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Overview: HPMIXED Procedure

The HPMIXED procedure uses a number of specialized high-performance techniques to �t linear mixed
models with variance component structure. The HPMIXED procedure is speci�cally designed to cope with
estimation problems involving a large number of �xed effects, a large number of random effects, or a large
number of observations.

The HPMIXED procedure complements the MIXED procedure and other SAS/STAT procedures for mixed
modeling. On the one hand, the models supported by the HPMIXED procedure are a subset of the models
that you can �t with the MIXED procedure, and the con�rmatory inferences available in the HPMIXED
procedure are also a subset of the general analyses available with the MIXED procedure. On the other hand,
the HPMIXED procedure can have considerably better performance than other SAS/STAT mixed modeling
tools, in terms of memory requirements and computational speed.

A mixed model can be large in a number of ways, not all of which are suited for the specialized algorithms
and storage techniques implemented in the HPMIXED procedure. The following are examples of linear
mixed modeling problems for which the HPMIXED procedure has been speci�cally designed:

� linear mixed models with thousands of levels for the �xed and/or random effects

� linear mixed models with hierarchically nested �xed and/or random effects, possibly with hundreds or
thousands of levels at each level of the hierarchy

Basic Features

The HPMIXED procedure enables you to specify a linear mixed model with variance component structure, to
estimate the covariance parameters by restricted maximum likelihood, and to perform con�rmatory inference
in such models. The HPMIXED procedure �ts the speci�ed linear mixed model and produces appropriate
statistics.

The following are some of the basic features of the HPMIXED procedure:

� capacity to handle large linear mixed model problems for balanced or unbalanced data

� MIXED-type MODEL and RANDOM statements for model speci�cation and CONTRAST, ESTI-
MATE, LSMEANS, and TEST statements for inferences

� estimate covariance parameters by restricted maximum likelihood (REML)

� output statistics by using the OUTPUT statement
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� computation of appropriate standard errors for all speci�ed estimable linear combinations of �xed and
random effects, and correspondingt andF tests

� subject and group effects that enable blocking and heterogeneity, respectively

� NLOPTIONS statement, which enables you to exercise control over the numerical optimization

The HPMIXED procedure uses the Output Delivery System (ODS), a SAS subsystem that provides capa-
bilities for displaying and controlling the output from SAS procedures. ODS enables you to convert any
of the output from the HPMIXED procedure into a SAS data set. See the section “ODS Table Names” on
page 4773 and Chapter 20, “Using the Output Delivery System,” for further information about using ODS
with the HPMIXED procedure.

Assumptions and Notation

The linear mixed models �t by the HPMIXED procedure can be represented as linear statistical models in the
following form:

y D X� C Z C �

 � N.0; G/

� � N.0; � 2I /

CovŒ ; � • D 0

The symbols in these expressions denote the following:

y the.n � 1/ vector of responses

X the.n � k/ design matrix for the �xed effects

� the.k � 1/ vector of �xed-effects parameters

Z the.n � q/ design matrix for the random effects

 the.q � 1/ vector of random effects

� the.n � 1/ vector of unobservable residual errors

As is customary for statistical models in the linear mixed model family, the random effects are assumed
normally distributed. The same holds for the residual errors and these are furthermore distributed indepen-
dently of the random effects. As a consequence, these assumptions imply that the response vectory has a
multivariate normal distribution.

Further assumptions, implicit in the preceding expression, are as follows:

� The conditional mean of the data—given the random effects—is linear in the �xed effects and the
random effects.

� The marginal mean of the data is linear in the �xed-effects parameters.
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Computational Approach

The computational methods to ef�ciently solve large mixed model problems with the HPMIXED procedure
rely on a combination of several techniques, including sparse matrix storage, specialized solving of sparse
linear systems, and dedicated nonlinear optimization.

Sparse Storage and Computation

One of the fundamental computational tasks in analyzing a linear mixed model is solving the mixed model
equations

�
X0X X0Z
Z0X Z0Z C � 2G� 1

� �
�


�
D

�
X0y
Z0y

�

whereG denotes the variance matrix of the random effects. The mixed model crossproduct matrix
�

X0X X0Z
Z0X Z0Z C � 2G� 1

�

is a key component of these equations, and it often has many zero values(George and Liu 1981).Sparse
storage techniques can result in signi�cant savings in both memory and CPU resources. The HPMIXED
procedure draws on sparse matrix representation and storage where appropriate or necessary.

Conjugate Gradient Algorithm and Iteration-on-Data Technology

Solving the mixed model equations is a critical component of linear mixed model analysis. The two
main components of the preconditioned conjugate gradient (PCCG) algorithm are preconditioning and
matrix-vector product computing(Shewchuk 1994).The algorithm is guaranteed to converge to the solution
within ne iterations, wherene is equal to the number of distinct eigenvalues of the mixed model equations.
This simple yet powerful algorithm can be easily implemented with an iteration-on-data (IOD) technique
(Tsuruta, Misztal, and Stranden 2001) that can yield signi�cant savings of memory resources.

The combination of the PCCG algorithm and iteration on data makes it possible to ef�ciently compute
best linear unbiased predictors (BLUPs) for the random effects in mixed models with large mixed model
equations.

Average Information Algorithm

The HPMIXED procedure estimates covariance parameters by restricted maximum likelihood. The default
optimization method is a quasi-Newton algorithm. When the Hessian or information matrix is required, the
HPMIXED procedure takes advantage of the computational simpli�cations that are available byaveraging
information(AI). The AI algorithm(Johnson and Thompson 1995; Gilmour, Thompson, and Cullis 1995)
replaces the second derivative matrix with the average of the observed and expected information matrices.
The computationally intensive trace terms in these information matrices cancel upon averaging. Coarsely, the
AI algorithm can be viewed as a hybrid of a Newton-Raphson approach and Fisher scoring.
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The HPMIXED Procedure Contrasted with the MIXED Procedure

The HPMIXED procedure is designed to solve large mixed model problems by using sparse matrix techniques.
A mixed model can be large in many ways: a large number of observations, a large number of columns in the
X matrix, a large number of columns in theZ matrix, and a large number of covariance parameters. The aim
of the HPMIXED procedure is parameter estimation, inference, and prediction in linear mixed models with
largeX and/orZ matrices and many observations, but with relatively few covariance parameters.

The models that you can �t with the HPMIXED procedure and the available postprocessing analyses are a
subset of the models and analyses available with the MIXED procedure. With the HPMIXED procedure
you can model only G-side random effects with variance component structure or an unstructured covariance
matrix in a Cholesky parameterization. R-side random effects and direct modeling of their covariance
structures are not supported.

The MIXED and HPMIXED procedures offer different balances for computing performance and statistical
generality. To some extent the generality of the MIXED procedure means that it cannot serve as a high-
performance computing tool for all of the model-data scenarios that it can potentially handle. For example,
although ef�cient sparse algorithms are available to estimate variance components in large linear mixed
models, the computational con�guration changes profoundly when, for example, Kenward-Roger degree-of-
freedom adjustments are requested.

On the other hand, the HPMIXED procedure can handle only a small subset of the models that PROC MIXED
can �t. Invariably, some features of high-performance sparse computing methods might be surprising at
�rst. For example, the best computational path depends on the model and the data, so that in models with a
singularX0X matrix, the order in which singularities are detected and accounted for can change from one
data set to the next.

The following is a list of features available in the MIXED procedure, butnot available in the HPMIXED
procedure:

� a variety of covariance structures by using the TYPE= option in the RANDOM statement

� automatic Type III tests of �xed effects. You request tests of �xed effects in the HPMIXED procedure
with the TEST statement.

� ODS statistical graphics

� advanced degree-of-freedom adjustments available by using the DDFM= option

� maximum likelihood or method-of-moments estimation for the covariance parameters

� a PRIOR statement for a sampling-based Bayesian analysis
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Getting Started: HPMIXED Procedure

Mixed Model with Large Number of Fixed and Random Effects

In animal breeding, it is common to model genetic and environmental effects with a random effect for the
animal. When there are many animals being studied, this can lead to very large mixed model equations to be
solved. In this example we present an analysis of simulated data with this structure.

Suppose you have 3,000 animals from �ve different genetic species raised on 100 different farms. The
following DATA step simulates 40,000 observations of milk yield (Yield) from a linear mixed model with
variablesSpecies andFarm in the �xed-effect model andAnimal as a random effect. The random effect
due toAnimal is simulated with a variance of 4.0, while the residual error variance is 8.0. These variance
component values re�ect the fact that variation in milk yield is typically genetically controlled to be no more
than 33% (4/(4+8)).

data Sim;
keep Species Farm Animal Yield;
array AnimalEffect{3000};
array AnimalFarm{3000};
array AnimalSpecies{3000};
do i = 1 to dim(AnimalEffect);

AnimalEffect{i} = sqrt(4.0) * rannor(12345);
AnimalFarm{i} = 1 + int(100 * ranuni(12345));
AnimalSpecies{i} = 1 + int(5 * ranuni(12345));

end;
do i = 1 to 40000;

Animal = 1 + int(3000 * ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm{Animal};
Yield = 1 + Species + Farm/10 + AnimalEffect{Animal}

+ sqrt(8.0) * rannor(12345);
output;

end;
run;

A simple linear mixed model analysis is performed by using the following SAS statements:

proc hpmixed data=Sim;
class Species Farm Animal;
model Yield = Species Species * Farm;
random Animal;
test Species * Farm;
contrast �Species1 = Species2 = Species3�

Species 1 0 -1,
Species 0 1 -1;

run;
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Selected results from the preceding SAS statements are shown in Figure 59.1 through Figure 59.4.

The “Class Level Information” table in Figure 59.1 shows that the three model effects have 5, 100, and 3,000
levels, respectively. Only a portion of the levels are displayed by default. The “Dimensions” table shows that
the model contains a single G-side covariance parameter and a single R-side covariance parameter. R-side
covariance parameters are those associated with the covariance matrixR in the conditional distribution, given
the random effects. In the case of the HPMIXED procedure this matrix is simplyR D � 2I and the single
R-side covariance parameter corresponds to the residual variance. The G-side parameter is the variance of
the randomAnimal effect; theG matrix is a diagonal.3;000� 3;000/matrix with the common variance on
the diagonal.

Figure 59.1 Class Levels and Dimensions

Taking into account the intercept as well as the number of levels of theSpecies andSpecies*Farm effects,
theX matrix for this problem has 506 columns, so that the mixed model equations

�
X0X X0Z
Z0X Z0Z C � 2G� 1

� �
�


�
D

�
X0y
Z0y

�

have 3,506 rows and columns. This is a substantial computational problem: simply storing a single copy
of this matrix in dense format requires nearly 50 megabytes of memory. The sparse matrix techniques of
PROC HPMIXED use a small fraction of this amount of memory and a similarly small fraction of the CPU
time required to solve the equations with dense techniques. For more information about sparse versus dense
techniques, see the section “Sparse Matrix Techniques” on page 4770.
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Figure 59.2 displays the covariance parameter estimates at convergence of the REML algorithm. The variance
component estimate for animal effect isb� 2

a D 3:9889and for residualb� 2 D 7:9623. These estimates are
close to the simulated values (4.0 and 8.0).

Figure 59.2 Estimates of Variance Components

The TEST statement requests a Type III test of the �xed effect in the model. By default, the HPMIXED
procedure does not compute Type III tests, because they can be computationally demanding. The tests of the
Species*Farm effect is highly signi�cant. That indicates animals of a genetic species perform differently in
different environments.

Figure 59.3 Type III Tests of Fixed Effect

You can use the CONTRAST or ESTIMATE statement to test custom linear hypotheses involving the �xed
and/or random effects. The CONTRAST statement in the preceding program tests the null hypothesis
that there are no differences among the �rst three genetic species. Results from this analysis are shown in
Figure 59.4. The smallp-value indicates that there are signi�cant differences among the �rst three genetics
species.

Figure 59.4 Result of CONTRAST Statement
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Syntax: HPMIXED Procedure

The following statements are available in the HPMIXED procedure:

PROC HPMIXED < options > ;
BY variables ;
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
EFFECT name=effect-type (variables < / options >) ;
ID variables ;
MODEL dependent = < �xed-effects > < / options > ;
RANDOM random-effects < / options > ;
REPEATED repeated-effect < / options > ;
PARMS < (value-list). . . > < / options > ;
TEST �xed-effects < / options > ;
CONTRAST 'label' contrast-speci�cation < , contrast-speci�cation > < , . . . > < / options > ;
ESTIMATE 'label' contrast-speci�cation < (divisor=n) >

< , 'label' contrast-speci�cation < (divisor=n) > > < , . . . > < / options > ;
LSMEANS �xed-effects < / options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

WEIGHT variable ;

Items within angle brackets ( < > ) are optional. The CONTRAST, ESTIMATE, LSMEANS, RANDOM, and
TEST statements can appear multiple times; all other statements can appear only once.

