

The following statements specify starting parameters for a two-component normal model. The initial
values for the intercepts are 1 and —3; the initial values for the variances are 0.5 and 4.

proc fmm;
model y = / k=2 parms(1 0.5, -3 4);
run;

You can specify missing values for parameters whose starting values are to be determined by the
default method. Only values for parameters that participate in the optimization are specified. The
values for model effects are specified on the linear (linked) scale.

OUTPUT Statement

OUTPUT <OUT=SAS-data-set>
< keyword< (keyword-options)> < =name>>. . .
< keyword< (keyword-options) > < =name> > < / options > ;

The OUTPUT statement creates a data set that contains observationwise statistics that are computed after
fitting the model. By default, all variables in the original data set are included in the output data set. You
can use the ID statement to limit the variables copied from the input data set to the output data set.

The output statistics are computed based on the parameter estimates of the converged model if the param-
eters are estimated by maximum likelihood. If a Bayesian analysis is performed, the output statistics are
computed based on the arithmetic mean in the posterior sample. You can change to the maximum posterior
estimate with the ESTIMATE=MAP option in the BAYES statement.

You can specify the following syntax elements in the OUTPUT statement before the slash (/).

OUT=SAS-data-set

DATA=SAS-data-set
specifies the name of the output data set. If the OUT= (or DATA=) option is omitted, the procedure
uses the DATAn convention to name the output data set.

keyword< (keyword-options) > <=name >
specifies a statistic to include in the output data set and optionally assigns the variable the name
name. If you do not provide a name, the FMM procedure assigns a default name based on the type
of statistic requested. If you provide a name for a statistic that leads to multiple output statistics, the
name is modified to index the associated component number.
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You can use the keyword-options to control which type of a particular statistic is computed. The
following are valid values for keyword and keyword-options:

PREDICTED< (COMPONENT | OVERALL) >
PRED<(COMPONENT | OVERALL) >

MEAN< (COMPONENT | OVERALL) >

requests predicted values (predicted means) for the response variable. The predictions in the
output data set are mapped onto the data scale. For example, if the response is binomial or
binary, the predictions are probabilities. The default is to compute the predicted value for the
mixture (OVERALL). You can request predictions for the means of the component distribu-
tions by adding the COMPONENT suboption in parentheses. The predicted values for some
distributions are not identical to the parameter modeled as u. For example, in the lognormal
distribution the predicted mean is exp{u +0.5¢} where u and ¢ are the parameters of an under-
lying normal process; see the section “Log-Likelihood Functions for Response Distributions”
on page 2493 for details.

RESIDUAL<(COMPONENT | OVERALL) >

RESID< (COMPONENT | OVERALL) >
requests residuals for the response or residuals in the component distributions. Only “raw”
residuals on the data scale are computed (observed minus predicted).

VARIANCE< (COMPONENT | OVERALL) >

VAR< (COMPONENT | OVERALL) >
requests variances for the mixture or the component distributions.

LOGLIKE<(COMPONENT | OVERALL) >

LOGL<(COMPONENT | OVERALL) >

requests values of the log-likelihood function for the mixture or the components. For observa-
tions used in the analysis, the overall computed value is the observations’ contribution to the
log likelihood; if a FREQ statement is present, the frequency is accounted for in the computed
value. In other words, if all observations in the input data set have been used in the analy-
sis, adding the value of the log-likelihood contributions in the OUTPUT data set produces the
negative of the final objective function value in the “Iteration History” table. By default, the
log-likelihood contribution to the mixture is computed. You can request the individual mixture
component contributions with the COMPONENT suboption.

MIXPROBS< (COMPONENT | MAX) >
MIXPROB< (COMPONENT | MAX) >
PRIOR< (COMPONENT | MAX) >
MIXWEIGHTS< (COMPONENT | MAX) >
requests that the prior weights 7;(z, o ;) be added to the OUTPUT data set. By default, the

probabilities are output for all components. You can limit the output to a single statistic, the
largest mixing probability, with the MAX suboption.

NOTE: The keyword “prior” is used here because of long-standing practice to refer to the
mixing probabilities as prior weights. This must not be confused with the prior distribution and
its parameters in a Bayesian analysis.
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POSTERIOR< (COMPONENT | MAX) >
POST<(COMPONENT | MAX) >

PROB< (COMPONENT | MAX) >
requests that the posterior weights

mj(z,aj)pi(y:x;Bj.¢;)
Y i) pi(yiX, By b))

be added to the OUTPUT data set. By default, the probabilities are output for all components.
You can limit the output to a single statistic, the largest posterior probability, with the MAX
suboption.

NOTE: The keyword “posterior” is used here because of long-standing practice to refer to these
probabilities as posterior probabilities. This must not be confused with the posterior distribution
in a Bayesian analysis.

LINP

XBETA
requests that the linear predictors for the models be added to the OUTPUT data set.

CLASS | CATEGORY | GROUP
adds the estimated component membership to the OUTPUT data set. An observation is associ-
ated with the component that has the highest posterior probability.

MAXPOST | MAXPROB
adds the highest posterior probability to the OUTPUT data set.

A keyword can appear multiple times. For example, the following OUTPUT statement requests pre-
dicted values for the mixture in addition to the predicted means in the individual components:

output out=fmmout pred=MixtureMean pred (component)=CompMean;

In a three-component model, this produces four variables in the fmmout data set: MixtureMean, Comp-
Mean_1, CompMean_2, and CompMean_3.

You can specify the following options in the OUTPUT statement after a slash (/).

ALLSTATS
requests that all statistics are computed. If you do not use a keyword to assign a name, the FMM
procedure uses the default name.

NOVAR
requests that variables from the input data set not be added to the output data set. This option does
not apply to variables listed in the BY statement or to variables listed in the ID statement.
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PERFORMANCE Statement

PERFORMANCE < performance-options> ;

The PERFORMANCE statement enables you to control the performance characteristics of the FMM proce-
dure (for example, the number of CPUs, the number of threads for multithreading, and so on). By default,
the FMM procedure performs many analyses in multiple threads, and the number of threads equals the num-
ber of CPUs. Certain system and configuration options also can control the number of CPUs available to a
SAS session or whether multithreaded computations are permissible. For example, you can set the number
of available processors to two with

options cpucount=2;

The FMM procedure then acts as though two processors were available, regardless of the number of physi-
cally available processors.

The FMM procedure applies multithreading to the following analytical tasks:

Starting values: all starting value computations that require a pass through the data.

Optimization:  all evaluations of objective function, gradient, and Hessian; computation of covariance
matrix.

Bayesian analysis: all sample passes through the data, formation of cross-product matrices, sampling of
latent variables, and posterior diagnostics.

Scoring and ODS Graphics: computation of all output statistics and statistics for the construction of
graphics that require passes through the data.

You can specify the following performance-options:

CPUCOUNT=n

CPUCOUNT=ACTUAL
specifies the number of processors available to the FMM procedure; the number n must be between
1 and 1024. CPUCOUNT=ACTUAL sets the number of available processors equal to the number of
physical processors.

DETAILS
requests a table with timing detail for the tasks performed by the FMM procedure.

NOTHREADS
disables multithreaded computations.

THREADS=YES

THREADS=NO
enables or disables multithreaded processing. The number of threads used by the FMM procedure
is displayed in the “Bayes Information” or “Optimization Information” table. It typically equals the
number of available CPUs, which can be different from the number of physical CPUs, and can be
modified with the global CPUCOUNT SAS option or with the CPUCOUNT= option in the PER-
FORMANCE statement.
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PROBMODEL Statement

PROBMODEL < effects> < / probmodel-options > ;

The PROBMODEL statement defines the model effects for the mixing probabilities and their link function.
By default, the FMM procedure models mixing probabilities on the logit scale for two-component models
and as generalized logit models in situations with more than two components. The PROBMODEL statement
is not required, and it is not supported with Bayesian estimation.

The generalized logit model with k categories has a common vector of regressor or design variables, z, k — 1
parameter vectors that vary with category, and one linear predictor whose value is constant. The constant
linear predictor is assigned by the FMM procedure to the last component in the model, and its value is zero
(0 = 0). The probability of observing category 1 < j < k is then

expize )
S expize;)

For k = 2, the generalized logit model reduces to a model with the logit link (a logistic model); hence the
attribute generalized logit.

wi(z,oj) =

By default, an intercept is included in the model for the mixing probabilities. If you suppress the intercept
with the NOINT option, you must specify at least one effect in the statement.

You can specify the followng probmodel-options in the PROBMODEL statement after the slash (/):

ALPHA=number
requests that confidence intervals be constructed for the parameters in the probability model with
confidence level 1 — number. The value of number must be between 0 and 1; the default is 0.05. If
the probability model is simple—that is, it does not contain any effects, the confidence intervals are
produced for the estimated parameters (on the logit scale) as well as for the mixing probabilities.

CL
requests that confidence limits be constructed for each of the parameter estimates. The confidence
level is 0.95 by default; this can be changed with the ALPHA= option.

LINK=keyword
specifies the link function in the model for the mixing probabilities. The default is a logit link for
models with two components. For models with more than two components, only the generalized logit
link is available. The keywords and expressions for the associated link functions for two-component
models are shown in Table 37.7.

Table 37.7 Link Functions in the PROBMODEL Statement

Link
LINK= Function gpw)=n=
CLOGLOG | CLL Complementary log-log log(—log(1 — u))
LOGIT Logit log(p/(1 — )
LOGLOG Log-log —log(—1log(w))

PROBIT | NORMIT  Probit o 1(p)
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NOINT
requests that no intercept be included in the model for the mixing probabilities. An intercept is
included by default. If you suppress the intercept with the NOINT option, you must specify at least
one other effect for the mixing probabilities—since an empty probability model is not meaningful.

PARAMETERS(parameter-specification)

PARMS(parameter-specification)
specifies starting values for the parameters. The specification of the parameters takes the following
form: parameters in the mean function appear in a list, and parameters for different components are
separated by commas. Starting values are given on the linked scale, not in terms of probabilities.
Also, you need to specify starting values for only up to the first kK — 1 components in a k-component
model. The linear predictor for the last component is always assumed to be zero.

The following statements specify a three-component mixture of multiple regression models. The
PROBMODEL statement does not list any effects, a standard “intercept-only” generalized logit model
is used to model the mixing probabilities.

proc fmm;
model y = x1 x2 / k=3;
probmodel / parms(2, 1);
run;

There are three linear predictors in the model for the mixing probabilities, a1, @, and a3z. With
starting values of «; = 2, ap = 1, and a3 = 0, this leads to initial mixing probabilities of

o2
=———=024
T 2 el 1 o0
1
e
= ———=0.66
2T el o0
o0

T3 =0.1

T2 el 40

You can specify missing values for parameters whose starting values are to be determined by the
default method.

RESTRICT Statement
RESTRICT < 'label’> constraint-specification <, ..., constraint-specification >
< operator < value>> </ option> ;

The RESTRICT statement enables you to specify linear equality or inequality constraints among the param-
eters of a mixture model. These restrictions are incorporated into the maximum likelihood analysis. The
RESTRICT statement is not available for a Bayesian analysis with the FMM procedure.

Following are reasons why you might want to place constraints and restrictions on the model parameters:
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to fix a parameter at a particular value

to equate parameters in different components in a mixture

to impose order conditions on the parameters in a model

to specify contrasts among the parameters that the fitted model should honor

A restriction is composed of a left-hand side and a right-hand side, separated by an operator. If the operator
and right-hand side are not specified, the restriction is assumed to be an equality constraint against zero. If
the right-hand side is not specified, the value is assumed to be zero.

An individual constraint-specification is written in (nearly) the same form as estimable linear functions are
specified in the ESTIMATE statement of the GLM, MIXED, or GLIMMIX procedure. The constraint-
specification takes the form

model-effect value-list < ... model-effect value-list > < (SCALE = value)>

At least one model-effect must be specified followed by one or more values in the value-list. The values in
the list correspond to the multipliers of the corresponding parameter that is associated with the position in
the model effect. If you specify more values in the value-list than the model-effect occupies in the model
design matrix, the extra coefficients are ignored.

To specify restrictions for effects in specific components in the model, separate the constraint-specficiation
by commas. The following statements provide an example:

proc fmm;
class A;
model y/n = A x / k = 2;
restrict A 1 0 -1;
restrict x 2, x -1 >= 0.5;
run;

The linear predictors for this two-component model can be written as

n =P1o + 1141 + -+ + @1g4a + xP11
N2 =P20 + 2141 + -+ + 024 Ag + XP21

where Ay, is the binary variable associated with the kth level of A.

The first RESTRICT statement applies only to the first component and specifies that the parameter estimates
that are associated with the first and third level of the A effect are identical. In terms of the linear predictor,
the restriction can be written as

ayp —a13 =0

Now suppose that A has only two levels. Then the FMM procedure ignores the value —1 in the first RE-
STRICT statement and imposes the restriction

0611=0

on the fitted model.



WEIGHT Statement 4 2489

The second RESTRICT statement involves parameters in two different components of the model. In terms
of the linear predictors, the restriction can be written as
2611~ B =
11 2125
When restrictions are specified explicitly through the RESTRICT statement or implied through the
EQUATE=EFFECTS option in the MODEL statement, the FMM procedure lists all restrictions after the

model fit in a table of linear constraints and indicates whether a particular constraint is active at the con-
verged solution.

The following operators can be specified to separate the left- and right-hand sides of the restriction: =, >, <,
>=, <=. You can also use the alternate EQ, GT, LT, GE, and LE, respectively.

Some distributions involve scale parameters (the parameter ¢ in the expressions of the log likelihood) and
you can also use the constraint-specification to involve a component’s scale parameter in a constraint. To
this end, assign a value to the keyword SCALE, separated from the model effects and value lists with paren-
theses. The following statements fit a two-component normal model and restrict the component variances
to be equal:

proc fmm;
model y = / k=2;
restrict int 0 (scale 1),
int 0 (scale -1);
run;

The intercept specification is necessary because each constraint-specification requires at least one model
effect. The zero coefficient ensures that the intercepts are not involved in the restriction. Instead, the
RESTRICT statement leads to ¢ — ¢ = 0.

You can specify the following option in the RESTRICT statement after a slash (/).

