Chapter 43
The GAM Procedure

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview: GAM Procedure</td>
<td>2974</td>
</tr>
<tr>
<td>Getting Started: GAM Procedure</td>
<td>2974</td>
</tr>
<tr>
<td>Syntax: GAM Procedure</td>
<td>2977</td>
</tr>
<tr>
<td>PROC GAM Statement</td>
<td>2978</td>
</tr>
<tr>
<td>BY Statement</td>
<td>2980</td>
</tr>
<tr>
<td>CLASS Statement</td>
<td>2980</td>
</tr>
<tr>
<td>FREQ Statement</td>
<td>2982</td>
</tr>
<tr>
<td>MODEL Statement</td>
<td>2982</td>
</tr>
<tr>
<td>OUTPUT Statement</td>
<td>2986</td>
</tr>
<tr>
<td>SCORE Statement</td>
<td>2988</td>
</tr>
<tr>
<td>Details: GAM Procedure</td>
<td>2988</td>
</tr>
<tr>
<td>Missing Values</td>
<td>2988</td>
</tr>
<tr>
<td>Nonparametric Regression</td>
<td>2988</td>
</tr>
<tr>
<td>Additive Models and Generalized Additive Models</td>
<td>2989</td>
</tr>
<tr>
<td>Forms of Additive Models</td>
<td>2990</td>
</tr>
<tr>
<td>Estimates from PROC GAM</td>
<td>2991</td>
</tr>
<tr>
<td>Backfitting and Local Scoring Algorithms</td>
<td>2991</td>
</tr>
<tr>
<td>Smoothers</td>
<td>2994</td>
</tr>
<tr>
<td>Selection of Smoothing Parameters</td>
<td>2995</td>
</tr>
<tr>
<td>Confidence Intervals for Smoothers</td>
<td>2996</td>
</tr>
<tr>
<td>Distribution Family and Canonical Link</td>
<td>2998</td>
</tr>
<tr>
<td>Dispersion Parameter</td>
<td>2999</td>
</tr>
<tr>
<td>Computational Resources</td>
<td>3000</td>
</tr>
<tr>
<td>ODS Table Names</td>
<td>3002</td>
</tr>
<tr>
<td>ODS Graphics</td>
<td>3002</td>
</tr>
<tr>
<td>Examples: GAM Procedure</td>
<td>3003</td>
</tr>
<tr>
<td>Example 43.1: Generalized Additive Model with Binary Data</td>
<td>3003</td>
</tr>
<tr>
<td>Example 43.2: Poisson Regression Analysis of Component Reliability</td>
<td>3009</td>
</tr>
<tr>
<td>Example 43.3: Comparing PROC GAM with PROC LOESS</td>
<td>3015</td>
</tr>
<tr>
<td>References</td>
<td>3026</td>
</tr>
</tbody>
</table>
Overview: GAM Procedure

The GAM procedure fits generalized additive models as defined by Hastie and Tibshirani (1990). This procedure provides powerful tools for nonparametric regression and smoothing.

Nonparametric regression relaxes the usual assumption of linearity and enables you to uncover relationships between the independent variables and the dependent variable that might otherwise be missed. SAS provides many procedures for nonparametric regression, such as the LOESS procedure for local regression and the TPSPLINE procedure for thin-plate smoothing splines. The generalized additive models fit by the GAM procedure combine the following:

- an additivity assumption (Stone 1985) that enables relatively many nonparametric relationships to be explored simultaneously
- the distributional flexibility of generalized linear models (Nelder and Wedderburn 1972)

Thus, you can use the GAM procedure when you have multiple independent variables whose effect you want to model nonparametrically, or when the dependent variable is not normally distributed. See the section “Nonparametric Regression” on page 2988 for more details on the form of generalized additive models.

The GAM procedure does the following:

- provides nonparametric estimates for additive models
- supports the use of multidimensional data
- supports multiple SCORE statements
- fits both generalized semiparametric additive models and generalized additive models
- enables you to choose a particular model by specifying the model degrees of freedom or smoothing parameter
- produces graphs with ODS Graphics

Getting Started: GAM Procedure

The following example illustrates the use of the GAM procedure to explore in a nonparametric way how two factors affect a response. The data come from a study of the factors affecting patterns of insulin-dependent diabetes mellitus in children (Sochett et al. 1987). The objective is to investigate the dependence of the level of serum C-peptide on various other factors in order to understand the patterns of residual insulin secretion. The response measurement is the logarithm of C-peptide concentration (pmol/ml) at diagnosis, and the predictor measurements are age and base deficit (a measure of acidity).
title 'Patterns of Diabetes';
data diabetes;
 input Age BaseDeficit CPeptide @@;
 logCP = log(CPeptide);
datalines;
5.2 -8.1 4.8 8.8 -16.1 4.1 10.5 -0.9 5.2
10.6 -7.8 5.5 10.4 -29.0 5.0 1.8 -19.2 3.4
12.7 -18.9 3.4 15.6 -10.6 4.9 5.8 -2.8 5.6
 1.9 -25.0 3.7 2.2 -3.1 3.9 4.8 -7.8 4.5
 7.9 -13.9 4.8 5.2 -4.5 4.9 0.9 -11.6 3.0
11.8 -2.1 4.6 7.9 -2.0 4.8 11.5 -9.0 5.5
10.6 -11.2 4.5 8.5 -0.2 5.3 11.1 -6.1 4.7
12.8 -1.0 6.6 11.3 -3.6 5.1 1.0 -8.2 3.9
14.5 -0.5 5.7 11.9 -2.0 5.1 8.1 -1.6 5.2
13.8 -11.9 3.7 15.5 -0.7 4.9 9.8 -1.2 4.8
11.0 -14.3 4.4 12.4 -0.8 5.2 11.1 -16.8 5.1
 5.1 -5.1 4.6 4.8 -9.5 3.9 4.2 -17.0 5.1
 6.9 -3.3 5.1 13.2 -0.7 6.0 9.9 -3.3 4.9
12.5 -13.6 4.1 13.2 -1.9 4.6 8.9 -10.0 4.9
10.8 -13.5 5.1
;

The following statements perform the desired analysis. The PROC GAM statement invokes the procedure and specifies the diabetes data set as input. The MODEL statement specifies logCP as the response variable and names Age and BaseDeficit as independent variables with univariate smoothing splines and the default of four degrees of freedom.

ods graphics on;
proc gam data=diabetes;
 model logCP = spline(Age) spline(BaseDeficit);
run;
The results are shown in Figure 43.1 and Figure 43.2.

Figure 43.1 Summary Statistics

Patterns of Diabetes

The GAM Procedure
Dependent Variable: logCP
Smoothing Model Component(s): spline(Age) spline(BaseDeficit)

Summary of Input Data Set

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
<td>43</td>
</tr>
<tr>
<td>Number of Missing Observations</td>
<td>0</td>
</tr>
<tr>
<td>Distribution</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Link Function</td>
<td>Identity</td>
</tr>
</tbody>
</table>

Iteration Summary and Fit Statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Number of Backfitting Iterations</td>
<td>5</td>
</tr>
<tr>
<td>Final Backfitting Criterion</td>
<td>5.542745E-10</td>
</tr>
<tr>
<td>The Deviance of the Final Estimate</td>
<td>0.4180791724</td>
</tr>
</tbody>
</table>
Figure 43.1 shows two tables. The first table summarizes the input data set and the distributional family used for the model; the second table summarizes the convergence criterion for backfitting.

Figure 43.2 Analysis of Model

| Parameter | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|------------------|--------------------|----------------|---------|------|-----|
| Intercept | 1.48141 | 0.05120 | 28.93 | <.0001 |
| Linear(Age) | 0.01437 | 0.00437 | 3.28 | 0.0024 |
| Linear(BaseDeficit) | 0.00807 | 0.00247 | 3.27 | 0.0025 |

Smoothing Model Analysis Fit Summary for Smoothing Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Smoothing Parameter</th>
<th>DF</th>
<th>GCV</th>
<th>Num Unique Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spline(Age)</td>
<td>0.995582</td>
<td>3.00000</td>
<td>0.011675</td>
<td>37</td>
</tr>
<tr>
<td>Spline(BaseDeficit)</td>
<td>0.995299</td>
<td>3.00000</td>
<td>0.012437</td>
<td>39</td>
</tr>
</tbody>
</table>

Smoothing Model Analysis Analysis of Deviance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Chi-Square</th>
<th>Pr ></th>
<th>ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spline(Age)</td>
<td>3.00000</td>
<td>0.150761</td>
<td>12.2605</td>
<td>0.0065</td>
<td></td>
</tr>
<tr>
<td>Spline(BaseDeficit)</td>
<td>3.00000</td>
<td>0.081273</td>
<td>6.6095</td>
<td>0.0854</td>
<td></td>
</tr>
</tbody>
</table>

Figure 43.2 displays summary statistics for the model. It consists of three tables. The first is the “Parameter Estimates” table for the parametric part of the model. It indicates that the linear trends for both Age and BaseDeficit are highly significant. The second table is the summary of smoothing components of the nonparametric part of the model. This table presents the smoothing parameter and degrees of freedom (DF) for each component. By default, each smoothing component has approximately 4 DF. For univariate spline components, one DF is taken up by the (parametric) linear part of the model, so the remaining approximate DF is 3. Finally, the third table is the “Analysis of Deviance” table for the nonparametric component of the model.

With ODS Graphics enabled, PROC GAM produces by default a panel of plots of partial prediction curves of smoothing components. In these plots, the partial prediction for a predictor such as Age is its nonparametric contribution to the model, \(s(Age) \). For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the graphics available in the GAM procedure, see the section “ODS Graphics” on page 3002.

Plots for both predictors (Figure 43.3) show a strong quadratic pattern, with a possible indication of higher-order behavior. Further investigation is required to determine whether these patterns are real or not.
The following statements are available in the GAM procedure:

```
PROC GAM < options > ;
   CLASS variable < (options) > < variable < (options) > . . . > / </ options > ;
   MODEL dependent < (options) > = < PARAM(effects) > < smoothing-effects > / </ options > ;
   SCORE DATA= SAS-data-set OUT= SAS-data-set ;
   OUTPUT OUT= SAS-data-set < keyword= prefix > . . . keyword= prefix > ;
   BY variables ;
   FREQ variable ;
```
The syntax of the GAM procedure is similar to that of other regression procedures in the SAS System. The PROC GAM and MODEL statements are required. The CLASS statement, if specified, must precede the MODEL statement. The CLASS and SCORE statements can appear multiple times; all other statements must appear only once.

The syntax for PROC GAM is described in the following sections in alphabetical order after the description of the PROC GAM statement.

PROC GAM Statement

```plaintext
PROC GAM <options> ;
```

The PROC GAM statement invokes the procedure. Table 43.1 summarizes the options available in the PROC GAM statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA=</td>
<td>Specifies the input SAS data set</td>
</tr>
<tr>
<td>DESCENDING</td>
<td>Reverses the sort order of all CLASS variables</td>
</tr>
<tr>
<td>ORDER=</td>
<td>Specifies the sort order for CLASS variables</td>
</tr>
<tr>
<td>PLOTS</td>
<td>Controls plots produced through ODS Graphics</td>
</tr>
</tbody>
</table>

You can specify the following options.

DATA=SAS-data-set

specifies the SAS data set to be read by PROC GAM. The default value is the most recently created data set.

DESCENDING

reverses the sort order of all classification variables (specified in the CLASS statement). If both the DESCENDING and ORDER= options are specified, PROC GAM orders the categories according to the ORDER= option and then reverses that order. This option has the same effect as the classification variable option DESCENDING in the CLASS statement and the response variable option DESCENDING in the MODEL statement.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sort order for the levels of all classification variables (specified in the CLASS statement). This ordering determines which parameters in the model correspond to each level in the data. Note that the ORDER= option in the CLASS statement and the ORDER= response variable option in the MODEL statement override the ORDER= option in the PROC GAM statement.

PLOTS < (global-plot-options) > <= plot-request < (options) >>

controls the plots produced through ODS Graphics. When you specify only one plot-request, you can omit the parentheses around the plot-request. Here are some examples:
plots=all
plots=components(commonaxes)
plots(unpack)=components(commonaxes clm)

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;
proc gam data=test plots(unpack)=components(commonaxes clm);
 model z=spline(x) spline(y);
run;
ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 615 in Chapter 21, “Statistical Graphics Using ODS.”

With ODS Graphics enabled, PROC GAM produces by default a panel of plots of partial prediction curves of smoothing components.

Global Plot Options

The global-plot-options apply to all plots generated by the GAM procedure, unless altered by a specific-plot-option.

UNPACK
separately displays the smoothing component plots that are by default presented in panels. Use this option if you want to access individual smoothing component plots within the panel.

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots be produced.

NONE
suppresses all plots.

COMPONENTS | COMPONENT <(components-options)>
displays a panel of smoothing component plots. The following components-options are available:

ADDITIVE
produces the additive component plots for spline and loess effects. The additive component plots combine the linear trend and the nonparametric prediction for each spline or loess effect.
CLM
includes confidence limits in the smoothing component plots. By default, 95% confidence limits are produced, but you can change the significance level by specifying the ALPHA= option in the MODEL statement. Note that producing these limits can be computationally intensive for large data sets.