The PROC HPMIXED and MODEL statements are required, and the MODEL statement must appear after
the CLASS statement if these statements are included. The BY, CLASS, MODEL, ID, OUTPUT, TEST,
RANDOM, REPEATED and WEIGHT statements are described in full after the PROC HPMIXED statement
in alphabetical order. The EFFECT, is shared with many other procedures. Summary descriptions of
functionality and syntax for this statement is also given after the PROC HPMIXED statement in alphabetical
order, but you can �nd full documentation on it in Chapter 19, “Shared Concepts and Topics.”

Table 59.1 summarizes the basic functions and important options of each PROC HPMIXED statement.

Table 59.1 Summary of PROC HPMIXED Statements

Statement Description Options

PROC HPMIXED Invokes the procedure DATA= speci�es input data set, METHOD=
speci�es estimation method

BY Performs multiple
PROC HPMIXED analy-
ses in one invocation

None

CLASS Declares qualitative vari-
ables that create indicator
variables in design matri-
ces

None



4736 F Chapter 59: The HPMIXED Procedure

Table 59.1 continued

Statement Description Options

ID Lists additional variables
to be included in pre-
dicted values tables

None

MODEL Speci�es dependent vari-
able and �xed effects, set-
ting upX

S requests solution for �xed-effects parame-
ters, DDFM= speci�es denominator degrees of
freedom method

RANDOM Speci�es random effects,
setting upZ andG

SUBJECT= creates block-diagonality, TYPE=
speci�es covariance structure, S requests solu-
tion for random-effects parameters

REPEATED Sets upR SUBJECT= creates block-diagonality, TYPE=
speci�es covariance structure, R= displays esti-
mated blocks ofR, GROUP= enables between-
subject heterogeneity

PARMS Speci�es a grid of initial
values for the covariance
parameters

HOLD= and NOITER hold the covariance
parameters or their ratios constant, PARMS-
DATA= reads the initial values from a SAS
data set

CONTRAST Constructs custom hy-
pothesis tests

E displays theL matrix coef�cients

ESTIMATE Constructs custom scalar
estimates

CL produces con�dence limits

LSMEANS Computes least squares
means for classi�cation
�xed effects

DIFF computes differences of the least
squares means, CL produces con�dence limits,
SLICE= tests simple effects

WEIGHT Speci�es a variable by
which to weightR

None

PROC HPMIXED Statement

PROC HPMIXED < options > ;

The PROC HPMIXED statement invokes the HPMIXED procedure. Table 59.2 summarizes theoptions
available in the PROC HPMIXED statement. These and otheroptions in the PROC HPMIXED statement are
then described fully in alphabetical order.

Table 59.2 PROC HPMIXED Statement Options

Option Description

Basic Options
DATA= Speci�es input data set
METHOD= Speci�es the estimation method
NOPROFILE Includes scale parameter in optimization
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Table 59.2 continued

Option Description

ORDER= Determines the sort order of CLASS variables
BLUP Computes BLUP/BLUE only

Displayed Output
IC= Displays a table of information criteria
ITDETAILS Displays estimates and gradients added to “Iteration History”
MAXCLPRINT= Speci�es the maximum levels of CLASS variables to print
LOGNOTE Writes periodic status notes to the log
MMEQ Displays mixed model equations
NOCLPRINT Suppresses “Class Level Information” completely or in parts
NOITPRINT Suppresses “Iteration History” table
RANKS Displays a table of ranks of matricesX, (XZ), andMMEQ
SIMPLE Displays “Descriptive Statistics” table

Singularity Tolerances
SINGCHOL= Tunes singularity for Cholesky decompositions
SINGRES= Tunes singularity for the residual variance
SINGULAR= Tunes general singularity criterion

You can specify the followingoptions.

BLUP< (suboptions) >=SAS-data-set
creates a data set that contains the BLUE and BLUP solutions.The covariance parameters are assumed
to be known and given by PARMS statement. All hypothesis testing is ignored. The statements TEST,
ESTIMATE, CONTRAST, LSMEANS, and OUTPUT are all ignored. This option is designed for
users who need BLUP solutions for random effects with many levels, up to tens of millions.

You can specify the followingsuboptions:

ITPRINT=number speci�es that the iteration history be displayed after everynumber of iterations.
Thissuboption applies only for iterative solving methods (IOC or IOD). The default
value is 10, which means the procedure displays the iteration history for every 10
iterations.

MAXITER=number speci�es the maximum number of iterations allowed. This applies only for itera-
tive solving methods (IOC or IOD). The default value is the number of parameters
in the BLUE/BLUP plus two.

METHOD=DIRECT | IOC | IOD speci�es the method used to solve for BLUP solutions.
METHOD=DIRECT requires storing mixed model equations (MMEQ) in memory
and computing the Cholesky decomposition of MMEQ. This method is the most ac-
curate, but it is the most inef�cient in terms of speed and memory. METHOD=IOD
does not build mixed model equations; instead it iterates on data to solve for the
solutions. This method is most ef�cient in terms of memory. METHOD=IOC
requires storing mixed model equations in memory and iterates on MMEQ to solve
for the solutions. This method is the most ef�cient in terms of speed. The default
method is IOC.
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TOL=number speci�es the tolerance value. Thissuboption applies only for iterative solving
methods (IOC or IOD). The default value is the square root of machine precision.

DATA=SAS-data-set
names the SAS data set to be used by PROC HPMIXED. The default is the most recently created data
set.

INFOCRIT=NONE | PQ | Q

IC=NONE | PQ | Q
determines the computation of information criteria in the “Fit Statistics” table. The criteria are all in
smaller-is-better form, and are described in Table 59.3.

Table 59.3 Information Criteria

Criteria Formula Reference

AIC � 2` C 2d Akaike (1974)
AICC � 2` C 2dn� =.n� � d � 1/ for n� � d C 2 Hurvich and Tsai (1989) and

� 2` C 2d.d C 2/ for n� < d C 2 Burnham and Anderson (1998)
HQIC � 2` C 2d log. log.n// for n > 1 Hannan and Quinn (1979)

BIC � 2` C d log.n/ for n > 0 Schwarz (1978)
CAIC � 2` C d.log.n/ C 1/ for n > 0 Bozdogan (1987)

Here` denotes the maximum value of the restricted log likelihood,d is the dimension of the model,
andn, n� re�ect the size of the data. Whenn � 1, the value of the HQIC criterion is� 2`. Whenn=0,
the values of the BIC and CAIC criteria are unde�ned.

The quantitiesd, n, andn� depend on the model and IC= option.

� models without random effects:
The IC=Q and IC=PQ options have no effect on the computation.

– d equals the number of parameters in the optimization whose solutions do not fall on the
boundary or are otherwise constrained.

– n equals the number of used observations minus rank(X).

– n� equalsn, unlessn < d + 2, in which casen� D d C 2.

� models with random effects:

– d equals the number of parameters in the optimization whose solutions do not fall on the
boundary or are otherwise constrained. If IC=PQ, this value is incremented by rank.X/.

– n equals the effective number of subjects as displayed in the “Dimensions” table, unless
this value equals 1, in which casen equals the number of levels of the �rst random effect
speci�ed. The IC=Q and IC=PQ options have no effect.

– n� equalsn, unlessn < d + 2, in which casen� D d C 2. The IC=Q and IC=PQ options
have no effect.

The IC=NONE option suppresses the “Fit Statistics” table. IC=Q is the default.
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ITDETAILS
displays the parameter values at each iteration and enables the writing of notes to the SAS log pertaining
to “in�nite likelihood” and “singularities” during optimization iterations.

LOGNOTE
writes to the log periodic notes that describe the current status of computations. This option is designed
for use with analyses that require extensive CPU resources.

MAXCLPRINT=number
speci�es the maximum levels of CLASS variables to print in the ODS table ClassLevels. The default
value is 20. MAXCLPRINT=0 enables you to print all levels of each CLASS variable. However, the
option NOCLPRINT takes precedence over MAXCLPRINT.

METHOD=
speci�es the estimation method for the covariance parameters. The REML speci�cation performs
residual (restricted) maximum likelihood, and it is currently the only available method. This option
is therefore currently redundant for PROC HPMIXED, but it is included for consistency with other
mixed model procedures in SAS/STAT software.

MMEQ
displays coef�cients of the mixed model equations. These are

"
X0bR� 1X X0bR� 1Z
Z0bR� 1X Z0bR� 1Z C bG� 1

# "
X0bR� 1y
Z0bR� 1y

#

assumingbG is nonsingular. IfbG is singular, PROC HPMIXED produces the following coef�cients
"

X0bR� 1X X0bR� 1ZbG
bGZ0bR� 1X bGZ0bR� 1ZbG C bG

# "
X0bR� 1y

bGZ0bR� 1y

#

See the section “Model and Assumptions” on page 4767 for further information about these equations.

NAMELEN=number
speci�es the length to which long effect names are shortened. The default and minimum value is 20.

NLPRINT
requests that optimization-related output options speci�ed in the NLOPTIONS statement override cor-
responding options in the PROC HPMIXED statement. When you specify NLPRINT, the ITDETAILS
and NOITPRINT options in the PROC HPMIXED statement are ignored and the following six options
in the NLOPTIONS statement are enabled: NOPRINT, PHISTORY, PSUMMARY, PALL, PLONG,
and PHISTPARMS.

The syntax and options of the NLOPTIONS statement are described in the section “NLOPTIONS
Statement” on page 499 in Chapter 19, “Shared Concepts and Topics.”

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specifynumber . If you do
specifynumber , only levels with totals that are less thannumber are listed in the table.
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NOFIT
suppresses �tting of the model. When the NOFIT option is in effect, PROC HPMIXED produces
the “Model Information,” “Class Level Information,” “Number of Observations,” “Dimensions,” and
“Descriptive Statistics” tables. These can be helpful in gauging the computational effort required to �t
the model.

NOINFO
suppresses the display of the “Model Information,” “Number of Observations,” and “Dimensions”
tables.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPRINT
suppresses the normal display of results. The NOPRINT option is useful when you want only to create
one or more output data sets with the procedure by using the OUTPUT statement. Note that this option
temporarily disables the Output Delivery System (ODS); see Chapter 20, “Using the Output Delivery
System,” for more information.

NOPROFILE
includes the residual variance as one of the covariance parameters in the optimization iterations. This
option applies only to models that have a residual variance parameter. By default, this parameter is
pro�led out of the optimization iterations, except when you have speci�ed the HOLD= option in the
PARMS statement.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
speci�es the sort order for the levels of the classi�cation variables (which are speci�ed in the CLASS
statement).

This option applies to the levels for all classi�cation variables, except when you use the (default)
ORDER=FORMATTED option with numeric classi�cation variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
with no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count; levels with the most
observations come �rst in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in theBase SAS
Procedures Guideand the discussion of BY-group processing inSAS Language Reference: Concepts.
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RANKS
displays the ranks of design matricesX and (XZ) and the coef�cient matrix of the mixed model
equations (MMEQ ).

SIMPLE
displays the mean, standard deviation, coef�cient of variation, minimum, and maximum for each
variable used in PROC HPMIXED that is not a classi�cation variable.

SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default is 1E6 times the machine
epsilon; this product is approximately 1E–10 on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default is 1E4 times the
machine epsilon; this product is approximately 1E–12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the HPMIXED procedure in divisions and inversions.
The default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

UPDATE
is an alias for the LOGNOTE option.

BY Statement

BY variables ;

You can specify a BY statement in PROC HPMIXED to obtain separate analyses of observations in groups
that are de�ned by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
speci�ed is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement in the HPMIXED procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Since sorting the data changes the order in which PROC HPMIXED reads observations, the sort order for
the levels of the CLASS variable might be affected if you have speci�ed ORDER=DATA in the PROC
HPMIXED statement. This, in turn, affects speci�cations in the CONTRAST and ESTIMATE statements.

For more information about BY-group processing, see the discussion inSAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in theBase SAS Procedures Guide.
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CLASS Statement

CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classi�cation variables to be used in the model. Typical classi�cation
variables areTreatment, Sex, Race, Group, andReplication. If you use the CLASS statement, it must appear
before the MODEL statement.

Classi�cation variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE : Prior to SAS 9, class levels were determined by using no more than the �rst 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in theBase SAS Procedures Guideand the discussions of the FORMAT statement and SAS formats inSAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC HPMIXED statement.