DIVISOR=value
specifies a value by which all coefficients on the right-hand side and left-hand side of the restriction
are divided.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement is used to perform a weighted analysis. Consult the section “Log-Likelihood
Functions for Response Distributions” on page 2493 for expressions on how weight variables are included
in the log-likelihood functions. Because the probability structure of a mixture model is different from that
of a classical statistical model, the presence of a weight variable in a mixture model cannot be interpreted
as altering the variance of an observation.

Observations with nonpositive or missing weights are not included in the PROC FMM analysis. If a
WEIGHT statement is not included, all observations used in the analysis are assigned a weight of 1.
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Details: FMM Procedure

A Gentle Introduction to Finite Mixture Models
The Form of the Finite Mixture Model

Suppose that you observe realizations of a random variable Y, the distribution of which depends on an
unobservable random variable S that has a discrete distribution. S can occupy one of k states, the number
of which might be unknown but is at least known to be finite. Since S is not observable, it is frequently
referred to as a latent variable.

Let 7r; denote the probability that S takes on state j. Conditional on S = j, the distribution of the response
Y is assumed to be f;(y;c;,B;|S = j). In other words, each distinct state j of the random variable §
leads to a particular distributional form f; and set of parameters {«;, 8} for Y.

Let {et, B} denote the collection of ; and B; parameters across all j =1 to k. The marginal distribution of
Y is obtained by summing the joint distribution of ¥ and S over the states in the support of S:

k
fia.B) =) "Pr(S = j) f(yia;. B;|S = j)

J=1

k
=Y 7 f(rie;.BiIS = j)

j=1

This is a mixture of distributions, and the 7; are called the mixture (or prior) probabilities. Because the
number of states k of the latent variable S is finite, the entire model is termed a finite mixture (of distribu-
tions) model.

The finite mixture model can be expressed in a more general form by representing o and B in terms of
regressor variables and parameters with optional additional scale parameters for §. The section “Notation
for the Finite Mixture Model” on page 2424 develops this in detail.

Mixture Models Contrasted with Mixing and Mixed Models: Untangling the Terminology Web

Statistical terminology can have its limitations. The terms mixture, mixing, and mixed models are some-
times used interchangeably, causing confusion. Even worse, the terms arise in related situations. One
application needs to be eliminated from the discussion in this documentation: mixture experiments, where
design factors are the proportions with which components contribute to a blend, are not mixture models and
do not fall under the purview of the FMM procedure. However, the data from a mixture experiment might
be analyzed with a mixture model, a mixing model, or a mixed model, besides other types of statistical
models.

Suppose that you observe realizations of random variable Y and assume that Y follows some distribution
f(y; o, B) that depends on parameters & and . Furthermore, suppose that the model is found to be deficient
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in the sense that the variability implied by the fitted model is less than the observed variability in the data, a
condition known as overdispersion (see the section “Overdispersion” on page 2492). To tackle the problem
the statistical model needs to be modified to allow for more variability. Clearly, one way of doing this is
to introduce additional random variables into the process. Mixture, mixing, and mixed models are simply
different ways of adding such random variables. The section “The Form of the Finite Mixture Model” on
page 2490 explains how mixture models add a discrete state variable S. The following two subsections
explain how mixing and mixed models instead assume variation for a natural parameter or in the mean
function.

Mixing Models

Suppose that the model is modified to allow for some random quantity U, which might be one of the
parameters of the model or a quantity related to the parameters. Now there are two distributions to cope
with: the conditional distribution of the response given the random effect U,

f(ia, Blu)

and the marginal distribution of the data. If U is continuous, the marginal distribution is obtained by
integration:

foia ) = [ flia Bl £ du
Otherwise, it is obtained by summation over the support of U':

Sie. ) =" Pr(U =u) f(y:e. Blu)

The important entity for statistical estimation is the marginal distribution f(y;a, B); the conditional distri-
bution is often important for model description, genesis, and interpretation.

In a mixing model the marginal distribution is known and is typically of a well-known form. For example,
if Y'|n has a binomial(n, ) distribution and n follows a Poisson distribution, then the marginal distribution
of Y is Poisson. The preceding operation is called mixing a binomial distribution with a Poisson distribu-
tion. Similarly, when mixing a Poisson(A) distribution with a gamma(a, b) distribution for A, a negative
binomial distribution results as the marginal distribution. Other important mixing models involve mixing a
binomial(#n, ;) random variable with a beta(a, b) distribution for the binomial success probability p. This
results in a distribution known as the beta-binomial.

The finite mixtures have in common with the mixing models the introduction of random effects into the
model to vary some or all of the parameters at random.

Mixed Models

The difference between a mixing and a mixed model is that the conditional distribution is not that important
in the mixing model. It matters to motivate the overdispersed reference model and to arrive at the marginal
distribution. Inferences with respect to the conditional distribution, such as predicting the random variable
U, are not performed in mixing models. In a mixed model the random variable U typically follows a
continuous distribution—almost always a normal distribution. The random effects usually do not model
the natural parameters of the distribution; instead, they are involved in linear predictors that relate to the
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conditional mean. For example, a linear mixed model is a model in which the response and the random
effects are normally distributed, and the random effects enter the conditional mean function linearly:

Y=XB+ZU+e¢

U~ N(0,G)

€ ~ NO,R)
Cov[U,e] = 0

The conditional and marginal distributions are then

Y|U ~ N(XB + ZU + ¢, R)
Y ~ N(XB,ZGZ +R)

For this model, because of the linearity in the mean and the normality of the random effects, you could also
refer to mixing the normal vector Y with the normal vector U, since the marginal distribution is known. The
linear mixed model can be fit with the MIXED procedure. When the conditional distribution is not normal
and the random effects are normal, the marginal distribution does not have a closed form. In this class of
mixed models, called generalized linear mixed models, model approximations and numerical integration
methods are commonly used in model fitting; see for example, those models fit by the GLIMMIX and
NLMIXED procedures. Chapter 6, “Introduction to Mixed Modeling Procedures,” contains details about
the various classes of mixed models and about the relevant SAS/STAT procedures.

The previous expression for the marginal variance in the linear mixed model, var[Y] = ZGZ' + R, empha-
sizes again that the variability in the marginal distribution of a model that contains random effects exceeds
the variability in a model without the random effects (R).

The finite mixtures have in common with the mixed models that the marginal distribution is not necessarily
a well-known model, but is expressed through a formal integration over the random-effects distribution. In
contrast to the mixed models, in particular those involving nonnormal distributions or nonlinear elements,
this integration is rather trivial; it reduces to a weighted and finite sum of densities or mass functions.

Overdispersion

Overdispersion is the condition by which the data are more dispersed than is permissible under a reference
model. Overdispersion arises only if the variability a model can capture is limited (for example, because
of a functional relationship between mean and variance). For example, a model for normal data can never
be overdispersed in this sense, although the reasons that lead to overdispersion also negatively affect a mis-
specified model for normal data. For example, omitted variables increase the residual variance estimate
because variability that should have been modeled through changes in the mean is now “picked up” as error
variability.

Overdispersion is important because an overdispersed model can lead to misleading inferences and conclu-
sions. However, diagnosing and remedying overdispersion is complicated. In order to handle it appropri-
ately, the source of overdispersion must be identified. For example, overdispersion can arise from any of the
following conditions alone or in combination:

e omitted variables and model effects
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e omitted random effects (a source of random variation is not being modeled or is modeled as a fixed
effect)

e correlation among the observations
e incorrect distributional assumptions
e incorrectly specified mean-variance relationships

outliers in the data

As discussed in the previous section, introducing randomness into a system increases its variability. Mix-
ture, mixed, and mixing models have thus been popular in modeling data that appear overdispersed. Finite
mixture models are particularly powerful in this regard, because even low-order mixtures of basic, sym-
metric distributions (such as two- or three-component mixtures of normal or ¢ distributions) enable you to
model data with multiple modes, heavy tails, and skewness. In addition, the latent variable S provides a
natural way to accommodate omitted, unobservable variables into the model.

One approach to remedy overdispersion is to apply simple modifications of the variance function of the
reference model. For example, with binomial-type data this approach replaces the variance of the binomial
count variable Y ~ Binomial(n, i), Var[Y] = n x u(1 — ) with a scaled version, ¢n x (1 — @), where
¢ is called an overdispersion parameter, ¢ > 0.

In addressing overdispersion problems, it is important to tackle the problem at its root. A missing scale
factor on the variance function is hardly ever the root cause of overdispersion; it is only the easiest remedy.

Log-Likelihood Functions for Response Distributions

The FMM procedure calculates the log likelihood that corresponds to a particular response distribution ac-
cording to the following formulas. The response distribution is the distribution specified (or chosen by
default) through the DIST= option in the MODEL statement. The parameterizations used for log-likelihood
functions of these distributions were chosen to facilitate expressions in terms of mean parameters that are
modeled through an (inverse) link functions and in terms of scale parameters. These are not necessarily the
parameterizations in which parameters of prior distributions are specified in a Bayesian analysis of homoge-
neous mixtures. See the section “Prior Distributions” on page 2500 for details about the parameterizations
of prior distributions.

The FMM procedure includes all constant terms in the computation of densities or mass functions. In the
expressions that follow, / denotes the log-likelihood function, ¢p denotes a general scale parameter, i; is the
“mean”, and w; is a weight from the use of a WEIGHT statement.

For some distributions p; is not the mean of the distribution (for example, the Weibull distribution). The
parameter 4; is the quantity that is modeled as g~ (x‘B), where g~ 1(:) is the inverse link function and the
x vector is constructed based on the effects in the MODEL statement. Situations in which the parameter p
does not represent the mean of the distribution are explicitly mentioned in the list that follows.

The parameter ¢ is frequently labeled as “Scale” parameter in output from the FMM procedure. It is not
necessarily the scale parameter of the particular distribution.
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Beta(y1, ¢)

I'(¢p/w;i)
C(ui¢/wi)T (1 — wi)e/w;i)
+ (ni¢p/w; —1)logly;}

+ ((1 = pi)¢p/w; — 1)log{l — y;}

I(wi, ¢; yi, wi) = log

This parameterization of the beta distribution is due to Ferrari and Cribari-Neto (2004)
and has properties E[Y] = u, Var[Y] = u(1 — u)/(1 + ¢), ¢ > 0.

Beta-binomial(n; i, ¢)

¢ = (1-p)/p?
I(pi, p; yi) = log{l'(n; + 1)} —log{I'(yi + 1)}

—log{l'(n; — yi + D}

+ log{I'(¢)} —log{T (n; + @)} + log{I'(yi + Ppi)}

+ log{I'(n; — yi + ¢(1 — i)} — log{I" (ppi)}

—log{I"(¢(1 — wi))}

I(ui, p yi, wi) = wil (i, p; yi)

where y; and n; are the events and frials in the events/trials syntax and 0 < n < 1. This
parameterization of the beta-binomial model presents the distribution as a special case of
the Dirichlet-Multinomial distribution—see, for example, Neerchal and Morel (1998). In
this parameterization, E[Y] = np and Var[Y] = nu(1—p)(1+(n—1)/(¢+1)), 0 < p <
1. The FMM procedure models the parameter ¢ and labels it “Scale” on the procedure

output. For other parameterizations of the beta-binomial model, see Griffiths (1973) or
Williams (1975).

Binomial(n; u)

I(uizyi) = yilog{pi} + (nj — yi)log{l — u;}
+ log{I'(n; + 1)} —log{I'(y; + 1)}
—log{T'(n; — yi + 1)}
Hpi: yiswi) = wi l(pi: yi)
where y; and n; are the events and trials in the events/irials syntax and 0 < u < 1. In
this parameterization E[Y] = nu, Var[Y] = nu(1 — w).

Binomial cluster(n; w, )

z =log{l'(n; + 1)} —log{I'(y; + 1)} —log{l'(n; — y; + 1)}
wi =1 —pui)m
(i, s yi) = log{m} + z + yi log{u; + i}
+ (ni — yi) log{l — p — i}
+ log{l — 7} + z + y; log{u}}
+ (ni — yi)log{l — ;'3
i s yi, wi) = wil(pi, m; i)
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In this parameterization, E[Y] = nmx and Var[Y] = nn(l — 7) {1 + p2(n — 1)}. The
binomial cluster model is a two-component mixture of a binomial(n, u* + w) and a
binomial(#, 4*) random variable. This mixture is unusual in that it fixes the number of
components and because the mixing probability 7 appears in the moments of the mixture
components. For further details, see Morel and Nagaraj (1993), Morel and Neerchal
(1997), Neerchal and Morel (1998), and Example 37.1 in this chapter. The expressions
for the mean and variance in the binomial cluster model are identical to those of the
beta-binomial model shown previously, with 7, = Wpp, Lbe = Pbb-

The FMM procedure models the parameter p through the MODEL statement and the
parameter 7 through the PROBMODEL statement.

Constant(c)
N yi=¢
T =1 Zig0 yy £
The extreme value when y; # c is chosen so that exp{/(y;)} yields a likelihood of
zero. You can change this value with the INVALIDLOGL= option in the PROC FMM
statement. The constant distribution is useful for modeling overdispersion due to zero-
inflation (or inflation of the process at support ¢).
Exponential(u)
" ) —log{pi} — yi/ i wi =1
W) = o .
K> yi, Wi w; log{—wl’jvf’ } — —w;h),” —log{y;T(w;)} w; # 1

In this parameterization, E[Y] = p and Var[Y] = u2.

Folded normal(u, ¢)

1 1
I(pi, ¢:yi,wi) =— 3 log{27} — 3 log{¢/w; }

—w; (yi —/Li)z} 4 ex {—wi(yi +/1«i)2}}
2 P 2

If X has a normal distribution with mean p and variance ¢, then Y = |X| has a folded
normal distribution and log-likelihood function /(u, ¢; y,w) for y > 0. The folded
normal distribution arises, for example, when normally distributed measurements are
observed, but their signs are not observed. The mean and variance of the folded normal
in terms of the underlying N(ut, ¢) distribution are

} + i (1-20 (—p/V9))

+ log {exp %

! w
g T {‘2/¢
Var[Y] =¢ + u? — E[Y]?