COMMONAXES
specifies that smoothing component plots use a common vertical axis. This enables you to visually judge relative effect size.

UNPACK
displays the smoothing components individually.

BY Statement

``` BY variables ;
```

You can specify a BY statement with PROC GAM to obtain separate analyses of observations in groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

- Sort the data by using the SORT procedure with a similar BY statement.
- Specify the NOTSORTED or DESCENDING option in the BY statement for the GAM procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged in groups (according to values of the BY variables) and that these groups are not necessarily in alphabetical or increasing numeric order.
- Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts. For more information about the DATASETS procedure, see the discussion in the SAS Visual Data Management and Utility Procedures Guide.

CLASS Statement

``` CLASS variable <(options)> < variable <(options)> . . . </ options> ;
```

The CLASS statement names the classification variables to be used in the analysis. The CLASS statement must precede the MODEL statement. You can specify various `options` for each variable by enclosing them in parentheses after the variable name. You can also specify global `options` for the CLASS statement by placing them after a slash (/). Global `options` are applied to all the variables specified in the CLASS statement. If you specify more than one CLASS statement, the global `options` specified on any one CLASS statement apply to all CLASS statements. However, individual CLASS variable `options` override the global `options`.
DESCENDING

DESC

reverses the sort order of the classification variable. If both the DESCENDING and ORDER= options are specified, PROC GAM orders the categories according to the ORDER= option and then reverses that order.

ORDER=DATA | FORMATTED | FREQ | INTERNAL

specifies the sort order for the categories of categorical variables. This ordering determines which parameters in the model correspond to each level in the data. When the default ORDER=FORMATTED is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered by their internal values. The following table shows how PROC GAM interprets values of the ORDER= option.

<table>
<thead>
<tr>
<th>Value of ORDER=</th>
<th>Levels Sorted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>Order of appearance in the input data set</td>
</tr>
<tr>
<td>FORMATTED</td>
<td>External formatted value, except for numeric variables with no explicit format, which are sorted by their unformatted (internal) value</td>
</tr>
<tr>
<td>FREQ</td>
<td>Descending frequency count; levels with the most observations come first in the order</td>
</tr>
<tr>
<td>INTERNAL</td>
<td>Unformatted value</td>
</tr>
</tbody>
</table>

By default, ORDER=FORMATTED. For FORMATTED and INTERNAL, the sort order is machine-dependent. For more information on sort order, see the chapter on the SORT procedure in the SAS Visual Data Management and Utility Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REF='level' | keyword

specifies a level of the classification variable to be put at the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level of the variable to use as the reference level. Specify the formatted value of the variable if a format is assigned. For a global or individual variable REF= option, you can use one of the following keywords. The default is REF=LAST.

| FIRST | designates the first ordered level as reference. |
| LAST | designates the last ordered level as reference. |

TRUNCATE< =n>

specifies the length n of CLASS variable values to use in determining CLASS variable levels. If you specify TRUNCATE without the length n, the first 16 characters of the formatted values are used. When formatted values are longer than 16 characters, you can use this option to revert to the levels as determined in releases previous to SAS 9. The default is to use the full formatted length of the CLASS variable. The TRUNCATE option is available only as a global option.
FREQ Statement

```
FREQ variable;
```

The FREQ statement names a variable that provides frequencies for each observation in the DATA= data set. Specifically, if n is the value of the FREQ variable for a given observation, then that observation is used n times.

The analysis produced by using a FREQ statement reflects the expanded number of observations. You can produce the same analysis (without the FREQ statement) by first creating a new data set that contains the expanded number of observations. For example, if the value of the FREQ variable is 5 for the first observation, the first five observations in the new data set are identical. Each observation in the old data set is replicated n_i times in the new data set, where n_i is the value of the FREQ variable for that observation.

If the value of the FREQ variable is missing or is less than 1, the observation is not used in the analysis. If the value is not an integer, only the integer portion is used.

The FREQ statement is not available when a loess smoother is included in the model.

MODEL Statement

```
MODEL dependent < (options) > = < PARAM(effects) > < smoothing-effects > / options ;
```

```
MODEL event/trials = < PARAM(effects) > < smoothing-effects > / options ;
```

The MODEL statement specifies the dependent variable and the independent effects you want to use in the model. Specify the independent parametric variables inside the parentheses of PARAM(). The parametric variables can be either classification variables or continuous variables. Classification variables must be declared in a CLASS statement. Interactions between variables can also be included as parametric effects. Multiple PARAM() specifications are allowed in the MODEL statement. The syntax for the specification of effects is the same as for the GLM procedure (Chapter 48, “The GLM Procedure”).

Only continuous variables can be specified in smoothing-effects. Any number of smoothing-effects can be specified, as follows:

<table>
<thead>
<tr>
<th>Smoothing Effect</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLINE(variable < , DF=number >)</td>
<td>Fits a smoothing spline with the variable and with DF=number</td>
</tr>
<tr>
<td>LOESS(variable < , DF=number >)</td>
<td>Fits a local regression with the variable and with DF=number</td>
</tr>
<tr>
<td>SPLINE2(variable1, variable2 < ,DF=number >)</td>
<td>Fits a bivariate thin-plate smoothing spline with variable1 and variable2 and with DF=number</td>
</tr>
</tbody>
</table>

The number specified in the DF= option must be positive. If you specify neither the DF= option nor the METHOD=GCV in the MODEL statement, then the default is DF=4. Note that for univariate spline and loess components, a degree of freedom is used by default to account for the linear portion of the model, so the value displayed in the “Fit Summary” and “Analysis of Deviance” tables will be one less than the value you specify.
Both parametric effects and smoothing effects are optional. If none are specified, a model that contains only an intercept is fitted.

If only parametric variables are present, PROC GAM fits a parametric linear model by using the terms inside the parentheses of PARAM(). If only smoothing effects are present, PROC GAM fits a nonparametric additive model. If both types of effect are present, PROC GAM fits a semiparametric model by using the parametric effects as the linear part of the model.

Table 43.2 shows how to specify various models for a dependent variable \(y \) and independent variables \(x, x_1, \) and \(x_2 \). \(s_i(\cdot), i = 1, 2 \) are nonparametric smooth functions.

<table>
<thead>
<tr>
<th>Type of Model</th>
<th>Syntax for model</th>
<th>Mathematical Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric</td>
<td>(y=\text{param}(x_1 \ x_2))</td>
<td>(E(Y</td>
</tr>
<tr>
<td>Nonparametric</td>
<td>(y=\text{spline}(x))</td>
<td>(E(Y</td>
</tr>
<tr>
<td>Nonparametric</td>
<td>(y=\text{loess}(x))</td>
<td>(E(Y</td>
</tr>
<tr>
<td>Semiparametric</td>
<td>(y=\text{spline}(x_1) \ \text{param}(x_2))</td>
<td>(E(Y</td>
</tr>
<tr>
<td>Additive</td>
<td>(y=\text{spline}(x_1) \ \text{spline}(x_2))</td>
<td>(E(Y</td>
</tr>
<tr>
<td>Thin-plate spline</td>
<td>(y=\text{spline2}(x_1, x_2))</td>
<td>(E(Y</td>
</tr>
</tbody>
</table>

Table 43.3 summarizes the options available in the MODEL statement.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCENDING</td>
<td>Reverses the order of the response categories</td>
</tr>
<tr>
<td>EVENT=</td>
<td>Specifies the event category for the binary response model</td>
</tr>
<tr>
<td>ORDER=</td>
<td>Specifies the sort order for the response variable</td>
</tr>
<tr>
<td>REFERENCE=</td>
<td>Specifies the reference category for the binary response model</td>
</tr>
<tr>
<td>ALPHA=</td>
<td>Specifies the significance level</td>
</tr>
<tr>
<td>ANODEV=</td>
<td>Specifies the method used to analyze smoothing effects</td>
</tr>
<tr>
<td>DIST=</td>
<td>Specifies the distribution family</td>
</tr>
<tr>
<td>EPSILON=</td>
<td>Specifies the convergence criterion for the backfitting algorithm</td>
</tr>
<tr>
<td>EPSSCORE=</td>
<td>Specifies the convergence criterion for the local scoring algorithm</td>
</tr>
<tr>
<td>IPRINT</td>
<td>Produces an iteration summary table for the smoothing effects</td>
</tr>
<tr>
<td>MAXITER=</td>
<td>Specifies the maximum number of iterations for the backfitting algorithm</td>
</tr>
<tr>
<td>MAXITSCORE=</td>
<td>Specifies the maximum number of iterations for the local scoring algorithm</td>
</tr>
<tr>
<td>METHOD=</td>
<td>Specifies the method for selecting the value of the smoothing parameter</td>
</tr>
<tr>
<td>OFFSET=</td>
<td>Specifies an offset for the linear predictor</td>
</tr>
</tbody>
</table>
Response Variable Options

Response variable options determine how the GAM procedure models probabilities for binary data.

You can specify the following options by enclosing them in parentheses after the response variable. See the section “CLASS Statement” on page 2980 for more detail.

DESCENDING
DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are specified, PROC GAM orders the response categories according to the ORDER= option and then reverses that order.

EVENT='category' | keyword
specifies the event category for the binary response model. PROC GAM models the probability of the event category. You can specify the value (formatted, if a format is applied) of the event category in quotes, or you can specify one of the following keywords. The default is EVENT=FIRST.

FIRST
designates the first ordered category as the event.

LAST
designates the last ordered category as the event.

One of the most common sets of response levels is \{0, 1\}, with 1 representing the event for which the probability is to be modeled. Consider the example where \(Y\) takes the value 1 and 0 for event and nonevent, respectively, and \(X\) is the explanatory variable. By default, PROC GAM models the probability that \(Y = 0\). To model the probability that \(Y = 1\), specify the following MODEL statement:

```plaintext
model Y (event='1') = X;
```

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. By default, ORDER=FORMATTED. When ORDER=FORMATTED, the values of numeric variables for which you have supplied no explicit format (that is, for which there is no corresponding FORMAT statement in the current PROC GAM run or in the DATA step that created the data set), are ordered by their internal (numeric) value. If you specify the ORDER= option in the MODEL statement and the ORDER= option in the CLASS statement, the former takes precedence. The following table shows the interpretation of the ORDER= values:

<table>
<thead>
<tr>
<th>Value of ORDER=</th>
<th>Levels Sorted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>Order of appearance in the input data set</td>
</tr>
<tr>
<td>FORMATTED</td>
<td>External formatted value, except for numeric variables with no explicit format, which are sorted by their unformatted (internal) value</td>
</tr>
<tr>
<td>FREQ</td>
<td>Descending frequency count; levels with the most observations come first in the order</td>
</tr>
<tr>
<td>INTERNAL</td>
<td>Unformatted value</td>
</tr>
</tbody>
</table>
For the FORMATTED and INTERNAL values, the sort order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the SAS Visual Data Management and Utility Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=’category’ | keyword

REF=’category’ | keyword

specifies the reference category for the binary response model. Specifying one response category as the reference is the same as specifying the other response category as the event category. You can specify the value (formatted if a format is applied) of the reference category in quotes, or you can specify one of the following keywords:

- **FIRST** designates the first ordered category as the reference.
- **LAST** designates the last ordered category as the reference. This is the default.

The REFERENCE= option is ignored when the EVENT= option is present.

Model Options

ALPHA=number

specifies the significance level α of the confidence limits on the final nonparametric component estimates when you request confidence limits to be included in the output data set. Specify number as a value between 0 and 1. The default value is 0.05. See the section “OUTPUT Statement” on page 2986 for more information about the OUTPUT statement.

ANODEV=type

specifies the type of method to be used to produce the “Analysis of Deviance” table for smoothing effects. The available choices are as follows:

- **REFIT** specifies that PROC GAM perform χ^2 tests by fitting nested GAM models. This is the default choice if you do not specify the ANODEV= option. This choice requires fitting separate GAM models where one smoothing term is omitted from each model.
- **NOREFIT** specifies that PROC GAM perform approximate tests of smoothing effects. To test each smoothing effect, a weighted least squares model is fitted to the remaining parametric part of the model while keeping other nonlinear smoothers fixed. For details, see Hastie (1991). This choice requires only a single GAM fitting to be performed, which reduces the time of the procedure.
- **NONE** requests that the procedure not produce the “Analysis of Deviance” table for smoothing effects.

DIST=distribution-id

LINK=distribution-id

specifies the distribution family used in the model. The choices for distribution-id are displayed in Table 43.4. See “Distribution Family and Canonical Link” on page 2998 for more information.
Table 43.4 Distribution Families for GAM Models

<table>
<thead>
<tr>
<th>DIST=</th>
<th>Distribution</th>
<th>Link Function</th>
<th>Response Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAUSSIAN</td>
<td>GAUS</td>
<td>NORM</td>
<td>Normal (Gaussian)</td>
</tr>
<tr>
<td>BINOMIAL</td>
<td>LOGI</td>
<td>BIN</td>
<td>Binomial</td>
</tr>
<tr>
<td>POISSON</td>
<td>POIS</td>
<td>LOGL</td>
<td>Poisson</td>
</tr>
<tr>
<td>GAMMA</td>
<td>GAMM</td>
<td>IGAU</td>
<td>Gamma</td>
</tr>
<tr>
<td>IGAUSSIAN</td>
<td>IGAU</td>
<td>INVG</td>
<td>Inverse Gaussian</td>
</tr>
</tbody>
</table>

Canonical link functions are used with those distributions. Although alternative links are possible theoretically, the final fit of nonparametric regression models is relatively insensitive to the precise choice of link functions. Therefore, only the canonical link for each distribution family is implemented in PROC GAM. The loess smoother is not available for DIST=BINOMIAL when the number of trials is greater than 1.