You can specify the following REF= option to indicate how the levels of an individual classi�cation variable
are to be ordered by enclosing it in parentheses after the variable name:

REF='level' | FIRST | LAST
speci�es a level of the classi�cation variable to be put at the end of the list of levels. (In procedures that
solve mixed model equations by sequentially sweeping rows and columns, this level thus corresponds to
the reference level in the usual interpretation of the estimates of a singular parameterization. However,
since PROC HPMIXED does not necessarily solve mixed model equations in the original order, this
interpretation of the speci�ed REF= level does not apply for this procedure.) You can specify thelevel
of the variable to use as the reference level; specify a value that corresponds to the formatted value of
the variable if a format is assigned. Alternatively, you can specify REF=FIRST to designate that the
�rst ordered level serve as the reference, or REF=LAST to designate that the last ordered level serve as
the reference. To specify that REF=FIRST or REF=LAST be used for all classi�cation variables, use
the REF=global-option after the slash (/) in the CLASS statement.

You can specify the followingglobal-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
speci�es a level of all classi�cation variables to be put at the end of the list of levels. (In procedures that
solve mixed model equations by sequentially sweeping rows and columns, this level thus corresponds to
the reference level in the usual interpretation of the estimates of a singular parameterization. However,
since PROC HPMIXED does not necessarily solve mixed model equations in the original order, this
interpretation of the speci�ed REF= level does not apply for this procedure.) Specify REF=FIRST
to designate that the �rst ordered level for each classi�cation variable serve as the reference. Specify
REF=LAST to designate that the last ordered level serve as the reference. This option applies to all
the variables speci�ed in the CLASS statement. To specify different reference levels for different
classi�cation variables, use REF= options for individual variables.
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TRUNCATE
speci�es that class levels be determined by using only up to the �rst 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.

The “Class Levels Information” table displays the number of levels for each CLASS variable. If a CLASS
variable is a string, then because some string values can have spaces at the beginning or end (or both), those
spaces are taken into account when the number of distinctive values is counted. However, those spaces are
eliminated when the data are used in further analysis.

CONTRAST Statement

CONTRAST 'label' contrast-speci�cation < , contrast-speci�cation > < , . . . > < / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis tests. It is patterned
after the CONTRAST statement in PROC MIXED and enables you to select an appropriate inference space
(McLean, Sanders, and Stroup 1991).

You can test the hypothesisL0� D 0, whereL0 D ŒK0M0• and� 0 D Œ� 0  0•, in several inference spaces. The
inference space corresponds to the choice ofM. WhenM D 0, your inferences apply to the entire population
from which the random effects are sampled; this is known as thebroadinference space. When all elements
of M are nonzero, your inferences apply only to the observed levels of the random effects. This is known as
thenarrow inference space, and you can also choose it by specifying all of the random effects as �xed. The
GLM procedure uses the narrow inference space. Finally, by zeroing portions ofM corresponding to selected
main effects and interactions, you can chooseintermediateinference spaces. The broad inference space is
usually the most appropriate, and it is used when you do not specify any random effects in the CONTRAST
statement.

In the CONTRAST statement,

label identi�es the contrast in the table. A label is required for every contrast speci�ed. Labels
can be up to 20 characters and must be enclosed in single quotes.

contrast-speci�cation identi�es the �xed effects and random effects and their coef�cients from which the
L matrix is formed. The syntax representation of acontrast-speci�cation is
< �xed-effect values . . . > < | random-effect values . . . >

�xed-effect identi�es an effect that appears in the MODEL statement. The keyword INTERCEPT can
be used as an effect when an intercept is �tted in the model. You do not need to include
all effects that are in the MODEL statement.

random-effect identi�es an effect that appears in the RANDOM statement. The �rst random effect must
follow a vertical bar (|); however, random effects do not have to be speci�ed.

values are constants that are elements of theL matrix associated with the �xed and random
effects.

The rows ofL0are speci�ed in order and are separated by commas. The rows of theK0component ofL0are
speci�ed on the left side of the vertical bars (|). These rows test the �xed effects and are, therefore, checked
for estimability. The rows of theM0component ofL0are speci�ed on the right side of the vertical bars. They
test the random effects, and no estimability checking is necessary.
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If PROC HPMIXED �nds the �xed-effects portion of the speci�ed contrast to be nonestimable (see the
SINGULAR= option on page 4745), then it displays missing values for the test statistics and a note in the log.

If the elements ofL are not speci�ed for an effect that contains a speci�ed effect, then the elements of the
speci�ed effect are automatically “�lled in” over the levels of the higher-order effect. This feature is designed
to preserve estimability for cases where there are complex higher-order effects. The coef�cients for the
higher-order effect are determined by equitably distributing the coef�cients of the lower-level effect as in
the construction of least squares means. In addition, if the intercept is speci�ed, it is distributed over all
classi�cation effects that are not contained by any other speci�ed effect. If an effect is not speci�ed and does
not contain any speci�ed effects, then all of its coef�cients inL are set to 0. You can override this behavior
by specifying coef�cients for the higher-order effect.

If too many values are speci�ed for an effect, the extra ones are ignored; if too few are speci�ed, the remaining
ones are set to 0. If no random effects are speci�ed, the vertical bar can be omitted; otherwise, it must be
present. If a SUBJECT effect is used in the RANDOM statement, then the coef�cients speci�ed for the
effects in the RANDOM statement are equitably distributed across the levels of the SUBJECT effect. You
can use the E option to see exactly whatL matrix is used.

The SUBJECT and GROUP options in the CONTRAST statement are useful for the case where a SUBJECT=
or GROUP= variable appears in the RANDOM statement, and you want to contrast different subjects or
groups. By default, CONTRAST statement coef�cients about random effects are distributed equally across
subjects and groups.

PROC HPMIXED handles missing level combinations of CLASS variables similarly to the way PROC GLM
does. Both procedures delete �xed-effects parameters corresponding to missing levels in order to preserve
estimability. However, PROC HPMIXED does not delete missing level combinations for random-effects
parameters because linear combinations of the random-effects parameters are always estimable. These
conventions can affect the way you specify your CONTRAST coef�cients.

The CONTRAST statement computes the statistic

F D

�
b�
b

� 0

L.L0bCL/ � 1L0
�

b�
b

�

r

wherer D rank.L0bCL/ and approximates its distribution with anF distribution. In this expression,bC is an
estimate of the generalized inverse of the coef�cient matrix in the mixed model equations.

The numerator degree of freedom in theF approximation isr D rank.L0bCL/, and the denominator degree of
freedom is taken from the “Type III Tests of Fixed Effects” table and corresponds to the �nal effect you list
in the CONTRAST statement. You can change the denominator degrees of freedom by using the DF= option.

You can specify the followingoptions in the CONTRAST statement after a slash (/).

CHISQ
requests that� 2 tests be performed in addition to anyF tests. A� 2 statistic equals its correspondingF
statistic times the associate numerator degree of freedom, and this same degree of freedom is used
to compute thep-value for the� 2 test. Thisp-value will always be less than that for theF test, as it
effectively corresponds to anF test with in�nite denominator degrees of freedom.
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DF=number
speci�es the denominator degrees of freedom for theF test. The default is the denominator degrees of
freedom taken from the “Type III Tests of Fixed Effects” table and corresponds to the �nal effect you
list in the CONTRAST statement.

E
requests that theL matrix coef�cients for the contrast be displayed. The name of this “L Matrix
Coef�cients” table is “Coef.”

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, CONTRAST statement coef�cients about random effects are
distributed equally across groups. If you enter a multi-row contrast, you can also enter multiple rows
for the GROUP coef�cients. If the number of GROUP coef�cients is less than the number of contrasts
in the CONTRAST statement, the HPMIXED procedure cycles through the GROUP coef�cients. For
example, the following two statements are equivalent:

contrast �Trt @ x=0.4 and 0.5� trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

contrast �Trt @ x=0.4 and 0.5� trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

SINGULAR=number
tunes the estimability checking. Ifv is a vector, de�ne ABS(v) to be the largest absolute value of the
element ofv with the largest absolute value. If ABS(K0 � K0T) is greater thanc*number for any row
of K0 in the contrast, thenK is declared nonestimable. HereT is the Hermite form matrix.X0X/ � X0X,
andc is ABS(K0) except when it equals 0, and thenc is 1. The value fornumber must be between 0
and 1; the default is 1E–4.

SUBJECT coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, CONTRAST statement coef�cients about random effects are
distributed equally across subjects. Listing subject coef�cients for multiple row CONTRASTS follows
the same rules as for GROUP coef�cients.

EFFECT Statement

EFFECT name=effect-type (variables < / options >) ;

The EFFECT statement enables you to construct special collections of columns for design matrices. These
collections are referred to asconstructed effectsto distinguish them from the usual model effects that are
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formed from continuous or classi�cation variables, as discussed in the section “GLM Parameterization of
Classi�cation Variables and Effects” on page 393 in Chapter 19, “Shared Concepts and Topics.”

You can specify the followingeffect-types:

COLLECTION speci�es a collection effect that de�nes one or more variables as a single
effect with multiple degrees of freedom. The variables in a collection are
considered as a unit for estimation and inference.

LAG speci�es a classi�cation effect in which the level that is used for a particular
period corresponds to the level in the preceding period.

MULTIMEMBER | MM speci�es a multimember classi�cation effect whose levels are determined by
one or more variables that appear in a CLASS statement.

POLYNOMIAL | POLY speci�es a multivariate polynomial effect in the speci�ed numeric variables.

SPLINE speci�es a regression spline effect whose columns are univariate spline ex-
pansions of one or more variables. A spline expansion replaces the original
variable with an expanded or larger set of new variables.

Table 59.4 summarizes theoptions available in the EFFECT statement.

Table 59.4 EFFECT Statement Options

Option Description

Collection Effects Options
DETAILS Displays the constituents of the collection effect

Lag Effects Options
DESIGNROLE= Names a variable that controls to which lag design an observation

is assigned

DETAILS Displays the lag design of the lag effect

NLAG= Speci�es the number of periods in the lag

PERIOD= Names the variable that de�nes the period. This option is required.

WITHIN= Names the variable or variables that de�ne the group within which
each period is de�ned. This option is required.

Multimember Effects Options
NOEFFECT Speci�es that observations with all missing levels for the

multimember variables should have zero values in the
corresponding design matrix columns

WEIGHT= Speci�es the weight variable for the contributions of each of the
classi�cation effects

Polynomial Effects Options
DEGREE= Speci�es the degree of the polynomial
MDEGREE= Speci�es the maximum degree of any variable in a term of the

polynomial
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Table 59.4 continued

Option Description

STANDARDIZE= Speci�es centering and scaling suboptions for the variables that
de�ne the polynomial

Spline Effects Options
BASIS= Speci�es the type of basis (B-spline basis or truncated power

function basis) for the spline effect
DEGREE= Speci�es the degree of the spline effect
KNOTMETHOD= Speci�es how to construct the knots for the spline effect

For more information about the syntax of theseeffect-types and how columns of constructed effects are
computed, see the section “EFFECT Statement” on page 403 in Chapter 19, “Shared Concepts and Topics.”

The HPMIXED procedure does not support the SPLIT or SEPARATED option in spline effects and poly
effects.

ESTIMATE Statement

ESTIMATE 'label' contrast-speci�cation < (divisor=n) >
< , 'label' contrast-speci�cation < (divisor=n) > > < , . . . > < / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. As in the CON-
TRAST statement, the basic element of the ESTIMATE statement is thecontrast-speci�cation , which consists
of MODEL and RANDOM effects and their coef�cients. Speci�cally, acontrast-speci�cation takes the form

< �xed-effect values . . . > < |random-effect values . . . >

Based on thecontrast-speci�cations in your ESTIMATE statement, PROC HPMIXED constructs the matrix
L0 D ŒK0 M0•, as in the CONTRAST statement, whereK is associated with the �xed effects andM is
associated with the G-side random effects.

PROC HPMIXED then produces for each rowl of L0 an approximatet test of the hypothesisH Wl� D 0,
where� D Œ� 0  0•0. Results from all ESTIMATE statement are combined in the “Estimates” ODS table.

Note that multi-row estimates are permitted. Unlike the CONTRAST statement, you need to specify a'label'
for every row of the multi-row estimate, since PROC HPMIXED produces one test per row.

PROC HPMIXED selects the degrees of freedom to match those displayed in the “Type III Tests of Fixed
Effects” table for the �nal effect you list in the ESTIMATE statement. You can modify the degrees of freedom
by using the DF= option. If you select DDFM=NONE and do not modify the degrees of freedom by using the
DF= option, PROC HPMIXED uses in�nite degrees of freedom, essentially computing approximatez tests.

If PROC HPMIXED �nds the �xed-effects portion of the speci�ed estimate to be nonestimable, then it
displays “Non-est” for the estimate entry.

The construction of theL matrix for an ESTIMATE statement follows the same rules as listed under the
CONTRAST statement.
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Table 59.5 summarizes theoptions available in the ESTIMATE statement.

