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Chapter 15
The Four Types of Estimable Functions
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Overview

Many regression and analysis of variance procedures in SAS/STAT label tests for various effects in the model
as Type I, Type II, Type II1, or Type IV. These four types of hypotheses might not always be sufficient for a
statistician to perform all desired inferences, but they should suffice for the vast majority of analyses. This
chapter explains the hypotheses involved in each of the four test types. For additional discussion, see Freund,
Littell, and Spector (1991) or Milliken and Johnson (1984).

The primary context of the discussion is testing linear hypotheses in least squares regression and analysis of
variance, such as with PROC GLM. In this context, tests correspond to hypotheses about linear functions of
the true parameters and are evaluated using sums of squares of the estimated parameters. Thus, there will be
frequent references to Type I, II, III, and IV (estimable) functions and corresponding Type I, II, III, and IV
sums of squares, or simply SS.

Estimability

Given a response or dependent variable Y, predictors or independent variables X, and a linear expectation
model E[Y] = X relating the two, a primary analytical goal is to estimate or test for the significance of
certain linear combinations of the elements of 8. For least squares regression and analysis of variance, this
is accomplished by computing linear combinations of the observed Ys. An unbiased linear estimate of a
specific linear function of the individual s, say L, is a linear combination of the Y's that has an expected
value of L. Hence, the following definition:
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A linear combination of the parameters L is estimable if and only if a linear combination of the
Y's exists that has expected value LS.

Any linear combination of the Ys, for instance KY, will have expectation E[KY] = KXf. Thus, the
expected value of any linear combination of the Y's is equal to that same linear combination of the rows of X
multiplied by B. Therefore,

LB is estimable if and only if there is a linear combination of the rows of X that is equal to
L—that is, if and only if there is a K such that L = KX.

Thus, the rows of X form a generating set from which any estimable L can be constructed. Since the row
space of X is the same as the row space of XX, the rows of X'X also form a generating set from which all
estimable Ls can be constructed. Similarly, the rows of (X’X)™X’X also form a generating set for L.

Therefore, if L can be written as a linear combination of the rows of X, X’X, or (X'X)~X'X, then L is
estimable.

In the context of least squares regression and analysis of variance, an estimable linear function LB can be
estimated by L/ﬂ\, where /ﬁ\ = (X’X)”X'Y. From the general theory of linear models, the unbiased estimator
Lﬁ is, in fact, the best linear unbiased estimator of L8, in the sense of having minimum variance as well as
maximum likelihood when the residuals are normal. To test the hypothesis that LB = 0, compute the sum of
squares

SS(Ho: LB = 0) = (LB) (L(X'X)"L))" 'L

and form an F test with the appropriate error term. Note that in contexts more general than least squares
regression (for example, generalized and/or mixed linear models), linear hypotheses are often tested by
analogous sums of squares of the estimated linear parameters (Lg)’(Var[LB])~'LB.

General Form of an Estimable Function

This section demonstrates a shorthand technique for displaying the generating set for any estimable L.
Suppose

1100
1100 m
1010 | o4

X=1 101 0| ™ B=| 4
100 1 As
100 1|

X is a generating set for L, but so is the smaller set

1
X*=11
1

S O =
S = O
- o O

X* is formed from X by deleting duplicate rows.
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Since all estimable Ls must be linear functions of the rows of X* for LB to be estimable, an L for a
single-degree-of-freedom estimate can be represented symbolically as

LIx(1100)+L2x(1010)+L3x(1001)
or
L= (L1 +L2+L3, L1, L2, L3)

For this example, LB is estimable if and only if the first element of L is equal to the sum of the other elements
of L or if

LB=(L1+L24+L3)xu+L1xA1+L2x A+ L3 x A3
is estimable for any values of L/, L2, and L3.

If other generating sets for L are represented symbolically, the symbolic notation looks different. However,
the inherent nature of the rules is the same. For example, if row operations are performed on X* to produce
an identity matrix in the first 3 x 3 submatrix of the resulting matrix

1 0 0 1
X*=[01 0 -1
001 -1

then X** is also a generating set for L. An estimable L generated from X** can be represented symbolically
as

L=(L1, L2, L3, L1 — L2 —L3)
Note that, again, the first element of L is equal to the sum of the other elements.