EPI$$SILON=$$number
specifies the convergence criterion for the backfitting algorithm. The default value is $1E^{-8}$.

EP$$SSCORE=$$number
specifies the convergence criterion for the local scoring algorithm. The default value is $1E^{-8}$.

IT$$PRINT
produces an iteration summary table for the smoothing effects when doing backfitting and local scoring.

MAX$$ITER=$$number
specifies the maximum number of iterations for the backfitting algorithm. The default value is 50.

MAX$$ITSCORE=$$number
specifies the maximum number of iterations for the local scoring algorithm. The default value is 100.

METHOD=GCV
specifies that the value of the smoothing parameter should be selected by generalized cross validation. If you specify both METHOD=GCV and the DF= option for some smoothing effects, the user-specified DF values are used for those effects in which the DF= option is specified. The GCV criterion is used for determining smoothness of the remaining effects. See the section “Selection of Smoothing Parameters” on page 2995 for more details on the GCV method.

OFFSET=variable
specifies an offset for the linear predictor. An offset plays the role of a predictor whose coefficient is known to be 1. For example, you can use an offset in a Poisson model when counts have been obtained in time intervals of different lengths. With a log link function, you can model the counts as Poisson variables with the logarithm of the time interval as the offset variable. The offset variable cannot appear in the CLASS statement or elsewhere in the MODEL statement.

OUTPUT Statement

```
OUTPUT OUT= SAS-data-set <keyword=prefix> . . . keyword=prefix>> ;
```
The OUTPUT statement creates a new SAS data set that contains diagnostic measures calculated after fitting the model.

All the variables in the original data set are included in the new data set, along with new variables that are created with keywords specified in the OUTPUT statement. These new variables contain the values of a variety of statistics and diagnostic measures that are calculated for each observation in the data set. If no keywords are present, the OUT= data set contains only the original data set and predicted values. The predicted values include the linear predictor for the response and the prediction for each smoothing term in the model. When you specify a distribution family with the DIST= or LINK= option in the MODEL statement, predicted response values after applying the inverse link function are also included. Predicted values are computed for observations that have missing response values, nonmissing values in the explanatory variables, and values of the smoothing variables that are within the smoothing ranges of the fitted model.

You can specify the following options in the OUTPUT statement:

OUT=SAS-data-set

specifies the name of the new data set to contain the diagnostic measures. This option is required.

keyword < =prefix>

specifies the statistics to include in the output data set. The keywords and the statistics they represent are as follows:

- **PREDICTED** predicted values for each smoothing component and overall predicted values on the response scale at design points. The prediction for each spline or loess term is only for the nonlinear component of each smoother.
- **Linp** linear prediction values on the link scale at design points
- **UCLM** upper confidence limits for each predicted smoothing component
- **LCLM** lower confidence limits for each predicted smoothing component
- **ADIAG** diagonal element of the hat matrix associated with the observation for each smoothing spline component
- **RESIDUAL** residual standardized by its weights
- **STD** standard deviation of the prediction for each smoothing component
- **ALL** all statistics in this list

The names of the new variables that contain the statistics are formed by concatenating a prefix and the corresponding variable names. If you do not specify a prefix, the names are formed by using default prefixes listed in the following table:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRED</td>
<td>P_</td>
</tr>
<tr>
<td>LINP</td>
<td>LINP_</td>
</tr>
<tr>
<td>UCLM</td>
<td>UCLM_</td>
</tr>
<tr>
<td>LCLM</td>
<td>LCLM_</td>
</tr>
<tr>
<td>ADIAG</td>
<td>ADIAG_</td>
</tr>
<tr>
<td>RESID</td>
<td>R_</td>
</tr>
<tr>
<td>STD</td>
<td>STD_ (for spline)</td>
</tr>
<tr>
<td></td>
<td>STDP_ (for loess)</td>
</tr>
</tbody>
</table>
For example, suppose that you have a dependent variable \(y \) and an independent smoothing variable \(x \). If you specify the keywords PRED=MyP_ and ADIAG=MyA_, the new variables in the output SAS data set are MyP_y, MyP_x, and MyA_x. If you specify the keywords PRED and ADIAG without prefixes, the new variables are P_y, P_x, and ADIAG_x.

SCORE Statement

```
SCORE DATA= SAS-data-set  OUT= SAS-data-set ;
```

The SCORE statement calculates predicted values for a new data set. All the variables in the DATA= data set are included in the OUT= data set, along with the predicted values. The predicted values consist of predicted responses after the inverse link function transformation, predicted values of all smoothing terms, and predicted values on the link scale. Predicted values are computed for observations with missing response values whose values of the specified explanatory variables are nonmissing, and whose values of the specified smoothing variables are within the smoothing ranges of the fitted model. The predicted variables use the same naming convention as the OUTPUT statement. If you have multiple data sets to score, you can specify multiple SCORE statements.

The following *options* must be specified in the SCORE statement:

- **DATA=SAS-data-set**
 Specifies an input SAS data set containing all the variables included in independent effects in the MODEL statement. The predicted response is computed for each observation in the SCORE DATA= data set.

- **OUT=SAS-data-set**
 Specifies the name of the SAS data set to contain the predictions.

Details: GAM Procedure

Missing Values

When fitting a model, PROC GAM excludes any observation with missing values for an explanatory variable, offset variable, or dependent variable. However, if only the response is missing, predicted values can be computed and output to a data set by using the OUTPUT or SCORE statement.

Nonparametric Regression

Nonparametric regression relaxes the usual assumption of linearity and enables you to explore the data more flexibly, uncovering structure in the data that might otherwise be missed.

However, many forms of nonparametric regression do not perform well when the number of independent variables in the model is large. The sparseness of data in this setting causes the variances of the estimates to
be unacceptably large unless the sample size is extremely large. The problem of rapidly increasing variance for increasing dimensionality is sometimes referred to as the “curse of dimensionality.” Interpretability is another problem with nonparametric regression based on kernel and smoothing spline estimates. These estimates contain information about the relationship between the dependent and independent variables, and the information is often difficult to comprehend.

To overcome these difficulties, additive models were proposed by some researchers, for example, Stone (1985). These models estimate an additive approximation to the multivariate regression function. The benefits of an additive approximation are at least twofold. First, since each of the individual additive terms is estimated by using a univariate smoother, the curse of dimensionality is avoided, at the cost of not being able to approximate universally. Second, estimates of the individual terms explain how the dependent variable changes with the corresponding independent variables.

To extend the additive model to a wide range of distribution families, Hastie and Tibshirani (1990) proposed generalized additive models. These models enable the mean of the dependent variable to depend on an additive predictor through a nonlinear link function. The models permit the response probability distribution to be any member of the exponential family of distributions. Many widely used statistical models belong to this general class; they include additive models for Gaussian data, nonparametric logistic models for binary data, and nonparametric log-linear models for Poisson data.

Additive Models and Generalized Additive Models

This section describes the methodology and the fitting procedure behind generalized additive models.

Let Y be a response random variable and X_1, X_2, \ldots, X_p be a set of predictor variables. A regression procedure can be viewed as a method for estimating the expected value of Y given the values of X_1, X_2, \ldots, X_p. The standard linear regression model assumes a linear form for the dependency of Y on X:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon$$

where $E(\epsilon) = 0$ and $\text{Var}(\epsilon) = \sigma^2$. Given a sample, estimates of $\beta_0, \beta_1, \ldots, \beta_p$ are usually obtained by the least squares method.

The additive model generalizes the linear model by modeling the dependency as

$$Y = s_0 + s_1(X_1) + s_2(X_2) + \cdots + s_p(X_p) + \epsilon$$

where $s_j(X), j = 1, 2, \ldots, p,$ are smooth functions, $E(\epsilon) = 0$ and $\text{Var}(\epsilon) = \sigma^2$.

In order to be estimable, the smooth functions s_j have to satisfy standardized conditions such as $E(s_j(X_j)) = 0$. These functions are not given a parametric form but instead are estimated in a nonparametric fashion.

While traditional linear models and additive models can be used in most statistical data analysis, there are types of problems for which they are not appropriate. For example, the normal distribution might not be adequate for modeling discrete responses such as counts or bounded responses such as proportions.

Generalized additive models address these difficulties, extending additive models to many other distributions besides just the normal. Thus, generalized additive models can be applied to a much wider range of data analysis problems.
Like generalized linear models, generalized additive models consist of a random component, an additive component, and a link function relating the two components. The response \(Y \), the random component, is assumed to have exponential family density

\[
f_Y(y; \theta, \phi) = \exp \left\{ \frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi) \right\}
\]

where \(\theta \) is called the natural parameter and \(\phi \) is the scale parameter. The mean of the response variable \(\mu \) is related to the set of covariates \(X_1, X_2, \ldots, X_p \) by a link function \(g(. \) . The quantity

\[
\eta = s_0 + \sum_{j=1}^{p} s_j(X_j)
\]

defines the additive component, where \(s_1(\), \ldots, \(s_p(\) are smooth functions, and the relationship between \(\mu \) and \(\eta \) is defined by \(g(\mu) = \eta \). The most commonly used link function is the canonical link, for which \(\eta = \theta \).

Generalized additive models and generalized linear models can be applied in similar situations, but they serve different analytic purposes. Generalized linear models emphasize estimation and inference for the parameters of the model, while generalized additive models focus on exploring data nonparametrically. Generalized additive models are more suitable for exploring the data and visualizing the relationship between the dependent variable and the independent variables.

Forms of Additive Models

Suppose that \(y \) is a continuous variable and \(x_1 \) and \(x_2 \) are two explanatory variables of interest. To fit an additive model, you can use a MODEL statement similar to that used in many regression procedures in the SAS System:

```sas
model y = spline(x1) spline(x2);
```

This model statement requires the procedure to fit the following model:

\[
\eta(x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + s_1(x_1) + s_2(x_2)
\]

where the \(s_i(\) terms denote nonparametric spline functions of the respective explanatory variables.

The GAM procedure can fit semiparametric models. The following MODEL statement assumes a linear relation with \(x_1 \) and an unknown functional relation with \(x_2 \):

```sas
model y = param(x1) spline(x2);
```

If you want to fit a model containing a functional two-way interaction between \(x_1 \) and \(x_2 \), you can use the following MODEL statement:

```sas
model y = spline2(x1,x2);
```

In this case, the GAM procedure fits a model equivalent to that of PROC TPSPLINE.
Estimates from PROC GAM

PROC GAM provides the capability to fit both nonparametric and semiparametric models. So that you can better understand the underlying trend of any given factor, PROC GAM separates the linear trend from any general nonparametric trend during the fitting as well as in the final report. This makes it easy to determine whether the significance of a smoothing variable is associated with a simple linear trend or a more complicated pattern.

For example, suppose you want to fit a semiparametric model as

\[y = \alpha_0 + \alpha_1 z + f_1(x_1) + f_2(x_2) \]

The GAM estimate for this model is

\[y = \hat{\alpha}_0 + \hat{\alpha}_1 z + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\delta}_1(x_1) + \hat{\delta}_2(x_2) \]

where \(\hat{\delta}_1 \) and \(\hat{\delta}_2 \) are linear-adjusted nonparametric estimates of the \(f_1 \) and \(f_2 \) effects. The \(p \)-values for \(\hat{\alpha}_0, \hat{\alpha}_1, \hat{\beta}_1, \) and \(\hat{\beta}_2 \) are reported in the parameter estimates table. \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \) are the estimates labeled \(\text{Linear}(x_1) \) and \(\text{Linear}(x_2) \) in the table. The \(p \)-values for \(\hat{\delta}_1 \) and \(\hat{\delta}_2 \) are reported in the analysis of deviance table.

Only \(\hat{\delta}_1, \hat{\delta}_2 \), and \(\hat{y} \) are output to the output data set, with the corresponding variable names \(\text{P}_x1, \text{P}_x2, \) and \(\text{P}_y \). For Gaussian data, the complete marginal prediction for variable \(x_1 \) is:

\[\hat{\beta}_1 x_1 + \text{P}_x1 \]

If the additive component plots are requested by the ADDITIVE suboption, the additive component for variable \(x_2 \) is computed as:

\[\hat{\beta}_2 (x_2 - \bar{x}_2) + \text{P}_x2 \]

where \(\bar{x}_2 \) is the mean for variable \(x_2 \).

Backfitting and Local Scoring Algorithms

Much of the development and notation in this section follows Hastie and Tibshirani (1986).

Additive Models

Consider the estimation of the smoothing terms \(s_0, s_1, \ldots, s_p \) in the additive model

\[\eta(X) = s_0 + \sum_{j=1}^{p} s_j(X_j) \]

where \(\text{E}(s_j(X_j)) = 0 \) for every \(j \). Since the algorithm for additive models is the basis for fitting generalized additive models, the algorithm for additive models is discussed first.