Table 59.5 ESTIMATE Statement Options

Option Description

ALPHA= Speci�es the con�dence level
CL Constructst-type con�dence limits
DF= Speci�es the degrees of freedom
DIVISOR= Speci�es values to divide the coef�cients
E Displays the matrix coef�cients
GROUP Sets up random-effect contrasts between groups
SINGULAR= Tunes the estimability checking
SUBJECT Sets up random-effect estimates between subjects

You can specify the followingoptions in the ESTIMATE statement after a slash (/).

ALPHA= number
requests that at-type con�dence interval be constructed with con�dence level1 � number . The value
of number must be between 0 and 1 exclusively; the default is 0.05. If DDFM=NONE and you do not
specify degrees of freedom with the DF= option, PROC HPMIXED uses in�nite degrees of freedom,
essentially computing az interval.

CL
requests thatt-type con�dence limits be constructed. If DDFM=NONE and you do not specify degrees
of freedom with the DF= option, PROC HPMIXED uses in�nite degrees of freedom, essentially
computing az interval. The con�dence level is 0.95 by default.

DF=number
speci�es the degrees of freedom for thet-test. The default is the denominator degrees of freedom
taken from the “Type III Tests of Fixed Effects” table and corresponds to the �nal effect you list in the
ESTIMATE statement.

DIVISOR=value-list
speci�es a list of values by which to divide the coef�cients so that fractional coef�cients can be entered
as integer numerators. If you do not specifyvalue-list, a default value of 1.0 is assumed. Missing
values in thevalue-list are converted to 1.0.

If the number of elements invalue-list exceeds the number of rows of the estimate, the extra values are
ignored. If the number of elements invalue-list is less than the number of rows of the estimate, the last
value invalue-list is copied forward.

If you specify a row-speci�c divisor as part of the speci�cation of the estimate row, this value multiplies
the corresponding divisor implied by thevalue-list. For example, the following statement divides the
coef�cients in the �rst row by 8, and the coef�cients in the third and fourth row by 3:

estimate �One vs. two� A 2 -2 (divisor=2),
�One vs. three� A 1 0 -1 ,
�One vs. four� A 3 0 0 -3 ,
�One vs. five� A 1 0 0 0 -1 / divisor=4,.,3;
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E
requests that the matrix coef�cients be displayed. For ODS purposes, the name of this “L Matrix
Coef�cients” table is “Coef.”

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, ESTIMATE statement coef�cients about random effects are dis-
tributed equally across groups. If you enter a multi-row estimate, you can also enter multiple rows for
the GROUP coef�cients. If the number of GROUP coef�cients is less than the number of contrasts
in the ESTIMATE statement, the HPMIXED procedure cycles through the GROUP coef�cients. For
example, the following two statements are equivalent:

estimate �Trt 1 vs 2 @ x=0.4� trt 1 -1 0 | x 0.4,
�Trt 1 vs 3 @ x=0.4� trt 1 0 -1 | x 0.4,
�Trt 1 vs 2 @ x=0.5� trt 1 -1 0 | x 0.5,
�Trt 1 vs 3 @ x=0.5� trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

estimate �Trt 1 vs 2 @ x=0.4� trt 1 -1 0 | x 0.4,
�Trt 1 vs 3 @ x=0.4� trt 1 0 -1 | x 0.4,
�Trt 1 vs 2 @ x=0.5� trt 1 -1 0 | x 0.5,
�Trt 1 vs 3 @ x=0.5� trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= in the CONTRAST statement.

SUBJECT coeffs
sets up random-effect estimates between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, ESTIMATE statement coef�cients about random effects are
distributed equally across subjects. Listing subject coef�cients for an ESTIMATE statement with
multiple rows follows the same rules as for GROUP coef�cients.

ID Statement

ID variables ;

The ID statement speci�es which variables from the input data set are to be included in the OUT= data sets
from the OUTPUT statement. If you do not specify an ID statement, then all variables are included in these
data sets. Otherwise, only the variables you list in the ID statement are included. Specifying an ID statement
with no variables prevents any variables from being included in these data sets.

LSMEANS Statement

LSMEANS �xed-effects < / options > ;
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The LSMEANS statement computes least squares means (LS-means) of �xed effects. As in the GLM
procedure, LS-means arepredicted population margins—that is, they estimate the marginal means over a
balanced population. In a sense, LS-means are to unbalanced designs as classi�cation and subclassi�cation
arithmetic means are to balanced designs. TheL matrix constructed to compute them is the same as theL
matrix formed in PROC GLM; however, the standard errors are adjusted for the covariance parameters in the
model.

Each LS-mean is computed asL0b� , whereL is the coef�cient matrix associated with the least squares mean
andb� is the estimate of the �xed-effects parameter vector. The approximate standard errors for the LS-mean
is computed as the square root ofL0.X0bV � 1X/

�
L.

LS-means can be computed for any effect in the MODEL statement that involves CLASS variables. You
can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all
LSMEANS statements must appear after the MODEL statement. As in the ESTIMATE statement, theL
matrix is tested for estimability, and if this test fails, PROC HPMIXED displays “Non-est” for the LS-means
entries.

Assuming the LS-mean is estimable, PROC HPMIXED constructs an approximatet test to test the null
hypothesis that the associated population quantity equals zero. By default, the denominator degrees of
freedom for this test are the same as those displayed for the effect in the “Type III Tests of Fixed Effects”
table (see the section “TEST Statement” on page 4766).

Table 59.6 summarizes theoptions available in the LSMEANS statement.

Table 59.6 LSMEANS Statement Options

Option Description

ALPHA= Speci�es the con�dence level
CL Constructst-type con�dence limits
CORR Displays the estimated correlation matrix
COV Displays the estimated covariance matrix
DF= Speci�es the degrees of freedom
DIFF or PDIFF Displays the differences of the LS-means
E Displays the matrix coef�cients for LSMEANS effects
SINGULAR= Tunes the estimability checking
SLICE= Partitions interaction LSMEANS effects

You can specify the followingoptions in the LSMEANS statement after a slash (/).

ALPHA= number
requests that at-type con�dence interval be constructed for each of the LS-means with con�dence
level 1� number . The value ofnumber must be between 0 and 1; the default is 0.05.

CL
requests thatt-type con�dence limits be constructed for each of the LS-means. If DDFM=NONE, then
PROC HPMIXED uses in�nite degrees of freedom for this test, essentially computing az interval. The
con�dence level is 0.95 by default; this can be changed with the ALPHA= option.
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CORR
displays the estimated correlation matrix of the least squares means as part of the “Least Squares
Means” table.

COV
displays the estimated covariance matrix of the least squares means as part of the “Least Squares
Means” table.

DF=number
speci�es the degrees of freedom for thet test and con�dence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table corresponding to the LS-
means effect. For these DDFM= methods, degrees of freedom are determined separately for each test;
see the DDFM= option on page 4753 for more information.

DIFF< =difftype >

PDIFF< =difftype >
requests that differences of the LS-means be displayed. You can specify the following values for the
optionaldifftype.

ALL requests all pairwise differences; it is the default.

ANOM requests differences between each LS-mean and the average LS-mean, as in the
analysis of means(Ott 1967).The average is computed as a weighted mean of the
LS-means, with the weights being inversely proportional to the diagonal entries
of the L

�
X0X

� � L0 matrix. When a WEIGHT statement is speci�ed, then the
preceding matrix is replaced withL

�
X0WX

� � L0whereW is the diagonal matrix
that contains the weights. If LS-means are nonestimable, this design-based weighted
mean is replaced with an equally weighted mean. Note that the ANOM procedure
in SAS/QC software implements both tables and graphics for the analysis of means
with a variety of response types. For one-way designs and normally distributed data,
the DIFF=ANOM computations are equivalent to the results of PROC ANOM.

CONTROL requests differences with a control; by default, the control is the �rst level of each
of the speci�ed LSMEANS effects. To specify which levels of the effects are
the controls, list the quoted formatted values in parentheses after the CONTROL
keyword. For example, if the effectsA, B, andC are classi�cation variables, each
having two levels, 1 and 2, the following LSMEANS statement speci�es the (1,2)
level of A*B and the (2,1) level ofB*C as controls:

lsmeans A * B B* C / diff=control(�1� �2� �2� �1�);

For multiple effects, the results depend upon the order of the list, and so you should
check the output to make sure that the controls are correct.

CONTROL produces two-tailed tests and con�dence limits.

CONTROLL requests one-tailed results and tests whether the noncontrol levels are signi�cantly
smaller than the control. The upper con�dence limits for the control minus the
noncontrol levels are considered to be in�nity and are displayed as missing.

CONTROLU requests one-tailed results and tests whether the noncontrol levels are signi�cantly
larger than the control. The upper con�dence limits for the noncontrol levels minus
the control are considered to be in�nity and are displayed as missing.
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The differences of the LS-means are displayed in a table titled “Differences of Least Squares Means.”
The table name is “Diffs.”

E
requests that the matrix coef�cients for all LSMEANS effects be displayed. The name of this “Matrix
Coef�cients” table is “Coef.”

PDIFF
is the same as the DIFF option. See the description of the DIFF option on page 4751.

SINGULAR=number
tunes the estimability checking as documented for the SINGULAR= in the CONTRAST statement.

SLICE=�xed-effect | (�xed-effects )
speci�es effects by which to partition interaction LSMEANS effects. This can produce what are known
as tests of simple effects(Winer 1971).For example, suppose thatA*B is signi�cant, and you want to
test the effect ofA for each level ofB. The appropriate LSMEANS statement is

lsmeans A * B / slice=B;

This statement tests for the simple main effects ofA for B, which are calculated by extracting the
appropriate rows from the coef�cient matrix for theA*B LS-means and by using them to form anF
test.

The SLICE= option producesF tests that test the simultaneous equality of cell means at a �xed level
of the slice effect (Schabenberger, Gregoire, and Kong 2000).

The SLICE= option produces a table titled “Tests of Effect Slices.” The table name is “Slices.”

MODEL Statement

MODEL dependent = < �xed-effects > < / options > ;

The MODEL statement names a single dependent variable and the �xed effects, which determine theX
matrix of the mixed model. The speci�cation of effects is the same as in the GLM procedure; however,
unlike PROC GLM, you do not specify random effects in the MODEL statement. The MODEL statement is
required.

An intercept is included in the �xed-effects model by default. If no �xed effects are speci�ed, only this
intercept term is �t. The intercept can be removed by using the NOINT option.

You can specify the followingoptions in the MODEL statement after a slash (/).

ALPHA= number
requests that at-type con�dence interval be constructed for each of the �xed-effects parameters with
con�dence level 1� number . The value ofnumber must be between 0 and 1; the default is 0.05.

CL
requests thatt-type con�dence limits be constructed for each of the �xed-effects parameter estimates.
The con�dence level is 0.95 by default; this can be changed with the ALPHA= option.
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DDF=value-list
enables you to specify your own denominator degrees of freedom for the �xed effects. Thevalue-list
speci�cation is a list of numbers or missing values (.) separated by commas. The degrees of freedom
should be listed in the order in which the effects appear in the “Type III Tests of Fixed Effects” table.
If you want to retain the default degrees of freedom for a particular effect, use a missing value for its
location in the list. For example, the following statement assigns 3 denominator degrees of freedom to
A and 4.7 toA*B, while those forB remain the same:

model Y = A B A* B / ddf=3,.,4.7;

DDFM=RESIDUAL | NONE
speci�es the method for computing the denominator degrees of freedom for the tests of �xed effects
resulting from the MODEL, CONTRAST, ESTIMATE, LSMEANS, and TEST statements.

The DDFM=RESIDUAL option performs all tests by using the residual degrees of freedom,n �
rank.X/, wheren is the number of observations used. It is the default degrees of freedom method.

DDFM=NONE speci�es that no denominator degrees of freedom be applied. PROC HPMIXED then
essentially assumes that in�nite degrees of freedom are available in the calculation ofp-values. The
p-values fort tests are then identical top-values derived from the standard normal distribution. In
the case ofF tests, thep-values equal those of chi-square tests determined as follows: ifFobs is the
observed value of theF test withl numerator degrees of freedom, then

p D PrfFl; 1 > F obsg D Prf � 2
l > lF obsg

NOINT
requests that no intercept be included in the model. An intercept is included by default.

SOLUTION | S
requests that a solution for the �xed-effects parameters be produced. Using notation from the section
“Model Assumptions” on page 4767, the �xed-effects parameter estimates areb� and their approximate
standard errors are the square roots of the diagonal elements of.X0bV � 1X/ � .

Along with the estimates and their approximate standard errors, at statistic is computed as the estimate
divided by its standard error. The degree of freedom for thist statistic matches the one appearing in the
“Type III Tests of Fixed Effects” table under the effect containing the parameter. The “Pr > |t|” column
contains the two-tailedp-value corresponding to thet statistic and associated degrees of freedom.

ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable function basis with an
absolute value less thannumber is set to 0. The default is 1E–8.