With multiple generating sets available, the question arises as to which one is the best to represent L
symbolically. Clearly, a generating set containing a minimum of rows (of full row rank) and a maximum of
zero elements is desirable.

The generalized g;-inverse (X’X) ™ of X'X computed by the modified sweep operation (Goodnight 1979) has
the property that (X’X)™X’X usually contains numerous zeros. For this reason, in PROC GLM the nonzero
rows of (X’X)~X’X are used to represent L symbolically.

If the generating set represented symbolically is of full row rank, the number of symbols (L1,L2,...)
represents the maximum rank of any testable hypothesis (in other words, the maximum number of linearly
independent rows for any L matrix that can be constructed). By letting each symbol in turn take on the value
of 1 while the others are set to 0, the original generating set can be reconstructed.

Introduction to Reduction Notation

Reduction notation can be used to represent differences in sums of squares (SS) for two models. The notation
R(u, A, B, C) denotes the complete main-effects model for effects A, B, and C. The notation

R(A| . B.C)

denotes the difference between the model SS for the complete main-effects model containing A, B, and C and
the model SS for the reduced model containing only B and C.

In other words, this notation represents the differences in model SS produced by
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proc glm;
class a b c;
model y = a b c;
run;

and
proc glm;
class b c;

model y = b c;
run;

As another example, consider a regression equation with four independent variables. The notation
R(B3, B4 | B1. B2) denotes the differences in model SS between

y = Bo + Bix1 + Paxz + B3xz + Paxs + €
and
y = Po+ Pix1+ axz te
This is the difference in the model SS for the models produced, respectively, by

model y = x1 x2 x3 x4;

and

model y = x1 x2;

The following examples demonstrate the ability to manipulate the symbolic representation of a generating set.
Note that any operations performed on the symbolic notation have corresponding row operations that are
performed on the generating set itself.

Examples
A One-Way Classification Model

For the model
Y=p+A4;+¢ i=1,2,3

the general form of estimable functions LB is (from the previous example)
LB=LIxpu+L2xA1+ L3 xAy+ (L1 —L2—L3)x Az

Thus,
L=(L1,L2,L3,L1 —L2—L3)

Tests involving only the parameters A1, A», and A3 must have an L of the form

L=(0,L2 L3, —L2—L3)
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Since this L for the A parameters involves only two symbols, hypotheses with at most two degrees of freedom
can be constructed. For example, letting (L2, L3) be (1, 0) and (0, 1), respectively, yields

01 0 -1
L= [ 00 1 -1 ]
The preceding L can be used to test the hypothesis that A; = A, = A3. For this example, any L with two

linearly independent rows with column 1 equal to zero produces the same sum of squares. For example, a
joint test for linear and quadratic effects of A

01 0 -1
L= [ 01 =2 1 ]
gives the same SS. In fact, for any L of full row rank and any nonsingular matrix K of conformable
dimensions,

SS(Ho: LB = 0) = SS(Hp: KLB = 0)

A Three-Factor Main-Effects Model

Consider a three-factor main-effects model involving the CLASS variables A, B, and C, as shown in Table 15.1.

Table 15.1 Three-Factor Main-Effects Model

Obs A B C
1 1 2 1
2 1 1 2
3 2 1 3
4 2 2 2
5 2 2 2

The general form of an estimable function is shown in Table 15.2.

Table 15.2 General Form of an Estimable Function for Three-Factor Main-Effects Model

Parameter Coefficient

1 (Intercept) LI

Al L2

A2 LI-L2

Bl 14

B2 Ll —-14

Cl L6

Cc2 LI+12-14-2xL6
C3 L2 +14+L6

Since only four symbols (LI, L2, L4, and L6) are involved, any testable hypothesis will have at most four
degrees of freedom. If you form an L matrix with four linearly independent rows according to the preceding
rules, then testing LB = 0 is equivalent to testing that E[Y] is uniformly 0. Symbolically,

SS(Hp: LB = 0) = R(11, A, B, C)
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In a main-effects model, the usual hypothesis of interest for a main effect is the equality of all the parameters.
In this example, it is not possible to unambiguously test such a hypothesis because of confounding: any test
for the equality of the parameters for any one of A, B, or C will necessarily involve the parameters for the
other two effects. One way to proceed is to construct a maximum rank hypothesis (MRH) involving only the
parameters of the main effect in question. This can be done using the general form of estimable functions.
Note the following:

e To get an MRH involving only the parameters of A, the coefficients of L associated with u, BI, B2,
Cl1, C2, and C3 must be equated to zero. Starting at the top of the general form, let L/ =0, then L4 =
0, then L6 = 0. If C2 and C3 are not to be involved, then L2 must also be zero. Thus, A/ — A2 is not
estimable; that is, the MRH involving only the A parameters has zero rank and R(A | u, B,C) = 0.