E[Y] =

The FMM procedure models the folded normal distribution through the mean p and
variance ¢ of the underlying normal distribution. When the FMM procedure computes
output statistics for the response variable (for example when you use the OUTPUT state-
ment), the mean and variance of the response Y are reported. Similarly, the fit statistics
apply to the distribution of ¥ = |X]|, not the distribution of X. When you model a
folded normal variable, the response input variable should be positive; the FMM proce-
dure treats negative values of Y as a support violation.
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Gamma(u, $)
w; yi w; yi
s, 530 00) = wigptog | P28, = B gty —tog (1 (i)
l 1
In this parameterization, E[Y] = p and Var[Y] = u?/¢, ¢ > 0. This parameterization
of the gamma distribution differs from that in the GLIMMIX procedure, which expresses
the log-likelihood function in terms of 1/¢ in order to achieve a variance function suit-
able for mixed model analysis.
Geometric(u)

i
I(wi: yiowi) = yi log{j

} _(Yi—f—wi)log{l—l-ﬂ}
i wj

I'(yi +w;)
+b§FW®N%+U}

In this parameterization, E[Y] = u and Var[Y] = 1 4+ 2. The exponential distribution
is a special case of the negative binomial distribution with ¢p = 1.

Generalized Poisson (i1, ¢)

& = (I —exp{—¢}) /w;
ni = wi —E(i — yi)
Huf & yiowi) = log{p] — & yi}t + (i — 1) log{u;}

—u; —log{T'(y; + 1)}

In this parameterization, E[Y] = u, Var[Y] = u/(1 — €)%, and ¢ > 0. The FMM
procedure models the mean p through the effects in the MODEL statement and applies
a log link by default. The generalized Poisson distribution provides an overdispersed
alternative to the Poisson distribution; ¢ = & = 0 produces the mass function of a
regular Poisson random variable. For details about the generalized Poisson distribution
and a comparison with the negative binomial distribution, see Joe and Zhu (2005).

Inverse Gaussian(u, ¢)

oy?
w;

(i s yi,wi) = —

1 X )2
1 |:w1 (vi — mi) + log

2 yigu?

+ log{2n}:|

The variance is Var[Y] = ¢u>, ¢ > 0.
Lognormal(u, ¢)

zi = log{yi} — wi

w;z

1 2
(i, ¢:yi,wi) = —3 (210g{yi} +10g{w£} + log{2n} + ¢‘ )

1

If X = log{Y} has a normal distribution with mean @ and variance ¢, then Y has
the log-likelihood function /(i;, ¢; y;, w;). The FMM procedure models the lognormal
distribution and not the “shortcut” version you can obtain by taking the logarithm of a
random variable and modeling that as normally distributed. The two approaches are not
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equivalent, and the approach taken by PROC FMM is the actual lognormal distribution.
Although the lognormal model is a member of the exponential family of distributions, it
is not in the “natural” exponential family because it cannot be written in canonical form.

In terms of the parameters w and ¢ of the underlying normal process for X, the mean
and variance of Y are E[Y] = exp{u}+/w and Var[Y] = exp{2u}w(w — 1), respectively,
where w = exp{¢}. When you request predicted values with the OUTPUT statement,
the FMM procedure computes E[Y] and not u.

Negative binomial (i, ¢)

I(wi, ;i wi) = yi log{d)u/ji} — (i + wi/¢)10g{1 + q:fi}

+log{ C(yi +wi/¢) }
C(wi /)T (yi + 1)

The variance is Var[Y] = u + ¢u?, ¢ > 0.

i

For a given ¢, the negative binomial distribution is a member of the exponential family.
The parameter ¢ is related to the scale of the data because it is part of the variance
function. However, it cannot be factored from the variance, as is the case with the ¢
parameter in many other distributions.

Normal (i1, ¢)

1 Twi (yi = pi)?
l(lf‘ia‘f’l)’i,wi):__[w

+ log { i} + 10g{27r}]
2 Wi
The mean and variance are E[Y] = u and Var[Y] = ¢, respectively, ¢ > 0

Poisson()

I(wis yi, wi) = wi(y; log{p;} — i —log{l'(y; + 1)})

The mean and variance are E[Y] = u and Var[Y] = u.
(Shifted) T(v; u, ¢)

zi = —0.5log{¢/Jw;i} + log {T'(0.5(v + 1)}
—log{I'(0.5v)} — 0.5 x log {m v}
v+1 wi (yi — pi)?

(i, ¢:yi,wi) = — (T) log {1 + i + z;

In this parameterization E[Y] = w and Var[Y] = ¢v/(v — 2), ¢ > 0,v > 0. Note that
this form of the ¢ distribution is not a non-central distribution, but that of a shifted central
t random variable.

Uniform(a, b)

[(wis yi, wi) = —logth —aj}

The mean and variance are E[Y] = 0.5(a + b) and Var[Y] = (b — a)?/12.
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Weibull(u, ¢)

1

_l i
I(pi, ¢:yi) = —%log { Z—} —log{uid}

—exp {log { 211 /¢
e 5} ]

In this particular parameterization of the two-parameter Weibull distribution, the mean
and variance of the random variable Y are E[Y] = ul’'(1 4+ ¢) and Var[Y] =
p?{L(142¢) —T2(1 + ¢)}.

Bayesian Analysis
Conjugate Sampling

The FMM procedure uses Bayesian analysis via a conjugate Gibbs sampler if the model belongs to a small
class of mixture models for which a conjugate sampler is available. See the section “Gibbs Sampler” on
page 140 for a general discussion of Gibbs sampling. Table 37.8 summarizes the models for which conjugate
and Metropolis-Hastings samplers are available.

Table 37.8 Availability of Conjugate and Metropolis Samplers in the FMM Procedure

Effects (exclusive

of intercept) Distributions Available Samplers

No Normal or T Conjugate or Metropolis-Hastings
Yes Normal or T Conjugate or Metropolis-Hastings
No Binomial, binary, Poisson, exponential Conjugate or Metropolis-Hastings
Yes Binomial, binary, Poisson, exponential Metropolis-Hastings only

The conjugate sampler enjoys greater efficiency than the Metropolis-Hastings sampler and has the advantage
of sampling in terms of the natural parameters of the distribution.

You can always switch to the Metropolis-Hastings sampling algorithm in any model by adding the
METROPOLIS option in the BAYES statement.

Metropolis-Hastings Algorithm

If Metropolis-Hastings is the only sampler available for the specified model (see Table 37.8) or if the
METROPOLIS option is specified in the BAYES statement, PROC FMM uses the Metropolis-Hastings
approach of Gamerman (1997). See the section “Metropolis and Metropolis-Hastings Algorithms” on
page 139 for a general discussion of the Metropolis-Hastings algorithm.

The Gamerman (1997) algorithm derives a specific density that is used to generate proposals for the
component-specific parameters 8;. The form of this proposal density is multivariate normal, with mean
m; and covariance matrix C; derived as follows.
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Suppose B is the vector of model coefficients in the jth component and suppose that 8 ; has prior distribu-
tion N(a, R). Consider a generalized linear model (GLM) with link function g() = n = x’B and variance
function a (). The pseudo-response and weight in the GLM for a weighted least squares step are

9
y =n+( —M)/a—u
n
3
w =2 /a(u)
n

If the model contains offsets or FREQ or WEIGHT statements, or if a frials variable is involved, suitable
adjustments are made to these quantities.

In each component, j = 1,--- , k, form an adjusted cross-product matrix with a “pseudo” border

X;W;X; +R™" X,W,y5 +R'a
ijij—l—a’R_1 c

where W is a diagonal matrix formed from the pseudo-weights w, y* is a vector of pseudo-responses,
and c is arbitrary. This is basically a system of normal equations with ridging, and the degree of ridging is
governed by the precision and mean of the normal prior distribution of the coefficients. Sweeping on the
leading partition leads to

C; = (X;W,;X; +R7")
m; =C; (X;W,y; + R 'a)

where the generalized inverse is a reflexive, g,-inverse (see the section “Linear Model Theory” on page 54
of Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” for details).

PROC FMM then generates a proposed parameter vector from the resulting multivariate normal distribution,
and then accepts or rejects this proposal according to the appropriate Metropolis-Hastings thresholds.

Latent Variables via Data Augmentation

In order to fit finite Bayesian mixture models, the FMM procedure treats the mixture model as a missing
data problem and introduces an assignment variable S as in Dempster, Laird, and Rubin (1977). Since S is
not observable, it is frequently referred to as a latent variable. The unobservable variable S assigns an obser-
vation to a component in the mixture model. The number of states, k, might be unknown, but it is known to
be finite. Conditioning on the latent variable S, the component memberships of each observation is assumed
to be known, and Bayesian estimation is straightforward for each component in the finite mixture model.
That is, conditional on S = j, the distribution of the response is now assumed to be f(y;a;, 8|S = j).
In other words, each distinct state of the random variable S leads to a distinct set of parameters. The param-
eters in each component individually are then updated using a conjugate Gibbs sampler (where available)
or a Metropolis-Hastings sampling algorithm.

The FMM procedure assumes that the random variable S has a discrete multinomial distribution with prob-
ability m; of belonging to a component j; it can occupy one of k states. The distribution for the latent
variable S is

f(S; = jlm1,..., ) = multinomial(l, ry, ..., k)
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where f(-|-) denotes a conditional probability density. The parameters in the density 7 ; denote the proba-
bility that S takes on state ;.

The FMM procedure assumes a conjugate Dirichlet prior distribution on the mixture proportions 7 ; written
as:

p(r) = Dirichlet(ay,...,a;)

where p(-) indicates a prior distribution.

Using Bayes’ theorem, the likelihood function and prior distributions determine a conditionally conjugate
posterior distribution of S and & from the multinominomial distribution and Dirichlet distribution, respec-
tively.

Prior Distributions

The following list displays the parameterization of prior distributions for situations in which the FMM
procedure uses a conjugate sampler in mixture models without model effects and certain basic distributions
(binary, binomial, exponential, Poisson, normal, and ). You specify the parameters a and b in the formulas
below in the MUPRIORPARMS and PHIPRIORPARMS options in the BAYES statement in these models.

Beta(a, b)

F(a + b) a—1 b—1
= 7 1—
f) F@T®)” (I-y)
where @ > 0, b > 0. In this parameterization, the mean and variance of the distribution
are w = a/(a + b)and u(1 — p)/(a + b + 1), respectively. The beta distribution is the
prior distribution for the success probability in binary and binomial distributions when
conjugate sampling is used.

Dirichlet(aq,--- ,ag)

where Zle y; = 1 and the parameters a; > 0. If any a; were zero, an improper density
would result. The Dirichlet density is the prior distribution for the mixture probabilities.
You can affect the choice of the a; through the MIXPRIORPARMS option in the BAYES
statement. If k& = 2, the Dirichlet is the same as the beta(a, b) distribution.

Gamma(a, b)
a

_ b a—1
f(y)—r(a)y exp{—by}

where a > 0, b > 0. In this parameterization, the mean and variance of the distribution
are & = a/b and /b, respectively. The gamma distribution is the prior distribution for
the mean parameter of the Poisson distribution when conjugate sampling is used.
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Inverse gamma(a, b)

a

—a—1
) y exp{—b/y}

f(y) =

where a > 0, b > 0. In this parameterization, the mean and variance of the distribution
are . = b/(a—1)ifa > 1 and u?/(a —2) if a > 2, respectively. The inverse gamma
distribution is the prior distribution for the mean parameter of the exponential distribution
when conjugate sampling is used. It is also the prior distribution for the scale parameter
¢ in all models.

Multinomial(1, ¢, --- , 7g)
fly) = ;ﬂﬂ ek
VT TR

where Z’;’:l yj =n,y; =0, le;l ; = 1, and n is the number of observations
included in the analysis. The multinomial density is the prior distribution for the mixture
proportions. The mean and variance of Y; are u; = m; and p; (1 — ), respectively.

Normal(a, b)

N2
f) = 2 1u}

exp —
N2mh p{ 2 b

where b > 0. The mean and variance of the distribution are & = a and b, respectively.
The normal distribution is the prior distribution for the mean parameter of the normal
and ¢ distribution when conjugate sampling is used.

When a MODEL statement contains effects or if you specify the METROPOLIS option, the prior distribu-
tion for the regression parameters is multivariate normal, and you can specify the means and variances of
the parameters in the BETAPRIORPARMS option in the BAYES statement.

Parameterization of Model Effects

PROC FMM constructs a finite mixture model according to the specifications in the CLASS, MODEL, and
PROBMODEL statements. Each effect in the MODEL statement generates one or more columns in the
matrix X for that model. The same X matrix applies to all components that are associated with the MODEL
statement. Each effect in the PROBMODEL statement generates one or more columns in the matrix Z from
which the linear predictors in the model for the mixture probability models is formed. The same Z matrix
applies to all components.

The formation of effects from continuous and classification variables in the FMM procedure follows the
same general rules and techniques as for other linear modeling procedures. See the section “GLM Pa-
rameterization of Classification Variables and Effects” on page 394 of Chapter 19, “Shared Concepts and
Topics.”
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Default Output

The following sections describe the output that PROC FMM produces by default. The output is organized
into various tables, which are discussed in the order of appearance for maximum likelihood and Bayes
estimation, respectively.

Model Information

The “Model Information” table displays basic information about the model, such as the response variable,
frequency variable, link function, and the model category that the FMM procedure determined based on
your input and options. The “Model Information” table is one of a few tables that are produced irrespective
of estimation technique. Most other tables are specific to Bayes or maximum likelihood estimation.

If the analysis depends on generated random numbers, the “Model Information” table also displays the
random number seed used to initialize the random number generators. If you repeat the analysis and pass
this seed value in the SEED= option in the PROC FMM statement, an identical stream of random numbers
results.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. You
should check this information to make sure that the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the PROC FMM statement. You can suppress the “Class Level
Information” table completely or partially with the NOCLPRINT option in the PROC FMM statement.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set and
the number of observations used in the analysis. If you specify a FREQ statement, the table also displays the
sum of frequencies read and used. If the events/trials syntax is used for the response, the table also displays
the number of events and trials used in the analysis.

Note that the number of observations “used” in the analysis is not unambiguous in a mixture model. An
observation that is “unusable” for one component distribution (because the response value is outside of the
support of the distribution) might still be usable in the mixture model when the response value is in the
support of another component distribution. You can affect the way in which PROC FMM handles exclusion
of observations due to support violations with the EXCLUSION= option in the PROC FMM statement.