NLOPTIONS Statement

NLOPTIONS < options > ;

For more information about the NLOPTIONS, see the section “NLOPTIONS Statement” on page 499 in
Chapter 19, “Shared Concepts and Topics.”

If you choose TECH=NEWRAP, then the default value of LSPRECISION is 0.4 in the HPMIXED procedure.
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OUTPUT Statement

OUTPUT < OUT=SAS-data-set >
< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

The OUTPUT statement creates a data set that contains predicted values and residual diagnostics, computed
after �tting the model. By default, all variables in the original data set are included in the output data set.

You can use the ID statement to select a subset of the variables from the input data set to be added to the
output data set.

For example, suppose that the data setScores contains the variablesscore, machine, andperson. The
following statements �t a model with �xed machine and random person effects and save the predicted and
residual values to the data setigausout:

proc hpmixed data = Scores;
class machine person score;
model score = machine;
random person;
output out=igausout pred=p resid=r;

run;

You can specify the followingoptions in the OUTPUT statement before the slash (/).

OUT=SAS data set
speci�es the name of the output data set. If the OUT= option is omitted, the procedure uses theDATAn
convention to name the output data set.

keyword < (keyword-options) >< =name >
speci�es a statistic to include in the output data set and optionally assigns the variable the name
name. You can use thekeyword-options to control which type of a particular statistic to compute. The
keyword-options can take on the following values:

BLUP uses the predictors of the random effects in computing the statistic.

NOBLUP does not use the predictors of the random effects in computing the statistic.

The default is to compute statistics by using BLUPs. For example, the following two OUTPUT
statements are equivalent:

output out=out1 pred=predicted lcl=lower;
output out=out1 pred(blup)=predicted lcl(blup)=lower;

If a particular combination ofkeyword andkeyword-options is not supported, the statistic is not
computed and a message is produced in the SAS log.

A keyword can appear multiple times in the OUTPUT statement. Table 59.7 lists thekeywords and
the default names assigned by the HPMIXED procedure if you do not specify aname. In this table,y
denotes the response variable.
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Table 59.7 Keywords for Output Statistics

Keyword Options Description Expression Name

PREDICTED BLUP Linear predictor b� D x0b� C z0b Pred
NOBLUP Marginal linear predictor b� m D x0b� PredPA

STDERR BLUP Standard deviation of linear
predictor

p
VarŒb� � z0 • StdErr

NOBLUP Standard deviation of marginal
linear predictor

p
VarŒb� m• StdErrPA

RESIDUAL BLUP Residual r D y � b� Resid
NOBLUP Marginal residual rm D y � b� m ResidPA

PEARSON BLUP Pearson-type residual r=
q bVarŒyj • Pearson

NOBLUP Marginal Pearson-type residualrm=
q bVarŒy• PearsonPA

STUDENT BLUP Studentized residual r=
q bVarŒr• Student

NOBLUP Studentized marginal residual rm=
q bVarŒrm• StudentPA

LCL BLUP Lower prediction limit for lin-
ear predictor

LCL

NOBLUP Lower con�dence limit for
marginal linear predictor

LCLPA

UCL BLUP Upper prediction limit for lin-
ear predictor

UCL

NOBLUP Upper con�dence limit for
marginal linear predictor

UCLPA

VARIANCE BLUP Conditional variance of re-
sponse variable

bVarŒyj • Variance

NOBLUP Marginal variance of response
variable

bVarŒy• VariancePA

You can use the following shortcuts to request statistics: PRED for PREDICTED, STD for STDERR,
RESID for RESIDUAL, VAR for VARIANCE.

You can specify the followingoptions of the OUTPUT statement after the slash (/).

ALLSTATS
requests that all statistics are computed. If you do not use akeyword to assign a name, the HPMIXED
procedure uses the default name.

ALPHA= number
determines the coverage probability for two-sided con�dence and prediction intervals. The coverage
probability is computed as1 � number . The value ofnumber must be between 0 and 1 inclusively;
the default is 0.05.
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NOMISS
requests that records from the input data set be written to the output data only for those observations
that were used in the analysis. By default, the HPMIXED procedure produces output statistics for all
observations in the input data set.

NOUNIQUE
requests that names not be made unique in the case of naming con�icts. By default, the HPMIXED
procedure avoids naming con�icts by assigning a unique name to each output variable. If you specify
the NOUNIQUE option, variables with con�icting names are not renamed. In that case, the �rst
variable added to the output data set takes precedence.

NOVAR
requests that variables from the input data set not be added to the output data set. This option ignores
ID statement but does not apply to variables listed in a BY statement.

PARMS Statement

PARMS < (value-list). . . > < / options > ;

The PARMS statement speci�es initial values for the covariance parameters, or it requests a grid search over
several values of these parameters. You must specify the values in the order in which they appear in the
“Covariance Parameter Estimates” table.

Thevalue-list speci�cation can take any of several forms:

m a single value

m1; m2; : : : ; mn several values

m to n a sequence wheremequals the starting value,n equals the ending value, and the increment
equals 1

m to n by i a sequence wheremequals the starting value,n equals the ending value, and the increment
equalsi

m1; m2 to m3 mixed values and sequences

You can use the PARMS statement to input known parameters. Suppose the three variance components are
known to be 2, 1, and 3. The SAS statements to �x the variance components at these values are as follows:

proc hpmixed noprofile;
class Family Gender;
model Height = Gender;
random Family Family * Gender;
parms (2) (1) (3) / noiter;

run;

The NOPROFILE option in the PROC HPMIXED statement suppresses pro�ling the residual variance
parameter during its calculations, thereby enabling its value to be held at 3 as speci�ed in the PARMS
statement.

If you specify more than one set of initial values, PROC HPMIXED performs a grid search of the likelihood
surface and uses the best point on the grid for subsequent analysis. Specifying a large number of grid points
can result in long computing times. The grid search feature is also useful for exploring the likelihood surface.
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The results from the PARMS statement are the values of the parameters on the speci�ed grid (denoted by
CovP1–CovPn), the residual variance (possibly estimated) for models with a residual variance parameter,
and various functions of the likelihood.

The name of the “Parameter Search” table is ParmSearch.

You can specify the followingoptions in the PARMS statement after a slash (/).

HOLD< =value-list >

EQCONS< =value-list >
speci�es which parameter values PROC HPMIXED should hold equal to the speci�ed values. If you
do not specifyvalue-list, then all covariance parameters are held equal to the speci�ed values. For
example, the following statement constrains the �rst and third covariance parameters to equal 5 and 2,
respectively:

parms (5) (3) (2) (3) / hold=1,3;

Specifying the HOLD= option implies the NOPROFILE option in the PROC HPMIXED statement.

LOWERB=value-list
enables you to specify lower boundary constraints on the covariance parameters. Thevalue-list
speci�cation is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC HPMIXED uses for the covariance parameters, and each number corresponds to
the lower boundary constraint. A missing value instructs PROC HPMIXED to use its default constraint,
and if you do not specify numbers for all the covariance parameters, PROC MIXED assumes that the
remaining ones are missing.

NOITER
requests that no optimization iterations be performed and that PROC HPMIXED use the best value
from the grid search to perform inferences. By default, iterations begin at the best value from the
PARMS grid search. This option is ignored when you specify the HOLD= option.

If a residual variance is pro�led, the parameter estimates can change from the initial values that you
provide as the residual variance is recomputed. To prevent an update of the residual variance, combine
the NOITER option with the NOPROFILE option in the PROC HPMIXED statements, as in the
following program:

proc hpmixed noprofile;
class A B C rep mp sp;
model y = A | B | C;
random rep mp sp;
parms (180) (200) (170) (1000) / noiter;

run;

Specifying the NOITER option in the PARMS statement has the same effect as specifying TECH-
NIQUE=NONE in the NLOPTIONS statement.

Notice that the NOITER option can be useful if you want to obtain the starting values HPMIXED
computes. The following statements produce the starting values:
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proc hpmixed noprofile;
class A B;
model y = A;
random int / subject=B;
parms / noiter;

run;

PARMSDATA= SAS-data-set

PDATA=SAS data set
reads in covariance parameter values from a SAS data set. The data set should contain the numeri-
cal variable ESTIMATE or the numerical variablesCovp1–Covpq, whereq denotes the number of
covariance parameters.

If the PARMSDATA= data set contains multiple sets of covariance parameters, the HPMIXED pro-
cedure evaluates the initial objective function for each set and commences the optimization step by
using the set with the lowest function value as the starting values. For example, the following SAS
statements request that the objective function be evaluated for three sets of initial values:

data data_covp;
input covp1-covp4;
datalines;

180 200 170 1000
170 190 160 900
160 180 150 800
;
proc hpmixed;

class A B C rep;
model yield = A;
random rep B C;
parms / pdata=data_covp;

run;

Each set comprises four covariance parameters.

The order of the observations in a data set with the numerical variableEstimate corresponds to the
order of the covariance parameters in the “Covariance Parameter Estimates” table.

The PARMSDATA= data set must contain at least one set of covariance parameters with no missing
values.

If the HPMIXED procedure is processing the input data set in BY groups, you can add the BY variables
to the PARMSDATA= data set. If this data set is sorted by the BY variables, the HPMIXED procedure
matches the covariance parameter values to the current BY group. If the PARMSDATA= data set does
not contain all BY variables, the data set is processed in its entirety for every BY group and a message
is written to the log. This enables you to provide a single set of starting values across BY groups, as in
the following statements:
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data data_covp;
input covp1-covp4;
datalines;

180 200 170 1000
;
proc hpmixed;

class A B C rep;
model yield = A;
random rep B C;
parms / pdata=data_covp;
by year;

run;

The same set of starting values is used for each value of theyear variable.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. Thevalue-list
speci�cation is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the order that PROC HPMIXED uses for the covariance parameters, and each number corresponds to
the upper boundary constraint. A missing value instructs PROC HPMIXED to use its default constraint,
and if you do not specify numbers for all of the covariance parameters, PROC HPMIXED assumes
that the remaining ones are missing.

RANDOM Statement

RANDOM random-effects < / options > ;

The RANDOM statement de�nes the random effects in the mixed model. It can be used to specify traditional
variance component models (as in the VARCOMP procedure) and to specify random coef�cients. The
random effects can be classi�cation or continuous. Multiple RANDOM statements are possible. Random
effects speci�ed in a RANDOM statement could be correlated with each other for certain types of covariance
structures (see the TYPE= option on page 4761). It is, however, assumed that random effects speci�ed using
different RANDOM statements are not correlated.

Using notation from the section “Model Assumptions” on page 4767, the purpose of the RANDOM statement
is to de�ne theZ matrix of the mixed model, the random effects in the vector, and the structure ofG. The
Z matrix is constructed exactly like theX matrix for the �xed effects, and theG matrix is constructed to
correspond to the effects constitutingZ. The structure ofG is de�ned by using the TYPE= option described
on page 4761.

You can specify INTERCEPT (or INT) as a random effect. PROC HPMIXED does not include the intercept
in the RANDOM statement by default, as it does in the MODEL statement.

You can specify the followingoptions in the RANDOM statement after a slash (/).

ALPHA= number
requests that at-type con�dence interval with con�dence level1 � number be constructed for the
predictors of random effects in this statement. The value ofnumber must be between 0 and 1
exclusively; the default is 0.05. Specifying the ALPHA= option implies the CL option.
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CL
requests thatt-type con�dence limits be constructed for each of the predictors of random effects in this
statement. The con�dence level is 0.95 by default; this can be changed with the ALPHA= option. The
CL option implies the SOLUTION option.

GROUP=effect
de�nes an effect specifying heterogeneity in the covariance structure ofG. All observations having the
same level of the group effect have the same covariance parameters. Each new level of the group effect
produces a new set of covariance parameters with the same structure as the original group. You should
exercise caution in de�ning the group effect, because strange covariance patterns can result from its
misuse. Also, the group effect can greatly increase the number of estimated covariance parameters,
which can adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new
group whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of groups and also
prevents the production of a large “Class Levels Information” table.

NOFULLZ
eliminates the columns inZ corresponding to missing levels of random effects involving CLASS
variables. By default, these columns are included inZ. It is suf�cient to specify the NOFULLZ option
in any RANDOM statement.

SOLUTION
requests that the solution for the random-effects parameters be produced. Using notation from the
section “Model Assumptions” on page 4767, these estimates are the empirical best linear unbiased
predictors (BLUPs)b D bGZ0bV � 1.y � Xb� / . They can be useful for comparing the random effects
from different experimental units and can also be treated as residuals in performing diagnostics for
your mixed model.

The numbers displayed in the SE Pred column of the “Solution for Random Effects” table are not
the standard errors of theb displayed in the Estimate column; rather, they are the standard errors of
predictionsb i �  i , whereb i is theith BLUP and i is theith random-effect parameter.