e To obtain the MRH involving only the B parameters, let LI = L2 = L6 = 0. But then to remove
C2 and C3 from the comparison, L4 must also be set to 0. Thus, B/ — B2 is not estimable and
R(B|pn,A,C)=0.

e To obtain the MRH involving only the C parameters, let L/ = L2 = L4 =0. Thus, the MRH involving
only C parameters is

Cl-2xC24+(C3=K (for any K)
or any multiple of the left-hand side equal to K. Furthermore,

SS(Ho: C1 —2x C2 + C3 =0) = R(C | u. A, B)

A Multiple Regression Model
Suppose

E[Y] = Bo + Bix1 + Baxz + B3x3

where the X’X matrix has full rank. The general form of estimable functions is as shown in Table 15.3.

Table 15.3 General Form of Estimable Functions for a Multiple Regression Model When X’X Matrix Is of

Full Rank
Parameter Coefficient
Bo LI
P L2
B2 L3
B3 L4

For example, to test the hypothesis that f, = 0, let LI = L2 =14 =0 and let L3 = 1. Then SS(LB = 0) =
R(B2 | Bo, B1.B3). In this full-rank case, all parameters, as well as any linear combination of parameters,
are estimable.

Suppose, however, that X3 = 2x; 4 3x,. The general form of estimable functions is shown in Table 15.4.
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Table 15.4 General Form of Estimable Functions for a Multiple Regression Model When X’X Matrix Is
Not of Full Rank

Parameter Coefficient

Bo L1

P L2

J5p) L3

B3 2x L2 +3xL3

For this example, it is possible to test Hy: B9 = 0. However, 81, B2, and 3 are not jointly estimable; that is,

R(B11Bo.B2.B3) = O
R(B21PBo.B1.B3) = 0
R(B3 | Bo.B1.B2) = O

Estimable Functions

Type | SS and Estimable Functions

In PROC GLM, the Type I SS and the associated hypotheses they test are byproducts of the modified sweep
operator used to compute a generalized g-inverse of X’X and a solution to the normal equations. For the
model E[Y] = x181 + x282 + x383, the Type I SS for each effect are as follows:

Effect Type I SS

X1 R(B1)
X2 R(B2 | B1)
X3 R(B3 | B1,B2)

Note that some other SAS/STAT procedures compute Type I hypotheses by sweeping X'X (for example,
PROC MIXED and PROC GLIMMIX), but their test statistics are not necessarily equivalent to the results of
using those procedures to fit models that contain successively more effects.

The Type I SS are model-order dependent; each effect is adjusted only for the preceding effects in the
model.

There are numerous ways to obtain a Type I hypothesis matrix L for each effect. One way is to form the X'X
matrix and then reduce X’X to an upper triangular matrix by row operations, skipping over any rows with a
zero diagonal. The nonzero rows of the resulting matrix associated with x; provide an L such that

SS(Ho: LB = 0) = R(B1)
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The nonzero rows of the resulting matrix associated with x, provide an L such that

SS(Ho: LB = 0) = R(B2 | B1)

The last set of nonzero rows (associated with x3) provide an L such that

SS(Hop: LB = 0) = R(B3 | B1.B2)

Another more formalized representation of Type I generating sets for x1, x», and x3, respectively, is

G, = ( X/l X; | X/l X5 | X/l X3 )
G = ( 0 | X5MiXp | X5MiX; )
Gs = ( 0 | 0 | X5MpX3 )

where
M;=1- Xl(X’le)_X’1
and

M, = M; — M; X5(X,M; X5) "X, M,

Using the Type I generating set G, (for example), if an L is formed from linear combinations of the rows of
G, such that L is of full row rank and of the same row rank as G, then SS(Hp: LB = 0) = R(B2 | B1).