Response Profile

For binary data, the “Response Profile” table displays the ordered value from which the FMM procedure
determines the probability being modeled as an event for binary data. For each response category level, the
frequency used in the analysis is reported.
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Default Output for Maximum Likelihood

Optimization Information

The “Optimization Information” table displays basic information about the optimization setup to determine
the maximum likelihood estimates, such as the optimization technique, the parameters that participate in the
optimization, and the number of threads used for the calculations.

lteration History

The “Iteration History” table displays for each iteration of the optimization the number of function evalu-
ations (including gradient and Hessian evaluations), the value of the objective function, the change in the
objective function from the previous iteration, and the absolute value of the largest (projected) gradient ele-
ment. The objective function used in the optimization in the FMM procedure is the negative of the mixture
log likelihood; consequently, PROC FMM performs a minimization.

Convergence Status

The convergence status table is a small ODS table that follows the “Iteration History” table in the default
output. In the listing, it appears as a message that identifies whether the optimization succeeded and which
convergence criterion was met. If the optimization fails, the message indicates the reason for the failure. If
you save the “Convergence Status” table to an output data set, a numeric Status variable is added that allows
you to assess convergence programmatically. The values of the Status variable encode the following:

0 Convergence was achieved or an optimization was not performed (because of TECH-
NIQUE=NONE).

1 The objective function could not be improved.

2 Convergence was not achieved because of a user interrupt or because a limit was ex-

ceeded, such as the maximum number of iterations or the maximum number of function
evaluations. To modify these limits, see the MAXITER=, MAXFUNC=, and MAX-
TIME= options in the PROC FMM statement.

3 Optimization failed to converge because function or derivative evaluations failed at the
starting values or during the iterations or because a feasible point that satisfies the pa-
rameter constraints could not be found in the parameter space.

Fit Statistics

The “Fit Statistics” table displays a variety of fit measures based on the mixture log likelihood in addition
to the Pearson statistic. All statistics are presented in “smaller is better” form. If you are fitting a single-
component normal, gamma, or inverse gaussian model, the table also contains the unscaled Pearson statistic.
If you are fitting a mixture model or the model has been fitted under restrictions, the table also contains the
number of effective components and the number of effective parameters.

The calculation of the information criteria uses the following formulas, where p denotes the number of
effective parameters, n denotes the number of observations used (or the sum of the frequencies used if a
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FREQ statement is present), and [ is the log likelihood of the mixture evaluated at the converged estimates:

AIC = —2[ 4 2p

=2l +2pn/(n—p—1) n>p+2
=20 +2p(p +2) otherwise

BIC = — 2/ + plog(n)

AICC = {

The Pearson statistic is computed simply as
n L. 2

Pearson statistic = Z fi (yl,\—ul)

=1 Var[Y;]

where n denotes the number of observations used in the analysis, f; is the frequency associated with the i th
observation (or 1 if no frequency is specified), u; is the mean of the mixture, and the denominator is the

variance of the ith observation in the mixture. Note that the mean and variance in this expression are not
those of the component distributions, but the mean and variance of the mixture:

k
ui = E[Yi] = Z Tij [Lij
J=1
k
Var[Y;] = — /Liz + Z ij (O’izj + M,zj)
j=1

where p;; and 01.2]. are the mean and variance, respectively, for observation i in the jth component distribu-
tion and 7;; is the mixing probability for observation i in component ;.

The unscaled Pearson statistic is computed with the same expression as the Pearson statistic with n, f;, and
Wi as previously defined, but the scale parameter ¢ is set to 1 in the Var[Y;] expression.

The number of effective components and the number of effective parameters are determined by examining
the converged solution for the parameters that are associated with model effects and the mixing probabili-
ties. For example, if a component has an estimated mixing probability of zero, the values of its parameter
estimates are immaterial. You might argue that all parameters should be counted towards the penalty in the
information criteria. But a component with zero mixing probability in a k-component model effectively
reduces the model to a (k — 1)-component model. A situation of an overfit model, for which a parameter
penalty needs to be taken when calculating the information criteria, is a different situation; here the mixing
probability might be small, possibly close to zero.

Parameter Estimates

The parameter estimates, their estimated (asymptotic) standard errors, and p-values for the hypothesis that
the parameter is zero are presented in the ‘“Parameter Estimates” table. A separate table is produced for
each MODEL statement, and the components that are associated with a MODEL statement are identified
with an overall component count variable that counts across MODEL statements. If you assign a label to a
model with the LABEL= option in the MODEL statement, the label appears in the title of the “Parameter
Estimates” table. Otherwise, the internal label generated by the FMM procedure is used.

If the MODEL statement does not contain effects and the link function is not the identity, the inversely
linked estimate is also displayed in the table. For many distributions, the inverse linked estimate is the



Default Output 4 2505

estimated mean on the data scale. For example, in a binomial or binary model, it represents the estimated
probability of an event. For some distributions (for example, the Weibull distribution), the inverse linked
estimate is not the component distribution mean.

If you request confidence intervals with the CL. or ALPHA= option in the MODEL statement, confidence
limits are produced for the estimate on the linear scale. If the inverse linked estimate is displayed, confidence
intervals for that estimate are also produced by inversely linking the confidence bounds on the linear scale.

Mixing Probabilities

If you fit a model with more than one component, the table of mixing probabilities is produced. If there
are no effects in the PROBMODEL statement or if there is no PROBMODEL statement, the parameters
are reported on the linear scale and as mixing probabilities. If model effects are present, only the linear
parameters (on the scale of the logit, generalized logit, probit, and so on) are displayed.

Default Output for Bayes Estimation

Bayes Information

This table provides basic information about the sampling algorithm. The FMM procedure uses either a
conjugate sampler or a Metropolis-Hastings sampling algorithm based on Gamerman (1997). The table
reveals, for example, how many model parameters are sampled, how many parameters associated with
mixing probabilities are sampled, and how many threads are used to perform multithreaded analysis.

Prior Distributions

The “Prior Distributions” table lists for each sampled parameter the prior distribution and its parameters.
The mean and variance (if they exist) for those values of the parameters are also displayed, along with the
initial value for the parameter in the Markov chain. The Component column in this table identifies the
mixture component to which a particular parameter belongs. You can control how the FMM procedure
determines initial values with the INITIAL= option in the BAYES statement.

Posterior Summaries

The arithmetic mean, standard deviation, and percentiles of the posterior distribution of the parameter esti-
mates are displayed in the “Posterior Summaries” table. By default, the FMM procedure computes the 25th,
50th (median), and 75th percentiles of the sampling distribution. You can modify the percentiles through
suboptions of the STATISTICS option in the BAYES statement. If a parameter corresponds to a singularity
in the design and was removed from sampling for that purpose, it is also displayed in the table of posterior
summaries (and in other tables that relate to output from the BAYES statement). The posterior sample size
for such a parameter is shown as N = 0.

Posterior Intervals

The table of “Posterior Intervals” displays equal-tail intervals and intervals of highest posterior density
for each parameter. By default, intervals are computed for an a-level of 0.05, which corresponds to 95%
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intervals. You can modify this confidence level by providing one or more « values in the ALPHA= suboption
of the STATISTICS option in the BAYES statement. The computation of these intervals is detailed in section
“Summary Statistics” on page 157 of Chapter 7, “Introduction to Bayesian Analysis Procedures.”

Posterior Autocorrelations

Autocorrelations for the posterior estimates are computed by default for autocorrelation lags 1, 5, 10, and
50, provided that a sufficient number of posterior samples is available. See the section “Assessing Markov
Chain Convergence” on page 143 of Chapter 7, “Introduction to Bayesian Analysis Procedures,” for the
computation of posterior autocorrelations and their utility in diagnosing convergence of Markov chains.
You can modify the list of lags for which posterior autocorrelations are calculated with the AUTOCORR
suboption of the DIAGNOSTICS option in the BAYES statement.

ODS Table Names

Each table created by PROC FMM has a name associated with it, and you must use this name to reference

the table when you use ODS statements. These names are listed in Table 37.9.

Table 37.9 ODS Tables Produced by PROC FMM

Table Name Description Required Statement / Option
Autocorr Autocorrelation among posterior es- BAYES
timates
BayesInfo Basic information about Bayesian BAYES
estimation
ClassLevels Level information from the CLASS CLASS
statement
CompDescription Component description in models KMAX= in MODEL with ML
with varying number of components estimation
CompEvaluation Comparison of mixture models with KMAX= in MODEL with ML
varying number of components estimation
Complnfo Component information COMPONENTINFO option in
PROC FMM statement
ConvergenceStatus  Status of optimization at conclusion Default output
of optimization
Constraints Linear equality and inequality con- RESTRICT statement or
straints EQUATE=EFFECTS option in
MODEL statement
Corr Asymptotic correlation matrix of pa- CORR option in PROC FMM

rameter estimates (ML) or empirical
correlation matrix of the Bayesian
posterior estimates

statement
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Table Name Description Required Statement / Option

Cov Asymptotic covariance matrix of pa- COV option in PROC FMM
rameter estimates (ML) or empirical statement
covariance matrix of the Bayesian
posterior estimates

Covl Inverse of the covariance matrix of COVI option in PROC FMM
the parameter estimates statement

ESS Effective sample size DIAG=ESS option in BAYES

statement

FitStatistics Fit statistics Default output

Geweke Geweke diagnostics (Geweke 1992) DIAG=GEWEKE option in BAYES
for Markov chain statement

Hessian Hessian matrix from the maximum HESSIAN
likelihood optimization, evaluated at
the converged estimates

IterHistory Iteration history Default output for ML estimation

MCSE Monte Carlo standard errors DIAG=MCERROR in BAYES

statement

MixingProbs Solutions for the parameter esti- Default output for ML estimation
mates associated with effects in if number of components is greater
PROBMODEL statements than 1

Modellnfo Model information Default output

NObs Number of observations read and Default output
used, number of trials and events

Optlnfo Optimization information Default output for ML estimation

ParameterEstimates  Solutions for the parameter esti- Default output for ML estimation
mates associated with effects in
MODEL statements

ParameterMap Mapping of parameter names to OUTPOST= option in BAYES
OUTPOST= data set statement

PriorInfo Prior distributions and initial value BAYES
of Markov chain

PostSummaries Summary statistics for posterior es- BAYES
timates

PostIntervals Equal-tail and highest posterior den- BAYES
sity intervals for posterior estimates

ResponseProfile Response categories and category Default output in models with binary

modeled

response
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ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling
and Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 608 in Chapter 21,
“Statistical Graphics Using ODS.”

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC FMM generates are listed in Table 37.10, along with the required statements and options.

Table 37.10 Graphs Produced by PROC FMM

ODS Graph Name Plot Description Option

TADPanel Panel of diagnostic graph- BAYES
ics to assess convergence of
Markov chains

DensityPlot Histogram and density with Default plot for homogeneous mixtures
component distributions

Examples: FMM Procedure

Example 37.1: Modeling Mixing Probabilities: All Mice Are Created Equal, but
Some Are More Equal

This example demonstrates how you can model the means and mixture proportions separately in a binomial
cluster model. It also compares the binomial cluster model to the beta-binomial model.

In a typical teratological experiment, the offspring of animals that were exposed to a toxin during pregnancy
are studied for malformation. If you count the number of malformed offspring in a litter of size n, then this
count is typically not binomially distributed. The responses of the offspring from the same litter are not
independent; hence their sum does not constitute a binomial random variable. Relative to a binomial model,
data from teratological experiments exhibit overdispersion because ignoring positive correlation among the
responses tends to overstate the precision of the parameter estimates. Oversdispersion mechanisms are
briefly discussed in the section “Overdispersion” on page 2492.

In this application, the focus is on mixtures and models that involve a mixing mechanism. The mixing
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approach, considered in Williams (1975) and Haseman and Kupper (1979), supposes that the binomial
success probability is a random variable that follows a beta(, §) distribution:

Y| ~ Binomial(n, ©)

u ~ Beta(a, B)
Y ~ Beta-binomial(n, i, ¢)
E[Y] =nn
Var[Y] = nw(1 — m) {1 + u%(n — 1)}

If 4 = 0, then the beta-binomial distribution reduces to a standard binomial model with success probability
7. The parameterization of the beta-binomial distribution used by the FMM procedure is based on Neerchal
and Morel (1998); see the section “Log-Likelihood Functions for Response Distributions™ on page 2493 for
details.

Morel and Nagaraj (1993), Morel and Neerchal (1997), and Neerchal and Morel (1998) propose a different
model to capture dependency within binomial clusters. Their model is a two-component mixture that gives
rise to the same mean and variance function as the beta-binomial model. The genesis is different, however.
In the binomial cluster model of Morel and Neerchal, suppose there is a cluster of n Bernoulli outcomes
with success probability 7. The number of responses in the cluster decomposes into N < n outcomes
that all respond with either “success” or “failure”; the important aspect is that they all respond identically.
The remaining » — N Bernoulli outcomes respond independently, so the sum of successes in this group is
a binomial(n — N, ) random variable. Denote the probability with which cluster members fall into the
group of identical respondents as p. Then 1 — u is the probability that a response belongs to the group of
independent Bernoulli outcomes.

It is easy to see how this process of dividing the individual Bernoulli outcomes creates clustering. The
binomial cluster model can be written as the two-component mixture

PrY =y)=aPr(U =y)+ (1 —n)Pr(V =y)

where U ~ Binomial(n, u* + ), V ~ Binomial(n, u*), and u* = (1 — u)m. This mixture model is
somewhat unusual because the mixing probability ;v appears as a parameter in the component distributions.
The two probabilities involved,  and p, have the following interpretation: r is the unconditional probabil-
ity of success for any observation, and w is the probability with which the Bernoulli observations respond
identically. The complement of this probability, 1 — u, is the probability with which the Bernoulli outcomes
respond independently. If u = 0, then the two-component mixture reduces to a standard Binomial model
with success probability 7. Since both 7 and u are involved in the success probabilities of the two Binomial
variables in the mixture, you can affect these binomial means by specifying effects in the PROBMODEL
statement (for the ms) or the MODEL statement (for the ps). In a “straight” two-component Binomial
mixture,

wBinomial(n, p1) + (1 — )Binomial(n, u»)
you would vary the success probabilities (1 and uy through the MODEL statement.

With the FMM procedure, you can fit the beta-binomial model by specifying DIST=BETABIN and the
binomial cluster model by specifying DIST=BINOMCLUS in the MODEL statement.

Morel and Neerchal (1997) report data from a completely randomized design that studies the teratogenicity
of phenytoin in 81 pregnant mice. The treatment structure of the experiment is an augmented factorial. In
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addition to an untreated control, mice received 60 mg/kg of phenytoin (PHT), 100 mg/kg of trichloropropene
oxide (TCPO), and their combination. The design was augmented with a control group that was treated with
water. As in Morel and Neerchal (1997), the two control groups are combined here into a single group.