Many ways are available to approach the formulation and estimation of additive models. The backfitting algorithm is a general algorithm that can fit an additive model with any regression-type fitting mechanisms.
Define the kth set of partial residuals as

$$R_k = Y - s_0 - \sum_{j \neq k} s_j(X_j)$$

then $E(R_k|X_k) = s_k(X_k)$. This observation provides a way to estimate each smoothing function $s_k()$ given estimates $\{\hat{s}_j(), j \neq k\}$ for all the others. The resulting iterative procedure is known as the backfitting algorithm (Friedman and Stuetzle 1981). The following formulation is taken from Hastie and Tibshirani (1986).

The Backfitting Algorithm

The unweighted form of the backfitting algorithm is as follows:

1. **Initialization:**

 \[s_0 = E(Y), s_1^{(1)} = s_2^{(1)} = \cdots = s_p^{(1)} = 0, m = 0 \]

2. **Iterate:**

 \[m = m + 1; \]

 for $j = 1$ to p do:

 \[R_j = Y - s_0 - \sum_{k=1}^{j-1} s_k^{(m)}(X_k) - \sum_{k=j+1}^{p} s_{k}^{(m-1)}(X_k); \]

 \[s_j^{(m)} = E(R_j|X_j); \]

3. **Until:**

 \[RSS = \frac{1}{n} \left\| Y - s_0 - \sum_{j=1}^{p} s_j^{(m)}(X_j) \right\|^2 \]
 fails to decrease, or satisfies the convergence criterion.

In the preceding notation, $s_j^{(m)}()$ denotes the estimate of $s_j()$ at the mth iteration. It can be shown that with many smoothers (including linear regression, univariate and bivariate splines, and combinations of these), RSS never increases at any step. This implies that the algorithm always converges (Hastie and Tibshirani 1986). Note, however, that for distributions other than Gaussian, numerical instabilities with weights can cause convergence problems. Even when the algorithm converges, the individual functions need not be unique, since dependence among the covariates can lead to more than one representation for the same fitted surface.

A weighted backfitting algorithm has the same form as for the unweighted case, except that the smoothers are weighted. In PROC GAM, weights are used with non-Gaussian data in the local scoring procedure described later in this section.

The GAM procedure uses the following condition as the convergence criterion for the backfitting algorithm:

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{p} \left(s_{j}^{(m-1)}(X_{ij}) - s_{j}^{(m)}(X_{ij}) \right)^2}{1 + \sum_{i=1}^{n} \sum_{j=1}^{p} \left(s_{j}^{(m-1)}(X_{ij}) \right)^2} \leq \epsilon$$

where $\epsilon = 10^{-8}$ by default; you can change this with the EPSILON= option in the MODEL statement.
Generalized Additive Models

The algorithm described so far fits only additive models. The algorithm for generalized additive models is a little more complicated. Generalized additive models extend generalized linear models in the same manner that additive models extend linear regression models—that is, by replacing the form $\alpha + \sum_j \beta_j x_j$ with the additive form $\alpha + \sum_j f_j(x_j)$. See “Generalized Linear Models Theory” on page 3247 in Chapter 46, “The GENMOD Procedure,” for more information.

PROC GAM fits generalized additive models by using a modified form of adjusted dependent variable regression, as described for generalized linear models in McCullagh and Nelder (1989), with the additive predictor taking the role of the linear predictor. Hastie and Tibshirani (1986) call this the local scoring algorithm. Important components of this algorithm depend on the link function for each distribution, as shown in the following table.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Link</th>
<th>Adjusted Dependent (z)</th>
<th>Weights (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>μ</td>
<td>y</td>
<td>1</td>
</tr>
<tr>
<td>Binomial</td>
<td>$\log\left(\frac{\mu}{n-\mu}\right)$</td>
<td>$\eta + (y - \mu)/n\mu(1 - \mu)$</td>
<td>$n\mu(1 - \mu)$</td>
</tr>
<tr>
<td>Gamma</td>
<td>$-1/\mu$</td>
<td>$\eta + (y - \mu)/\mu^2$</td>
<td>μ^2</td>
</tr>
<tr>
<td>Poisson</td>
<td>$\log(\mu)$</td>
<td>$\eta + (y - \mu)/\mu$</td>
<td>μ</td>
</tr>
<tr>
<td>Inverse Gaussian</td>
<td>$1/\mu^2$</td>
<td>$\eta - 2(y - \mu)/\mu^3$</td>
<td>$\mu^3/4$</td>
</tr>
</tbody>
</table>

Once the distribution and hence these quantities are defined, the local scoring algorithm proceeds as follows.

The General Local Scoring Algorithm

1. **Initialization:**

 $s_i = g(E(y)), s_1^0 = s_2^0 = \cdots = s_p^0 = 0, m = 0$

2. **Iterate:**

 $m = m + 1$

 Form the predictor η, mean μ, weights w, and adjusted dependent variable z based on their corresponding values from the previous iteration:

 $$
 \eta_i^{(m-1)} = s_0 + \sum_{j=1}^p s_j^{(m-1)}(x_{ij})
 $$

 $$
 \mu_i^{(m-1)} = g^{-1}\left(\eta_i^{(m-1)}\right)
 $$

 $$
 w_i = \left(V_i^{(m-1)}\right)^{-1} \left[\left(\frac{\partial \mu}{\partial \eta}\right)_i^{(m-1)} \right]^2
 $$

 $$
 z_i = \eta_i^{(m-1)} + (y_i - \mu_i^{(m-1)}) \cdot \left(\frac{\partial \eta}{\partial \mu}\right)_i^{(m-1)}
 $$

 where $V_i^{(m-1)}$ is the variance of Y at $\mu_i^{(m-1)}$. Fit an additive model to z by using the backfitting algorithm with weights w to obtain estimated functions $s_j^{(m)}(\cdot), j = 1, \ldots, p$;
Until:
The convergence criterion is satisfied or the deviance fails to decrease. The deviance is an extension to generalized linear models of the RSS; see “Goodness of Fit” on page 3254 in Chapter 46, “The GENMOD Procedure,” for a definition.

The GAM procedure uses the following condition as the convergence criterion for local scoring:

\[
\frac{\sum_{i=1}^{n} w_i \sum_{j=1}^{p} \left(s_j^{(m-1)}(X_{ij}) - s_j^{(m)}(X_{ij}) \right)^2}{\sum_{i=1}^{n} w_i \left(1 + \sum_{j=1}^{p} \left(s_j^{(m-1)}(X_{ij}) \right)^2 \right)} \leq \epsilon^s
\]

where \(\epsilon^s = 10^{-8} \) by default; you can change this with the EPSSCORE= option in the MODEL statement.

The estimating procedure for generalized additive models consists of two loops. Inside each step of the local scoring algorithm (outer loop), a weighted backfitting algorithm (inner loop) is used until convergence or until the RSS fails to decrease. Then, based on the estimates from this weighted backfitting algorithm, a new set of weights is calculated and the next iteration of the scoring algorithm starts. The scoring algorithm stops when the convergence criterion is satisfied or the deviance of the estimates stops decreasing.

Smoothers

You can specify three types of smoothers in the MODEL statement:

- SPLINE(x) specifies a cubic smoothing spline term for variable x
- LOESS(x) specifies a loess term for variable x
- SPLINE2(x1, x2) specifies a thin-plate smoothing spline term for variables x1 and x2

A smoother is a tool for summarizing the trend of a response measurement \(Y \) as a function of one or more predictor measurements \(X_1, \ldots, X_p \). It produces an estimate of the trend that is less variable than \(Y \) itself. An important property of a smoother is its nonparametric nature. It does not assume a rigid form for the dependence of \(Y \) on \(X_1, \ldots, X_p \). This section gives a brief overview of the smoothers that can be used with the GAM procedure.

Cubic Smoothing Spline

A smoothing spline is the solution to the following optimization problem: among all functions \(\eta(x) \) with two continuous derivatives, find one that minimizes the penalized least square

\[
\sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \lambda \int_{a}^{b} \left(\eta''(t) \right)^2 \, dt
\]

where \(\lambda \) is a fixed constant and \(a \leq x_1 \leq \cdots \leq x_n \leq b \). The first term measures closeness to the data while the second term penalizes curvature in the function. It can be shown that there exists an explicit, unique minimizer, and that minimizer is a natural cubic spline with knots at the unique values of \(x_i \).

The value \(\lambda/(1 + \lambda) \) is the **smoothing parameter**. When \(\lambda \) is large, the smoothing parameter is close to 1, producing a smoother curve; small values of \(\lambda \), corresponding to smoothing parameters near 0, are apt to produce rougher curves, more nearly interpolating the data.
Local Regression

Local regression was proposed by Cleveland, Devlin, and Grosse (1988). The idea of local regression is that at a predictor \(x \), the regression function \(\eta(x) \) can be locally approximated by the value of a function in some specified parametric class. Such a local approximation is obtained by fitting a regression surface to the data points within a chosen neighborhood of the point \(x \). A weighted least squares algorithm is used to fit linear functions of the predictors at the centers of neighborhoods. The radius of each neighborhood is chosen so that the neighborhood contains a specified percentage of the data points. The smoothing parameter for the local regression procedure, which controls the smoothness of the estimated curve, is the fraction of the data in each local neighborhood. Data points in a given local neighborhood are weighted by a smooth decreasing function of their distance from the center of the neighborhood. See Chapter 73, “The LOESS Procedure,” for more details.

Thin-Plate Smoothing Spline

The thin-plate smoothing spline is a multivariate version of the cubic smoothing spline. The theoretical foundations for the thin-plate smoothing spline are described in Duchon (1976, 1977); Meinguet (1979). The smoothing parameter for the thin-plate smoothing spline smoother is the parameter that controls the smoothness penalty. When the smoothing parameter is close to 0, the fit is close to an interpolation. When the smoothing parameter is very large, the fit is a smooth surface. Further results and applications are given in Wahba and Wendelberger (1980). See Chapter 119, “The TPSPLINE Procedure,” for more details.

Selection of Smoothing Parameters

CV and GCV

The smoothers discussed here have a single smoothing parameter. In choosing the smoothing parameter, cross validation can be used. Cross validation works by leaving points \((x_i, y_i) \) out one at a time, estimating the squared residual for smooth function at \(x_i \) based on the remaining \(n - 1 \) data points, and choosing the smoother to minimize the sum of those squared residuals. This mimics the use of training and test samples for prediction. The cross validation function is defined as

\[
CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{\eta}_\lambda^{(-i)}(x_i) \right)^2
\]

where \(\hat{\eta}_\lambda^{(-i)}(x_i) \) indicates the fit at \(x_i \), computed by leaving out the \(i \)th data point. The quantity \(nCV(\lambda) \) is sometimes called the prediction sum of squares, or PRESS (Allen 1974).

All of the smoothers fit by the GAM procedure can be formulated as a linear combination of the sample responses

\[
\hat{\eta}(x) = A(\lambda)y
\]

for some matrix \(A(\lambda) \), which depends on \(\lambda \). (The matrix \(A(\lambda) \) depends on \(x \) and the sample data as well, but this dependence is suppressed in the preceding equation.) Let \(a_{ii} \) be the \(i \)th diagonal element of \(A(\lambda) \). Then the CV function can be expressed as

\[
CV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{\eta}_\lambda(x_i)}{1 - a_{ii}} \right)^2
\]
In most cases, it is very time-consuming to compute the quantity \(a_{ii} \) individually. To solve this computational problem, Wahba (1990) has proposed the generalized cross validation function (GCV) that can be used to solve a wide variety of problems involving selection of a parameter to minimize the prediction risk.

The GCV function is defined as

\[
GCV(\lambda) = \frac{n \sum_{i=1}^{n}(y_i - \hat{y}_\lambda(x_i))^2}{(n - \text{Trace}(A(\lambda)))^2}
\]

The GCV formula simply replaces the \(a_{ii} \) with \(\text{Trace}(A(\lambda))/n \). Therefore, it can be viewed as a weighted version of CV. In most of the cases of interest, GCV is closely related to CV but much easier to compute. Specify the METHOD=GCV option in the MODEL statement in order to use the GCV function to choose the smoothing parameters.

Degrees of Freedom

The estimated GAM model can be expressed as

\[
\hat{\eta}(X) = \hat{s}_0 + \sum_{j=1}^{p} A_j(\lambda_j)Y
\]

Because the weights are calculated based on previous iteration during the local scoring iteration, the matrices \(A_j \) might depend on \(Y \) for non-Gaussian data. However, for the final iteration, the \(A_j \) matrix for the spline smoothers has the same role as the projection matrix in linear regression; therefore, nonparametric degrees of freedom (DF) for the \(j \)th spline smoother can be defined as

\[
\text{DF}(j \text{th spline smoother}) = \text{Trace}(A_j(\lambda_j))
\]

For loess smoothers \(A_j \) is not symmetric and so is not a projection matrix. In this case PROC GAM uses

\[
\text{DF}(j \text{th loess smoother}) = \text{Trace}(A_j(\lambda_j)'A_j(\lambda_j))
\]

The GAM procedure gives you the option of specifying the degrees of freedom for each individual smoothing component. If you choose a particular value for the degrees of freedom, then during every local scoring iteration the procedure will search for a corresponding smoothing parameter lambda that yields the specified value or comes as close as possible. The final estimate for the smoother during this local scoring iteration will be based on this lambda. Note that for univariate spline and loess components, an additional degree of freedom is used by default to account for the linear portion of the model, so the value displayed in the “Fit Summary” and “Analysis of Deviance” tables will be one less than the value you specify.