In the GLM procedure, the Type I estimable functions displayed symbolically when the E1 option is requested

are
Gl = XX G
G, = (X)MX2) G
G; = (X5M2X3)7G3

As can be seen from the nature of the generating sets G, G, and G3, only the Type I estimable functions
for B3 are guaranteed not to involve the 81 and B, parameters. The Type I hypothesis for 8, can (and often
does) involve B3 parameters, and likewise the Type I hypothesis for 81 often involves , and 83 parameters.

There are, however, a number of models for which the Type I hypotheses are considered appropriate. These
are as follows:

e balanced ANOVA models specified in proper sequence (that is, interactions do not precede main effects
in the MODEL statement and so forth)

e purely nested models (specified in the proper sequence)

e polynomial regression models (in the proper sequence)
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Type Il SS and Estimable Functions

For main-effects models and regression models, the general form of estimable functions can be manipulated
to provide tests of hypotheses involving only the parameters of the effect in question. The same result can
also be obtained by entering each effect in turn as the last effect in the model and obtaining the Type I SS for
that effect. These are the Type 11 SS. Using a modified reversible sweep operator, it is possible to obtain the
Type II SS without actually refitting the model.

Thus, the Type II SS correspond to the R notation in which each effect is adjusted for all other appro-
priate effects. For a regression model such as

E[Y] = x181 + x2B82 + x383

the Type II SS correspond to

Effect Type I1 SS

X1 R(B1 | B2, B3)
X2 R(B2 | B1,B3)
X3 R(B3 | B1,B2)

For a main-effects model (A, B, and C as classification variables), the Type II SS correspond to

Effect Type I1 SS

A R(A| B,C)
B R(B|A,C)
C R(C | A, B)

As the discussion in the section “A Three-Factor Main-Effects Model” on page 261 indicates, for regression
and main-effects models the Type II SS provide an MRH for each effect that does not involve the parameters
of the other effects.

In order to see what effects are appropriate to adjust for in computing Type II estimable functions, note that
for models involving interactions and nested effects, in the absence of a priori parametric restrictions, it is
not possible to obtain a test of a hypothesis for a main effect free of parameters of higher-level interactions
effects with which the main effect is involved. It is reasonable to assume, then, that any test of a hypothesis
concerning an effect should involve the parameters of that effect and only those other parameters with which
that effect is involved. The concept of effect containment helps to define this involvement.

Contained Effect
Given two effects F1 and F2, FI is said to be contained in F2 provided that the following two conditions are
met:

e Both effects involve the same continuous variables (if any).

e F2 has more CLASS variables than '/ does, and if F/ has CLASS variables, they all appear in F2.
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Note that the intercept effect p is contained in all pure CLASS effects, but it is not contained in any effect
involving a continuous variable. No effect is contained by pu.

Type 11, Type III, and Type IV estimable functions rely on this definition, and they all have one thing in
common: the estimable functions involving an effect F/ also involve the parameters of all effects that contain
F1, and they do not involve the parameters of effects that do not contain F/ (other than FI).

Hypothesis Matrix for Type Il Estimable Functions
The Type 11 estimable functions for an effect F'/ have an L (before reduction to full row rank) of the following
form:

e All columns of L associated with effects not containing F/ (except F'1) are zero.

e The submatrix of L associated with effect F1 is (X]MX;) ™ (X MX;).

e Each of the remaining submatrices of L associated with an effect F2 that contains FI is
(X MX )™ (X|MX5).

In these submatrices,

Xo = the columns of X whose associated effects do not contain F'1
X1
X2
M = I-X(XpXo0) Xp

the columns of X associated with F'1

the columns of X associated with an F2 effect that contains F'1

For the model

class A B;
model Y = A B AxB;

the Type II SS correspond to
R(A|u,B), R(B|u,A), R(A*B|u A B)
for effects A, B, and A * B, respectively. For the model

class A B C;
model Y = A B(A) C(A B);

the Type II SS correspond to
R(A | 1), R(B(A) |, A), R(C(AB) |, A, B(A))
for effects A, B(A) and C(A B), respectively. For the model

model Y = x X*X;



the Type II SS correspond to

R(X|pu,X*xX) and R(X * X | u, X)

for x and x * x, respectively.
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Note that, as in the situation for Type I tests, PROC MIXED and PROC GLIMMIX compute Type I hypotheses
by sweeping X'X, but their test statistics are not necessarily equivalent to the results of sequentially fitting
with those procedures models that contain successively more effects; while PROC TRANSREG computes
tests labeled as being Type II by leaving out each effect in turn, but the specific linear hypotheses associated
with these tests might not be precisely the same as the ones derived from successively sweeping X'X.