The following DATA step creates the data for this analysis as displayed in Table 1 of Morel and Neerchal
(1997). The second DATA step creates continuous variables x1-x3 to match the parameterization of these
authors.

data ossi;
length tx $8;
input tx$ n QQ;
do i=1 to n;
input y m @@;

output;
end;
drop i;
datalines;
Control 1888 9 9 7 90 53 3589105858160°5
88910 5 54 79106 6 3 5
Control 17 8 9 7 10 10101 66 6198 96755729
255 6 2 81 80 2785 7
PHT 19194 9 3 74 70 7041 817272817
02310 3 72 70 80811011
TCPO 16 057 10 4 4811 6 106 93 42806009
362 9 7 91108 8 6 9
220 7 1 87 8010040 607661617

PHT+TCPO 11

’

data ossi;
set ossi;
array xx{3} x1-x3;
do i=1 to 3; xx{i}=0; end;

pht = 0;

tcpo = 0;

if (tx='TCPO') then do;
xx{1l} = 1;

tcpo = 100;
end; else if (tx='PHT') then do;

xx{2} = 1;
pht = 60;
end; else if (tx='PHT+TCPO') then do;
pht = 60;
tcpo = 100;
xx{1l} = 1; xx{2} = 1; xx{3}=1;
end;

run;

The FMM procedure models the mean parameters p through the MODEL statement and the mixing pro-
portions 7 through the PROBMODEL statement. In the binomial cluster model, you can place a regression
structure on either set of probabilities, and the regression structure does not need to be the same. In the fol-
lowing statements, the unconditional probability of ossification is modeled as a two-way factorial, whereas
the intralitter effect—the propensity to group within a cluster—is assumed to be constant:
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proc fmm data=ossi;
class pht tcpo;
model y/m = / dist=binomcluster;
probmodel pht tcpo phtxtcpo;
run;

The CLASS statement declares the PHT and TCPO variables as classification variables. They affect the
analysis through their levels, not through their numeric values. The MODEL statement declares the distri-
bution of the data to follow a binomial cluster model. The FMM procedure then automatically assumes that
the model is a two-component mixture. An intercept is included by default. The PROBMODEL statement
declares the effect structure for the mixing probabilities. The unconditional probability of ossification of a
fetus depends on the main effects and the interaction in the factorial.

The “Model Information” table displays important details about the model fit with the FMM procedure
(Output 37.1.1). Although no K= option was specified in the MODEL statement, the FMM procedure
recognizes the model as a two-component model. The “Class Level Information” table displays the levels
and values of the PHT and TCPO variables. Eighty-one observations are read from the data and are used in
the analysis. These observations comprise 287 events and 585 total outcomes.

Output 37.1.1 Model Information in Binomial Cluster Model with Constant Clustering Probability

The FMM Procedure

Model Information

Data Set WORK.OSSI

Response Variable (Events) y

Response Variable (Trials) m

Type of Model Binomial Cluster
Distribution Binomial Cluster
Components 2

Link Function Logit

Estimation Method Maximum Likelihood

Class Level Information

Class Levels Values

pht 2 0 60

tcpo 2 0 100
Number of Observations Read 81
Number of Observations Used 81
Number of Events 287
Number of Trials 585

The “Optimization Information” table in Output 37.1.2 gives details about the maximum likelihood opti-
mization. By default, the FMM procedure uses a quasi-Newton algorithm. The model contains five param-
eters, four of which are part of the model for the mixing probabilities. The fifth parameter is the intercept in
the model for .
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Output 37.1.2 Optimization in Binomial Cluster Model with Constant Clustering Probability

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 5

Mean Function Parameters
Scale Parameters

Mixing Prob Parameters
Number of Threads

N & O R

Iteration History

Objective Max

Iteration Evaluations Function Change Gradient
0 5 174.92723892 . 43.78769
1 2 154.13180744 20.79543149 11.2346
2 3 153.26693611 0.86487133 6.888215
3 2 152.84974281 0.41719329 3.541977
4 3 152.61756033 0.23218248 2.783556
5 3 152.54795303 0.06960730 1.146807
6 3 152.52684929 0.02110374 0.034367
7 3 152.52671214 0.00013715 0.011511
8 3 152.52670799 0.00000415 0.000202
9 3 152.52670799 0.00000000 4.001E-6

Convergence criterion (GCONV=1E-8) satisfied.

Fit Statistics

-2 Log Likelihood 305.1
AIC (smaller is better) 315.1
AICC (smaller is better) 315.9
BIC (smaller is better) 327.0
Pearson Statistic 89.2077
Effective Parameters 5
Effective Components 2

After nine iterations, the iterative optimization converges. The —2 log likelihood at the converged solution is
305.1, and the Pearson statistic is 89.2077. The FMM procedure computes the Pearson statistic as a general
goodness-of-fit measure that expresses the closeness of the fitted model to the data.

The estimates of the parameters in the conditional probability u and in the unconditional probability 7 are
given in Output 37.1.3. The intercept estimate in the model for p is 0.3356. Since the default link in the
binomial cluster model is the logit link, the estimate of the conditional probability is

1
G = — 0.5831
H T exp{—0.3356}

This value is displayed in the “Inverse Linked Estimate” column. There is greater than a 50% chance that
the individual fetuses in a litter provide the same response. The clustering tendency is substantial.
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Output 37.1.3 Parameter Estimates in Binomial Cluster Model with Constant Clustering Probability

Parameter Estimates for 'Binomial Cluster' Model
Inverse
Standard Linked
Component Effect Estimate Error z Value Pr > |z| Estimate
1 Intercept 0.3356 0.1714 1.96 0.0503 0.5831
Parameter Estimates for Mixing Probabilities
Standard
Effect pht tcpo Estimate Error z Value Pr > |z|
Intercept -1.2194 0.4690 -2.60 0.0093
pht 0 0.9129 0.5608 1.63 0.1036
pht 60 0 . . .
tcpo 0 0.3295 0.5534 0.60 0.5516
tcpo 100 0 . . .
pht*tcpo 0 0 0.6162 0.6678 0.92 0.3561
phtxtcpo 0 100 0
phtxtcpo 60 0 0
phtxtcpo 60 100 0

The “Mixing Probabilities” table displays the estimates of the parameters in the model for 7 on the logit
scale (Output 37.1.3). Table 37.11 constructs the estimates of the unconditional probabilities of ossification.

Table 37.11 Estimates of Ossification Probabilities

PHT TCPO 7 4
0 0 —1.2194+0.91294-0.32954-0.6162=0.6392  0.6546
60 0 —1.21944-0.3295= —0.8899 0.2911
0 100 —1.219440.9129= —0.3065 0.4240
60 100 —1.2194 0.2280

Morel and Neerchal (1997) considered a model in which the intralitter effects also depend on the treatments.
This model is fit with the FMM procedure with the following statements:

proc fmm data=ossi;
class pht tcpo;
model y/m = pht tcpo phtxtcpo / dist=binomcluster;
probmodel pht tcpo pht*xtcpo;

run;

The —2 log likelihood of this model is much reduced compared to the previous model with constant con-
ditional probability (compare 287.8 in Output 37.1.4 with 305.1 in Output 37.1.2). The likelihood-ratio
statistic of 17.3 is significant, Pr( X% > 17.3 = 0.0006). Varying the conditional probabilities by treatment
improved the model fit significantly.
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Output 37.1.4 Fit Statistics and Parameter Estimates in Binomial Cluster Model

The FMM Procedure
Fit Statistics
-2 Log Likelihood 287.8
AIC (smaller is better) 303.8
AICC (smaller is better) 305.8
BIC (smaller is better) 323.0
Pearson Statistic 85.5998
Effective Parameters 8
Effective Components 2
Parameter Estimates for 'Binomial Cluster' Model
Standard
Component Effect pht tcpo Estimate Error z Value Pr > |z|
1 Intercept 1.8213 0.5889 3.09 0.0020
1 pht 0 -1.4962 0.6630 -2.26 0.0240
1 pht 60 0 . . .
1 tcpo 0 -3.1828 1.1261 -2.83 0.0047
1 tcpo 100 0 . . .
1 phtxtcpo 0 0 3.3736 1.1953 2.82 0.0048
1 phtxtcpo 0 100 0
1 phtxtcpo 60 0 0
1 phtxtcpo 60 100 0
Parameter Estimates for Mixing Probabilities
Standard
Effect pht tcpo Estimate Error z Value Pr > |z]|
Intercept -0.7394 0.5395 -1.37 0.1705
pht 0 0.4351 0.6203 0.70 0.4830
pht 60 0 . . .
tcpo 0 -0.5342 0.5893 -0.91 0.3646
tcpo 100 0 . . .
phtxtcpo 0 0 1.4055 0.7080 1.99 0.0471
phtxtcpo 0 100 0
phtxtcpo 60 0 0
phtxtcpo 60 100 0

Table 37.12 computes the conditional probabilities in the four treatment groups. Recall that the previous
model estimated a constant clustering probability of 0.5831.

Table 37.12 Estimates of Clustering Probabilities

PHT TCPO 7 m
0 0 1.8213—1.4962—3.182843.3736=0.5159 0.6262
60 0 1.8213-3.1828= —1.3615 0.2040
0 100 1.8213—1.4962=0.3251 0.5806

60 100 1.8213 0.8607
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The presence of phenytoin alone reduces the probability of response clustering within the litter. The pres-
ence of trichloropropene oxide alone does not have a strong effect on the clustering. The simultaneous
presence of both agents substantially increases the probability of clustering.

The following statements fit the binomial cluster model in the parameterization of Morel and Neerchal
(1997).

proc fmm data=ossi;
model y/m = x1-x3 / dist=binomcluster;
probmodel x1-x3;

run;

The model fit is the same as in the previous model (compare the “Fit Statistics” tables in Output 37.1.5 and
Output 37.1.4). The parameter estimates change due to the reparameterization of the treatment effects and
match the results in Table III of Morel and Neerchal (1997).

Output 37.1.5 Fit Statistics and Estimates (Morel and Neerchal Parameterization)

The FMM Procedure

Fit Statistics

-2 Log Likelihood 287.8
AIC (smaller is better) 303.8
AICC (smaller is better) 305.8
BIC (smaller is better) 323.0
Pearson Statistic 85.5999
Effective Parameters 8
Effective Components 2

Parameter Estimates for 'Binomial Cluster' Model

Standard

Component Effect Estimate Error z Value Pr > |z|

1 Intercept 0.5159 0.2603 1.98 0.0475

1 x1 -0.1908 0.4006 -0.48 0.6339

1 x2 -1.8774 0.9946 -1.89 0.0591

1 x3 3.3736 1.1953 2.82 0.0048

Parameter Estimates for Mixing Probabilities
Standard

Effect Estimate Error z Value Pr > |z|
Intercept 0.5669 0.2455 2.31 0.0209
x1 -0.8712 0.3924 -2.22 0.0264
x2 -1.8405 0.3413 -5.39 <.0001
x3 1.4055 0.7080 1.99 0.0471

The following sets of statements fit the binomial and beta-binomial models, respectively, as single-
component mixtures in the parameterization akin to the first binomial cluster model. Note that the model
effects that affect the underlying Bernoulli success probabilities are specified in the MODEL statement, in
contrast to the binomial cluster model.
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proc fmm data=ossi;
model y/m = x1-x3 / dist=binomial;
run;

proc fmm data=ossi;
model y/m = x1-x3 / dist=betabinomial;
run;

The Pearson statistic for the beta-binomial model (Output 37.1.6) indicates a much better fit compared to
the single-component binomial model (Output 37.1.7). This is not surprising since these data are obvi-
ously overdispersed relative to a binomial model because the Bernoulli outcomes are not independent. The
difference between the binomial cluster and the beta-binomial model lies in the mechanism by which the
correlations are induced:

e a mixing mechanism in the beta-binomial model that leads to a common shared random effect among
all offspring in a cluster

e a mixture specification in the binomial cluster model that divides the offspring in a litter into identical
and independent responders

Output 37.1.6 Fit Statistics in Binomial Model

The FMM Procedure

Fit Statistics

-2 Log Likelihood 401.8
AIC (smaller is better) 409.8
AICC (smaller is better) 410.3
BIC (smaller is better) 419.4
Pearson Statistic 252.1
Output 37.1.7 Fit Statistics in Beta-Binomial Model
The FMM Procedure
Fit Statistics
-2 Log Likelihood 306.6
AIC (smaller is better) 316.6
AICC (smaller is better) 317.4
BIC (smaller is better) 328.5
Pearson Statistic 87.5379
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Example 37.2: The Usefulness of Custom Starting Values: When Do Cows
Eat?

This example with a mixture of normal and Weibull distributions illustrates the benefits of specifying starting
values for some of the components.

The data for this example were generously provided by Dr. Luciano A. Gonzalez of the Lethbridge Research
Centre of Agriculture and Agri-Food Canada and his collaborator, Dr. Bert Tolkamp, from the Scottish
Agricultural College.

The outcome variable of interest is the logarithm of a time interval between consecutive visits by cattle to
feeders. The intervals fall into three categories:

e short breaks within meals—such as when an animal stops eating for a moment and resumes shortly
thereafter

e somewhat longer breaks when eating is interrupted to go have a drink of water

e long breaks between meals

Modeling such time interval data is important to understand the feeding behavior and biology of the animals
and to derive other biological parameters such as the probability of an animal to stop eating after it has
consumed a certain amount of a given food. Because there are three distinct biological categories, data of
this nature are frequently modeled as three-component mixtures. The point at which the second and third
components cross over is used to separate feeding events into meals.