Confidence Intervals for Smoothers

Buja, Hastie, and Tibshirani (1989) showed that each smoothing function estimate from the backfitting algorithm is the result of a linear mapping applied to the working response, if the backfitting algorithm converges.

The smoothing function estimate can be expressed as

\[
\hat{s}_j(x_j) = H_jz
\]
where \(x_j \) is the \(j \)th covariate and \(z \) is the adjusted dependent variable that is formed in the local scoring algorithm. If the errors are independent and identically distributed, then

\[
\text{Cov}(\hat{s}_j) = \sigma^2 H_j H'_j
\]

where \(\sigma^2 = \text{Var}(z) \).

However, direct computation of \(H_j \) is formidable within the backfitting framework. Hastie and Tibshirani (1990) proposed using each individual smoothing matrix \(A_j(\lambda_j) \) as a substitute for the linear operator \(H_j \) when computing confidence intervals. In the GAM procedure, curvewise confidence intervals for smoothing splines and pointwise confidence intervals for loess are provided in the output data set.

Curvewise Confidence Interval for Smoothing Spline Smoothers

Viewing the spline model as a Bayesian model, Wahba (1983) proposes Bayesian confidence intervals for smoothing spline estimates as:

\[
\hat{s}_\lambda(x_i) \pm z_{\alpha/2} \sqrt{\hat{V}_{ii}(\lambda)}
\]

where \(\hat{V}_{ii}(\lambda) \) is the \(i \)th diagonal element of the Bayesian posterior covariance matrix \(\hat{V} \) and \(z_{\alpha/2} \) is the \(1 - \alpha/2 \) quantile of the standard normal distribution. The confidence intervals are interpreted as intervals “across the function” as opposed to pointwise intervals.

Suppose that you fit a spline estimate to experimental data that consist of a true function \(f \) and a random error term \(\epsilon_i \). In repeated experiments, it is likely that about \(100(1 - \alpha)\% \) of the confidence intervals cover the corresponding true values, although some values are covered every time and other values are not covered by the confidence intervals most of the time. This effect is more pronounced when the true response curve or surface has small regions of particularly rapid change.

In the GAM procedure, let the smoothing matrix for the nonlinear part of the \(j \)th spline term be \(\hat{A}_j \) after the linear part is separated out from \(A_j(\lambda) \). The Bayesian posterior variance for the nonlinear part is computed as

\[
\hat{V}_j = \hat{\phi} \hat{A}_j W^{-1}
\]

where \(\hat{\phi} \) is the dispersion parameter estimate and \(W \) is the weight matrix from the final local scoring iteration. If you specify UCLM, LCLM, ADIAG, and STD options in the OUTPUT statement, the statistics are derived based on \(\hat{V}_j \).

When you request both the ADDITIVE and CLM suboptions in the PLOTS=COMPONENTS option, each of the smoothing component plots displays a confidence band for the total contribution of each smoothing spline smoother. The confidence band is derived from the total variance that is contributed by both linear and nonlinear parts by the \(j \)th term

\[
\hat{\phi} \left(x'_j (X'WX)^{-1} x_j + \hat{A}_j W^{-1} \right)
\]
Pointwise Confidence Interval for Loess Smoothers

As shown in Cleveland, Devlin, and Grosse (1988), the smoothing matrix $A(\lambda)$ for a loess smoother is asymmetric. The confidence intervals are computed as follows:

$$\hat{s}_\lambda(x_i) \pm z_{\alpha/2} \sqrt{\hat{V}_{ii}(\lambda)}$$

where $\hat{V}_{ii}(\lambda)$ is the ith diagonal element of the covariance matrix \hat{V} and $z_{\alpha/2}$ is the $1 - \alpha/2$ quantile of the standard normal distribution.

In the GAM procedure, let the smoothing matrix for the nonlinear part of the jth loess term be \hat{A}_j after the linear part is separated out from $A_j(\lambda)$. The covariance matrix for the nonlinear part is then

$$\hat{V}_j = \hat{\phi} \hat{A}_j W^{-1} \hat{A}'_j$$

where $\hat{\phi}$ is the dispersion parameter estimate and W is the weight matrix from the final local scoring iteration. If you specify UCLM, LCLM, and STD options in the OUTPUT statement, the statistics are derived based on \hat{V}_j.

When you request both the ADDITIVE and CLM suboptions in the PLOTS=COMPONENTS option, each of the smoothing component plots displays confidence intervals for total prediction of each loess smoother. The confidence intervals are derived from the total variance that is contributed by both the linear and nonlinear parts by the jth term

$$\hat{\phi} \left(x'_j (X'WX)^{-1} x_j + \hat{A}_j W^{-1} \hat{A}'_j \right)$$

Distribution Family and Canonical Link

In general, there is not just one reasonable link function for a given response variable distribution. For parametric models, the choice of link function can lead to substantively different estimates and tests. However, the inherent flexibility of nonparametric models makes them less likely to be sensitive to the precise choice of link function. Thus, for simplicity and computational efficiency, the GAM procedure uses only the canonical link for each distribution, as discussed in the following sections.

The Gaussian Model

For a Gaussian model, the link function is the identity function, and the generalized additive model is the same as the additive model. The Gaussian model is selected by default or when you specify the DIST=GAUSSIAN option in the MODEL statement.

The Binomial Model

The binomial model is selected by specifying the DIST=BINOMIAL option in the MODEL statement. A binomial response model assumes that the proportion of successes Y is such that Y has a Bi$(n, p(x))$ distribution. Bi$(n, p(x))$ refers to the binomial distribution with the parameters n and $p(x)$. Often the data are binary, in which case $n = 1$. The canonical link is

$$g(p) = \log \frac{p}{n - p} = \eta$$
By default, PROC GAM models the probability of the response level with the lower ordered value. Ordered values are assigned to response levels in ascending sorted order and are displayed in the “Response Profiles” table. For binary data, if your event category has a higher Ordered Value, then by default the nonevent is modeled. The effect of modeling the nonevent is to change the signs of the estimated coefficients for linear terms in the model for the event. You can change which probability is modeled by specifying the EVENT=, DESCENDING, or ORDER= response variable options in the MODEL statement.

The Poisson Model

The Poisson model is selected by specifying the DIST=POISSON option in the MODEL statement. The link function for the Poisson model is the log function. Assuming that the mean of the Poisson distribution is $\mu(x)$, the dependence of $\mu(x)$ and independent variables x_1, \ldots, x_k is

$$g(\mu) = \log(\mu) = \eta$$

The Gamma Model

The gamma model is selected by specifying the DIST=GAMMA option in the MODEL statement. Let the mean of the gamma distribution be $\mu(x)$. The canonical link function for the gamma distribution is $-1/\mu(x)$. Note that this link function is the negative of the default link function in PROC GENMOD for a gamma model. The relationship between $\mu(x)$ and the independent variables x_1, \ldots, x_k is

$$g(\mu) = -\frac{1}{\mu} = \eta$$

The Inverse Gaussian Model

The inverse Gaussian model is selected by specifying the DIST=IGAUSSIAN option in the MODEL statement. Let the mean of the inverse Gaussian distribution be $\mu(x)$. The canonical link function for inverse Gaussian distribution is $1/\mu^2$. Therefore, the relationship between $\mu(x)$ and the independent variables x_1, \ldots, x_k is

$$g(\mu) = \frac{1}{\mu^2} = \eta$$

Dispersion Parameter

Continuous distributions in the exponential family (Gaussian, gamma, and inverse Gaussian) have a dispersion parameter that can be estimated by the scaled deviance. For these continuous response distributions, PROC GAM incorporates this dispersion parameter estimate into standard errors of the parameter estimates, prediction standard errors of spline and loess components, and chi-square statistics. The discrete distributions used in GAM (binomial and Poisson) do not have a dispersion parameter. For more details on the distributions, dispersion parameter, and deviance, see “Generalized Linear Models Theory” on page 3247 in Chapter 46, “The GENMOD Procedure.”
Computational Resources

Since PROC GAM implements a doubly iterative method (inner backfitting iterations within each local scoring iteration), data are accessed multiple times in performing a fit. To expedite the data access, PROC GAM keeps the data used in the analysis in memory.

Let

\[
\begin{align*}
n &= \text{number of observations used in the analysis} \\
p_r &= \text{number of parametric variables} \\
p_s &= \text{number of univariate spline smoothers} \\
p_l &= \text{number of loess smoothers} \\
p_b &= \text{number of bivariate thin-plate spline smoothers} \\
p &= p_r + p_s + p_l + p_b \\
p_n &= p_s + p_l + p_b \\
m &= \text{maximum number of iterations for the backfitting algorithm}
\end{align*}
\]

In addition to the space to store the data (8np bytes), the minimum working space (in bytes) needed for fitting a model using PROC GAM is

\[
(16 + 8p_r)(n + 2p_r) + (160 + 48p + 16p_s + 8p_b + 8p_l)n + 8p + 32p_b + 32p_s + 8m + 8n + (4n + 4)p_s + 4.
\]

For fitting bivariate thin-plate smoothing spline variables, an extra 80 + 120n + 8n^2 + 8p_b bytes of memory are needed. For fitting loess variables, an extra 48n + 16p_l bytes of memory are needed. If model inference or confidence limits are requested, additional memory is required.

It is difficult to provide accurate estimates of the time required to fit a GAM model. Both the backfitting algorithm and the local scoring algorithm are iterative techniques whose convergence rates depend on the particular data being analyzed. Furthermore, the time required depends on the types of smoothers that you specify, as well as on the inferential information you request.

You can estimate the time required for problems with a larger number of observations by observing the time required for smaller problems and then using the following growth rules (obtained using by simulations) that show that the time required grows proportionally with the following:

- \(n^3\) when at least one bivariate thin-plate spline is used
- \(n^{3/2}\) when only loess smoothers are used
- \(n\) when only univariate smoothing splines are used

For additive models (models with Gaussian response distribution) with a fixed number of observations, the time required is roughly proportional to \(p_n^{3/2}\). For generalized additive models (models with non-Gaussian distributions), the computation time grows more rapidly as \(p_n\) increases. This is harder to quantify as it depends on the distribution family and the number of iterations required for the local scoring algorithm to converge.
Figure 43.4 shows a rough estimation of feasible sizes for the smoothers that you can use, as a function of the number of observations and number of smoothing components. This figure depicts the regions where you can expect a single fit of an additive model to finish within a few minutes on a typical Pentium 4 system.

Note that the times reflected in Figure 43.4 are based on fitting additive models (no local scoring iterations) when no analysis of deviance or confidence limits are computed. The time required for fitting generalized additive models grows proportionally with the number of the local scoring iterations. Furthermore, analysis of deviance (if you do not request the fast approximations with the ANODEV option) requires fitting multiple GAM models as each smoothing component is omitted sequentially, and so the time estimates need to be multiplied by the number of smoothing components when analysis of deviance is performed. Finally, computation of confidence limits for each individual smoother increases the time required, especially when loess smoothers are utilized.

For univariate spline smoothers, subject to the aforementioned caveats, problems that correspond to all shaded regions in Figure 43.4 can be completed within a few minutes. For univariate loess smoothers, the two darkest regions are feasible. For bivariate spline smoothers, problems that correspond to only the darkest shading can be completed in the order of a few minutes. The problems that correspond to the upper right unshaded region might be possible, but they require long computation times.

ODS Table Names

PROC GAM assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the following table. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 43.5 ODS Tables Produced by PROC GAM

<table>
<thead>
<tr>
<th>ODS Table Name</th>
<th>Description</th>
<th>Statement</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANODEV</td>
<td>Analysis of deviance table for smoothing variables</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>ClassSummary</td>
<td>Summary of classification variables</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>ConvergenceStatus</td>
<td>Convergence status of the local scoring algorithm</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>InputSummary</td>
<td>Input data summary</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>IterHistory</td>
<td>Iteration history table</td>
<td>MODEL</td>
<td>ITPRINT</td>
</tr>
<tr>
<td>IterSummary</td>
<td>Iteration summary</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>FitSummary</td>
<td>Fit parameters and fit summary</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>ParameterEstimates</td>
<td>Parameter estimation for regression variables</td>
<td>PROC</td>
<td>Default</td>
</tr>
<tr>
<td>ResponseProfile</td>
<td>Frequency counts for binary models</td>
<td>MODEL</td>
<td>DIST=BINOMIAL</td>
</tr>
</tbody>
</table>

By referring to the names of such tables, you can use the ODS OUTPUT statement to place one or more of these tables in output data sets.

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPHICS ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and Disabling ODS Graphics” on page 615 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 614 in Chapter 21, “Statistical Graphics Using ODS.”

When ODS Graphics is enabled, the GAM procedure by default produces plots of the partial predictions for each nonparametric predictor in the model. Use the PLOTS option in the PROC GAM statement to control aspects of these plots.
ODS Graph Names

PROC GAM assigns a name to each graph it creates by using ODS. You can use these names to reference the graphs when using ODS. The names are listed in Table 43.6.