Example of Type Il Estimable Functions

For a 2 x 2 factorial with w observations per cell, the general form of estimable functions is shown in
Table 15.5. Any nonzero values for L2, L4, and L6 can be used to construct L vectors for computing the Type
IL SS for A, B, and A * B, respectively.

Table 15.5 General Form of Estimable Functions for 2 x 2 Factorial

Effect Coefficient

o Ll

Al L2

A2 LI-L2

Bi L4

B2 Ll -14

ABI1 L6

ABI2 L2-16

AB2] L4-L6

AB22 LI-12-14+1L6

For a balanced 2 x 2 factorial with the same number of observations in every cell, the Type II estimable

functions are shown in Table 15.6.

Table 15.6 Type Il Estimable Functions for Balanced 2 x 2 Factorial

Coefficients for Effect
Effect A B A*B
I 0 0 0
Al L2 0 0
A2 -L2 0 0
BI 0 14 0
B2 0 —14 0
ABI11 0.5x L2 0.5 x L4 L6
ABI2 05xL2 0.5 x 14 -L6
AB21 —05x1L2 0.5x 14 -L6
AB22 -05x%x1L2 0.5 x 14 L6
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Now consider an unbalanced 2 x 2 factorial with two observations in every cell except the AB22 cell, which
contains only one observation. The general form of estimable functions is the same as if it were balanced,
since the same effects are still estimable. However, the Type II estimable functions for A and B are not the
same as they were for the balanced design. The Type II estimable functions for this unbalanced 2 x 2 factorial
are shown in Table 15.7.

Table 15.7 Type Il Estimable Functions for Unbalanced 2 x 2 Factorial

Coefficients for Effect
Effect A B A*B
I 0 0 0
Al L2 0 0
A2 -L2 0 0
BI 0 L4 0
B2 0 -4 0
ABI11 0.6 x L2 0.6 x L4 L6
ABI?2 04 x L2 0.6 x L4 -L6
AB21 0.6 xL2 04 x 14 -L6
AB22 04 x 12 0.4 x 14 L6

By comparing the hypothesis being tested in the balanced case to the hypothesis being tested in the unbalanced
case for effects A and B, you can note that the Type II hypotheses for A and B are dependent on the cell
frequencies in the design. For unbalanced designs in which the cell frequencies are not proportional to
the background population, the Type II hypotheses for effects that are contained in other effects are of
questionable value.

However, if an effect is not contained in any other effect, the Type II hypothesis for that effect is an MRH
that does not involve any parameters except those associated with the effect in question.

Thus, Type II SS are appropriate for the following models:

e any balanced model

e any main-effects model

e any pure regression model

e an effect not contained in any other effect (regardless of the model)

In addition to the preceding models, Type I SS are generally accepted by most statisticians for purely nested
models.

Type lll and IV SS and Estimable Functions

When an effect is contained in another effect, the Type II hypotheses for that effect are dependent on the cell
frequencies. The philosophy behind both the Type III and Type IV hypotheses is that the hypotheses tested
for any given effect should be the same for all designs with the same general form of estimable functions.
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To demonstrate this concept, recall the hypotheses being tested by the Type II SS in the balanced 2 x 2 factorial
shown in Table 15.6. Those hypotheses are precisely the ones that the Type III and Type IV hypotheses
employ for all 2 x 2 factorials that have at least one observation per cell. The Type III and Type IV hypotheses
for a design without missing cells usually differ from the hypothesis employed for the same design with
missing cells since the general form of estimable functions usually differs.

Many SAS/STAT procedures can perform tests of Type Il hypotheses, but only PROC GLM offers Type IV
tests as well.

Type lll Estimable Functions

Type I hypotheses are constructed by working directly with the general form of estimable functions. The
following steps are used to construct a hypothesis for an effect FI:

1. For every effect in the model except F/ and those effects that contain F1, equate the coefficients in the
general form of estimable functions to zero.

If F1 is not contained in any other effect, this step defines the Type III hypothesis (as well as the Type
II and Type IV hypotheses). If F/ is contained in other effects, go on to step 2. (See the section “Type
IT SS and Estimable Functions” on page 265 for a definition of when effect F/ is contained in another
effect.)