SUBJECT=effect
identi�es the subjects in your mixed model. Complete independence is assumed across subjects; thus,
for the RANDOM statement, the SUBJECT= option produces a block-diagonal structure inG with
identical blocks. TheZ matrix is modi�ed to accommodate this block-diagonality. In fact, specifying a
subject effect is equivalent to nesting all other effects in the RANDOM statement within the subject
effect.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new
subject whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of subjects and also
prevents the production of a large “Class Levels Information” table.
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TYPE=covariance-structure
speci�es the structure of the covariance matrixG for random effects. The default structure is VC.

If you want different covariance structures in different parts ofG, you must use multiple RANDOM
statements with different TYPE= options.

Valid values forcovariance-structure are listed in Table 59.8. Examples are shown in Table 59.9.

Table 59.8 Covariance Structures

Structure Description Parameters .i; j / element

AR(1) Autoregressive(1) 2 � 2� j i � j j

CHOL Cholesky root t .t C 1/=2 lij
CS Compound symmetry (CS) 2 � 1 C � 21.i D j /

CSH Heterogeneous CS t C 1 � i � j Œ�1.i¤ j / C 1.i D j /•

TOEP(1) Toeplitz(1) 1 � 2

UC Uniform correlation (UC) 2 � 2Œ�1.i¤ j / C 1.i D j /•

UCH Heterogeneous UC t C 1 � i � j Œ�1.i¤ j / C 1.i D j /•

UN Unstructured t.t C 1/=2 � ij

VC Variance components q � 2
k 1.i D j /

andi,j correspond tokth effect

In Table 59.8,t is the overall dimension of the covariance matrix, and1.A/ equals 1 whenA is true
and 0 otherwise. For example, 1(i = j) equals 1 wheni = j and equals 0 otherwise. TYPE=UCH is the
same as TYPE=CSH.

Table 59.9 lists some examples of the structures in Table 59.8.

Table 59.9 Covariance Structure Examples

Description Structure Example

First-order
autoregressive

AR(1) � 2

2

6
6
4

1 � � 2 � 3

� 1 � � 2

� 2 � 1 �
� 3 � 2 � 1

3

7
7
5

Cholesky
root

CHOL

2

6
6
4

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

3

7
7
5

2

6
6
4

l11 l21 l31 l41

0 l22 l32 l42

0 0 l33 l43

0 0 0 l44

3

7
7
5

Compound
symmetry

CS

2

6
6
4

� 2 C � 1 � 1 � 1 � 1

� 1 � 2 C � 1 � 1 � 1

� 1 � 1 � 2 C � 1 � 1

� 1 � 1 � 1 � 2 C � 1

3

7
7
5



4762 F Chapter 59: The HPMIXED Procedure

Table 59.9 continued

Description Structure Example

Banded Toeplitz TOEP(1)

2

6
6
4

� 2 0 0 0
0 � 2 0 0
0 0 � 2 0
0 0 0 � 2

3

7
7
5

Uniform
correlation

UC � 2

2

6
6
4

1 � � �
� 1 � �
� � 1 �
� � � 1

3

7
7
5

Heterogeneous
UC

UCH

2

6
6
4

� 2
1 � 1� 2� � 1� 3� � 1� 4�

� 2� 1� � 2
2 � 2� 3� � 2� 4�

� 3� 1� � 3� 2� � 2
3 � 3� 4�

� 4� 1� � 4� 2� 2 � 4� 3� � 2
4

3

7
7
5

Unstructured UN

2

6
6
4

� 2
1 � 21 � 31 � 41

� 21 � 2
2 � 32 � 42

� 31 � 32 � 2
3 � 34

� 41 � 42 � 43 � 2
4

3

7
7
5

Variance
components

VC (default)

2

6
6
4

� 2
A 0 0 0
0 � 2

A 0 0
0 0 � 2

B 0
0 0 0 � 2

B

3

7
7
5

The variances and covariances in the formulas that follow in the TYPE= option descriptions are
expressed in terms of generic random variables� i and� j . They represent random effects for which the
G matrices are constructed.

The following list provides some further information about thesecovariance-structures:

AR(1) speci�es a �rst-order autoregressive structure,

Cov
�
� i ; � j

�
D � 2� j i � j j

The valuesi andj are derived for theith andjth observations, respectively. For
example, in the following statements the values correspond to the class levels for
the time effect of theith andjth observation within a particular subject:

proc hpmixed;
class time patient;
model y = x x * x;
random time / sub=patient type=ar(1);

run;

PROC HPMIXED imposes the constraintj� j < 1 for stationarity.
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CHOL speci�es an unstructured variance-covariance matrix parameterized through its
Cholesky root. All diagonal values are constrained to be positive. This parame-
terization guarantees a positive de�nite covariance matrix. For example, a2 � 2
unstructured covariance matrix can be written as

VarŒ� • D
�

� 2
1 � 21

� 21 � 2
2

�

Without imposing constraints on the three parameters, there is no guarantee that
the estimated variance matrix is positive de�nite. Even if� 2

1 and� 2
2 are nonzero, a

large value for� 21 can lead to a negative eigenvalue ofVarŒ� •. The Cholesky root
of a positive de�nite matrixA is a lower triangular matrixL such thatLL 0 D A.
The Cholesky root of the above2 � 2 matrix can be written as

L D
�

l11 0
l21 l22

�

The elements of the unstructured variance matrix are then simply� 2
1 D l 2

11 , � 21 D
l21 l11 , and� 2

2 D l 2
21 C l 2

22 . Similar operations yield the generalization to covariance
matrices of higher orders.

For example, the following statements model the covariance matrix of each subject
as an unstructured matrix:

proc hpmixed;
class sub;
model y = x;
random time / sub=patient type=chol;

run;

The HPMIXED procedure constrains the diagonal elements of the Cholesky root to
be positive. This guarantees that the structure is positive de�nite.

CS speci�es the compound-symmetry structure, which has constant variance and con-
stant covariance

Cov
�
� i ; � j

�
D

�
� 2 C � 1 i D j
� 1 i 6Dj

Under compound-symmetry, theG matrix is of form� 2I C � 1J. The variance
parameter� 2 is constrained to be positive, and the covariance parameter� 1 is
constrained to be greater than� � 2=t wheret is the dimension of the structure. This
guarantees the structure is positive de�nite. The compound-symmetry structure
arises naturally with nested random effects, such as when a subsampling error is
nested within an experimental error.

CSH speci�es the heterogeneous compound-symmetry structure. This structure has a
different variance parameter for each diagonal element, and it uses the square roots
of these parameters in the off-diagonal entries. In Table 59.8,� 2

i is theith variance
parameter that satis�es� 2

i > 0, and� is the correlation parameter that satis�es
� > � 1=.t � 1/, wheret is the dimension of the structure. This guarantees that the
structure is positive de�nite.
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TOEP(1) speci�es a Toeplitz structure with one band. It is the same as� 2I , whereI is an
identity matrix, and it can be useful for specifying the same variance component
for several effects.

UC speci�es the uniform correlation structure, which has constant variance and constant
correlation

Cov
�
� i ; � j

�
D

�
� 2 i D j
� 2� i 6Dj

Under uniform correlation, theG matrix is of form� 2Œ.1� �/ I C � J•. The variance
� 2 is constrained to be positive, and the correlation� is constrained to be greater
than� 1=.t � 1/, wheret is the dimension of the structure. This guarantees the
structure is positive de�nite. This structure is equivalent to the compound-symmetry
structure with a better numerical property in terms of optimization.

The uniform correlation structure arises frequently in agriculture and animal sci-
ences.

UCH speci�es the heterogeneous uniform correlation structure. This structure has a
different variance parameter for each diagonal element, and it uses the square roots
of these parameters in the off-diagonal entries. In Table 59.8,� 2

i is theith variance
parameter that satis�es� 2

i > 0, and� is the correlation parameter that satis�es
� > � 1=.t � 1/, wheret is the dimension of the structure. This guarantees that the
structure is positive de�nite.

UN speci�es a completely general (unstructured) covariance matrix parameterized
directly in terms of variances and covariances. The variances are constrained to
be positive, and the covariances are unconstrained. In addition, this structure is
internally constrained to be positive de�nite.

VC speci�es standard variance components and is the default structure for the RAN-
DOM and REPEATED statements. In the RANDOM statement, a distinct variance
component is assigned to each effect. In the REPEATED statement, this structure
is usually used only with the GROUP= option to specify a heterogeneous variance
model.

REPEATED Statement

REPEATED repeated-effect < / options > ;

The REPEATED statement de�nes the repeated effect and the residual covariance structure in the mixed
model. The residual variance-covariance matrix is denoted asR. Therepeated-effect is required and consists
entirely of classi�cation variables. The levels of therepeated-effect must be different for each observation
within a subject in order to avoid the singularR matrix. The SUBJECT= option is required. The data set
must be grouped by subject effect.

Table 59.10 summarizes theoptions available in the REPEATED statement.
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Table 59.10 Summary of REPEATED Statement Options

Option Description

Construction of Covariance Structure
GROUP= De�nes an effect that speci�es heterogeneity in the residual covari-

ance structure
SUBJECT= Identi�es the subjects in the residual covariance structure
TYPE= Speci�es the residual covariance structure (the default is VC)

Statistical Output
R= Displays blocks of the estimatedR matrix
RC= Display the Cholesky root (lower) of blocks of the estimatedR

matrix
RCI= Displays the inverse Cholesky root (lower) of blocks of the esti-

matedR matrix
RCORR= Displays the correlation matrix that corresponds to blocks of the

estimatedR matrix
RI= Displays the inverse of blocks of the estimatedR matrix

You can specify the followingoptions in the REPEATED statement after a slash (/).

GROUP=effect

GRP=effect
de�nes an effect that speci�es heterogeneity in the residual covariance structure. All observations that
have the same level of the GROUP effect have the same covariance parameters. Each new level of the
GROUP effect produces a new set of covariance parameters with the same structure as the original
group. You should exercise caution in de�ning the GROUP effect, because strange covariance patterns
can result with its misuse. Also, the GROUP effect can greatly increase the number of estimated
covariance parameters, which can adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC HPMIXED does not
sort by the values of the continuous variable; rather, it considers the data to be from a new subject or
group whenever the value of the continuous variable changes from the previous observation. Using a
continuous variable decreases execution time for models with a large number of subjects or groups and
also prevents the production of a large “Class Level Information” table.

R< =value-list >
requests that blocks of the estimatedR matrix be displayed. The �rst block determined by the
SUBJECT= effect is the default displayed block.

The value-list indicates the subjects for which blocks ofR are to be displayed. For example, the
following statement displays block matrices for the �rst, third, and �fth persons:

repeated time / type=un subject=person r=1,3,5;

See the PARMS statement for the possible forms ofvalue-list.
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RC< =value-list >
displays the Cholesky root of blocks of the estimatedR matrix. Thevalue-list speci�cation is the same
as for the R= option.

RCI< =value-list >
displays the inverse Cholesky root of blocks of the estimatedR matrix. Thevalue-list speci�cation is
the same as for the R= option.

RCORR< =value-list >
displays the correlation matrix that corresponds to blocks of the estimatedR matrix. Thevalue-list
speci�cation is the same as for the R= option.

RI< =value-list >
produces the inverse of blocks of the estimatedR matrix. Thevalue-list speci�cation is the same as for
the R= option.

SUBJECT=effect

SUB=effect
identi�es the subjects in your mixed model. Complete independence is assumed across subjects;
therefore, the SUBJECT= option produces a block-diagonal structure inR with identical blocks.
The SUBJECT= option is required. The data set must be grouped by SUBJECT= effect. When
the SUBJECT= effect consists entirely of classi�cation variables, the blocks ofR correspond to
observations that share the same level of that effect. These blocks are sorted according to this effect as
well.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC HPMIXED does
not sort by the values of the continuous variable; rather, it considers the data to be from a new subject
or group whenever the value of the continuous variable changes from the previous observation. Using
a continuous variable decreases execution time for models with a large number of subjects or groups
and also prevents the production of a large “Class Level Information” table.

If you want to model nonzero covariance among all of the observations in your data, specify SUB-
JECT=INTERCEPT to treat the data as if they are all from one subject. However, be aware that in this
case PROC HPMIXED manipulates anR matrix with dimensions equal to the number of observations.

TYPE=covariance-structure
speci�es the structure of the residual variance-covariance matrixR. The SUBJECT= option de�nes
the blocks ofR, and the TYPE= option speci�es the structure of these blocks. PROC HPMIXED
supports the following structures: TYPE=AR(1), TYPE=CHOL, TYPE=UN, and TYPE=VC. The
default structure is VC. See the description in the section “RANDOM Statement” on page 4759 for
more information about these covariance structure types.

TEST Statement

TEST �xed-effects < / options > ;

The TEST statement performs a hypothesis test on the �xed effects. You can specify multiple effects in one
TEST statement or in multiple TEST statements, and all TEST statements must appear after the MODEL
statement.