<table>
<thead>
<tr>
<th>ODS Graph Name</th>
<th>Plot Description</th>
<th>PLOTS= Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmoothingComponentPlot</td>
<td>Panel of multiple partial prediction</td>
<td>COMPONENTS</td>
</tr>
<tr>
<td></td>
<td>curves</td>
<td></td>
</tr>
<tr>
<td>SmoothingComponentPlot</td>
<td>Unpacked partial prediction curves</td>
<td>COMPONENTS(UNPACK)</td>
</tr>
</tbody>
</table>

By default, partial prediction plots for each component are displayed in panels containing at most six plots. If you specify more than six smoothing components, multiple panels are used. Use the PLOTS(UNPACK) option in the PROC GAM statement to display these plots individually.

Examples: GAM Procedure

Example 43.1: Generalized Additive Model with Binary Data

This example illustrates the capabilities of the GAM procedure and compares it to the GENMOD procedure. From this example, you can see that PROC GAM is very useful in visualizing the data and detecting the nonlinearity among the variables.

The data used in this example are based on a study by Bell et al. (1994). Bell and his associates studied the result of multiple-level thoracic and lumbar laminectomy, a corrective spinal surgery commonly performed on children. The data in the study consist of retrospective measurements on 83 patients. The specific outcome of interest is the presence (1) or absence (0) of kyphosis, defined as a forward flexion of the spine of at least 40 degrees from vertical. The available predictor variables are age in months at time of the operation (Age), the starting of vertebrae levels involved in the operation (StartVert), and the number of levels involved (NumVert). The goal of this analysis is to identify risk factors for kyphosis. PROC GENMOD can be used to investigate the relationship among kyphosis and the predictors. The following statements create the data kyphosis and fit a logistic model specifying linear effects for the three predictors:

```plaintext
title 'Comparing PROC GAM with PROC GENMOD';
data kyphosis;
  input Age StartVert NumVert Kyphosis @@;
datalines;
  71  5  3  0   158 14  3  0   128  5  4  1;
  2  1  5  0   1   15  4  0   1   16  2  0;
  61 17  2  0   37 16  3  0   113  16 2  0;
  59 12  6  1   82 14  5  1   148 16 3  0;
  18  2  5  0   1   12  4  0   243  8  8  0;
  168 18  3  0   1   16  3  0   78  15  6  0;
  175 13  5  0   80 16  5  0   27  9  4  0;
  22 16  2  0   105  5  6  1   96  12 3  1;
```
Chapter 43: The GAM Procedure

The GENMOD analysis of the independent variable effects is shown in Output 43.1.1. Based on these results, the only significant factor is StartVert with a log odds ratio of -0.1972. The variable NumVert has a p-value of 0.0904 with a log odds ratio of 0.3031.

Output 43.1.1 GENMOD Analysis: Partial Output

Comparing PROC GAM with PROC GENMOD

The GENMOD procedure assumes a strict linear relationship between the predictors and the response function, which is the logit (log odds) in this model. The following SAS statements use PROC GAM to investigate a less restrictive model, with moderately flexible spline terms for each of the predictors:

```
proc genmod data=kyphosis descending;
  model Kyphosis = Age StartVert NumVert/link=logit dist=binomial;
run;
```

The GENMOD analysis of the independent variable effects is shown in Output 43.1.1. Based on these results, the only significant factor is StartVert with a log odds ratio of -0.1972. The variable NumVert has a p-value of 0.0904 with a log odds ratio of 0.3031.

Output 43.1.1 GENMOD Analysis: Partial Output

Comparing PROC GAM with PROC GENMOD

The GENMOD procedure assumes a strict linear relationship between the predictors and the response function, which is the logit (log odds) in this model. The following SAS statements use PROC GAM to investigate a less restrictive model, with moderately flexible spline terms for each of the predictors:

```
title 'Comparing PROC GAM with PROC GENMOD';
proc gam data=kyphosis;
  model Kyphosis (event='1') = spline(Age ,df=3)
      spline(StartVert,df=3)
```
Example 43.1: Generalized Additive Model with Binary Data

The MODEL statement requests an additive model with a univariate smoothing spline for each term. The response variable option EVENT= chooses Kyphosis=1 (presence) as the event so that the probability of presence of kyphosis is modeled. The option DIST=BINOMIAL with binary responses specifies a logistic model. Each term is fit by using a univariate smoothing spline with three degrees of freedom. Of these three degrees of freedom, one is taken up by the linear portion of the fit and two are left for the nonlinear spline portion. Although this might seem to be an unduly modest amount of flexibility, it is better to be conservative with a data set this small.

Output 43.1.2 and Output 43.1.3 list the output from PROC GAM.

Output 43.1.2 Summary Statistics

Comparing PROC GAM with PROC GENMOD

<table>
<thead>
<tr>
<th>The GAM Procedure</th>
<th>Dependent Variable: Kyphosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothing Model Component(s):</td>
<td>spline(Age) spline(StartVert) spline(NumVert)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary of Input Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Number of Missing Observations</td>
</tr>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Link Function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered Value</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Note: PROC GAM is modeling the probability that Kyphosis=1. One way to change this to model the probability that Kyphosis=0 is to specify the response variable option EVENT=0.

<table>
<thead>
<tr>
<th>Iteration Summary and Fit Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of local scoring iterations</td>
</tr>
<tr>
<td>Local scoring convergence criterion</td>
</tr>
<tr>
<td>Final Number of Backfitting Iterations</td>
</tr>
<tr>
<td>Final Backfitting Criterion</td>
</tr>
<tr>
<td>The Deviance of the Final Estimate</td>
</tr>
</tbody>
</table>

Output 43.1.3 Model Fit Statistics

<table>
<thead>
<tr>
<th>Regression Model Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Estimates</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>Linear(Age)</td>
</tr>
<tr>
<td>Linear(StartVert)</td>
</tr>
<tr>
<td>Linear(NumVert)</td>
</tr>
</tbody>
</table>
The critical part of the GAM results is the “Analysis of Deviance” table, shown in Output 43.1.3. For each smoothing effect in the model, this table gives a χ^2 test comparing the deviance between the full model and the model without the nonparametric component of this variable. The analysis of deviance results indicate that the nonparametric effect of Age is highly significant, the nonparametric effect of StartVert is nearly significant, and the nonparametric effect of NumVert is insignificant at the 5% level.

PROC GAM can also perform approximate analysis of deviance for smoothing effects by using the ANODEV=NOREFIT option, as in the following statements:

```latex
title 'PROC GAM with Approximate Analysis of Deviance';
proc gam data=kyphosis;
    title 'PROC GAM with Approximate Analysis of Deviance';
    proc gam data=kyphosis;
        model Kyphosis (event='1') = spline(Age,df=3)
            spline(StartVert,df=3)
            spline(NumVert ,df=3) /
                dist=binomial anodev=norefit;
run;
```

<table>
<thead>
<tr>
<th>Component</th>
<th>Smoothing Parameter</th>
<th>DF</th>
<th>GCV</th>
<th>Unique Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spline(Age)</td>
<td>0.999996</td>
<td>2.000000</td>
<td>328.512831</td>
<td>66</td>
</tr>
<tr>
<td>Spline(StartVert)</td>
<td>0.999551</td>
<td>2.000000</td>
<td>317.646685</td>
<td>16</td>
</tr>
<tr>
<td>Spline(NumVert)</td>
<td>0.921758</td>
<td>2.000000</td>
<td>20.144056</td>
<td>10</td>
</tr>
</tbody>
</table>

The “Approximate Analysis of Deviance” table shown in Output 43.1.4 yields similar conclusions to those of the “Analysis of Deviance” table (Output 43.1.3). In addition to fitting the model using all the specified

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spline(Age)</td>
<td>2.000000</td>
<td>10.494369</td>
<td>10.4944</td>
<td>0.0053</td>
</tr>
<tr>
<td>Spline(StartVert)</td>
<td>2.000000</td>
<td>5.494968</td>
<td>5.4950</td>
<td>0.0641</td>
</tr>
<tr>
<td>Spline(NumVert)</td>
<td>2.000000</td>
<td>2.184518</td>
<td>2.1845</td>
<td>0.3355</td>
</tr>
</tbody>
</table>

Proc gam data=kyphosis;
model Kyphosis (event='1') = spline(Age,df=3)
spline(StartVert,df=3)
spline(NumVert ,df=3) /
 dist=binomial anodev=norefit;
run;
smoothing effects, the default ANODEV=REFIT option requires fitting p additional subset models to p smoothing effects. Each submodel is fit by omitting one smoothing term from the model. By contrast, the ANODEV=NOREFIT option keeps the nonparametric terms fixed and requires a weighted least squares fit for only the parametric part of the model. Hence, GAM with the ANODEV=NOREFIT option is computationally inexpensive and is useful for obtaining approximate analysis of deviance results for models with many smoothing effects. This option assumes that the remaining nonparametric terms do not change much with the deletion of one nonparametric component. It should be used with caution when a model contains highly correlated predictors.

Plots of the partial predictions for each predictor can be used to investigate why PROC GAM and PROC GENMOD produce different results. The following statements use ODS Graphics to produce plots of the individual smoothing components. The CLM suboption in the PLOTS=COMPONENTS option adds a curvewise Bayesian confidence band to each smoothing component, while the COMMONAXES suboption forces all three smoothing component plots to share the same vertical axis limits, allowing a visual judgment of the relative nonparametric effect sizes.

```
ods graphics on;

proc gam data=kyphosis plots=components(clm commonaxes);
    model Kyphosis (event='1') = spline(Age,df=3)
        spline(StartVert,df=3)
        spline(NumVert,df=3) / dist=binomial;
run;

ods graphics off;
```

For general information about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the graphics available in the GAM procedure, see the section “ODS Graphics” on page 3002. The smoothing component plots are displayed in Output 43.1.5.
The plots show that the partial predictions corresponding to both Age and StartVert have a quadratic pattern, while NumVert has a more complicated but ultimately nonsignificant pattern.

An important difference between the first analysis of these data with PROC GENMOD and the subsequent analysis with PROC GAM is that PROC GAM indicates that Age has a significant but nonlinear association with Kyphosis. The difference is due to the fact that the generalized linear model includes only the linear effect of Age whereas the generalized additive model allows a more complex relationship, which the plots indicate is nearly quadratic. Having used the GAM procedure to discover an appropriate form of the dependence of Kyphosis on each of the three independent variables, you can use the GENMOD procedure to fit and assess the corresponding parametric model. The following statements fit a generalized linear model with quadratic terms for all three variables. The parameter estimates are shown in Output 43.1.6.

```plaintext
title 'Comparing PROC GAM with PROC GENMOD';
proc genmod data=kyphosis descending;
  model kyphosis = Age Age *Age StartVert StartVert*StartVert NumVert NumVert *NumVert /
    link=logit dist=binomial;
run;
```
Output 43.1.6 Logistic Model with Quadratic Terms

Comparing PROC GAM with PROC GENMOD

The GENMOD Procedure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald 95% Confidence Limits</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-5.8134</td>
<td>2.5618</td>
<td>-10.8345 -0.7923</td>
<td>5.15</td>
<td>0.0233</td>
</tr>
<tr>
<td>Age</td>
<td>1</td>
<td>0.0819</td>
<td>0.0345</td>
<td>0.0143 0.1496</td>
<td>5.63</td>
<td>0.0176</td>
</tr>
<tr>
<td>Age*Age</td>
<td>1</td>
<td>-0.0004</td>
<td>0.0000</td>
<td>-0.0008 -0.0000</td>
<td>4.32</td>
<td>0.0376</td>
</tr>
<tr>
<td>StartVert</td>
<td>1</td>
<td>0.4394</td>
<td>0.3234</td>
<td>-0.1944 1.0733</td>
<td>1.85</td>
<td>0.1742</td>
</tr>
<tr>
<td>StartVert*StartVert</td>
<td>1</td>
<td>-0.0396</td>
<td>0.0202</td>
<td>-0.0791 -0.0001</td>
<td>3.86</td>
<td>0.0495</td>
</tr>
<tr>
<td>NumVert</td>
<td>1</td>
<td>0.3798</td>
<td>0.5988</td>
<td>-0.7939 1.5535</td>
<td>0.40</td>
<td>0.5259</td>
</tr>
<tr>
<td>NumVert*NumVert</td>
<td>1</td>
<td>0.0020</td>
<td>0.0420</td>
<td>-0.0803 0.0843</td>
<td>0.00</td>
<td>0.9621</td>
</tr>
<tr>
<td>Scale</td>
<td>0</td>
<td>1.0000</td>
<td>0.0000</td>
<td>1.0000 1.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The scale parameter was held fixed.

The p-value for the χ^2 test is 0.0376 for dropping the quadratic term of Age, 0.0495 for dropping the quadratic term of StartVert, and 0.9621 for dropping this quadratic term of NumVert. The results for the quadratic GENMOD model are consistent with the GAM results.