2. If necessary, equate new symbols to compound expressions in the F/ block in order to obtain the
simplest form for the F/ coefficients.

3. Equate all symbolic coefficients outside the F'/ block to a linear function of the symbols in the F/
block in order to make the F'/ hypothesis orthogonal to hypotheses associated with effects that contain
Fl.

By once again observing the Type II hypotheses being tested in the balanced 2 x 2 factorial, it is possible to
verify that the A and A * B hypotheses are orthogonal and also that the B and A * B hypotheses are orthogonal.
This principle of orthogonality between an effect and any effect that contains it holds for all balanced designs.
Thus, construction of Type III hypotheses for any design is a logical extension of a process that is used for
balanced designs.

The Type III hypotheses are precisely the hypotheses being tested by programs that reparameterize using the
usual assumptions (for example, constraining all parameters for an effect to sum to zero). When no missing
cells exist in a factorial model, Type III SS coincide with Yates’ weighted squares-of-means technique. When
cells are missing in factorial models, the Type III SS coincide with those discussed in Harvey (1960) and
Henderson (1953).

The following discussion illustrates the construction of Type III estimable functions for a 2 x 2 factorial with
no missing cells.

To obtain the A * B interaction hypothesis, start with the general form and equate the coefficients for effects
W, A, and B to zero, as shown in Table 15.8.
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Table 15.8 Type Ill Hypothesis for A * B Interaction

Effect General Form LI=12=14=0
I LI 0
Al L2 0
A2 LI-12 0
Bl L4 0
B2 Ll-14 0
ABI1 L6 L6
ABI2 L2-L6 -L6
AB21 14-1L6 -L6
AB22 LI-12-14+L6 L6

The last column in Table 15.8 represents the form of the MRH for A * B.

To obtain the Type III hypothesis for A, first start with the general form and equate the coefficients for effects
@ and B to zero (let LI = L4 = 0). Next let L6 = K x L2, and find the value of K that makes the A hypothesis
orthogonal to the A * B hypothesis. In this case, K = 0.5. Each of these steps is shown in Table 15.9.

In Table 15.9, the fourth column (under L6 = K x L2) represents the form of all estimable functions not
involving p, BI, or B2. The prime difference between the Type II and Type III hypotheses for A is the way K
is determined. Type II chooses K as a function of the cell frequencies, whereas Type III chooses K such that

the estimable functions for A are orthogonal to the estimable functions for A * B.

Table 15.9 Type Ill Hypothesis for A

Effect General Form LI=14=0 L6=K x L2 K=0.5
I L1 0 0 0
Al L2 L2 L2 L2
A2 Ll-L12 -L2 L2 L2
Bl 14 0 0 0
B2 Ll-14 0 0 0
ABI11 L6 L6 K x L2 0.5x L2
ABI?2 L2-L6 L2-L6 (1-K)x L2 0.5x L2
AB21 I4-16 -L6 -K x L2 0.5 x L2
AB22 Ll -12-14+L6 L2+ L6 —(1-K)x L2 —0.5xL2

An example of Type III estimable functions in a 3 x 3 factorial with unequal cell frequencies and missing

diagonals is given in Table 15.10 (/N through Ng represent the nonzero cell frequencies).

Table 15.10 3 x 3 Factorial Design with Unequal Cell Frequencies and Missing Diagonals

B
1 2 3
1 N1 | N2
A 2| N3 Na
3




For any nonzero values of N; through Ng, the Type III estimable functions for each effect are shown in

Table 15.11.

Table 15.11 Type Ill Estimable Functions for 3 x 3 Factorial Design with Unequal Cell Frequencies and

Missing Diagonals
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Effect A B A*B
u 0 0 0
Al L2 0 0
A2 L3 0 0
A3 -L2-L3 0 0
BI 0 L5 0
B2 0 L6 0
B3 0 -L5-L6 0
ABI2 0.667 x L2 +0.333 x L3 0.333 x L5 + 0.667 x L6 L8
ABI3 0.333 x L2-0.333 x L3 -0.333 x L5 -0.667 x L6 -L8
AB21 0.333 x L2 + 0.667 x L3 0.667 x L5 +0.333 x L6 -L8
AB23 -0.333 x L2 +0.333 x L3 —0.667 x L5 —-0.333 x L6 L8
AB31 -0.333 x L2 -0.667 x L3 0.333 x L5-0.333 x L6 L8
AB32 -0.667 x L2 -0.333 x L3 -0.333 x L5+ 0.333 x L6 -L8