You can specify the followingoptions in the TEST statement after a slash (/).
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HTYPE=value-list
indicates the type of hypothesis test to perform on the speci�ed effects. Valid entries for values in
thevalue-list are 3, corresponding to a Type III test. The default value is 3. The ODS table name is
“Tests3” for the Type III test.

E
requests that matrix coef�cients associated with test types be displayed for speci�ed effects.

E3 | EIII
requests that Type III matrix coef�cients be displayed if a Type III test is performed.

CHISQ
requests that� 2 tests be performed in addition to anyF tests. A� 2 statistic equals its correspondingF
statistic times the associate numerator degree of freedom, and this same degree of freedom is used to
compute thep-value for the� 2 test. Thisp-value will always be less than that for theF test, because it
effectively corresponds to anF test with in�nite denominator degrees of freedom.

WEIGHT Statement

WEIGHT variable ;

The WEIGHT statement replacesR with W � 1=2RW � 1=2, whereW is a diagonal matrix containing the
weights. Observations with nonpositive or missing weights are not included in the resulting PROC HPMIXED
analysis. If a WEIGHT statement is not included, all observations used in the analysis are assigned a weight
of 1.

If a computation in PROC HPMIXED involvesR, then the WEIGHT statement replacesR with
W � 1=2RW � 1=2. For example, the covariance matrixV for the observations usually have the form
V D ZGZ0C R; therefore, with the WEIGHT statement, this becomesV D ZGZ0C W � 1=2RW � 1=2:

Details: HPMIXED Procedure

Model Assumptions

The following sections provide an overview of the approach used by the HPMIXED procedure for likelihood-
based analysis of linear mixed models with sparse matrix technique. Additional theory and examples are
provided in Littell et al. (1996); Verbeke and Molenberghs (1997, 2000); Brown and Prescott (1999).

The HPMIXED procedure �ts models generally of the form

y D X� C Z C �

Models of this form contain both �xed-effects parameters,� , and random-effects parameters, ; hence, they
are calledmixed models. SeeHenderson (1990)andSearle, Casella, and McCulloch (1992)for historical
developments of the mixed model. Note that the matrixZ can contain either continuous or dummy variables,
just likeX.
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So far this is the same general form of model �t by the MIXED procedure. The difference between the
models handled by the two procedures lies in the assumptions about the distributions of and� . For both
procedures a key assumption is that and� are normally distributed with

E
�


�

�
D

�
0
0

�

Var
�


�

�
D

�
G 0
0 R

�

The two procedures differ in their assumptions about the variance matricesG andR for  and� , respectively.
The MIXED procedure allows a variety of different structures for bothG andR; while in HPMIXED
procedure,R is always assumed to be of the formR D I � 2, and the structures available for modelingG are
only a small subset of the structures offered by the MIXED procedure.

Estimates of �xed effects and predictions for random effects are obtained by solving the so-calledmixed
model equations:

�
X0X=� 2 X0Z=� 2

Z0X=� 2 Z0Z=� 2 C G� 1

� �
b�
b

�
D

�
X0y=� 2

Z0y=� 2

�

Let C denote the coef�cient matrix of the mixed model equations:

C D
�

X0X=� 2 X0Z=� 2

Z0X=� 2 Z0Z=� 2 C G� 1

�

Under the assumptions given previously for the moments of and� , the variance ofy is V D ZGZ0C I� 2.
You can modelV by setting up the random-effects design matrixZ and by specifying covariance structures
for G. Let � be a vector of all unknown parameters inG. Then the general form of the restricted likelihood
function for the mixed models that the HPMIXED procedure can �t is

L. � ; � 2/ D � 2 log l D .n � p/ log.2�/ C log jCj C log jGj C n log.� 2/ C y0Py

where

P D V � 1 � V � 1X.X0V � 1X/ � X0V � 1

andp is the rank ofX. The HPMIXED procedure minimizesL. � ; � 2/ over all unknown parameters in� and
� 2 by using nonlinear optimization algorithms.

Computing and Maximizing the Likelihood

In computing the restricted likelihood function given previously, the determinants of the matricesC andG
can be obtained effectively by using Cholesky decomposition. The quadratic termy0Py can be expressed in
terms of solutions of mixed model equations as follows:

y0Py D
1

� 2

�
y0y �

h
b� 0; b 0

i �
X0y
Z0y

��
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By default, the HPMIXED procedure pro�les out the residual variance� 2 from the parameter vector� . Let
� � be the new parameter vector such that� �

i D � i =� 2. The pro�led objective function becomes

L. � � ; � 2/ D .n � p/ log.2�/ C log jC� j C log jG� j � .r C � rG � n/ log.� 2/ C .n � p/

whereC� D C� 2 andG� D G� 2 are the pro�led versions ofC andG, rC andrG are the ranks ofC andG.
Minimizing analytically for� 2 yields

b� 2 D
1

n � p

�
y0y �

h
b� 0; b 0

i �
X0y
Z0y

��

Optimizing the likelihood calls for derivatives with respect to the parameters. The �rst and second derivatives
of the log-likelihood functionL with respect to scalar variance components� i and� j are

@L
@�i

D tr
�

@V
@�i

P
�

� y0P
@V
@�i

Py

and

@2L
@�i � j

D � tr
�

@V
@�i

P
@V
@�j

P
�

C 2y0P
@V
@�i

P
@V
@�j

Py

The default quasi-Newton method of optimization for the HPMIXED procedure requires only �rst derivatives
of the log likelihood, and these are readily derived by solving the mixed model equations. For example,
whenG D I � a , the �rst derivative of the log likelihood with respect to the parameter� 2

a can be computed as
follows:

@L
@�2a

D
q
� 2

a
�

tr.Caa /
� 4

a
�

b 0b
� 4

a

whereq is the size of vector andCaa is the part of theg-inverse of the mixed model equation coef�cient
matrixC corresponding to the random effect .

The second derivative of the log likelihood needs to be computed only if you specify certain nondefault
optimization techniques in the NLOPTIONS statement, namely TECH=NEWRAP, TECH=NRRIDG, or
TECH=TRUREG; see “NLOPTIONS Statement” on page 499 in Chapter 19, “Shared Concepts and Top-
ics,” for more information about optimization techniques. For these second-derivative-based optimization
techniques, the HPMIXED procedure does not actually use the true second derivative matrix, orobserved
information matrix, as de�ned earlier. Instead, it uses an alternative matrix that is more ef�cient to compute
for large problems and that can be more stable. This alternative is called theaverage informationmatrix, and
it is de�ned as follows. The expected value of the second derivative is

E.
@2L

@�i � j
/ D tr

�
@V
@�i

P
@V
@�j

P
�

It is this trace that is computationally inef�cient to evaluate. But if you average the expected information
matrix de�ned by this formula with the observed information matrix de�ned by the preceding formula for the
true second derivative, then the trace term cancels, leaving just a quadratic expression iny. This quadratic
expression de�nes the average information (Johnson and Thompson 1995) with respect to� i and� j :

AI .� i ; � j / D y0P
@V
@�i

P
@V
@�j

Py
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Computing Starting Values by EM-REML

The EM-REML algorithm(Dempster, Laird, and Rubin 1977)iteratively alternates between an expectation
step and a maximization step to maximize the restricted log likelihood. The algorithm is based on augmenting
the observed datay with the unobservable random effects , leading to a simpli�ed form for the log likelihood.
For example, ifG D I � 2

a then given the realized valuesQ of the unobservable random effects , the REML
estimate of� 2

a satis�es

b� 2
a D

Q 0Q
q � � 2=� 2

a tr.Caa /

This corresponds to the maximization step of EM-REML. However, the true realized valuesQ are unknown
in practice. The expectation step of EM-REML replaces them with the conditional expected valuesb of the
random effects, given the observed datay and initial values for the parameters. The new estimate of� 2

a is
used in turn to recalculate the conditional expected values, and the iteration is repeated until convergence.

It is well known that EM-REML is generally more robust against a poor choice of starting values than general
nonlinear optimization methods such as Newton-Raphson, though it tends to converge slowly as it approaches
the optimum. The Newton-Raphson method, on the other hand, converges much faster when it has a good set
of starting values. The HPMIXED procedure, thus, employs a scheme that uses EM-REML initially in order
to get good starting values, and after a few iterations, when the decrease in log likelihood has signi�cantly
slowed down, switching to a more general nonlinear optimization technique (by default, quasi-Newton).

Sparse Matrix Techniques

A key component of the HPMIXED procedure is the use of sparse matrix techniques for computing and
optimizing the likelihood expression given in the section “Model Assumptions” on page 4767. There are two
aspects to sparse matrix techniques, namely, sparse matrix storage and sparse matrix computations. Typically,
computer programs represent anN � M matrix in a dense form as an array of sizeNM , making row-wise
and column-wise arithmetic operations particularly ef�cient to compute. However, if many of theseNM
numbers are zeros, then correspondingly many of these operations are unnecessary or trivial. Sparse matrix
techniques exploit this fact by representing a matrix not as a complete array, but as a set of nonzero elements
and their location (row and column) within the matrix. Sparse matrix techniques are more ef�cient if there
are enough zero-element operations in the dense form to make the extra time required to �nd and operate on
matrix elements in the sparse form worthwhile.

The following discussion illustrates sparse techniques. Let the symmetric matrixC be the matrix of mixed
model equations of size5 � 5.

C D

2

6
6
6
6
4

8:0 0 0 2:0 0
0 4:0 3:0 0 0
0 3:0 5:0 0 0

2:0 0 0 7:0 0
0 0 0 0 9:0

3

7
7
7
7
5

There are 15 elements in the upper triangle ofC, though eight of them are zeros. The row and column indices
and the values of seven nonzero elements are listed as follows:
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i 1 1 2 2 3 4 5
j 1 4 2 3 3 4 5

Cij 8.0 2.0 4.0 3.0 5.0 7.0 9.0

The most elegant scheme to store these seven elements is to store them in a hash table with row and column
indices as a hash key. However, this scheme is not ef�cient as the number of non-zero elements gets very
large. The classical and widely used scheme, and the one the HPMIXED procedure employs, is the. ic ; jc ; c/
format, in which the nonzero elements are stored contiguously row by row in the vectorc. To identify the
individual nonzero elements in each row, you need to know the column index of an element. These column
indices are stored in the vectorjc ; that is, ifc.k/ D Cij , thenjc .k/ D j . To identify the individual rows, you
need to know where each row starts and ends. These row starting positions are stored in the vectoric . For
instance, ifCij is the �rst nonzero element in the rowi andc.k/ D Cij , thenic .i / D k. The rowi ending
position is one less thanic .i C 1/. Thus, the number of nonzero elements in the rowi is ic .i C 1/ � ic .i / ,
these elements in the rowi are stored consecutively starting from the positionki D ic .i /

c.k i /; c.k i C 1/; c.k i C 2/; : : : ; c.k i C 1 � 1/

and the corresponding columns indices are stored consecutively in

jc .k i /; jc .k i C 1/; jc .k i C 2/; : : : ; jc .k i C 1 � 1/

For example, the seven nonzero elements in matrixC are stored in. ic ; jc ; c/ format as

ic 1 3 5 6 7 8
jc 1 4 2 3 3 4 5
c 8.0 2.0 4.0 3.0 5.0 7.0 9.0

Note that since matrices are stored row by row in the. ic ; jc ; c/ format, row-wise operations can be performed
ef�ciently but it is inef�cient to retrieve elements column-wise. Thus, this representation will be inef�cient
for matrix computations requiring column-wise operations. Fortunately, the likelihood calculations for mixed
models can usually avoid column-wise operations.

In mixed models, sparse matrices typically arise from a large number of levels for �xed effects and/or random
effects. If a linear model contains one or more large CLASS effects, then the mixed model equations are
usually very sparse. Storing zeros in mixed model equations not only requires signi�cantly more memory
but also results in longer execution time and larger rounding error. As an illustration, the example in the
“Getting Started: HPMIXED Procedure” on page 4732 has 3,506 mixed model equations. Storing just the
upper triangle of these equations in a dense form requires.1 C 3;506/ � 3;506=2D 6;147;771elements.
However, there are only 60,944 nonzero elements—less than 1% of what dense storage requires.

Note that as the density of the mixed model equations increases, the advantage of sparse matrix techniques
decreases. For instance, a classical regression model typically has a dense coef�cient matrix, though the
dimension of the matrix is relatively small.