The original data set comprises 141,414 observations of log feeding intervals. For the purpose of presenta-
tion in this document, where space is limited, the data have been rounded to precision 0.05 and grouped by
frequency. The following DATA step displays the modified data used in this example. A comparison with
the raw data and the results obtained in a full analysis of the original data show that the grouping does not
alter the presentation or conclusions in a way that matters for the purpose of this example.

data cattle;
input LogInt Count Q@Q;

datalines;
0.70 195 1.10 233 1.40 355 1.60 563
1.80 822 1.95 926 2.10 1018 2.20 1712
2.30 3190 2.40 2212 2.50 1692 2.55 1558
2.65 1622 2.70 1637 2.75 1568 2.85 1599
2.90 1575 2.95 1526 3.00 1537 3.05 1561
3.10 1555 3.15 1427 3.20 2852 3.25 1396
3.30 1343 3.35 2473 3.40 1310 3.45 2453
3.50 1168 3.55 2300 3.60 2174 3.65 2050
3.70 1926 3.75 1849 3.80 1687 3.85 2416
3.90 1449 3.95 2095 4.00 1278 4.05 1864
4.10 1672 4.15 2104 4.20 1443 4.25 1341
4.30 1685 4.35 1445 4.40 1369 4.45 1284
4.50 1523 4.55 1367 4.60 1027 4.65 1491
4.70 1057 4.75 1155 4.80 1095 4.85 1019
4.90 1158 4.95 1088 5.00 1075 5.05 912
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5.10 1073 5.15 803 5.20 924 5.25 916
5.30 784 5.35 751 5.40 766 5.45 833
5.50 748 5.55 725 5.60 674 5.65 690
5.70 659 5.75 695 5.80 529 5.85 639
5.90 580 5.95 557 6.00 524 6.05 473
6.10 538 6.15 444 6.20 456 6.25 453
6.30 374 6.35 406 6.40 409 6.45 371
6.50 320 6.55 334 6.60 353 6.65 305
6.70 302 6.75 301 6.80 263 6.85 218
6.90 255 6.95 240 7.00 219 7.05 202
7.10 192 7.15 180 7.20 162 7.25 126
7.30 148 7.35 173 7.40 142 7.45 163
7.50 152 7.55 149 7.60 139 7.65 161
7.70 174 7.75 179 7.80 188 7.85 239
7.90 225 7.95 213 8.00 235 8.05 256
8.10 272 8.15 290 8.20 320 8.25 355
8.30 307 8.35 311 8.40 317 8.45 335
8.50 369 8.55 365 8.60 365 8.65 396
8.70 419 8.75 467 8.80 468 8.85 515
8.90 558 8.95 623 9.00 712 9.05 716
9.10 829 9.15 803 9.20 834 9.25 856
9.30 838 9.35 842 9.40 826 9.45 834
9.50 798 9.55 801 9.60 780 9.65 849
9.70 779 9.75 737 9.80 683 9.85 686
9.90 626 9.95 582 10.00 522 10.05 450
10.10 443 10.15 375 10.20 342 10.25 285
10.30 254 10.35 231 10.40 195 10.45 186
10.50 143 10.55 100 10.60 73 10.65 49
10.70 28 10.75 36 10.80 16 10.85 9
10.90 5 10.95 6 11.00 4 11.05 1
11.15 1 11.25 4 11.30 2 11.35 5
11.40 4 11.45 3 11.50 1

4

If you scan the columns for the Count variable in the DATA step, the prevalence of values between 2 and 5
units of Loglnt is apparent, as is a long right tail. To explore these data graphically, the following statements
produce a histogram of the data and a kernel density estimate of the density of the LoglInt variable.

ods graphics on;

proc kde data=cattle;
univar LogInt / bwm=4;
freq count;

run;
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Output 37.2.1 Histogram and Kernel Density for Loglint

Distribution and Kernel Density for Logint
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Two modes are clearly visible in Output 37.2.1. Given the biological background, one would expect that
three components contribute to the mixture. The histogram would suggest either a two-component mixture
with modes near 4 and 9, or a three-component mixture with modes near 3, 5, and 9.

Following Dr. Gonzalez’ suggestion, the process is modeled as a three-component mixture of two normal
distributions and a Weibull distribution. The Weibull distribution is chosen because it can have long left and
right tails and it is popular in modeling data that relate to time intervals.

proc fmm data=cattle gconv=0;
model LogInt = / dist=normal k=2 parms(3 1, 5 1);
model + / dist=weibull;
freq count;

run;

The GCONV= convergence criterion is turned off in this PROC FMM run to avoid the early stoppage of
the iterations when the relative gradient changes little between iterations. Turning the criterion off usually
ensures that convergence is achieved with a small absolute gradient of the objective function. The PARMS
option in the first MODEL statement provides starting values for the means and variances for the parameters
of the normal distributions. The means for the two components are started at 4 = 3 and p = 5, respectively.
Specifying starting values is generally not necessary. However, the choice of starting values can play an
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important role in modeling finite mixture models; the importance of the choice of starting values in this
example is discussed further below.

The “Model Information” table shows that the model is a three-component mixture and that the FMM
procedure considers the estimation of a density to be the purpose of modeling. The procedure draws this
conclusion from the absence of effects in the MODEL statements. There are 187 observations in the data
set, but these actually represent 141,414 measurements (Output 37.2.2).

Output 37.2.2 Model Information and Number of Observations

The FMM Procedure

Model Information
Data Set WORK.CATTLE
Response Variable LogInt
Frequency Variable Count
Type of Model Density Estimation
Components 3
Estimation Method Maximum Likelihood
Number of Observations Read 187
Number of Observations Used 187
Sum of Frequencies Read 141414
Sum of Frequencies Used 141414

There are eight parameters in the optimization: the means and variances of the two normal distributions,
the ;o and ¢ parameter of the Weibull distribution, and the two mixing probabilities (Output 37.2.3). At the
converged solution, the —2 log likelihood is 563,153 and all parameters and components are effective—that
is, the model is not overspecified in the sense that components have collapsed during the model fitting. The
Pearson statistic is close to the number of observations in the data set, indicating a good fit.

Output 37.2.3 Optimization Information and Fit Statistics

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 8
Mean Function Parameters 3
Scale Parameters 3
Mixing Prob Parameters 2
Lower Boundaries 3
Upper Boundaries 0
Number of Threads 2
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Output 37.2.3 continued

Fit Statistics
-2 Log Likelihood 563153
AIC (smaller is better) 563169
AICC (smaller is better) 563169
BIC (smaller is better) 563248
Pearson Statistic 141458
Effective Parameters 8
Effective Components 3

Output 37.2.4 displays the parameter estimates for the three models and for the mixing probabilities. The
order in which the “Parameter Estimates” tables appear in the output corresponds to the order in which the
MODEL statements were specified.

Output 37.2.4 Optimization Information and Fit Statistics

Parameter Estimates for 'Normal' Model
Standard
Component Parameter Estimate Error z Value Pr > |z|
1 Intercept 3.3415 0.01260 265.16 <.0001
2 Intercept 4.8940 0.05447 89.84 <.0001
1 Variance 0.6718 0.01287
2 Variance 1.4497 0.05247
Parameter Estimates for 'Weibull' Model
Inverse
Standard Linked
Component Parameter Estimate Error z Value Pr > |z| Estimate
3 Intercept 2.2531 0.000506 4452.11 <.0001 9.5174
3 Scale 0.06848 0.000427
Parameter Estimates for Mixing Probabilities
—————————————— Linked Scale
Standard
Component Parameter Estimate Error z Value Pr > |z| Probability
1 Probability 0.8106 0.03409 23.78 <.0001 0.4545
2 Probability 0.5305 0.04640 11.43 <.0001 0.3435

The estimated means of the two normal components are 3.3415 and 4.8940, respectively. Note that the
means are displayed here as Intercept. The inverse linked estimate is not produced because the default
link for the normal distribution is the identity link; hence the Estimate column represents the means of the
component distributions. The parameter estimates in the Weibull model are ,3 o = 2.2531, ¢ = 0.06848,
and [t = exp{ﬁ o} = 9.5174. In the Weibull distribution, the  parameter does not estimate the mean of the
distribution, the maximum likelihood estimate of the distribution’s mean is I’ (;5 + 1) = 9.1828.
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The estimated mixing probabilities are 71 = 0.4545, 7, = 03435, and 73 = | — 7] — 7T =
0.2020. In other words, the estimated distribution of log feeding intervals is a 45:35:20 mixture of an
N(3.3415,0.6718), a N(4.8940, 1.4497), and a Weibull(9.5174, 0.06848) distribution.

You can obtain a graphical display of the observed and estimated distribution of these data by enabling ODS
Graphics. The PLOTS option in the PROC FMM statement modifies the default density plot by adding the
densities of the mixture components:

ods select DensityPlot;

proc fmm data=cattle gconv=0;
model LogInt = / dist=normal k=2 parms(3 1, 5 1);
model + / dist=weibull;
freq count;

run;

Output 37.2.5 Observed and Estimated Densities in the Three-Component Model

Distribution and Estimated Density for Logint
With Estimated Component Densities
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The estimated mixture density matches the histogram of the observed data closely (Output 37.2.5). The
component densities are displayed in such a way that, at each point in the support of the LoglInt variable,
their sum combines to the overall mixture density. The three components in the mixtures are well separated.

The excellent quality of the fit is even more evident when the distributions are displayed cumulatively by
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adding the CUMULATIVE option in the DENSITY option (Output 37.2.6):

ods select DensityPlot;

proc fmm data=cattle plot=density (cumulative) gconv=0;
model LogInt = / dist=normal k=2 parms(3 1, 5 1);
model + / dist=weibull;
freq count;

run;

The component cumulative distribution functions are again scaled so that their sum produces the overall
mixture cumulative distribution function. Because of this scaling, the percentage reached at the maximum
value of LoglInt corresponds to the mixing probabilities in Output 37.2.4.

Output 37.2.6 Observed and Estimated Cumulative Densities in the Three-Component Model

Empirical and Estimated Cumulative Density for Logint
With Estimated Component Cumulative Densities

100 .
Mixture = |
1: Normal(3.34,0.67) vad
2: Normal(4.89,1.45) e
3: Weibull(9.52,0.07) ]
80 —
7"’,—
ol
7
1
71
1
60 7;’
= /
7
8
/’
40 %
7 1
// /”——
//
L7
pg
20
/// 1
"
pg A
" vd
1 L
L ”//
O oy

07 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109 115
Logint

The importance of starting values for the parameter estimates was mentioned previously. Suppose that
different starting values are selected for the three components (for example, the default starting values).

proc fmm data=cattle gconv=0;
model LogInt = / dist=normal k=2;
model + / dist=weibull;
freq count;

run;

ods graphics off;
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The fit statitstics and parameter estimates from this run are displayed in Output 37.2.7, and the density plot
is shown in Output 37.2.8.

Output 37.2.7 Fit Statistics and Parameter Estimates

The FMM Procedure
Fit Statistics
-2 Log Likelihood 564431
AIC (smaller is better) 564447
AICC (smaller is better) 564447
BIC (smaller is better) 564526
Pearson Statistic 141228
Effective Parameters 8
Effective Components 3
Parameter Estimates for 'Normal' Model
Standard
Component Parameter Estimate Error z Value Pr > |z]
1 Intercept 4.9106 0.02604 188.56 <.0001
2 Intercept 9.2883 0.005031 1846.28 <.0001
1 Variance 1.7410 0.02753
2 Variance 0.4158 0.005086
Parameter Estimates for 'Weibull' Model
Inverse
Standard Linked
Component Parameter Estimate Error z Value Pr > |z| Estimate
3 Intercept 1.2908 0.002790 462.71 <.0001 3.6358
3 Scale 0.2093 0.001311
Parameter Estimates for Mixing Probabilities
—————————————— Linked Scale
Standard
Component Parameter Estimate Error z Value Pr > |z| Probability
1 Probability -0.1505 0.03678 -4.09 <.0001 0.3745
2 Probability -0.8280 0.01922 -43.08 <.0001 0.1902

All components are active; no collapsing of components occurred. However, a closer look at the “Parameter
Estimates” tables in Output 37.2.7 shows an important difference from the tables in Output 37.2.4. The
means of the two normal distributions are now 4.9106 and 9.2883. Previously, the means were 3.3415 and
4.8940. The “position” of the Weibull distribution has moved from right to left, and the third component
is now modeled by a symmetric normal distribution (Output 37.2.8). The mixture probabilities have also
changed—in particular, for the first and third component.
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Output 37.2.8 Three-Component Model with Default Starting Values

Distribution and Estimated Density for Logint
With Estimated Component Densities

Mixture

1: Normal(4.91,1.74)
2: Normal(9.29,0.42)
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Such switching is not uncommon in mixture modeling. As judged by the information criteria, the model
in which the Weibull distribution is the component with the smalllest mean does not fit the data as well as
the first model in which the specification of the starting values guided the optimization towards placing the
normal distributions first. The converged solution found in the last FMM run represents a local minimum
of the log-likelihood surface. There are other local minima—for example, when components are removed
from the model, which is tantamount to estimating the associated mixture probabilities as zero.

Example 37.3: Enforcing Homogeneity Constraints: Count and
Dispersion—It Is All Over!

The following example demonstrates how you can use either the EQUATE= option in the MODEL statement
or the RESTRICT statement to impose homogeneity constraints on chosen model effects.

The data for this example were presented by Margolin, Kaplan, and Zeiger (1981) and analyzed by var-
ious authors applying a number of techniques. The following DATA step shows the number of revertant
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salmonella colonies (variable num) at six levels of quinoline dosing (variable dose). There are three repli-
cate plates at each dose of quinoline.

data assay;
label dose = 'Dose of quinoline (microg/plate)’
num = 'Observed number of colonies';
input dose @;
logd = log(dose+10);
do i=1 to 3; input num@; output; end;
datalines;
0 15 21 29
10 16 18 21
33 16 26 33
100 27 41 60
333 33 38 41
1000 20 27 42

4

The basic notion is that the data are overdispersed relative to a Poisson distribution in which the logarithm of
the mean count is modeled as a linear regression in dose (in g /plate) and in the derived variable log{dose +
10} (Lawless 1987). The log of the expected count of revertants is thus

Bo + Bidose + B, log{dose + 10}
The following statements fit a standard Poisson regression model to these data:

proc fmm data=assay;
model num = dose logd / dist=Poisson;
run;

The Pearson statistic for this model is rather large compared to the number of degrees of freedom
(18 — 3 = 15). The ratio 46.2707/15 = 3.08 indicates an overdispersion problem in the Poisson model
(Output 37.3.1).