Type IV Estimable Functions

By once again looking at the Type II hypotheses being tested in the balanced 2 x 2 factorial (see Table 15.6),
you can see another characteristic of the hypotheses employed for balanced designs: the coefficients of
lower-order effects are averaged across each higher-level effect involving the same subscripts. For example,
in the A hypothesis, the coefficients of AB/I and ABI2 are equal to one-half the coefficient of A/, and the
coefficients of AB2] and AB22 are equal to one-half the coefficient of A2. With this in mind, the basic
concept used to construct Type IV hypotheses is that the coefficients of any effect, say F1, are distributed
equitably across higher-level effects that contain F/. When missing cells occur, this same general philosophy
is adhered to, but care must be taken in the way the distributive concept is applied.

Construction of Type IV hypotheses begins as does the construction of the Type III hypotheses. That is, for
an effect F'/, equate to zero all coefficients in the general form that do not belong to FI or to any other effect
containing F/. If FI is not contained in any other effect, then the Type IV hypothesis (and Type II and III)
has been found. If F/ is contained in other effects, then simplify, if necessary, the coefficients associated
with FI so that they are all free coefficients or functions of other free coefficients in the F/ block.

To illustrate the method of resolving the free coefficients outside the F/ block, suppose that you are interested
in the estimable functions for an effect A and that A is contained in AB, AC, and ABC. (In other words, the
main effects in the model are A, B, and C.)

With missing cells, the coefficients of intermediate effects (here they are AB and AC) do not always have
an equal distribution of the lower-order coefficients, so the coefficients of the highest-order effects are
determined first (here it is ABC). Once the highest-order coefficients are determined, the coefficients of
intermediate effects are automatically determined.

The following process is performed for each free coefficient of A in turn. The resulting symbolic vectors are
then added together to give the Type IV estimable functions for A.
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1. Select a free coefficient of A, and set all other free coefficients of A to zero.

2. If any of the levels of A have zero as a coefficient, equate all of the coefficients of higher-level effects
involving that level of A to zero. This step alone usually resolves most of the free coefficients remaining.

3. Check to see if any higher-level coefficients are now zero when the coefficient of the associated level
of A is not zero. If this situation occurs, the Type IV estimable functions for A are not unique.

4. For each level of A in turn, if the A coefficient for that level is nonzero, count the number of times
that level occurs in the higher-level effect. Then equate each of the higher-level coefficients to the
coefficient of that level of A divided by the count.

An example of a 3 x 3 factorial with four missing cells (N; through N5 represent positive cell frequencies) is
shown in Table 15.12.

Table 15.12 3 x 3 Factorial Design with Four Missing Cells

B
1 2 3

1| N1 | N2

A 2| N3 | Ny
3 Ns

The Type IV estimable functions are shown in Table 15.13.

Table 15.13 Type IV Estimable Functions for 3 x 3 Factorial Design with Four Missing Cells

Effect A B A*B
I 0 0 0
Al -L3 0 0
A2 L3 0 0
A3 0 0 0
BI 0 L5 0
B2 0 -L5 0
B3 0 0 0
ABI1I -05x%xL3 0.5x L5 L8
ABI?2 -05x%xL3 05x%xL5 -L8
AB21 05x%xL3 05x L5 -L8
AB22 0.5x L3 —05x%xL5 L8
AB33 0 0 0

A Comparison of Type lll and Type IV Hypotheses

For the vast majority of designs, Type III and Type IV hypotheses for a given effect are the same. Specifically,
they are the same for any effect F/ that is not contained in other effects for any design (with or without
missing cells). For factorial designs with no missing cells, the Type III and Type IV hypotheses coincide
for all effects. When there are missing cells, the hypotheses can differ. By using the GLM procedure, you
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can study the differences in the hypotheses and then decide on the appropriateness of the hypotheses for a
particular model.

The Type III hypotheses for three-factor and higher completely nested designs with unequal Ns in the lowest
level differ from the Type II hypotheses; however, the Type IV hypotheses do correspond to the Type 11
hypotheses in this case.

When missing cells occur in a design, the Type IV hypotheses might not be unique. If this occurs in PROC
GLM, you are notified, and you might need to consider defining your own specific comparisons.
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