Example 43.2: Poisson Regression Analysis of Component Reliability

In this example, the number of maintenance repairs on a complex system are modeled as realizations of Poisson random variables. The system under investigation has a large number of components, which occasionally break down and are replaced or repaired. During a four-year period, the system was observed to be in a state of steady operation, meaning that the rate of operation remained approximately constant. A monthly maintenance record is available for that period, which tracks the number of components removed for maintenance each month. The data are listed in the following statements, which create a SAS data set:

title 'Analysis of Component Reliability';
data equip;
 input year month removals @@;
datalines;
1987 1 2 1987 2 4 1987 3 3
1987 4 3 1987 5 3 1987 6 8
1987 7 2 1987 8 6 1987 9 3
1987 10 9 1987 11 4 1987 12 10
1988 1 4 1988 2 6 1988 3 4
1988 4 4 1988 5 3 1988 6 5
1988 7 3 1988 8 4 1988 9 5
1989 1 2 1989 2 6 1989 3 1
1989 4 5 1989 5 5 1989 6 4
1989 7 2 1989 8 2 1989 9 2
1989 10 5 1989 11 1 1989 12 10
1990 1 3 1990 2 8 1990 3 12

Example 43.2: Poisson Regression Analysis of Component Reliability
For planning purposes, it is of interest to understand the long- and short-term trends in the maintenance needs of the system. Over the long term, it is suspected that the quality of new components and repair work improves over time, so the number of component removals would tend to decrease from year to year. It is not known whether the robustness of the system is affected by seasonal variations in the operating environment, but this possibility is also of interest.

Because the maintenance record is in the form of counts, the number of removals are modeled as realizations of Poisson random variables. Denote by \(\lambda_{ij} \) the unobserved component removal rate for year \(i \) and month \(j \). Since the data were recorded at regular intervals (from a system operating at a constant rate), each \(\lambda_{ij} \) is assumed to be a function of year and month only.

A preliminary two-way analysis is performed by using PROC GENMOD to make broad inferences on repair trends. A log-link is specified for the model

\[
\log \lambda_{ij} = \mu + \alpha_i^Y + \alpha_j^M
\]

where \(\mu \) is a grand mean, \(\alpha_i^Y \) is the effect of the \(i \)th year, and \(\alpha_j^M \) is the effect of the \(j \)th month.

In the following statements, the CLASS statement declares the variables year and month as categorical. Type III sum of squares are requested to test whether there is an overall effect of year and/or month.

```sas
   title2 'Two-way model';
   proc genmod data=equip;
      class year month;
      model removals=year month / dist=Poisson link=log type3;
   run;
```

Output 43.2.1 displays the listed Type III statistics for the fitted model. With the test for year effects yielding a \(p \)-value of 0.4527, there is no evidence of a long-term trend in maintenance rates. Apparently, the quality of new or repaired components did not change between 1987 and 1990. However, the test for monthly trends does yield a small \(p \)-value of 0.0321, indicating that seasonal trends are significant at the \(\alpha = 0.05 \) level.

Output 43.2.1 PROC GENMOD Listing for Type III Analysis

Analysis of Component Reliability
Two-way model

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>3</td>
<td>2.63</td>
<td>0.4527</td>
</tr>
<tr>
<td>month</td>
<td>11</td>
<td>21.12</td>
<td>0.0321</td>
</tr>
</tbody>
</table>

If year is dropped from the model, the focus of the analysis is now on identifying the form of the underlying seasonal trend, which is a task that PROC GAM is especially suited for. PROC GAM will be used to fit both a reduced categorical model, with year eliminated, and a nonparametric spline model. Although PROC
Example 43.2: Poisson Regression Analysis of Component Reliability

GENMOD also has the capability to fit categorical models, as demonstrated earlier, PROC GAM will be used here to fit both models for a better comparison.

The following PROC GAM statements specify the reduced categorical model and write predicted values to a data set. For this part of the analysis, a CLASS statement is again used to specify that month is a categorical variable. In the follow-up, the seasonal effect will be treated as a nonparametric function of month.

```
title2 'One-way model';
proc gam data=equip;
   class month;
   model removals=param(month) / dist=Poisson;
   output out=est p;
run;
```

The following statements use the SGPLOT procedure to generate a plot of the estimated seasonal trend. The plot is displayed in Output 43.2.2.

```
proc sort data=est;by month;run;
proc sgplot data=est;
   title "Predicted Seasonal Trend";
   yaxis label="Number of Removals";
   xaxis integer values=(1 to 12);
   scatter x=Month y=Removals / name="points"
      legendLabel="Removals";
   series x=Month y=p_Removals / name="line"
      legendLabel="Predicted Removals"
      lineattrs = GRAPHFIT;
   discretelegend "points" "line";
run;
```
Output 43.2.2 Predicted Seasonal Trend from a Parametric Model Fit Using a CLASS Statement

The predicted repair rates shown in Output 43.2.2 form a jagged seasonal pattern. Ignoring the month-to-month fluctuations, which are difficult to explain and can be artifacts of random noise, the general removal rate trend is high in winter and low in summer.

One advantage of nonparametric regression is its ability to highlight general trends in the data, such as those described earlier, and to attribute local fluctuations to unexplained random noise. The nonparametric regression model used by PROC GAM specifies that the underlying removal rates \(\lambda_j \) are of the form

\[
\log \lambda_j = \beta_0 + \beta_1 \text{Month}_j + s(\text{Month}_j)
\]

where \(\beta_1 \) is a linear coefficient and \(s(\cdot) \) is a nonparametric regression function. \(\beta_1 \) and \(s(\cdot) \) define the linear and nonparametric parts, respectively, of the seasonal trend.

The following statements request that PROC GAM fit a cubic spline model to the monthly repair data. The output listing is displayed in Output 43.2.3 and Output 43.2.4.

```r
title 'Analysis of Component Reliability';
title2 'Spline model';
proc gam data=equip;
   model removals=spline(month) / dist=Poisson method=gcv;
run;
```
The `METHOD=GCV` option is used to determine an appropriate level of smoothing.

Output 43.2.3 PROC GAM Listing for Cubic Spline Regression Using the METHOD=GCV Option

Analysis of Component Reliability

Spline model

The GAM Procedure
Dependent Variable: removals
Smoothing Model Component(s): spline(month)

<table>
<thead>
<tr>
<th>Summary of Input Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Observations</td>
</tr>
<tr>
<td>Number of Missing Observations</td>
</tr>
<tr>
<td>Distribution</td>
</tr>
<tr>
<td>Link Function</td>
</tr>
</tbody>
</table>

Output 43.2.4 Model Fit Statistics

| Regression Model Analysis Parameter Estimates | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|---|--------------------|----------------|---------|------|---|
| Interception | 1.34594 | 0.14509 | 9.28 | <.0001 |
| Linear(month) | 0.02274 | 0.01893 | 1.20 | 0.2362 |

<table>
<thead>
<tr>
<th>Smoothing Model Analysis Fit Summary for Smoothing Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Spline(month)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smoothing Model Analysis Analysis of Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Spline(month)</td>
</tr>
</tbody>
</table>

Notice in the listing in **Output 43.2.4** that the DF value chosen for the nonlinear portion of the spline by minimizing GCV is about 1.88, which is smaller than the default value of 3. This indicates that the spline model of the seasonal trend is relatively simple. As indicated by the “Analysis of Deviance” table, it is a significant feature of the data. The table lists a p-value of 0.0103 for the hypothesis of no seasonal trend. Note also that the “Parameter Estimates” table lists a p-value of 0.2362 for the hypothesis of no linear factor in the seasonal trend indicating no significant linear trend.

The following statements use ODS Graphics to plot the smoothing component for the effect of Month on predicted repair rates. The CLM suboption for the PLOTS=COMPONENTS option adds a 95% confidence band to the fit.
ods graphics on;

proc gam data=equip plots=components(clm);
 model removals=spline(month) / dist=Poisson method=gcv;
run;

ods graphics off;

For general information about ODS graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the graphics available in the GAM procedure, see the section “ODS Graphics” on page 3002. The smoothing component plot is displayed in Output 43.2.5.

In Output 43.2.5, it is apparent that the pattern of repair rates follows the general pattern observed in Output 43.2.2. However, the plot in Output 43.2.5 is much cleaner because the month-to-month fluctuations are smoothed out to reveal the broader seasonal trend.

Output 43.2.5 Estimated Nonparametric Factor of Seasonal Trend, Along with 95% Confidence Bounds

In Output 43.2.1 the small \(p \)-value (\(p = 0.0321 \)) for the hypothesis of no seasonal trend indicates that the data exhibit significant seasonal structure. Output 43.2.5 is a graphical illustration of the seasonality of the number of removals.
Example 43.3: Comparing PROC GAM with PROC LOESS

In an analysis of simulated data from a hypothetical chemistry experiment, additive nonparametric regression performed by PROC GAM is compared to the unrestricted multidimensional procedure of PROC LOESS.

In each repetition of the experiment, a catalyst is added to a chemical solution, thereby inducing synthesis of a new material. The data are measurements of the temperature of the solution, the amount of catalyst added, and the yield of the chemical reaction. The following statements read and plots the raw data.

```sql
data ExperimentA;
  format Temperature f4.0 Catalyst f6.3 Yield f8.3;
  input Temperature Catalyst Yield @@;
datalines;
  80 0.005 6.039 80 0.010 4.719 80 0.015 6.301
  80 0.020 4.558 80 0.025 5.917 80 0.030 4.365
  80 0.035 6.540 80 0.040 5.063 80 0.045 4.668
  80 0.050 7.641 80 0.055 6.736 80 0.060 7.255
  80 0.065 5.515 80 0.070 5.260 80 0.075 4.813
  80 0.080 4.465 90 0.005 4.540 90 0.010 3.553
  90 0.015 5.611 90 0.020 4.586 90 0.025 6.503
  90 0.030 4.671 90 0.035 4.919 90 0.040 6.536
  90 0.045 4.799 90 0.050 6.002 90 0.055 6.988
  90 0.060 6.206 90 0.065 5.193 90 0.070 5.783
  90 0.075 6.482 90 0.080 5.222 100 0.005 5.042
  100 0.010 5.551 100 0.015 4.804 100 0.020 5.313
  100 0.025 4.957 100 0.030 6.177 100 0.035 5.433
  100 0.040 6.139 100 0.045 6.217 100 0.050 6.498
  100 0.055 7.037 100 0.060 5.589 100 0.065 5.593
  100 0.070 7.438 100 0.075 4.794 100 0.080 3.692
  110 0.005 6.005 110 0.010 5.493 110 0.015 5.107
  110 0.020 5.511 110 0.025 5.692 110 0.030 5.969
  110 0.035 6.244 110 0.040 7.364 110 0.045 6.412
  110 0.050 6.928 110 0.055 6.814 110 0.060 8.071
  110 0.065 6.038 110 0.070 6.295 110 0.075 4.308
  110 0.080 7.020 120 0.005 5.409 120 0.010 7.009
  120 0.015 6.160 120 0.020 7.408 120 0.025 7.123
  120 0.030 7.009 120 0.035 7.708 120 0.040 5.278
  120 0.045 8.111 120 0.050 8.547 120 0.055 8.279
  120 0.060 8.736 120 0.065 6.988 120 0.070 6.283
  120 0.075 7.367 120 0.080 6.579 130 0.005 7.629
  130 0.010 7.171 130 0.015 5.997 130 0.020 6.587
  130 0.025 7.335 130 0.030 7.209 130 0.035 8.259
  130 0.040 6.530 130 0.045 8.400 130 0.050 7.218
  130 0.055 9.167 130 0.060 9.082 130 0.065 7.680
  130 0.070 7.139 130 0.075 7.275 130 0.080 7.544
  140 0.005 4.860 140 0.010 5.932 140 0.015 3.685
  140 0.020 5.581 140 0.025 4.935 140 0.030 5.197
  140 0.035 5.559 140 0.040 4.836 140 0.045 5.795
  140 0.050 5.524 140 0.055 7.736 140 0.060 5.628
  140 0.065 6.644 140 0.070 3.785 140 0.075 4.853
  140 0.080 6.006
;```
Chapter 43: The GAM Procedure

```
proc sort data=ExperimentA;
 by Temperature Catalyst;
run;

proc template;
 define statgraph surface;
 dynamic _X _Y _Z _T;
 begingraph;
 entrytitle _T;
 layout overlay3d/
 xaxisopts=(linearopts=(tickvaluesequence=
 (start=85 end=135 increment=25))
 (start=0 end=0.08 increment=0.04))
 rotate=30 cube=false;
 surfaceplotparm x=_X y=_Y z=_Z;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=ExperimentA template=surface;
 dynamic _X='Temperature' _Y='Catalyst' _Z='Yield' _T='Raw Data';
run;
```

The plot is displayed in Output 43.3.1. A surface fitted to the plot of Output 43.3.1 by PROC LOESS will be of a very general (and flexible) type, since the procedure requires only weak assumptions about the structure of the dependencies among the data. PROC GAM, on the other hand, makes stronger structural assumptions by restricting the fitted surface to an additive form. These differences will be demonstrated in this example.
Example 43.3: Comparing PROC GAM with PROC LOESS

Output 43.3.1 Surface Plot of Yield by Temperature and Amount of Catalyst

The following statements request that both PROC LOESS and PROC GAM fit surfaces to the data:

```sas
ods output ScoreResults=PredLOESS;
proc loess data=ExperimentA;
 model Yield = Temperature Catalyst
 / scale=sd select=gcv degree=2;
 score;
run;

proc gam data=PredLoess;
 model Yield = loess(Temperature) loess(Catalyst) / method=gcv;
 output out=PredGAM p=Gam_p_;
run;
```

In both cases the smoothing parameter was chosen as the value that minimizes GCV. This is performed automatically by PROC LOESS and PROC GAM.
The following statements generate plots of the predicted yields, which are displayed in Output 43.3.2:

```plaintext
proc template;
define statgraph surface1;
begingraph;
 entrytitle "Fitted Surface";
lattice/columns=2;
 layout overlay3d/xaxisopts=(linearopts=(tickvaluesequence=(start=85 end=135 increment=25)))
 yaxisopts=(linearopts=(tickvaluesequence=(start=0 end=0.08 increment=0.04)))
 zaxisopts=(label="P_Yield")
 rotate=30 cube=0;
 entry "PROC LOESS"/location=outside valign=top
textattrs=graphlabeltext;
surfaceplotparm x=Temperature y=Catalyst z=p_Yield;
endlayout;
 layout overlay3d/xaxisopts=(linearopts=(tickvaluesequence=(start=85 end=135 increment=25)))
 yaxisopts=(linearopts=(tickvaluesequence=(start=0 end=0.08 increment=0.04)))
 rotate=30 cube=0;
 entry "PROC GAM"/location=outside valign=top
textattrs=graphlabeltext;
surfaceplotparm x=Temperature y=Catalyst z=Gam_p_Yield;
endlayout;
endgraph;
end;
run;

proc sgrender data=PredGAM template=surface1;
run;
```
Though both PROC LOESS and PROC GAM use the statistical technique loess, it is apparent from Output 43.3.2 that the manner in which it is applied is very different. By smoothing out the data in local neighborhoods, PROC LOESS essentially fits a surface to the data in pieces, one neighborhood at a time. The local regions are treated independently, so separate areas of the fitted surface are only weakly related. PROC GAM imposes additive structure, requiring that cross sections of the fitted surface always have the same shape and thereby relating regions that have a common value of the same individual regressor variable. Under that restriction, the loess technique need not be applied to the entire multidimensional scatter plot, but only to one-dimensional cross sections of the data.

The advantage of using additive model fitting is that its statistical power is directed toward univariate smoothing, and so it is able to discern the finer details of any underlying structure in the data. Regression data can be very sparse when viewed in the context of multidimensional space, even when every individual set of regressor values densely covers its range. This is the familiar curse of dimensionality. Sparse data greatly restrict the effectiveness of nonparametric procedures, but additive model fitting, when appropriate, is one way to overcome this limitation.
To examine these properties, you can use ODS Graphics to generate plots of cross sections of the unrestricted (PROC LOESS) and additive (PROC GAM) fitted surfaces for the variable Catalyst, as shown in the following statements:

```plaintext
proc template;
 define statgraph projection;
 begingraph;
 entrytitle "Cross Sections of Fitted Surfaces";
 layout lattice/rows=2 columndatarange=unionall
columngutter=10;
columnAxes;
 columnAxis / display=all griddisplay=auto_on;
endColumnAxes;

 layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="LOESS Prediction"
linearopts=(viewmin=2 viewmax=10));
seriesplot x=Catalyst y=p_Yield /
group=temperature
 name="Temperature";
endlayout;

 layout overlay/
xaxisopts=(display=none)
yaxisopts=(label="GAM Prediction"
linearopts=(viewmin=2 viewmax=10));
seriesplot x=Catalyst y=Gam_p_Yield /
group=temperature
 name="Temperature";
endlayout;

columnheaders;
 discreteLegend "Temperature" / title = "Temperature";
endcolumnheaders;
endlayout;
endgraph;
end;
run;

proc sgrender data=PredGAM template=projection;
run;
```

The plots are displayed in Output 43.3.3.
Output 43.3.3 Cross Sections of Fitted Regression Surfaces

Notice that the cross sections in the top panel (PROC LOESS) of Output 43.3.3 have varying shapes, while every cross section in the bottom panel (PROC GAM) is the same curve shifted vertically. This illustrates precisely the kind of structural differences that distinguish additive models. A second important comparison to make between Output 43.3.2 and Output 43.3.3 is the level of detail in the fitted regression surfaces. Cross sections of the PROC LOESS surface are rather flat, but those of the additive surface have a clear shape. In particular, the ridge near Catalyst=0.055 is only vaguely evident in the PROC LOESS surface, but it is plainly revealed by the additive procedure.

For an example of a situation where unrestricted multidimensional fitting is preferred over additive regression, consider the following simulated data from a similar experiment. The following statements create another SAS data set and plot.
data ExperimentB;
  format Temperature f4.0 Catalyst f6.3 Yield f8.3;
  input Temperature Catalyst Yield @@;
datalines;
80 0.005 9.115 80 0.010 9.275 80 0.015 9.160
80 0.020 7.065 80 0.025 6.054 80 0.030 4.899
80 0.035 4.504 80 0.040 4.238 80 0.045 3.232
80 0.050 3.135 80 0.055 5.100 80 0.060 4.802
80 0.065 8.218 80 0.070 7.679 80 0.075 9.669
80 0.080 9.071 90 0.005 7.085 90 0.010 6.814
90 0.015 4.009 90 0.020 4.199 90 0.025 3.377
90 0.030 2.141 90 0.035 3.500 90 0.040 5.967
90 0.045 5.268 90 0.050 6.238 90 0.055 7.847
90 0.060 7.992 90 0.065 7.904 90 0.070 10.184
90 0.075 7.914 90 0.080 6.842 100 0.005 4.497
100 0.010 2.565 100 0.015 2.637 100 0.020 2.436
100 0.025 2.525 100 0.030 4.474 100 0.035 6.238
100 0.040 7.029 100 0.045 8.183 100 0.050 8.939
100 0.055 9.283 100 0.060 8.246 100 0.065 6.927
100 0.070 7.062 100 0.075 5.615 100 0.080 4.687
110 0.005 3.706 110 0.010 3.154 110 0.015 3.726
110 0.020 4.634 110 0.025 5.970 110 0.030 8.219
110 0.035 8.590 110 0.040 9.097 110 0.045 7.887
110 0.050 8.480 110 0.055 6.818 110 0.060 7.666
110 0.065 4.375 110 0.070 3.994 110 0.075 3.630
110 0.080 2.685 120 0.005 4.697 120 0.010 4.268
120 0.015 6.507 120 0.020 7.747 120 0.025 9.412
120 0.030 8.761 120 0.035 8.997 120 0.040 7.538
120 0.040 7.003 120 0.050 6.010 120 0.055 3.886
120 0.060 4.897 120 0.065 2.562 120 0.070 2.714
120 0.075 3.141 120 0.080 5.081 130 0.005 8.729
130 0.010 7.460 130 0.015 9.549 130 0.020 10.049
130 0.025 8.131 130 0.030 7.553 130 0.035 6.191
130 0.040 6.272 130 0.045 4.649 130 0.050 3.884
130 0.055 2.522 130 0.060 4.366 130 0.065 3.272
130 0.070 4.906 130 0.075 6.538 130 0.080 7.380
140 0.005 8.991 140 0.010 8.029 140 0.015 8.417
140 0.020 8.049 140 0.025 4.608 140 0.030 5.025
140 0.030 2.799 140 0.040 3.123 140 0.045 3.407
140 0.050 4.183 140 0.055 3.750 140 0.060 6.316
140 0.065 5.799 140 0.070 7.992 140 0.075 7.835
140 0.080 8.985
;
proc sort data=ExperimentB;
  by Temperature Catalyst;
run;

proc sgrender data=ExperimentB template=surface;
  dynamic _X='Temperature' _Y='Catalyst' _Z='Yield' _T='Raw Data';
run;

A plot of the raw data is displayed in Output 43.3.4.
Though the surface displayed in Output 43.3.4 is quite jagged, a distinct feature of the plot is a large ridge that runs diagonally across its surface. One would expect that the ridge would appear in the fitted regression surface of an appropriate nonparametric procedure. Nevertheless, between PROC LOESS and PROC GAM, only PROC LOESS is able to capture this significant feature.

The SAS program for fitting the new data is essentially the same as that for the data set from the first experiment and produces output data set PredGAMb for this experiment. As in Output 43.3.2, multivariate and additive fitted surfaces for these data are displayed in Output 43.3.5.
Output 43.3.5  Fitted Regression Surfaces

It is clear from Output 43.3.5 that the results of PROC LOESS and PROC GAM are completely different. While the plot in the left panel resembles the raw data plot in Output 43.3.4, the plot in the right panel is essentially featureless.

To understand what is happening, compare the scatter plots of Yield by Catalyst for the two data sets in this example. These are generated by the following statements and displayed in Output 43.3.6.

```sas
data PredGAM;
 set PredGAM;
 rename Yield=Yield_a;
run;

data PredGAMb;
 set PredGAMb;
 set PredGAM(keep=Yield_a);
run;
```
Example 43.3: Comparing PROC GAM with PROC LOESS

The top panel of Output 43.3.6 hints at the same kind of structure exhibited in the fitted cross sections of Output 43.3.3. In PROC GAM, the additive model component corresponding to Catalyst is fit to a similar scatter plot, with the partial residuals computed in the backfitting algorithm, so it is able to capture the trend seen here. In contrast, when the second data set is viewed from the perspective of Output 43.3.6, the diagonal ridge apparent in Output 43.3.4 is washed out, and no clear structure shows up in the scatter plot. As a result, the additive model fit produced by PROC GAM is relatively featureless.
Chapter 43: The GAM Procedure

Output 43.3.6 Scatter Plots of Yield by Catalyst

References


Subject Index

GAM procedure
  comparing PROC GAM with PROC LOESS, 3015
  estimates from PROC GAM, 2991
  generalized additive model with binary data, 3003
  graphics, 2979, 2980
  ODS Graph Names, 3003
  ODS graph names, 3003
  ODS Graphics, 3002
  ODS table names, 3002
  Poisson regression analysis of component reliability, 3009
  response level ordering, 2984
  response variable options, 2984

ODS graph names
  GAM procedure, 3003

response level ordering
  GAM procedure, 2984
response variable options
  GAM procedure, 2984
reverse response level ordering
  GAM procedure, 2984
Syntax Index

ADDITIVE option
  PROC GAM statement, 2979
ALL option
  PROC GAM statement, 2979
ALPHA= option
  MODEL statement (GAM), 2985
ANODEV= option
  MODEL statement (GAM), 2985
BY statement
  GAM procedure, 2980
CLASS statement
  GAM procedure, 2980
CLM option
  PROC GAM statement, 2980
COMMONAXES option
  PROC GAM statement, 2980
COMPONENTS option
  PROC GAM statement, 2979
DATA= option
  PROC GAM statement, 2978
SCORE statement (GAM), 2988
DESCENDING option
  CLASS statement (GAM), 2981
  MODEL statement, 2984
  PROC GAM statement, 2978
DIST= option
  MODEL statement (GAM), 2985
EPSILON= option
  MODEL statement (GAM), 2986
EPSSCORE= option
  MODEL statement (GAM), 2986
EVENT= option
  MODEL statement, 2984
FREQ statement
  GAM procedure, 2982
GAM procedure, 2977
  syntax, 2977
GAM procedure, BY statement, 2980
GAM procedure, CLASS statement, 2980
  DESCENDING option, 2981
  ORDER= option, 2981
  REF= option, 2981
  TRUNCATE option, 2981
GAM procedure, FREQ statement, 2982
GAM procedure, MODEL statement, 2982
  ALPHA= option, 2985
  ANODEV= option, 2985
  DESCENDING option, 2984
  DIST= option, 2985
  EPSILON= option, 2986
  EPSSCORE= option, 2986
  EVENT= option, 2984
  ITPRINT option, 2986
  MAXITER= option, 2986
  MAXITSCORE= option, 2986
  METHOD= option, 2986
  OFFSET= option, 2986
  ORDER= option, 2984
  REFERENCE= option, 2985
GAM procedure, OUTPUT statement, 2986
  OUT= option, 2987
GAM procedure, PROC GAM statement, 2978
  ADDITIVE option, 2979
  ALL option, 2979
  CLM option, 2979
  COMMONAXES option, 2980
  COMPONENTS option, 2979
  DATA= option, 2978
  DESCENDING option, 2978
  NONE option, 2979
  ORDER option, 2978
  PLOTS= option, 2978
  UNPACK option, 2979
  UNPACKPANELS option, 2980
GAM procedure, SCORE statement, 2988
  DATA= option, 2988
  OUT= option, 2988
ITPRINT option
  MODEL statement (GAM), 2986
MAXITER= option
  MODEL statement (GAM), 2986
MAXITSCORE= option
  MODEL statement (GAM), 2986
METHOD= option
  MODEL statement (GAM), 2986
MODEL statement
  GAM procedure, 2982
NONE option
  PROC GAM statement, 2979
OFFSET= option
   MODEL statement (GAM), 2986
ORDER= option
   CLASS statement (GAM), 2981
   MODEL statement, 2984
   PROC GAM statement, 2978
OUT= option
   OUTPUT statement (GAM), 2987
   SCORE statement (GAM), 2988
OUTPUT statement
   GAM procedure, 2986

PLOTS= option
   PROC GAM statement, 2978
PROC GAM statement, see GAM procedure

REF= option
   CLASS statement (GAM), 2981
REFERENCE= option
   MODEL statement (GAM), 2985

SCORE statement, GAM procedure, 2988

TRUNCATE option
   CLASS statement (GAM), 2981

UNPACK option
   PROC GAM statement, 2979
UNPACKPANELS option
   PROC GAM statement, 2980