The HPMIXED procedure employs sparse matrix techniques to store the nonzero elements in the mixed
model equations and to compute a sparse Cholesky decomposition of these equations. A reordering of
the mixed model equations is required in order to keep the minimum memory consumption during the
factorization. This reordering process results in a differentg-inverse from what is produced by most other
SAS/STAT procedures, for which theg-inverse is de�ned by sequential sweeping in the order de�ned by
the model. If mixed model equations are singular, this differentg-inverse produces a different solution of
mixed model equations. However, estimable functions and tests based on them are invariant to the choice of
g-inverse, and are thus the same for the HPMIXED procedure as for other procedures.
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Hypothesis Tests for Fixed Effects

Unlike most other SAS/STAT procedures for analyzing general linear models, the HPMIXED procedure does
not by default provideF tests for the �xed effects. This is because, for the large mixed model problems that
the HPMIXED procedure is designed to address, such tests are often computationally prohibitive to compute.
The computation of Type III tests �rst constructs the Hermite matrix of the mixed model coef�cient matrixC
and then forms theL coef�cient matrix to obtain theF value as follows:

F D

�
b�
b

� 0

L0.LbC� 1L0/ � 1L
�

b�
b

�

r

wherer D rank.LbC� 1L0/: The coef�cient matrixL corresponding to �xed effects with many levels can be
very large and dense, making them very dif�cult to work with. At the same time, Type III tests for effects
with many levels are relatively unlikely to be statistically useful.

For this reason, you must use the TEST statement in PROC HPMIXED to speci�cally ask for Type III tests
for any effects for which you want to compute them. An example of this is given in the section “Getting
Started: HPMIXED Procedure” on page 4732.

Default Output

The following sections describe the output PROC HPMIXED produces by default. This output is organized
into various tables, and they are discussed in order of appearance.

Model Information

The “Model Information” table describes the model, some of the variables it involves, and the method used
in �tting it. It also lists the method for computing the degrees of freedom.

The name of the “Model Information” table is ModelInfo.

Class Level Information

The “Class Level Information” table lists the �rst 20 levels of every variable speci�ed in the CLASS statement.
You should check this information to make sure the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the PROC HPMIXED statement. The name of the “Class Level
Information” table is ClassLevels.

Dimensions

The “Dimensions” table lists the sizes of relevant matrices. This table can be useful in determining CPU time
and memory requirements. The name of the “Dimensions” table is “Dimensions.”

Number of Observations

The “Number of Observations” table shows the number of observations read from the data set and the number
of observations used in �tting the model.
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Descriptive Statistics

The “Descriptive Statistics” table lists simple statistics such as means and standard deviations for the
dependent variable, for each covariate in the MODEL statement, and for the weight variable in the WEIGHT
statement.

Iteration History

The “Iteration History” table describes the optimization of the residual log likelihood. The function to be
minimized (theobjective function) is � 2l .

The name of the “Iteration History” table is IterHistory.

Covariance Parameter Estimates

The “Covariance Parameter Estimates” table contains the estimates of the parameters inG andR. Their
values are labeled in the “Cov Parm” table along with Subject and Group information if applicable. The
estimates are displayed in the Estimate column.

The name of the “Covariance Parameter Estimates” table is CovParms.

Convergence Status

The “Convergence Status” table contains a status message that describes the reason the optimization termi-
nated. The message is also written to the log. The name of the “Convergence Status” table is ConvergenceS-
tatus. You can query the nonprinting numeric variableStatus to check for a successful optimization. This is
useful in batch processing, or when processing BY groups, such as in simulations. Successful optimizations
are indicated by the value 0 for theStatus variable.

Fit Statistics

The “Fit Statistics” table provides some statistics about the estimated mixed model.

In addition, the “Fit Statistics” table lists three information criteria: AIC, AICC, and BIC, all in smaller-is-
better form. Expressions for these criteria are described under the IC= option on page 4738.

The name of the “Model Fitting Information” table is FitStatistics.

ODS Table Names

Each table created by PROC HPMIXED has a name associated with it, and you must use this name to
reference the table when using ODS statements. These names are listed in Table 59.11.

Table 59.11 ODS Tables Produced by PROC HPMIXED

Table Name Description Required Statement / Option

CholR Cholesky root of blocks of the esti-
matedR matrix

REPEATED / RC

ClassLevels Level information from the CLASS
statement

Default output
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Table 59.11 (continued)

Table Name Description Required Statement / Option

Coef L matrix coef�cients E option in TEST,
CONTRAST, ESTIMATE,
or LSMEANS

Contrasts Results from the CONTRAST
statements

CONTRAST

ConvergenceStatus Convergence status Default
CovParms Estimated covariance parameters Default output
Diffs Differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions Dimensions of the model Default output
Estimates Results from ESTIMATE statementsESTIMATE
FitStatistics Fit statistics Default
InvCholR Inverse Cholesky root of blocks of

the estimatedR matrix
REPEATED / RCI=

InvR Inverse of blocks of the estimatedR
matrix

REPEATED / RI=

IterHistory Iteration history Default output
LSMeans LS-means LSMEANS
MMEq Mixed model equations PROC HPMIXED MMEQ
ModelInfo Model information Default output
NObs Number of observations read and

used
Default output

OptInfo Optimization information Default output
OverallANOVA ANOVA table for model without ran-

dom effect
Default output for �xed models

ParameterEstimates Fixed-effects solution MODEL / SOLUTION
ParmSearch Parameter search values PARMS
Ranks Ranks of matricesX, (XZ), and

MMEQ
PROC HPMIXED RANKS

R Blocks of the estimatedR matrix REPEATED / R=
RCorr Correlation matrix from blocks of the

estimatedR matrix
REPEATED / RCORR=

SimpleStatistics Descriptive statistics for dependent
variable and covariate variables

PROC HPMIXED / SIMPLE

Slices Tests of LS-means slices LSMEANS / SLICE=
SolutionR Random-effect solution vector RANDOM / SOLUTION
Tests3 Type III tests of �xed effects TEST
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Examples: HPMIXED Procedure

Example 59.1: Ranking Many Random-Effect Coef�cients

In analyzing models with random effects that have many levels, a frequent goal is to estimate and rank the
predicted values of the coef�cients corresponding to these levels. For example, in mixed models for animal
breeding, the predicted coef�cient of the random effect for each animal is referred to as theestimated breeding
value(EBV) and animals with relatively high EBVs are chosen for breeding. This example demonstrates the
use of the HPMIXED procedure for computing EBVs and their precision. Although other mixed modeling
tools in SAS/STAT can potentially compute EBVs, PROC HPMIXED is particularly suited for the large,
sparse matrix calculations involved. The typical performance of the HPMIXED procedure and other tools for
this problem is also discussed.

The data for this problem are generated by simulation. Suppose you are considering analyzing EBVs for
animals on 15 farms, with about 100 animals of 5 different species on each farm. The following DATA step
simulates data with this structure, where about 40 observations of the response variableYield are made per
animal:

%let NFarm = 15;
%let NAnimal = %eval(&NFarm * 100);
data Sim;

keep Species Farm Animal Yield;
array BV{&NAnimal};
array AnimalSpecies{&NAnimal};
array AnimalFarm{&NAnimal};
do i = 1 to &NAnimal;

BV {i} = sqrt(4.0) * rannor(12345);
AnimalSpecies{i} = 1 + int( 5 * ranuni(12345));
AnimalFarm {i} = 1 + int(&NFarm * ranuni(12345));

end;
do i = 1 to 40 * &NAnimal;

Animal = 1 + int(&NAnimal * ranuni(12345));
Species = AnimalSpecies{Animal};
Farm = AnimalFarm {Animal};
Yield = 1 + Species

+ Farm
+ BV{Animal}
+ sqrt(8.0) * rannor(12345);

output;
end;

run;

In this simulation, the true breeding value for each animal (BV1–BV1500) has a variance component of 4.0,
while the level of background variance is 8.0.

In this type of experiment, the effect ofSpecies and the interaction betweenSpecies andFarm are typically
modeled as �xed effects, while the effect ofAnimal is modeled as a random effect. The following statements
use the HPMIXED procedure to compute predictions for theAnimal random effect and save them to the data
setEBV. This data set is then sorted and the 10 animals with the highest EBVs are displayed.
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ods exclude all;
proc hpmixed data=Sim;

class Species Farm Animal;
model Yield = Species Farm * Species;
random Animal/cl;
ods output SolutionR=EBV;

run;
ods exclude none;

proc sort data=EBV;
by descending estimate;

run;
proc print data=EBV(obs=10) noobs;

var Animal Estimate StdErrPred Lower Upper;
run;

The preceding statements close the ODS all destinations for the duration of the PROC HPMIXED run.
This avoids displaying the long random-effects solution table, since only the top few EBVs are of interest.
Output 59.1.1 displays the EBVs of the top 10 animals, along with their precision and con�dence bounds.

Output 59.1.1 Estimated Breeding Values: Top 10 Animals

Notice that animal 1294 is ranked as the top animal based on its EBV, but the precision of this estimate, as
measured by the standard error of prediction, is lower than that of other animals.

You can also use PROC MIXED and PROC GLIMMIX to compute EBVs, but the performance of these
general mixed modeling procedures for this specialized kind of data and model is quite different from that
of PROC HPMIXED. The MIXED and GLIMMIX procedures are engineered to have good performance
properties across a broad class of models and analyses, a class much broader than what PROC HPMIXED
can handle. The HPMIXED procedure, on the other hand, can have better performance, in terms of both
memory and run time, for certain specialized models and analyses, of which the current example is one.

For this example, an equivalent PROC GLIMMIX approach can take twice as long to complete, and PROC
MIXED three times as long. Precise relative timings are not feasible, since those of the MIXED and
GLIMMIX procedures are sensitive to the speed of disk access for writing to and reading from the utility �le
that holds the underlying matrices. But the results on any system would be similar: for the limited class of
models to which it applies, the sparse matrix representation that the HPMIXED procedure employs should
provide better computational performance than a dense representation, in terms of both run time and memory
use.
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Moreover, for a given analysis, if the size of the problem is increased in such a way that the underlying
matrices become sparser, the relative performance of PROC HPMIXED gets even better. As an illustration
of this, Output 59.1.2 shows relative performance of the three procedures for simulated data as the number
of farms increases. For this plot, each additional farm adds 500 levels of theAnimal random effect to the
model—a substantial number.

Output 59.1.2 Comparing Mixed Model Tools for Increasingly Sparse Problems

The vertical axis in Output 59.1.2 measures run time, but the units are omitted: relative performance is what
counts, and that is expected to be fairly invariant to machine architecture. The output shows that while the
performance of the MIXED and GLIMMIX procedures is relatively competitive with PROC HPMIXED
for up to 3000 or 4000 animals, both procedures' relative performance decreases as the number of animals
increases into the tens of thousands.

As a caveat, note that PROC HPMIXED can beinef�cient relative to PROC MIXED and PROC GLIMMIX
for models and data that are not sparse, because it can take many times longer to invert a large, dense matrix
by sparse techniques. For example, Output 59.1.3 shows relative performance of the three procedures for
simulated data like the preceding, but where the �xed part of the model consists of an increasing number of
continuous covariates and is thus dense.



4778 F Chapter 59: The HPMIXED Procedure

Output 59.1.3 Comparing Mixed Model Tools for Increasingly Dense Problems

As before, the HPMIXED procedure is more ef�cient than the MIXED and GLIMMIX procedures for few
covariates, but when the �xed-effect calculations dominate the run time, PROC HPMIXED rapidly becomes
relatively inef�cient as the size of the dense �xed-effect matrix increases. Also note that while PROC MIXED
is more ef�cient than PROC GLIMMIX for small to moderate numbers of covariates, PROC GLIMMIX has
the best performance as the number of covariates get very large.

Example 59.2: Comparing Results from PROC HPMIXED and PROC MIXED

This example revisits the mixed model problem from the section “Getting Started: MIXED Procedure” on
page 6538, in Chapter 81, “The MIXED Procedure,” with the data set shown in the following statements:

data heights;
input Family Gender$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
;
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The response variableHeight measures the heights (in inches) of 18 individuals. The individuals are classi�ed
according toFamily andGender. The following statements �t a mixed model with random effects forFamily
and theFamily*Gender interaction with the MIXED procedure:

proc mixed;
class Family Gender;
model Height = Gender / s;
random Family Family * Gender / s;

run;

The “Iteration History” and “Fit Statistics” tables for the optimization in PROC MIXED are shown in
Output 59.2.1. The MIXED procedure converges after six iterations and achieves a –2 restricted log
likelihood of 71.02246.

Output 59.2.1 Iteration History and Fit Statistics: MIXED Procedure

Output 59.2.2 displays the covariance parameter estimates and the solutions for the �xed and random effects.
Because the �xed-effect model contains a classi�cation effect (Gender) and an intercept, theX0X matrix is
singular. Only two �xed-effect parameters can be estimated in this model. The MIXED procedure, relying
on a sweep operation in the order in which effects enter the model, determines that the last column of the
X0X matrix is a linear function of previous columns. Consequently, the coef�cient for the second level of the
Gender variable is zero.

Output 59.2.2 Parameter Estimates and Solutions: MIXED Procedure
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