Output 37.3.1 Result of Fitting Poisson Regression Models

The FMM Procedure

Number of Observations Read 18
Number of Observations Used 18

Fit Statistics

-2 Log Likelihood 136.3
AIC (smaller is better) 142.3
AICC (smaller is better) 144.0
BIC (smaller is better) 144.9

Pearson Statistic 46.2707
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Output 37.3.1 continued

Parameter Estimates for 'Poisson' Model
Standard
Effect Estimate Error z Value Pr > |z|
Intercept 2.1728 0.2184 9.95 <.0001
dose -0.00101 0.000245 -4.13 <.0001
logd 0.3198 0.05700 5.61 <.0001

Breslow (1984) accounts for overdispersion by including a random effect in the predictor for the log rate and
applying a quasi-likelihood technique to estimate the parameters. Wang et al. (1996) examine these data
using mixtures of Poisson regression models. They fit several two- and three-component Poisson regression
mixtures. Examining the log likelihoods, AIC, and BIC criteria, they eventually settle on a two-component
model in which the intercepts vary by category and the regression coefficients are the same. This mixture
model can be written as

£0) :niu exp{—1} + (1 - n)%xz expl—12}

A1 =exp{Bo1 + PB1dose + B log{dose + 10}
A2 =exp{Boz2 + Bidose + B3 log{dose + 10}

This model is fit with the FMM procedure with the following statements:

proc fmm data=assay;
model num = dose logd / dist=Poisson k=2
equate=effects (dose logd);
run;

The EQUATE= option in the MODEL statement places constraints on the optimization and makes the co-
efficients for dose and logd homogeneous across components in the model. Output 37.3.2 displays the “Fit
Statistics” and parameter estimates in the mixture. The Pearson statistic is drastically reduced compared to
the Poisson regression model in Output 37.3.1. With 18 — 5 = 13 degrees of freedom, the ratio of the Pear-
son and the degrees of freedom is now 16.1573/13 = 1.2429. Note that the effective number of parameters
was used to compute the degrees of freedom, not the total number of parameters, because of the equality
constraints.
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Output 37.3.2 Result for Two-Component Poisson Regression Mixture

The FMM Procedure

Fit Statistics

-2 Log Likelihood 121.8
AIC (smaller is better) 131.8
AICC (smaller is better) 136.8
BIC (smaller is better) 136.3
Pearson Statistic 16.1573
Effective Parameters 5
Effective Components 2

Parameter Estimates for 'Poisson' Model

Standard
Component Effect Estimate Error z Value Pr > |z|
1 Intercept 1.9097 0.2654 7.20 <.0001
1 dose -0.00126 0.000273 -4.62 <.0001
1 logd 0.3639 0.06602 5.51 <.0001
2 Intercept 2.4770 0.2731 9.07 <.0001
2 dose -0.00126 0.000273 -4.62 <.0001
2 logd 0.3639 0.06602 5.51 <.0001
Parameter Estimates for Mixing Probabilities
Linked Scale
Standard

Effect Estimate Error z Value Pr > |z| Probability
Intercept 1.4984 0.6875 2.18 0.0293 0.8173

You could also have used RESTRICT statements to impose the homogeneity constraints on the model fit, as
shown in the following statements:

proc fmm data=assay;
model num = dose logd / dist=Poisson k=2;
restrict 'common dose' dose 1, dose -1;
restrict 'common logd' logd 1, logd -1;
run;

The first RESTRICT statement equates the coefficients for the dose variable in the two components, and
the second RESTRICT statement accomplishes the same for the coefficients of the logd variable. If the
right-hand side of a restriction is not specified, PROC FMM defaults to equating the left-hand side of
the restriction to zero. The “Linear Constraints” table in Output 37.3.3 shows that both linear equality
constraints are active. The parameter estimates match the previous FMM run.
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Output 37.3.3 Result for Two-Component Mixture with RESTRICT Statements

The FMM Procedure
Linear Constraints at Solution
k = Constraint
Label 1 k =2 Active
common dose dose — dose = 0 Yes
common logd logd - logd = 0 Yes
Parameter Estimates for 'Poisson' Model
Standard

Component Effect Estimate Error z Value Pr > |z|
1 Intercept 1.9097 0.2654 7.20 <.0001
1 dose -0.00126 0.000273 -4.62 <.0001
1 logd 0.3639 0.06602 5.51 <.0001
2 Intercept 2.4770 0.2731 9.07 <.0001
2 dose -0.00126 0.000273 -4.62 <.0001
2 logd 0.3639 0.06602 5.51 <.0001

Parameter Estimates for Mixing Probabilities

Linked Scale
Standard

Effect Estimate Error z Value Pr > |z| Probability
Intercept 1.4984 0.6875 2.18 0.0293 0.8173

Wang et al. (1996) note that observation 12 with a revertant colony count of 60 is comparably high. The
following statements remove the observation from the analysis and fit their selected model:

proc fmm data=assay (where=(num ne 60));
model num = dose logd / dist=Poisson k=2
equate=effects (dose logd);
run;

Output 37.3.4 Result for Two-Component Model without Outlier

The FMM Procedure

Fit Statistics

-2 Log Likelihood 111.5
AIC (smaller is better) 121.5
AICC (smaller is better) 126.9
BIC (smaller is better) 125.6
Pearson Statistic 16.5987
Effective Parameters 5

Effective Components 2
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Output 37.3.4 continued

Parameter Estimates for 'Poisson' Model
Standard

Component Effect Estimate Error z Value Pr > |z|
1 Intercept 2.2272 0.3022 7.37 <.0001
1 dose -0.00065 0.000445 -1.46 0.1440
1 logd 0.2432 0.1045 2.33 0.0199
2 Intercept 2.5477 0.3331 7.65 <.0001
2 dose -0.00065 0.000445 -1.46 0.1440
2 logd 0.2432 0.1045 2.33 0.0199

Parameter Estimates for Mixing Probabilities

Linked Scale
Standard

Effect Estimate Error z Value Pr > |z| Probability
Intercept 0.3134 1.7261 0.18 0.8559 0.5777

The ratio of Pearson Statistic over degrees of freedom (12) is only slightly worse than in the previous
model; the loss of 5% of the observations carries a price (Output 37.3.4). The parameter estimates for the
two intercepts are now fairly close. If the intercepts were identical, then the two-component model would
collapse to the Poisson regression model:

proc fmm data=assay (where=(num ne 60));
model num = dose logd / dist=Poisson;
run;

Output 37.3.5 Result of Fitting Poisson Regression Model without Outler

The FMM Procedure

Number of Observations Read 17
Number of Observations Used 17

Fit Statistics

-2 Log Likelihood 114.1
AIC (smaller is better) 120.1
AICC (smaller is better) 121.9
BIC (smaller is better) 122.5
Pearson Statistic 27.8008

Parameter Estimates for 'Poisson' Model

Standard
Effect Estimate Error z Value Pr > |z|
Intercept 2.3164 0.2244 10.32 <.0001
dose -0.00072 0.000258 -2.78 0.0055

logd 0.2603 0.05996 4.34 <.0001
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Compared to the same model applied to the full data, the Pearson statistic is much reduced (compare 46.2707
in Output 37.3.1 to 27.8008 in Output 37.3.5). The outlier—or overcount, if you will—induces at least some
of the overdispersion.

References

Aldrich, J. (1997), “R. A. Fisher and the Making of Maximum Likelihood 1912-1922.” Statistical Science,
12 (3), 162-176.

Breslow, N. E. (1984), “Extra-Poisson Variation in Log-Linear Models,” Applied Statistics, 33 (1), 38—44.

Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006), “Deviance Information Criteria for
Missing Data Models,” Bayesian Analysis, 1(4), 651-674.

Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge
University Press.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete Data via
the EM Algorithm,” Journal of the Royal Statistical Society, Ser. B, 39. 1-37.

Everitt, B. S. and Hand, D. J. (1981), Finite Mixture Distributions, London: Chapman and Hall.

Ferrari, S. L. P. and Cribari-Neto, F. (2004), “Beta Regression for Modelling Rates and Proportions,” Journal
of Applied Statistics, 31, 799-815.

Fisher, R. A. (1921), “On the ‘Probable Error’ of a Coeffient of Correlation Deduced from a Small Sample,”
Metron, 1, 3-32.

Frithwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, New York: Springer-Verlag.

Gamerman, D. (1997), “Sampling from the Posterior Distribution in Generalized Linear Mixed Models,”
Statistics and Computing, 7, 57-68.

Geweke, J. (1992), “Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Mo-
ments,” Bayesian Statistics, Volume 4, eds. J. M. Bernardo, J. O. Berger, A. P. Dawiv, and A. F. M. Smith
Oxford, UK: Clarendon Press.

Griffiths, D. A. (1973), “Maximum Likelihood Estimation for the Beta-Binomial Distribution and an Appli-
cation to the Household Distribution of the Total Number of Cases of a Disease,” Biometrics, 29, 637-648.

Haseman, J. K. and Kupper, L. L. (1979), “Analysis of Dichotomous Response Data from Certain Toxico-
logical Experiments,” Biometrics, 35, 281-293.

Joe, H. and Zhu, R. (2005), “Generalized Poisson Distribution: The Property of Mixture of Poisson and
Comparison with Negative Binomial Distribution,” Biometrical Journal, 47, 219-229.

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. (1998), “Markov Chain Monte Carlo in Practice: A
Roundtable Discussion,” The American Statistician, 52, 93—100.



2532 4 Chapter 37: The FMM Procedure (Experimental)

Lawless, J. F. (1987), “Negative Binomial and Mixed Poisson Regression,” The Canadian Journal of Statis-
tics, 15, 209-225.

Margolin, B. H., Kaplan, N., and Zeiger, E. (1981), “Statistical Analysis of the Ames
Salmonella/Microsome Test,” Proceedings of the National Academy of Sciences U.S.A., 76, 3779-3783.

McLachlan, G. and Peel, D. (2000), Finite Mixture Models, New York: John Wiley & Sons.

Morel, J. G., and Nagaraj, N. K. (1993), “A Finite Mixture Distribution for Modelling Multinomial Extra
Variation,” Biometrika, 80, 363-371.

Morel, J. G., and Neerchal, N. K. (1997), “Clustered Binary Logistic Regression in Teratology Data Using
a Finite Mixture Distribution,” Statistics in Medicine, 16, 2843-2853.

Neerchal, N. K. and Morel, J. G. (1998), “Large Cluster Results for Two Parameteric Multinomial Extra
Variation Models,” Journal of the American Statistical Association, 93, 1078-1087.

Pearson, K. (1915), “On Certain Types of Compound Frequency Distributions in Which the Components
Can Be Individually Described by Binomial Series,” Biometrika, 11, 139—-144.

Raftery, A. E. (1996), “Hypothesis Testing and Model Selection,” Markov Chain Monte Carlo in Practice,
eds. W . R. Gilks, S. Richardson, and D. J. Spiegelhalter, pp. 163—188. London: Chapman & Hall.

Richardson, S. (2002), “Discussion of Spiegelhalter et al.,” Journal of the Royal Statistical Society, Series
B, 64, 631.

Roeder, K. (1990), “Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in
the Galaxies,” Journal of the American Statistical Association, 85, 617-624.

Spiegelhalter, D., Thomas, A., Best, N., Carlin, B., and van der Linde, A. (2002), “Bayesian Measures of
Model Complexity and Fit,” Journal of the Royal Statistical Society, Series B, 64, 583—640.

Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985), Statistical Analysis of Finite Mixture Distri-
butions, New York: John Wiley & Sons.

Viallefont, V., Richardson, S., and Greene, P. J. (2002), “Bayesian Analysis of Poisson Mixtures,” Journal
of Nonparametric Statistics, 14, 181-202.

Wang, P., Puterman, M. L., Cockburn. I., and Le, N. (1996), “Mixed Poisson Regression Models with
Covariate Dependent Rates,” Biometrics, 52, 381-400.

Williams, D. A. (1975), “The Analysis of Binary Responses from Toxicological Experiments Involving
Reproduction and Teratogenicity,” Biometrics, 31, 949-952.



Subject Index

A logistic model, binomial cluster, 2510
ossification data, 2510

alpha level PROBMODEL specification, 2510

FMM procedure, 2478, 2486 salmonella assay, 2526

three-component mixture, 2519

B Weibull distribution, 2519

exponential distribution
Bayes information FMM procedure, 2478

FMM procedure, 2505

Bayesian analysis F
FMM procedure, 2464
Bernoulli distribution fit statistics
FMM procedure, 2478 FMM procedure, 2503
beta distribution FMM procedure, 2422
FMM procedure, 2478 alpha level, 2478, 2486
beta-binomial distribution Bayes information, 2505
FMM procedure, 2478 Bayesian analysis, 2464
binary distribution Bernoulli distribution, 2478
FMM procedure, 2478 beta distribution, 2478
binomial distribution beta-binomial distribution, 2478
FMM procedure, 2478 binary distribution, 2478
binomial distribution, 2478
C centering and scaling, 2457
class level, 2458, 2502
class level confidence limits, 2478, 2486
FMM procedure, 2458, 2502 constrained analysis, 2487
confidence limits convergence criterion, 2454, 2456
model parameters (FMM), 2478, 2486 convergence status, 2503
constrained analysis default output, 2502
FMM procedure, 2487 effect name length, 2457
convergence criterion exponential distribution, 2478
FMM procedure, 2454, 2456 fit statistics, 2503
convergence status folded normal distribution, 2478
FMM procedure, 2503 function-based convergence criteria, 2454, 2455
gamma distribution, 2478
D Gaussian distribution, 2478
generalized Poisson distribution, 2478
default output geometric distribution, 2478
FMM procedure, 2502 gradient-based convergence criteria, 2454, 2456
input data sets, 2455
E inverse Gaussian distribution, 2478
iteration details, 2456
effect iteration history, 2503
name length (FMM), 2457 link function, 2481, 2486
examples, FMM lognormal distribution, 2478
binary data, sort order, 2459 mixing probabilities, 2505
binomial data, 2510 model information, 2502

cattle feeding data, 2517 multithreading, 2485



negative binomial distribution, 2478
normal distribution, 2478
number of observations, 2502
ODS Graphics, 2460, 2508
ODS table names, 2506
offset variable, 2481
optimization information, 2503
ordering of CLASS variable levels, 2458
ordering of effects, 2458
parameter estimates, 2504
parameterization, 2501
Poisson distribution, 2478
posterior autocorrelations, 2506
posterior intervals, 2505
posterior summaries, 2505
prior distributions, 2505
random number seed, 2463
residual variance tolerance, 2463
response level ordering, 2476
response profile, 2502
response variable options, 2476
restricted analysis, 2487
statistical graphics, 2508
t distribution, 2478
Weibull distribution, 2478
weighting, 2489
folded normal distribution
FMM procedure, 2478
frequency variable
FMM procedure, 2474

G

gamma distribution

FMM procedure, 2478
Gaussian distribution

FMM procedure, 2478
generalized Poisson distribution

FMM procedure, 2478
geometric distribution

FMM procedure, 2478

inverse Gaussian distribution

FMM procedure, 2478
iteration details

FMM procedure, 2456
iteration history

FMM procedure, 2503

L

link function

FMM procedure, 2481, 2486
lognormal distribution
FMM procedure, 2478

M

mixing probabilities

FMM procedure, 2505
mixture model (FMM)

parameterization, 2501
model

information (FMM), 2502
multithreading

FMM procedure, 2485

N

negative binomial distribution
FMM procedure, 2478
normal distribution
FMM procedure, 2478
number of observations
FMM procedure, 2502

(0]

ODS Graphics
FMM procedure, 2460, 2508
offset variable
FMM procedure, 2481
optimization information
FMM procedure, 2503
options summary
BAYES statement, 2464
MODEL statement (FMM), 2475
PROC FMM statement, 2452

P

parameter estimates

FMM procedure, 2504
parameterization

FMM procedure, 2501

mixture model (FMM), 2501
Poisson distribution

FMM procedure, 2478
posterior autocorrelations

FMM procedure, 2506
posterior intervals

FMM procedure, 2505
posterior summaries

FMM procedure, 2505
prior distributions

FMM procedure, 2505



probability distributions
FMM procedure, 2478

R

random number seed

FMM procedure, 2463
response level ordering

FMM procedure, 2476
response profile

FMM procedure, 2502
response variable options

FMM procedure, 2476
restricted analysis

FMM procedure, 2487
reverse response level ordering

FMM procedure, 2476

S

statistical graphics
FMM procedure, 2508

T

t distribution
FMM procedure, 2478

W

Weibull distribution

FMM procedure, 2478
weighting

FMM procedure, 2489






Syntax Index

A

ABSCONY option

PROC FMM statement, 2454
ABSFCONYV option

PROC FMM statement, 2454
ABSGCONY option

PROC FMM statement, 2454
ABSGTOL option

PROC FMM statement, 2454
ABSTOL option

PROC FMM statement, 2454
ALLSTATS option

OUTPUT statement (FMM), 2484
ALPHA= option

MODEL statement (FMM), 2478

PROBMODEL statement (FMM, 2486

B

BAYES statement

FMM procedure, 2464
BETAPRIORPARMS option

BAYES statement (FMM), 2465
BY statement

FMM procedure, 2473

C

CINFO option
PROC FMM statement, 2454
CL option
MODEL statement (FMM), 2478
PROBMODEL statement (FMM), 2486
CLASS statement
FMM procedure, 2474
COMPINFO option
PROC FMM statement, 2454
COMPONENTINFO option
PROC FMM statement, 2454
CORR option
PROC FMM statement, 2455
COV option
PROC FMM statement, 2454
COVI option
PROC FMM statement, 2454
CPUCOUNT= option
PERFORMANCE statement (FMM), 2485

CRIT= option

PROC FMM statement, 2455
CRITERION= option

PROC FMM statement, 2455

D

DATA= option

OUTPUT statement (FMM), 2482

PROC FMM statement, 2455
DESCENDING option

MODEL statement, 2476
DETAILS option

PERFORMANCE statement (FMM), 2485
DIAGNOSTICS option

BAYES statement (FMM), 2466
DIST= option

MODEL statement (FMM), 2478
DISTRIBUTION= option

MODEL statement (FMM), 2478

E

EQUATE= option

MODEL statement (FMM), 2480
ESTIMATE= option

BAYES statement (FMM), 2468
EXCLUDE= option

PROC FMM statement, 2455
EXCLUSION= option

PROC FMM statement, 2455

F

FCONYV option
PROC FMM statement, 2455
FITDETAILS option
PROC FMM statement, 2456
FMM procedure, 2452
BAYES statement, 2464
FREQ statement, 2474
ID statement, 2474
MODEL statement, 2475
OUTPUT statement, 2482
PERFORMANCE statement, 2485
PROBMODEL statement, 2486
PROC FMM statement, 2452
RESTRICT statement, 2487



syntax, 2452
WEIGHT statement, 2489
FMM procedure, BAYES statement, 2464
BETAPRIORPARMS option, 2465
DIAGNOSTICS option, 2466
ESTIMATE-= option, 2468
INITIAL= option, 2468
METROPOLIS option, 2468
MIXPRIORPARMS option, 2468
MUPRIORPARMS option, 2469
NBI= option, 2469
NMC= option, 2470
OUTPOST= option, 2470
PHIPRIORPARMS option, 2470
PRIOROPTIONS option, 2471
PRIOROPTS option, 2471
STATISTICS option, 2472
SUMMARIES option, 2472
THIN= option, 2473
THINNING= option, 2473
TIMEINC= option, 2473
FMM procedure, BY statement, 2473
FMM procedure, CLASS statement, 2474
TRUNCATE option, 2474
FMM procedure, FREQ statement, 2474
FMM procedure, ID statement, 2474
FMM procedure, MODEL statement, 2475
ALPHA= option, 2478
CL option, 2478
DESCENDING option, 2476
DIST= option, 2478
DISTRIBUTION= option, 2478
EQUATE-= option, 2480
K= option, 2480
KMAX= option, 2480
KMIN= option, 2481
LABEL-= option, 2481
LINK= option, 2481
NOINT option, 2481
NUMBER-= option, 2480
OFFSET= option, 2481
ORDER= option, 2477
PARAMETERS option, 2482
PARMS option, 2482
FMM procedure, OUTPUT statement, 2482
ALLSTATS option, 2484
DATA= option, 2482
keyword= option, 2482
NOVAR option, 2484
OUT= option, 2482

FMM procedure, PERFORMANCE statement, 2485

CPUCOUNT option, 2485
DETAILS option, 2485
NOTHREADS option, 2485

THREADS option, 2485

FMM procedure, PROBMODEL statement, 2486

ALPHA= option, 2486
CL option, 2486
LINK= option, 2486
NOINT option, 2487
PARAMETERS option, 2487
PARMS option, 2487
FMM procedure, PROC FMM statement, 2452
ABSCONY option, 2454
ABSFCONY option, 2454
ABSFTOL option, 2454
ABSGCONY option, 2454
ABSGTOL option, 2454
ABSTOL option, 2454
CINFO option, 2454
COMPINFO option, 2454
COMPONENTINFO option, 2454
CORR option, 2455
COV option, 2454
COVI option, 2454
CRIT= option, 2455
CRITERION= option, 2455
DATA= option, 2455
EXCLUDE= option, 2455
EXCLUSION= option, 2455
FCONY option, 2455
FITDETAILS option, 2456
FTOL option, 2455
GCONYV option, 2456
GTOL option, 2456
HESSIAN option, 2456
INVALIDLOGL= option, 2456
ITDETAILS option, 2456
MAXFUNC= option, 2457
MAXITER= option, 2457
MAXTIME-= option, 2457
MEMBERSHIP= option, 2460
NAMELEN= option, 2457
NOCENTER option, 2457
NOCLPRINT option, 2458
NOITPRINT option, 2458
NOPRINT option, 2458
ORDER= option, 2458
PARMSTYLE-= option, 2459
PARTIAL= option, 2460
PLOTS option, 2460
SEED= option, 2463
SINGCHOL= option, 2463
SINGULAR= option, 2463
TECHNIQUE-= option, 2463
FMM procedure, RESTRICT statement, 2487
FMM procedure, WEIGHT statement, 2489
FREQ statement



FMM procedure, 2474
FTOL option
PROC FMM statement, 2455

G

GCONYV option

PROC FMM statement, 2456
GTOL option

PROC FMM statement, 2456

H

HESSTAN option
PROC FMM statement, 2456

ID statement

FMM procedure, 2474
INITIAL= option

BAYES statement (FMM), 2468
INVALIDLOGL= option

PROC FMM statement, 2456
ITDETAILS option

PROC FMM statement, 2456

K

K= option

MODEL statement (FMM), 2480
keyword= option

OUTPUT statement (FMM), 2482
KMAX= option

MODEL statement (FMM), 2480
KMIN= option

MODEL statement (FMM), 2481

L

LABEL= option
MODEL statement (FMM), 2481
LINK= option
MODEL statement (FMM), 2481
PROBMODEL statement (FMM), 2486

M

MAXFUNC= option

PROC FMM statement, 2457
MAXITER= option

PROC FMM statement, 2457
MAXTIME= option

PROC FMM statement, 2457

MEMBERSHIP= option

PROC FMM statement, 2460
METROPOLIS option

BAYES statement (FMM), 2468
MIXPRIORPARMS option

BAYES statement (FMM), 2468
MODEL statement

FMM procedure, 2475
MUPRIORPARMS option

BAYES statement (FMM), 2469

N

NAMELEN= option

PROC FMM statement, 2457
NBI= option

BAYES statement (FMM), 2469
NMC= option

BAYES statement (FMM), 2470
NOCENTER option

PROC FMM statement, 2457
NOCLPRINT option

PROC FMM statement, 2458
NOINT option

MODEL statement (FMM), 2481

PROBMODEL statement (FMM), 2487
NOITPRINT option

PROC FMM statement, 2458
NOPRINT option

PROC FMM statement, 2458
NOTHREADS option

PERFORMANCE statement (FMM), 2485
NOVAR option

OUTPUT statement (FMM), 2484
NUMBER= option

MODEL statement (FMM), 2480

o

OFFSET= option

MODEL statement (FMM), 2481
ORDER= option

MODEL statement, 2477

PROC FMM statement, 2458
OUT= option

OUTPUT statement (FMM), 2482
OUTPOST= option

BAYES statement (FMM), 2470
OUTPUT statement

FMM procedure, 2482

P

PARAMETERS option



MODEL statement (FMM), 2482

PROBMODEL statement (FMM), 2487
PARMS option

MODEL statement (FMM), 2482

PROBMODEL statement (FMM), 2487
PARMSTYLE-= option

PROC FMM statement, 2459
PARTIAL= option

PROC FMM statement, 2460
PERFORMANCE statement

FMM procedure, 2485
PHIPRIORPARMS option

BAYES statement (FMM), 2470
PLOTS option

PROC FMM statement, 2460
PRIOROPTIONS option

BAYES statement (FMM), 2471
PRIOROPTS option

BAYES statement (FMM), 2471
PROBMODEL statement

FMM procedure, 2486

PROC FMM procedure, PROC FMM statement

SINGRES= option, 2463
PROC FMM statement
FMM procedure, 2452

R

RESTRICT statement
FMM procedure, 2487

S

SEED= option

PROC FMM statement, 2463
SINGCHOL= option

PROC FMM statement, 2463
SINGRES= option

PROC FMM statement, 2463
SINGULAR= option

PROC FMM statement, 2463
STATISTICS option

BAYES statement (FMM), 2472
SUMMARIES option

BAYES statement (FMM), 2472
syntax

FMM procedure, 2452

T

TECHNIQUE-= option

PROC FMM statement, 2463
THIN= option

BAYES statement (FMM), 2473

THINNING= option

BAYES statement (FMM), 2473
THREADS= option

PERFORMANCE statement (FMM), 2485
TIMEINC= option

BAYES statement (FMM), 2473
TRUNCATE option

CLASS statement (FMM), 2474

W

WEIGHT statement
FMM procedure, 2489



Your Turn

We welcome your feedback.

e If you have comments about this book, please send them to
yourturn@sas.com. Include the full title and page numbers (if applicable).

o If you have comments about the software, please send them to

suggest@sas.com.






SAS Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly
changing and competitive job market. SAS® Publishing provides you with a wide range of resources to help you set
yourself apart. Visit us online at support.sas.com/bookstore.

SAS’ Press

Need to learn the basics? Struggling with a programming problem? You’ll find the expert answers that you
need in example-rich books from SAS Press. Written by experienced SAS professionals from around the
world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

SAS° Documentation
To successfully implement applications using SAS software, companies in every industry and on every
continent all turn to the one source for accurate, timely, and reliable information: SAS documentation.
We currently produce the following types of reference documentation to improve your work experience:

¢ Online help that is built into the software.

e Tutorials that are integrated into the product.

¢ Reference documentation delivered in HTML and PDF - free on the Web.

« Hard-copy books.
ard-copy books support.sas.com/publishing

SAS° Publishing News
Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author

podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as
access to past issues, are available at our Web site.

support.sas.com/spn

Ve .l
4
4 |

4 ..

f @l §
W \" 3 ]

\

=

1

’

THE
GSas | B
) | TO KNOW.,

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109






	The FMM Procedure (Experimental)
	Overview: FMM Procedure
	Basic Features
	Assumptions
	Notation for the Finite Mixture Model
	Homogeneous Mixtures
	Special Mixtures

	PROC FMM Contrasted with Other SAS Procedures

	Getting Started: FMM Procedure
	Mixture Modeling for Binomial Overdispersion: ``Student,'' Pearson, Beer, and Yeast
	Modeling Zero-Inflation: Is it Better to Fish Poorly or Not to Have Fished At All?
	Looking for Multiple Modes: Are Galaxies Clustered?
	Comparison with Roeder's Method


	Syntax: FMM Procedure
	PROC FMM Statement
	BAYES Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	PERFORMANCE Statement
	PROBMODEL Statement
	RESTRICT Statement
	WEIGHT Statement

	Details: FMM Procedure
	A Gentle Introduction to Finite Mixture Models
	The Form of the Finite Mixture Model
	Mixture Models Contrasted with Mixing and Mixed Models: Untangling the Terminology Web
	Overdispersion

	Log-Likelihood Functions for Response Distributions
	Bayesian Analysis
	Conjugate Sampling
	Metropolis-Hastings Algorithm
	Latent Variables via Data Augmentation
	Prior Distributions

	Parameterization of Model Effects
	Default Output
	Model Information
	Class Level Information
	Number of Observations
	Response Profile
	Default Output for Maximum Likelihood
	Default Output for Bayes Estimation

	ODS Table Names
	ODS Graphics

	Examples: FMM Procedure
	Example 37.1:  Modeling Mixing Probabilities: All Mice Are Created Equal, but Some Are More Equal
	Example 37.2:  The Usefulness of Custom Starting Values: When Do Cows Eat?
	Example 37.3:  Enforcing Homogeneity Constraints: Count and Dispersion—It Is All Over!

	References

	Subject Index
	Syntax Index

